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On a Higher-order Reaction-diffusion Equation with a Special Medium Void

via Potential Well Method

Tan Duc Do*, Nguyen Ngoc Trong and Bui Le Trong Thanh

Abstract. Let d ∈ {1, 2, 3, . . .} and Ω ⊂ Rd be open bounded with Lipschitz boundary.

Consider the reaction-diffusion parabolic problem
ut

|x|4 +∆2u = k(t)|u|p−1u, (x, t) ∈ Ω× (0, T ),

u(x, t) = ∂u
∂ν (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where T > 0, p ∈ (1,∞), 0 ̸= u0 ∈ H2
0 (Ω) and ν is the outward normal vector to ∂Ω.

We investigate the existence of a global weak solution to the problem together with

the decaying and blow-up properties using the potential well method.

1. Introduction

This paper concerns the existence of global solution to a class of parabolic equations

whose diffusion process is determined by the bi-harmonic operator with special coefficients.

The decaying rate for global solutions and blow-up estimates for local solutions are also

presented. The principal method for the investigation is the potential well technique

developed by Levine and Payne in 1970. This technique has been successfully employed

to solve various reaction-diffusion equations, as is well-known to experts in the field. Of

our particular interest here, Tan in [11] and Han in [3] investigated the weak solutions to

the equation of the form

(1.1)


ut
|x|2 + Lu = f(u), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

Tan discussed the existence of a global weak solution as well as the decaying and blow-up

properties when L = ∆p and f(u) = uq, whereas Han derived an upper bound on the

blow-up time of weak solutions when L = ∆ and f(u) = |u|p−1u.

Received April 8, 2022; Accepted July 11, 2022.

Communicated by François Hamel.

2020 Mathematics Subject Classification. 35B44, 35K25, 35K30.

Key words and phrases. global solution, decaying rate, blow up, higher-order, bi-harmonic, special diffusion

process, potential well.

*Corresponding author.

53



54 Tan Duc Do, Nguyen Ngoc Trong and Bui Le Trong Thanh

Various extensions of (1.1) then follow. For examples, one may confer [14] for an

investigation of (1.1) in the porous medium setting, [7] for the existence of global or

finite time blow-up weak solutions of (1.1) when the initial energy is critical and most

recently [12] for a fractional Laplace operator consideration.

For our problem, let d ∈ {1, 2, 3, . . .} and Ω ⊂ Rd be open bounded with Lipschitz

boundary. We consider the following higher-order reaction-diffusion parabolic problem:

(P)


ut
|x|4 +∆2u = k(t)|u|p−1u, (x, t) ∈ Ω× (0, T ),

u(x, t) = ∂u
∂ν (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where T > 0, p ∈ (1,∞), 0 ̸= u0 ∈ H2
0 (Ω) and ν is the outward normal vector to ∂Ω.

We will focus on sufficient conditions for the existence of a global weak solution to (P)

together with the decaying and blow-up properties, the precise definitions of which are

given below. The appearance of the bi-harmonic operator ∆2 and the coefficient k(t)

in the equation is motivated by the work of Philippin in [9] and Han in [3] respectively.

The special diffusion coefficient (or special medium void) 1/|x|4 is driven by the inspiring

Rellich’s inequality (cf. [2, Corollary 6.3.5]) and parallels the inverse-square coefficient in

(1.1). The time-dependent function k(t) adds an extra new feature into our investigation.

In particular, all quantities and functionals used in the potential well method will also be

time-dependent. The details are shown below.

It is worth mentioning that other methods for the investigation of reaction-diffusion

equations exist beside the potential well technique. They include the first eigenvalue

method by Kaplan in 1963, the comparison method and other methods involving integra-

tion. A recent overview of the account can be found in the monograph [4].

Back to the problem (P), the following definitions are crucial to our development.

Definition 1.1. A function u(x, t) is called a weak solution to (P) if u ∈ L2(0, T ;H2
0 (Ω))

with u(0) = u0, ∫ T

0

∫
Ω

|ut|2

|x|4
dxdt <∞

and u(x, t) satisfies

(1.2)

(
ut
|x|4

, φ

)
+ (∆u,∆φ) = k(t)(|u|p−1u, φ)

for all φ ∈ H2
0 (Ω) and t ∈ [0, T ).

Definition 1.2. Let u(t) be a weak solution to (P). Then u(t) is said to blow up at a

finite time T ∗ if u(t) exists for all t ∈ [0, T ∗) and

(1.3) lim
t→T ∗

∥∥∥∥u(t)|x|2

∥∥∥∥2
L2(Ω)

= ∞.



On a Higher-order Reaction-diffusion Equation 55

Such a T ∗ is called the maximal existence time for u(t). If (1.3) does not happen for any

finite time T ∗, then u(t) is called a global solution and the maximal existence time of u(t)

is ∞.

Hereafter, for each u ∈ H2
0 (Ω), define the following functionals:

� Energy functional:

J(u, t) =
1

2
∥∆u∥2L2(Ω) −

k(t)

p+ 1
∥u∥p+1

Lp+1(Ω)
.

� Nehari functional:

I(u, t) = ∥∆u∥2L2(Ω) − k(t)∥u∥p+1
Lp+1(Ω)

.

Due to Lemma 2.2 below, these two functionals are well-defined whenever 2 < p+1 < 2∗,

where

2∗ :=

∞ if d ≤ 4,

2d
d−4 if d ≥ 5.

Next for each t ≥ 0, define the following quantities:

� Nehari’s manifold:

N (t) =
{
u ∈ H2

0 (Ω) \ {0} : I(u, t) = 0}.

� Potential well depth:

(1.4) d(t) = inf
u∈H2

0 (Ω)\{0}
sup
λ>0

J(λu, t) = inf
u∈N (t)

J(u, t).

It is straightforward to verify that N (t) is non-empty for each t ≥ 0. Furthermore, to

justify the second equality in (1.4) we argue as follows. One has

d(t) = inf
u∈H2

0 (Ω)\{0}
sup
λ>0

J(λu, t)

= inf
u∈H2

0 (Ω)\{0}
sup
λ>0

[
λ2

2
∥∆u∥2L2(Ω) −

k(t)

p+ 1
λp+1∥u∥p+1

Lp+1(Ω)

]
= inf

u∈H2
0 (Ω)\{0}

[
λ20
2
∥∆u∥2L2(Ω) −

k(t)

p+ 1
λp+1
0 ∥u∥p+1

Lp+1(Ω)

]
= inf

u∈H2
0 (Ω)\{0}

J(λ0u, t) = inf
λ0u∈H2

0 (Ω)\{0}
J(λ0u, t) = inf

v∈N (t)
J(v, t),

where λ0 > 0 is such that

λ0∥∆u∥2L2(Ω) − k(t)λp0∥u∥
p+1
Lp+1(Ω)

= 0 ⇐⇒ I(λ0u, t) = 0.

With the idea of potential well depth in mind, we are now able to define the stable

and unstable sets as follows for each t ≥ 0:
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� Stable set:

Σ1(t) =
{
u ∈ H2

0 (Ω) : J(u, t) < d∞ and I(u, t) > 0
}
.

� Unstable set:

Σ2(t) =
{
u ∈ H2

0 (Ω) : J(u, t) < d∞ and I(u, t) < 0
}
.

These two sets are crucial to our study. Here

d∞ := lim
t→∞

d(t).

It follows from Lemma 2.7 below that d∞ is positive finite number. Observe that J , I,

N , d, Σ1 and Σ2 all depend on time, which is due to the presence of k(t) in (P). This

time-dependent feature adds extra technicality into our analysis.

Due to the presence of the inverse coefficient 1/|x|4, it is worth emphasizing the dif-

ference between the two cases when 0 ∈ Ω and 0 /∈ Ω. If 0 ∈ Ω then 1/|x|4 develops a

singularity. This necessitates the use of Rellich’s inequality, which is valid for d ≥ 5, in

the proofs of our main results. On the other hand, if 0 /∈ Ω then there is no singularity

and (P) can be regarded as a slight extension of the model in [3]. In this case our results

are valid for all d ∈ {1, 2, 3, . . .}. To deal with these two cases simultaneously, we employ

the notation

dΩ :=

5 if 0 ∈ Ω,

1 if 0 /∈ Ω.

Our first result concerns the existence of a global weak solution to (P) when the initial

datum u0 belongs to the stable set Σ1.

Theorem 1.3. Let d ≥ dΩ and Ω ⊂ Rd be open bounded with Lipschitz boundary. Let

2 < p+1 < 2∗. Let u0 ∈ Σ1(0). Suppose k ∈ C1[0,∞) satisfies k(0) > 0 and k′(t) ≥ 0 for

all t ∈ [0,∞). Furthermore suppose that limt→∞ k(t) = 1. Then there exists a global weak

solution to (P).

Such a global weak solution in Theorem 1.3 also enjoys a decaying property as given

next.

Theorem 1.4. Adopt the assumptions and notation from Theorem 1.3. Let u be the global

solution to (P). Then there exists an α > 0 such that

∥∆u(t)∥L2(Ω) = O(e−αt)

when t→ ∞.
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Next we consider the blow-up behaviour of a weak solution to (P). The following result

provides an upper bound on the blow-up time for a weak solution to (P) when the initial

datum u0 belongs to the unstable set Σ2. In what follows, it is convenient to denote

L(t) =
1

2

∥∥∥∥u(t)|x|2

∥∥∥∥2
L2(Ω)

for each t ∈ [0, T ).

Theorem 1.5. Let d ≥ dΩ and Ω ⊂ Rd be open bounded with Lipschitz boundary. Let

2 < p + 1 < 2∗. Let u0 ∈ Σ2(0). Suppose k ∈ C1[0,∞) satisfies k(0) > 0 and k′(t) ≥ 0

for all t ∈ [0,∞). Let u be a weak solution to (P) with T > 0 being the maximal existence

time. Then T is finite and u blows up at T . Moreover,

T ≤ 4pL(0)

(p− 1)2(p+ 1)(d∞ − J(u0, 0))
.

The critical case when the initial energy J(u0, 0) = d∞ is also investigated.

Theorem 1.6. Let d ≥ dΩ and Ω ⊂ Rd be open bounded with Lipschitz boundary. Let

2 < p+ 1 < 2∗. Let u0 ∈ H2
0 (Ω) be such that

J(u0, 0) = d∞ and I(u0, 0) < 0.

Suppose k ∈ C1[0,∞) satisfies k(0) > 0 and k′(t) ≥ 0 for all t ∈ [0,∞). Let u be a

weak solution to (P) with T > 0 being the maximal existence time. Then there exists a

t0 ∈ (0, T ) such that J(u(t0), t0) < ∞. Moreover, T is finite, u blows up at T and there

holds

T ≤ t0 +
4pL(t0)

(p− 1)2(p+ 1)(d∞ − J(u(t0), t0))
.

The paper is planned as follows. In Section 2, we collect preliminary results for proving

our main theorems. Theorems 1.3 and 1.4 are proved in Section 3. The investigation of the

blow-up in finite time, which is the content of Theorems 1.5 and 1.6, is done in Section 4.

2. Preliminaries

In this section we discuss some preliminary estimates to be used in the proof of the main

results. Recall that we set

dΩ =

5 if 0 ∈ Ω,

1 if 0 /∈ Ω
and 2∗ =

∞ if d ≤ 4,

2d
d−4 = 2 + 8

d−4 if d ≥ 5.

Let us begin with the following Rellich’s inequality.
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Lemma 2.1. Let d ≥ dΩ and u ∈ H2
0 (Ω). Then u/|x|2 ∈ L2(Ω) and there exists a constant

R = R(Ω, d) > 0 such that ∫
Ω

|u|2

|x|4
dx ≤ R

∫
Ω
|∆u|2 dx.

Proof. First assume 0 ∈ Ω. Then d ≥ 5. Let u ∈ H2
0 (Ω) and ũ be its zero extension to

Rd. It follows that ũ ∈ H2(Rd) by [1, Lemma 3.27] and∫
Ω

|u|2

|x|4
dx =

∫
Rd

|ũ|2

|x|4
dx ≤ 16

d2(d− 4)2

∫
Rd

|∆ũ|2 dx =
16

d2(d− 4)2

∫
Ω
|∆u|2 dx,

where we used [2, Corollary 6.3.5] in the second step. Hence the claim is valid with

R =
16

d2(d− 4)2
.

Next assume 0 /∈ Ω. Then d ≥ 1. Set

κ0 := inf
x∈Ω

|x|−4 > 0.

We have∫
Ω

|u|2

|x|4
dx ≤

(
inf
x∈Ω

|x|−4

)∫
Ω
|u|2 dx ≤ κ0C(Ω, d)

∫
Ω
|∇2u|2 dx ≤ κ0C(Ω, d)

∫
Ω
|∆u|2 dx,

where we used the Friedrichs inequality (cf. [8, Theorem 1.10]) and [10, Chapter 3, Propo-

sition 3] in the last two steps respectively.

The next result is the Gagliardo–Nirenberg inequality.

Lemma 2.2. Let d ∈ {1, 2, 3, . . .} and 2 < q ≤ 2∗ with q ̸= ∞ when d = 4. Then there

exists an N0 = N0(d, q) > 0 such that

∥u∥Lq(Ω) ≤ N0∥∆u∥αL2(Ω)∥u∥
1−α
L2(Ω)

for all u ∈ H2
0 (Ω), where

α =
d(q − 2)

4q
∈ (0, 1].

Proof. Let u ∈ H2
0 (Ω). It follows from the Gagliardo–Nirenberg inequality (cf. [1, Theo-

rem 5.8 and Corollary 6.31]) that

∥u∥qLq(Ω) ≤ C(d, q)∥∇2u∥αq
L2(Ω)

∥u∥(1−α)q
L2(Ω)

.

But

∥∇2u∥L2(Ω) ≤ C(d)∥∆u∥L2(Ω)

by [10, Chapter 3, Proposition 3]. Combining these two inequalities together justifies the

claim.
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The following result is immediate from Lemma 2.2 and the Friedrichs inequality (cf. [8,

Theorem 1.10]).

Lemma 2.3. Let d ∈ {1, 2, 3, . . .}, u ∈ H2
0 (Ω) and 2 < p + 1 < 2∗. Then there exists a

constant Sp = Sp(d, p) > 0 such that

∥u∥Lp+1(Ω) ≤ Sp∥∆u∥L2(Ω).

Additionally, we note that the constant Sp in Lemma 2.3 can be made explicit and

sharp when d ≥ 5. In fact, one has the following statement.

Lemma 2.4. [13, Theorem 1] Let d ≥ 5 and u ∈ H2(Ω) ∩H1
0 (Ω). Then

∥u∥L2∗ (Ω) ≤ Λ4/d
p ∥∆u∥L2(Ω),

where

Λp =

[
π2d(d− 4)(d2 − 4)

(
Γ(d/2)

Γ(d)

)]−1/2

,

provided that ∂Ω is sufficiently smooth. Moreover, the inequality is sharp.

A remark is immediate.

Remark 2.5. We mainly deal with the case u ∈ H2
0 (Ω). As such the domain Ω with a

Lipschitz boundary is sufficient to use Lemma 2.4.

Next assume d ≥ 5. Using Lemma 2.4 and Holder’s inequality, we obtain

Sp = |Ω|
1

p+1
− 1

2∗ Λp.

The roles of the energy and Nehari functionals are fundamental to our analysis. The

following identities hold for them.

Lemma 2.6. Let d ≥ dΩ and 2 < p+1 < 2∗. Suppose k ∈ C1[0,∞) satisfies k(0) > 0 and

k′(t) ≥ 0 for all t ∈ [0,∞). Let u be a weak solution to (P). Then the following identities

hold.

(i) For a.e. t0 ∈ [0, T ), one has

J(u(t0), t0) +

∫ t0

0

(∥∥∥∥ut(s)|x|2

∥∥∥∥2
L2(Ω)

+
k′(s)

p+ 1
∥u(s)∥p+1

Lp+1(Ω)

)
ds = J(u0, 0).

(ii) For a.e. t0 ∈ [0, T ), one has

d

dt

(
1

2

∥∥∥∥u(t0)|x|2

∥∥∥∥2
2

)
=

(
u(t0)

|x|4
, ut(t0)

)
= −I(u(t0), t0).
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Proof. Regarding (i), first suppose that ut ∈ L2(0, T ;H2
0 (Ω)). Then by using ut as a test

function in (1.2), we obtain∥∥∥∥ ut|x|2

∥∥∥∥2
L2(Ω)

+ (∆u,∆ut) = k(t)(|u|p−1u, ut).

On the other hand, direct calculations give

d

dt
J(u(t), t) = (∆u(t),∆ut(t))− k(t)(|u(t)|p−1u(t), ut(t))−

k′(t)

p+ 1
∥u(t)∥p+1

Lp+1(Ω)

for each t ∈ (0, T ). Combining these two identities together yields that

(2.1)
d

dt
J(u(t), t) = −

∥∥∥∥ut(t)|x|2

∥∥∥∥2
L2(Ω)

− k′(t)

p+ 1
∥u(t)∥p+1

Lp+1(Ω)

for each t ∈ (0, T ). Now (i) follows by integrating both sides of (2.1) with respect to t

over (0, t0), where t0 ∈ (0, T ).

To finish, we observe that (2.1) holds without the assumption that ut ∈ L2(0, T ;H2
0 (Ω))

by an approximation argument.

The proof of (ii) follows the same line and hence is omitted.

Next we present an explicit expression for the potential well depth.

Lemma 2.7. Let d ∈ {1, 2, 3, . . .} and 2 < p + 1 < 2∗. Suppose k ∈ C1[0,∞) satisfies

k(0) > 0 and k′(t) ≥ 0 for all t ∈ [0,∞). Then the following statements hold.

(i) One has

d(t) =
p− 1

2(p+ 1)
k(t)2/(1−p)S−2(p+1)/(p−1)

p

for all t ∈ [0,∞), where Sp is given in Lemma 2.3.

(ii) The potential well depth d is decreasing as a function of t on [0,∞). Moreover,

d∞ := lim
t→∞

d(t) ∈ [0, d(0)].

Proof. (i) Let w ∈ H2
0 (Ω) \ {0} and t ≥ 0. For each λ ≥ 0, define

F (λ) := J(λw, t) =
λ2

2
∥∆w∥2L2(Ω) −

k(t)

p+ 1
λp+1∥w∥p+1

Lp+1(Ω)
.

It is elementary to check that F as a function of λ on [0,∞) has exactly one critical point

λ0(w) =

(
∥∆w∥2L2(Ω)

k(t)∥w∥p+1
Lp+1(Ω)

)1/(p−1)
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which is also the maximum point. With that in mind we now have

d(t) = inf
u∈H2

0 (Ω)\{0}
sup
λ>0

J(λu, t) = inf
u∈H2

0 (Ω)\{0}
F (λ0(u))

= inf
u∈H2

0 (Ω)\{0}

{
λ0(u)

2

2
∥∆u∥2L2(Ω) −

k(t)

p+ 1
λ0(u)

p+1∥u∥p+1
Lp+1(Ω)

}

=
p− 1

2(p+ 1)
k(t)2/(1−p)

(
inf

u∈H2
0 (Ω)\{0}

∥∆u∥L2(Ω)

∥u∥Lp+1(Ω)

)2(p+1)/(p−1)

=
p− 1

2(p+ 1)
k(t)2/(1−p)S−2(p+1)/(p−1)

p ,

where we used Lemma 2.3 in the last step.

(ii) By hypothesis k is increasing on [0,∞). This fact together with (i) justify the

claim.

The next concavity argument is classic and is used extensively in the literature for a

sufficient condition of blow-up time.

Lemma 2.8. [5] Let θ > 0. Let ψ ≥ 0 be weakly twice-differentiable on a certain interval

(0, τ) ⊂ (0,∞) such that ψ(0) > 0, ψ′(0) > 0 and

ψ′′(t)ψ(t)− (1 + θ)(ψ′(t))2 ≥ 0

for all t ∈ (0, τ). Then there exists a T ≥ τ such that ψ is continuously extended to (0, T )

with

lim
t→T−

ψ(t) = ∞ and T ≤ ψ(0)

θψ′(0)
.

3. Existence of a global weak solution

In this section we prove the existence of a global weak solution to (P), which is The-

orem 1.3. Although the proof follows the standard arguments of Faedo–Galerkin ap-

proximation, the appearance of the fourth-order operator in (P) necessitates a detailed

justification. For an ease of notation, in this section we employ the dot notation

u̇n = (un)t =
∂

∂t
un.

Hereafter

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

Recall that we set

dΩ =

5 if 0 ∈ Ω,

1 if 0 /∈ Ω
and 2∗ =

∞ if d ≤ 4,

2d
d−4 if d ≥ 5
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as well as

Σ1(t) =
{
u ∈ H2

0 (Ω) : J(u, t) < d∞ and I(u, t) > 0
}

and

Σ2(t) =
{
u ∈ H2

0 (Ω) : J(u, t) < d∞ and I(u, t) < 0
}

for each t ≥ 0.

We start with an approximation problem.

Lemma 3.1. Let d ≥ dΩ and 2 < p+1 < 2∗. Let n ∈ N, T > 0 and un0 ∈ C∞
c (Ω). Then

the problem

(Pn)


ρn(x)u̇n +∆2un = βn(un), (x, t) ∈ Ω× (0, T ],

un(x, t) =
∂un
∂ν (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

un(x, 0) = un0, x ∈ Ω,

admits a global solution un ∈ C([0, T ];H2
0 (Ω)) such that u̇n ∈ L2(0, T ;H2

0 (Ω)), where

ρn(x) = |x|−4 ∧ n and βn(un) = k(t)
[
(−n) ∨ (|un|p−1un) ∧ n

]
.

Proof. We proceed via three steps.

Step 1: We construct and solve an approximate problem of (Pn) whose solutions pos-

sesses certain regularity. To this end, let {ek}k∈N ⊂ H2
0 (Ω) be the set of all orthonormal

eigenvectors of ∆ in the sense that

−∆ej = λjej and (ei, ej) = δij

for all i, j ∈ N, where λj ∈ R and δij is the Kronecker’s delta. Then {ek}k∈N forms a

complete orthogonal basis of H2
0 (Ω) and

∆2ej = λ2jej .

Set

Wk = span{e1, . . . , ek}.

Let {un0}n∈N ⊂ C∞
c (Ω) be such that un0 → u0 in H2

0 (Ω) as n→ ∞. In what follows,

fix k ∈ N. Write

un0 =

∞∑
j=1

ξnjej and un0k =

k∑
j=1

ξnjej ∈Wk.

Clearly,

(3.1) lim
n,k→∞

un0k = u0 in H2
0 (Ω).



On a Higher-order Reaction-diffusion Equation 63

We aim to look for a solution

(3.2) unk(t, x) =
k∑

j=1

ξnkj(t)ej(x) ∈Wk, ξnkj ∈ C1([0, T ])

to the problem

(Pnk)

∫
Ω

[
ρn(x)u̇nk +∆2unk − βn(unk)

]
η dx = 0, unk(x, 0) = un0k

for all η ∈Wk. To this purpose, use η = ei for each i ∈ N as a test function to obtain

(ρnu̇nk, ei) =
k∑

j=1

(∫
Ω
ρn(x)ejei dx

)
ξ̇nkj(t) =:

k∑
j=1

aij ξ̇nkj(t).

Clearly aij ≤ n. Furthermore, one has

(∆2unk, ei) =

 k∑
j=1

ξnkj(t)λ
2
jej , ei

 = λ2jξnki(t),

and

ψni = ψni(t, ξnk1, . . . , ξnkk) := (βn(unk), ei).

Hence {ξnkj}kj=1 is determined by the following Cauchy problem

(C)

k∑
j=1

aij ξ̇nkj(t) + λ2jξnkj(t) = ψni, ξnki(0) =

∫
Ω
un0ei dx.

A standard result on ODE systems now confirms the existence of a unique solution ξnki ∈
C1([0, T ]) to (C). To see this, it suffices to verify that ψni is Lipschitz continuous with

respect to t on [0, T ] and at the same time is Lipschitz continuous with respect to ξ⃗ :=

(ξnk1, . . . , ξnkk) in (C([0, T ]))k. Since k(t) ∈ C1([0,∞)) by hypothesis, the former is clear.

To prove the latter, first observe that for all s ∈ R, one has

(−n) ∨ (|s|p−1s) ∧ n = |s|p−1s,

where s := (−n1/p) ∨ s ∧ n1/p. Now let A⃗, B⃗ ∈ (C([0, T ]))k and write

a =

k∑
j=1

Ajej and b =

k∑
j=1

Bjej .

Correspondingly, we have

a = (−n1/p) ∨ a ∧ n1/p and b = (−n1/p) ∨ b ∧ n1/p.
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Then ∣∣ψni(t0, A⃗)− ψni(t0, B⃗)
∣∣

= k(t0)
∣∣(|a|p−1a, ei

)
−
(
|b|p−1b, ei

)∣∣
= k(t0)

∣∣∣∣ ([a− b]

∫ 1

0
|a+ z(a− b)|p−1 dz, ei

)
+ (p− 1)

(∫ 1

0
|a+ z(a− b)|p−3[a+ z(a− b)]2[a− b] dz, ei

) ∣∣∣∣
≤ k(t0)p3

pn∥a− b∥L2(Ω)∥ei∥L2(Ω) ≤ k(t0)p3
pn∥a− b∥L2(Ω)∥ei∥L2(Ω)

≤ k(t0)p3
pn∥A⃗− B⃗∥(C([0,T ]))k

 k∑
j=1

∥ej∥L2(Ω)

 ∥ei∥L2(Ω)

for each fixed t0 ∈ [0, T ], where we used [6, (IV), p. 96] in the second step and the fact that

|a− b| ≤ |a− b| a.e. in [0, T ]× Ω in the fourth step. That is, ψni is Lipschitz continuous

on (C([0, T ]))k as claimed.

Thus there exists a unique solution unk given by (3.2) to (Pnk) due to the prescribed

boundary conditions.

Step 2: We aim to derive some a priori estimates. For convenience, each estimate is

considered in a sub-step.

(i) We show that {ρ1/2n unk}k∈N is uniformly bounded in L∞(0, T ;L2(Ω)) and {unk}k∈N
is uniformly bounded in L2(0, T ;H2(Ω)).

Using η = unk as a test function in (Pnk), we derive∫
Ω
ρnu

2
nk(t) dx+ 2

∫ t

0
∥∆unk(s)∥2L2(Ω) ds

= 2

∫ t

0

∫
Ω
βn(unk(s))unk(s) dxds+

∫
Ω
ρn|un0k|2 dx.

Observe that

2

∫ t

0

∫
Ω
βn(unk(s))unk(s) dxds ≤ 2n

∫ t

0

∫
Ω
unk(s) dxds

≤ 2n diam(Ω)2|Ω|1/2
∫ t

0

∥∥∥∥unk(s)x2

∥∥∥∥
L2(Ω)

ds

≤ 2n diam(Ω)2|Ω|1/2R1/2

∫ t

0
∥∆unk(s)∥L2(Ω) ds

≤ 4n2 diam(Ω)2|Ω|RT +

∫ t

0
∥∆unk(s)∥2L2(Ω) ds

=: K1T +

∫ t

0
∥∆unk(s)∥2L2(Ω) ds,
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where we used Lemma 2.1 in the third step. It follows that∫
Ω
ρnu

2
nk(t) dx+

∫ t

0
∥∆unk(s)∥2L2(Ω) ds ≤ K1T +

∫
Ω
ρn|un0k|2 dx.

Due to (3.1) we conclude that {ρ1/2n unk}k∈N is uniformly bounded in L∞(0, T ;L2(Ω)) and

{unk}k∈N is uniformly bounded in L2(0, T ;H2(Ω)).

(ii) We show that {ρ1/2n u̇nk}k∈N is uniformly bounded in L2(0, T ;L2(Ω)) and {unk}k∈N
is uniformly bounded in L∞(0, T ;H2

0 (Ω)).

It follows from (3.2) that u̇nk ∈ H2
0 (Ω). Therefore using η = u̇nk as a test function in

(Pnk) leads to

2

∫ t

0

∫
Ω
ρnu̇

2
nk(s) dxds+ ∥∆unk(t)∥2L2(Ω)

= 2

∫ t

0

∫
Ω
βn(unk(s))u̇nk(s) dxds+ ∥∆unk(0)∥2L2(Ω).

(3.3)

But

2

∫ t

0

∫
Ω
βn(unk(s))u̇nk(s) dxds ≤

∫ t

0

∫
Ω

|βn(unk(s))|2

ρn
dxds+

∫ t

0

∫
Ω
ρnu̇nk(s)

2 dxds

≤
∫ t

0

∫
Ω

n2

ρn
dxds+

∫ t

0

∫
Ω
ρnu̇nk(s)

2 dxds.

Define

Ω1 = {x ∈ Ω : |x|−4 ≥ n} and Ω2 = {x ∈ Ω : |x|−4 < n}.

Then ∫ t

0

∫
Ω

n2

ρn
dxds =

∫ t

0

∫
Ω1

n2

ρn
dxds+

∫ t

0

∫
Ω2

n2

ρn
dxds

= n|Ω1|t+
∫ t

0

∫
Ω2

n2

|x|−4
dxds

≤ n|Ω1|T + n2 diam(Ω)4|Ω2|T =: K2T.

Consequently,

2

∫ t

0

∫
Ω
βn(unk(s))u̇nk(s) dxds ≤ K2T +

∫ t

0

∫
Ω
ρnu̇nk(s)

2 dxds.

Combining this last display with (3.3), we arrive at∫ t

0

∫
Ω
ρnu̇

2
nk(s) dxds+ ∥∆unk(t)∥2L2(Ω) ≤ K2T + ∥∆unk(0)∥2L2(Ω).

Again using (3.1) we infer that {ρ1/2n u̇nk}k∈N is uniformly bounded in L2(0, T ;L2(Ω)) and

{unk}k∈N is uniformly bounded in L∞(0, T ;H2
0 (Ω)).
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(iii) We show that {u̇nk}k∈N is uniformly bounded in L2(0, T ;L2(Ω)). As a by-product,

we obtain unk ∈ C([0, T ];L2(Ω)).

Notice that∫ t

0

∫
Ω
u̇nk(s)

2 dxds =

∫ t

0

∫
Ω

1

ρn
ρnu̇nk(s)

2 dxds

=

∫ t

0

∫
Ω1

1

ρn
ρnu̇nk(s)

2 dxds+

∫ t

0

∫
Ω2

1

ρn
ρnu̇nk(s)

2 dxds

≤
(
1

n
+ diam(Ω)4

)∫ t

0

∫
Ω
ρnu̇nk(s)

2 dxds.

Hence {u̇nk}k∈N is uniformly bounded in L2(0, T ;L2(Ω)).

(iv) We show that {ρnu̇nk}k∈N is uniformly bounded in L∞(0, T ;L2(Ω)) and {u̇nk}k∈N
is uniformly bounded in L2(0, T ;H2

0 (Ω)). Hence as a by-product, we also have unk ∈
C([0, T ];H2

0 (Ω)).

First we show that ρnünk ∈ H−2(Ω). As u̇nk ∈ H2
0 (Ω), we have ∆2u̇nk ∈ H−2(Ω).

Then

|(ρnünk, η)| =
∣∣− (∆2u̇nk, η) + ((βn(unk))t, η)

∣∣
≤
∣∣− (∆2u̇nk, η)

∣∣+ p
∣∣(k(t)|unk|p−1u̇nk, η

)∣∣+ ∣∣(k′(t)|unk|p−1unk, η
)∣∣

≤ ∥∆2u̇nk∥H−2(Ω)∥η∥H2
0 (Ω)

+ pk(T )
∥∥|unk|p−1

∥∥
Ld/4(Ω)

∥u̇nk∥L2d/(d−4)(Ω)∥η∥L2d/(d−4)(Ω)

+

(
sup

0≤s≤T
k′(s)

)∥∥|unk|p−1
∥∥
Ld/4(Ω)

∥unk∥L2d/(d−4)(Ω)∥η∥L2d/(d−4)(Ω)

= ∥∆2u̇nk∥H−2(Ω)∥η∥H2
0 (Ω)

+ pk(T )∥unk∥p−1

L(p−1)d/4(Ω)
∥u̇nk∥L2∗ (Ω)∥η∥L2∗ (Ω)

+

(
sup

0≤s≤T
k′(s)

)
∥unk∥p−1

Ld/4(Ω)
∥unk∥L2d/(d−4)(Ω)∥η∥L2d/(d−4)(Ω)

for all η ∈ H2
0 (Ω). By hypothesis, p+ 1 < 2∗, from which it follows that (p− 1)d/4 < 2∗.

Therefore, we further obtain

|(ρnünk, η)| ≤ ∥∆2u̇nk∥H−2(Ω)∥η∥H2
0 (Ω)

+ pk(T )|Ω|
4
d
− p−1

2∗ ∥unk∥p−1

L2∗ (Ω)
∥u̇nk∥L2∗ (Ω)∥η∥L2∗ (Ω)

+

(
sup

0≤s≤T
k′(s)

)
|Ω|

4
d
− p−1

2∗ ∥unk∥pL2∗ (Ω)
∥η∥L2∗ (Ω)

<∞
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for all η ∈ H2
0 (Ω), where we use the convention that 1/∞ = 0 in case 2∗ = ∞ hereafter.

This means ρnünk ∈ H−2(Ω).

Next choose η = u̇nk to be a test function in the equation

ρn(x)(unk)tt +∆2u̇nk = (βn(unk))t.

Then ∫
Ω
ρnu̇nk(t)

2 dx−
∫
Ω
ρnu̇nk(0)

2 dx+ 2

∫ t

0

∫
Ω
|∆u̇nk|2 dx

=

∫ t

0

∫
Ω
(βn(unk))tu̇nk dx

=


0 if βn(unk) = n,

2p
∫ t
0

∫
Ω k(s)|unk(s)|

p−1u̇nk(s)
2 dxds

+2
∫ t
0

∫
Ω k

′(s)|unk(s)|p−1unk(s)u̇nk(s) dxds if βn(unk) = k(t)|unk|p−1unk.

(3.4)

Next we estimate the right-hand side of (3.4). Again notice that p + 1 < 2∗ implies

(p− 1)d/4 < 2∗. Let ε ∈ (0, 1) be such that (p− 1)(ε+ d/4) < 2∗. Then

2(d+ 4ε)

d+ 4ε− 4
= 2 +

8

d+ 4ε− 4
< 2 +

8

d− 4
= 2∗

and ∫
Ω
|unk|p−1u̇2nk dx ≤

∥∥|unk|p−1
∥∥
Lε+d/4(Ω)

∥∥u̇2nk∥∥L(d+4ε)/(d+4ε−4)(Ω)

= ∥unk∥p−1

L(p−1)(ε+d/4)(Ω)
∥u̇nk∥2L2(d+4ε)/(d+4ε−4)(Ω)

≤ C|Ω|
4

d+4ε
− p−1

2∗ ∥unk∥p−1

L2∗ (Ω)
∥∆u̇nk∥αL2(Ω)∥u̇nk∥

1−α
L2(Ω)

,

where

α :=
d

2

(
1

2
− d+ 4ε− 4

2(d+ 4ε)

)
=

d

d+ 4ϵ
∈ (0, 1)

and we used Hölder’s inequality and Lemma 2.2 in the last step.

Thus ∫ t

0

∫
Ω
k(s)|unk(s)|p−1u̇nk(s)

2 dxds

≤ Ck(T )

∫ t

0
∥unk(s)∥p−1

L2∗ (Ω)
∥∆u̇nk(s)∥αL2(Ω)∥u̇nk(s)∥

1−α
L2(Ω)

ds

≤ 1

4

∫ t

0
∥∆u̇nk(s)∥2L2(Ω) ds+ C

∫ t

0
∥u̇nk(s)∥

2(1−α)/(2−α)
L2(Ω)

ds

≤ 1

4

∫ t

0
∥∆u̇nk(s)∥2L2(Ω) ds+ C

(
T + sup

k∈N
∥u̇nk∥L2(0,T ;L2(Ω))

)
,
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where we used the fact that {unk}k∈N is uniformly bounded in L∞(0, T ;H2
0 (Ω)) in the

second step as well as Young’s inequality and the fact that {u̇nk}k∈N is uniformly bounded

in L2(0, T ;L2(Ω)) in the third step.

Analogously,∫
Ω
|unk|p−1unku̇nk dx ≤

∥∥|unk|p−1
∥∥
Ld/4(Ω)

∥unk∥L2d/(d−4)(Ω)∥u̇nk∥L2d/(d−4)(Ω)

= ∥unk∥p−1

L(p−1)d/4(Ω)
∥unk∥L2∗ (Ω)∥u̇nk∥L2∗ (Ω)

≤ C|Ω|
4
d
− p−1

2∗ ∥unk∥pL2∗ (Ω)
∥∆u̇nk∥L2(Ω),

where we used Hölder’s inequality and Lemma 2.2 in the last step.

It follows that ∫ t

0

∫
Ω
k′(s)|unk(s)|p−1unk(s)u̇nk(s) dxds

≤ C

(
sup

0≤s≤T
k′(s)

)∫ t

0
∥unk(s)∥pL2∗ (Ω)

∥∆u̇nk(s)∥L2(Ω) ds

≤ 1

4

∫ t

0
∥∆u̇nk(s)∥2L2(Ω) ds+ CT,

where we used the fact that {unk}k∈N is uniformly bounded in L∞(0, T ;H2
0 (Ω)) and

Young’s inequality in the second step.

Back to (3.4), we now obtain∫
Ω
ρnu̇nk(t)

2 dx+

∫ t

0

∫
Ω
|∆u̇nk(s)|2 dxds

≤


∫
Ω ρnu̇nk(0)

2 dx if βn(unk) = n,∫
Ω ρnu̇nk(0)

2 dx+ C
(
T + supk∈N ∥u̇nk∥L2(0,T ;L2(Ω))

)
if βn(unk) = k(t)|unk|p−1unk.

Since unk(0) ∈ C∞
c (Ω) satisfies

ρnu̇nk(0) + ∆2unk(0) = βnunk(0),

we may conclude that {ρnu̇nk}k∈N is uniformly bounded in L∞(0, T ;L2(Ω)) and {u̇nk}k∈N
is uniformly bounded in L2(0, T ;H2

0 (Ω)).

Step 3: We acquire a global weak solution to (Pn). Having achieved the a-priori

estimates in Step 2, by using a subsequence when necessary, we may now let k → ∞ in

(Pnk) to obtain a weak solution un to (Pn) with the required regularity.

In view of Lemma 3.1, we are now in a position to prove Theorem 1.3.
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Proof of Theorem 1.3. Since u0 ∈ Σ1(0), there exists a constant ϵ0 > 0 such that

J(u0, 0) + ϵ0 < d∞.

By Lemma 3.1 for each n ∈ N there exists a weak solution un ∈ C([0, T ];H2
0 (Ω)) with

u̇n ∈ L2(0, T ;H2
0 (Ω)) to the problem (Pn), where un0 ∈ C∞

c (Ω) is such that

lim
n→∞

un0 = u0 in H2
0 (Ω).

By choosing a sufficiently large n ∈ N, we may assume also that

(3.5) J(un0, 0) ≤ J(u0, 0) + ϵ0 < d∞.

Using u̇n as a test function in (Pn), we derive that∫ t

0

∫
Ω
ρnu̇n(s)

2 dxds+

∫ t

0

∫
Ω
∆2un(s)u̇n(s) dxds

=

∫ t

0

∫
Ω
βn(un)u̇n(s) dxds ≤

∫ t

0

∫
Ω
|un(s)|p−1un(s)u̇n(s) dxds.

On noticing that ∫
Ω
∆2unu̇n dx =

d

dt

(
1

2

∫
Ω
∥∆un∥2L2(Ω) dx

)
and ∫

Ω
|un|p−1unu̇n dx =

d

dt

(
1

p+ 1

∫
Ω
∥un∥p+1

Lp+1(Ω)
dx

)
,

we can rewrite the above inequality as

(3.6)

∫ t

0

∫
Ω
ρnu̇n(s)

2 dxds+ J(un(t), t) ≤ J(un0, 0) < d∞,

where we used (3.5) in the last step. This implies un(t) ∈ Σ1 for each t ∈ [0, T ]. Indeed,

by way of contradiction we assume the opposite statement holds. Let t∗ be the minimal

time at which un(t
∗) /∈ Σ1. Then using the fact that un ∈ C([0, T ];H2

0 (Ω)) we infer

un(t
∗) ∈ ∂Σ1. That is, either J(un(t

∗), t∗) = d∞ or I(un(t
∗), t∗) = 0. The former is

impossible due to (3.6). Consequently, we must have I(un(t
∗), t∗) = 0 or equivalently

∥∆un(t∗)∥2L2(Ω) = k(t∗)∥un(t∗)∥p+1
Lp+1(Ω)

,

whence

J(un(t
∗), t∗) =

p− 1

2(p+ 1)
∥∆un(t∗)∥2L2(Ω) ≥

p− 1

2(p+ 1)
S−2
p ∥un(t∗)∥2Lp+1(Ω)

=
p− 1

2(p+ 1)
S−2
p

(
k(t∗)−1/2∥∆un(t∗)∥L2(Ω)

∥u∥Lp+1(Ω)

) 2
p+1

(
1
2
− 1

p+1

)−1

≥ p− 1

2(p+ 1)
k(t∗)2/(1−p)S−2(p+1)/(p−1)

p = d(t∗) ≥ d∞.
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This contradicts (3.6). Hence un(t) ∈ Σ1(t) for each t ∈ [0, T ] as claimed.

Let t ∈ [0, T ]. Then un(t) ∈ Σ1(t) implies

∥∆un(t)∥2L2(Ω) > k(t)∥un(t)∥p+1
Lp+1(Ω)

.

Using (3.6) we further obtain

(3.7)

∫ t

0

∫
Ω
ρnu̇n(s)

2 dxds+

(
1

2
− k(t)

p+ 1

)
∥∆un(t)∥2L2(Ω) < J(un0, 0) < d∞.

In particular, one has(
1

2
− 1

p+ 1

)
∥∆un(t)∥2L2(Ω) =

(
1

2
− k∞
p+ 1

)
∥∆un(t)∥2L2(Ω)

<

(
1

2
− k(t)

p+ 1

)
∥∆un(t)∥2L2(Ω) < J(un0, 0),

(3.8)

where k∞ := limt→∞ k(t) = 1 by hypothesis. Now it follows from Lemma 2.3, (3.8) and

(3.5) that∫
Ω
|un(t)|p+1 dx < Sp+1

p

(
∥∆un(t)∥2L2(Ω)

)(p+1)/2

= Sp+1
p

(
∥∆un(t)∥2L2(Ω)

)(p+1)/2−1∥∆un(t)∥2L2(Ω)

< Sp+1
p

[(
1

2
− 1

p+ 1

)−1

J(un0, 0)

](p+1)/2−1

∥∆un(t)∥2L2(Ω)

< Sp+1
p

[(
1

2
− 1

p+ 1

)−1

(J(u0, 0) + ϵ0)

](p+1)/2−1

∥∆un(t)∥2L2(Ω)

=: δ∥∆un(t)∥2L2(Ω).

(3.9)

Note that

0 < δ < Sp+1
p

[(
1

2
− 1

p+ 1

)−1

d∞

](p+1)/2−1

=

[(
1

2
− 1

p+ 1

)−1 p− 1

2(p+ 1)

](p−1)/2

= 1.

Next we use un as a test function in (Pn) to arrive at

1

2

∫
Ω
ρnu

2
n dx+

∫ t

0

∫
Ω
|∆un(s)|2 dxds ≤

∫ t

0

∫
Ω
|un(s)|p+1 dxds+

1

2

∫
Ω
ρnu

2
n0 dx

< δ

∫ t

0

∫
Ω
|∆un(s)|2 dxds+

1

2

∫
Ω
ρnu

2
n0 dx,

where we used (3.9) in the second step.

It follows that

(3.10)
1

2

∫
Ω
ρnu

2
n dx+ (1− δ)

∫ t

0

∫
Ω
|∆un(s)|2 dxds <

1

2

∫
Ω
ρnu

2
n0 dx < C,
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where C > 0 is independent of n and T . Consequently, {un}n∈N is uniformly bounded in

L2(0, T ;H2
0 (Ω)).

By (3.7) and (3.10), the following properties hold:

un → u a.e. in (0, T )× Ω,

ρ
1/2
n un

w−→ ut
|x|2 in L2(0, T ;L2(Ω)),

∆un
w−→ ∆u in L2(0, T ;L2(Ω)),

un
w−→ u in L2(0, T ;Lp+1(Ω)),

un
w−→ u in L∞(0, T ;Lp+1(Ω))

for all T > 0. The theorem now follows by taking limits when n → ∞ in (Pn). Since

T > 0 is arbitrary, the solution is global.

Next we prove Theorem 1.4.

Proof of Theorem 1.4. Let t ∈ [0, T ). By repeating the arguments used to obtain (3.8) in

the proof of Theorem 1.3, we also have that(
1

2
− 1

p+ 1

)
∥∆un(t)∥2L2(Ω) < J(u0, 0).

This and Lemma 2.3 together imply∫
Ω
|u(t)|p+1 dx < Sp+1

p

(
∥∆u(t)∥2L2(Ω)

)(p+1)/2

= Sp+1
p

(
∥∆u(t)∥2L2(Ω)

)(p+1)/2−1∥∆u(t)∥2L2(Ω)

< Sp+1
p

[(
1

2
− 1

p+ 1

)−1

J(u0, 0)

](p+1)/2−1

∥∆u(t)∥2L2(Ω)

=: δ∥∆u(t)∥2L2(Ω).

(3.11)

Note that

0 < δ < Sp+1
p

[(
1

2
− 1

p+ 1

)−1

d∞

](p+1)/2−1

=

[(
1

2
− 1

p+ 1

)−1 p− 1

2(p+ 1)

](p−1)/2

= 1.

Hence (3.11) leads to

I(u(t), t) = ∥∆u(t)∥2L2(Ω) − k(t)∥u∥p+1
Lp+1(Ω)

≥ (1− δk(t))∥∆u(t)∥2L2(Ω) ≥ (1− δ)∥∆u(t)∥2L2(Ω)

(3.12)

since k is increasing on [0,∞) with limt→∞ k(t) = 1 by assumptions.
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Next observe that

J(u(t), t) =
1

2
∥∆u∥2L2(Ω) −

k(t)

p+ 1
∥u∥p+1

Lp+1(Ω)
=

p− 1

2(p+ 1)
∥∆u∥2L2(Ω) +

1

p+ 1
I(u(t), t).

Two consequences are immediate from this equality. First using Lemma 2.6(i), we arrive

at

(3.13) J(u0, 0) > J(u(t), t) >
p− 1

2(p+ 1)
∥∆u∥2L2(Ω)

as I(u(t), t) > 0. Secondly using (3.12), we have

J(u(t), t) ≤
(

p− 1

2(p+ 1)(1− δ)
+

1

p+ 1

)
I(u(t), t).

Next we use Lemma 2.6(ii) to derive∫ T

t
I(u(s), s) ds = −

∫ T

t

(
u(s)

|x|2
, ut(s)

)
ds = −

∫ T

t
L′(s) ds

= L(t)− L(T ) ≤ L(t) ≤ R
2

∫
Ω
|∆u(t)|2 dx,

(3.14)

where

L(t) :=
1

2

∥∥∥∥u(t)|x|2

∥∥∥∥2
L2(Ω)

for each t ∈ [0, T ) and we used Lemma 2.1 in the last step.

Combining (3.12), (3.13) and (3.14) together yields∫ T

t
J(u(s), s) ds ≤

(
p− 1

2(p+ 1)(1− δ)
+

1

p+ 1

)∫ T

t
I(u(s), s) ds

≤
(

p− 1

2(p+ 1)(1− δ)
+

1

p+ 1

)
(p+ 1)R
p− 1

J(u(t), t) =: AJ(u(t), t).

Letting T → ∞ in the above inequality, one has∫ ∞

t
J(u(s), s) ds ≤ AJ(u(t), t).

Set

M(t) =

∫ ∞

t
J(u(s), s) ds.

Then the above inequality can be rewritten as

M ′(t) ≤ − 1

A
M(t).

Using Gronwall’s inequality, we deduce that

M(t) ≤M(A) exp

(
− t−A

A

)
≤ AJ(u(A), A) exp

(
1− t

A

)
.
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In addition, as J(u(·), · ) is decreasing on [0,∞), it holds that

M(t) ≥
∫ A+t

t
J(u(s), s) ds ≥ AJ(u(A+ t), A+ t).

Hence

(3.15) J(u(A+ t), A+ t) ≤ J(u(A), A) exp

(
1− t

A

)
provided that t > A.

Lastly, we combine (3.15) with (3.13) to arrive at

∥∆u(A+ t)∥2L2(Ω) <
2(p+ 1)

p− 1
J(u(A+ t), A+ t)

<
2(p+ 1)

p− 1
J(u(A), A) exp

(
1− t

A

)
= Be−αt,

where

B =
2(p+ 1)

p− 1
J(u(A), A)e and α =

1

A
.

The proof is complete.

4. Upper bound for blow-up time

In this section we work with the upper bounds for the blow-up time. These are the contents

of Theorems 1.5 and 1.6. Recall that we set

L(t) =
1

2

∥∥∥∥u(t)|x|2

∥∥∥∥2
L2(Ω)

for each t ∈ [0, T ).

First we prove Theorem 1.5 which deals with the case of u0 being in the unstable set.

Proof of Theorem 1.5. We aim to show that the maximal existence time T <∞ and then

to provide an upper bound for T . We divide the proof into two steps.

Step 1: We will show that

(4.1) I(u(t), t) < 0 for all t ∈ [0, T ).

Since I(u(t), t) is continuous as a function of t over [0, T ), using the fact that I(u0, 0) < 0

we deduce that there exists a t1 ∈ (0, T ) such that

I(u(t), t) < 0
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for all t ∈ [0, t1). If there is a t2 ∈ (0, T ) such that t2 > t1, I(u(t2), t2) = 0 and I(u(t), t) < 0

for all t ∈ [0, t2), then

(4.2) J(u(t2), t2) ≥ inf
w∈N (t2)

J(w, t2) = d(t2)

by virtue of (1.4). On the other hand, Lemmas 2.6(i) and 2.7(ii) together give

J(u(t), t) ≤ J(u0, 0) < d∞ < d(t)

for all t ∈ [0, T ). This means (4.2) is impossible, which implies (4.1).

Step 2: In view of Step 1,

∥∆u∥2L2(Ω) < k(t)∥∆u∥p+1
Lp+1(Ω)

≤ k(t)Sp+1
p ∥∆u∥p+1

L2(Ω)

for all t ∈ [0, T ), where we used Lemma 2.3 in the second step. Therefore, Lemma 2.7(i)

and the hypothesis that J(u0, 0) < d∞ implies

(4.3) ∥∆u∥2L2(Ω) ≥
2(p+ 1)

p− 1
d(t) ≥ 2(p+ 1)

p− 1
d∞ >

2(p+ 1)

p− 1
J(u0, 0)

for all t ∈ [0, T ).

Next fix τ ∈ [0, T ) as well as

(4.4) β ∈
(
0,
p+ 1

p
(d∞ − J(u0, 0))

)
and σ ∈

(
L(0)

(p− 1)β
,∞
)
.

The choices of β and σ are justified below by (4.6) and (4.7) respectively. Define the

nonnegative functional

G(h) =

∫ h

0
L(s) ds+ (τ − h)L(0) + β(h+ σ)2,

where h ∈ [0, τ ]. Then

G′(h) = L(h)− L(0) + 2β(h+ σ) = 2

∫ h

0

(
u(s)

|x|2
, ut(s)

)
ds+ 2β(h+ σ)

and

G′′(h) = 2

(
u(h)

|x|2
, ut(h)

)
+ 2β = −2I(u(h), h) + 2β

= −2(p+ 1)J(u(h), h) + (p− 1)∥∆u(h)∥2L2(Ω) + 2β

= −2(p+ 1)

[
J(u0, 0)−

∫ h

0

(∥∥∥∥ut(s)|x|2

∥∥∥∥2
L2(Ω)

+
k′(s)

p+ 1
∥u(s)∥p+1

Lp+1(Ω)

)
ds

]
+ (p− 1)∥∆u(h)∥2L2(Ω) + 2β

(4.5)
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for each h ∈ [0, τ ], where we used Lemma 2.6 in the fourth step.

In what follows, it is convenient to denote

θ(h) =

(
2

∫ h

0
L(s) ds+ β(h+ σ)2

)(∫ h

0

∥∥∥∥ut(s)|x|2

∥∥∥∥2
L2(Ω)

ds+ β

)

−
(∫ h

0

(
u(s)

|x|2
, ut(s)

)
ds+ β(h+ σ)

)2

≥ 0

for each h ∈ [0, τ ], where we used Cauchy–Schwartz inequality to verify the last step.

In view of Lemma 2.8, consider

G(h)G′′(h)− p+ 1

2
(G′(h))2

= G(h)G′′(h)− 2(p+ 1)

[∫ h

0

(
u(s)

|x|2
, ut(s)

)
ds+ β(h+ σ)

]2
= G(h)G′′(h) + 2(p+ 1)

[
θ(h)− (G(h)− (τ − h)L(0))

(∫ h

0

∥∥∥∥ut(s)|x|2

∥∥∥∥2
L2(Ω)

ds+ β

)]

≥ G(h)G′′(h)− 2(p+ 1)G(h)

(∫ h

0

∥∥∥∥ut(s)|x|2

∥∥∥∥2
L2(Ω)

ds+ β

)

≥ G(h)

[
G′′(h)− 2(p+ 1)

(∫ h

0

∥∥∥∥ut(s)|x|2

∥∥∥∥2
L2(Ω)

ds+ β

)]
= G(h)

[
− 2(p+ 1)J(u0, 0) + (p− 1)∥∆u(h)∥2L2(Ω) − 2pβ

]
≥ G(h)

[
2(p+ 1)(d∞ − J(u0, 0))− 2pβ

]
≥ 0

(4.6)

for all h ∈ [0, τ ], where we used (4.5), (4.3) and (4.4) in the last three steps respectively.

Next observe that

G(0) = τL(0) + βσ2 > 0 and G′(0) = 2βσ > 0.

Consequently, Lemma 2.8 implies

τ ≤ 2G(0)

(p− 1)G′(0)
=

2(τL(0) + βσ2)

2(p− 1)βσ
=

L(0)

(p− 1)βσ
τ +

σ

p− 1
.

This in turn yields

τ

(
1− L(0)

(p− 1)βσ

)
≤ σ

p− 1

or equivalently

(4.7) τ ≤ σ

p− 1

(
1− L(0)

(p− 1)βσ

)−1

=
βσ2

(p− 1)βσ − L(0)
.
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Minimizing this last display over the range of σ in (4.4) leads to

(4.8) τ ≤ 4L(0)

(p− 1)2β
.

Then we minimize (4.8) over the the range of β in (4.4) to see that

(4.9) τ ≤ 4pL(0)

(p− 1)2(p+ 1)(d∞ − J(u0, 0))
.

Lastly, (4.9) holds for all τ ∈ (0, T ), from we deduce that

T ≤ 4pL(0)

(p− 1)2(p+ 1)(d∞ − J(u0, 0))

as required.

Now it remains to prove Theorem 1.6. To this end, it is necessary to present the

following technical result.

Lemma 4.1. Let d ≥ 1 and p > 1. Suppose k ∈ C1[0,∞) satisfies k(0) > 0 and k′(t) ≥ 0

for all t ∈ [0,∞). Let u be a weak solution to (P) with initial datum u0 ∈ H2
0 (Ω). Then∥∥∥∥ut(0)|x|2

∥∥∥∥2
L2(Ω)

> 0

if u0 is not a weak solution to the problem

(E)

∆2u = k(0)|u|p−1u if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

Proof. First, since u is a weak solution to (P), we have(
ut
|x|4

, φ

)
+ (∆u,∆φ) = k(t)(|u|p−1u, φ)

for all φ ∈ H2
0 (Ω) and t ∈ [0, T ). In particular,(

ut(0)

|x|4
, φ

)
+ (∆u0,∆φ) = k(t)(|u0|p−1u0, φ)

for all φ ∈ H2
0 (Ω).

Secondly, suppose that u0 is not a weak solution to (E). Then there exists a function

0 ̸= ψ ∈ C∞
c (Ω) such that

(∆u0,∆ψ)− k(0)

∫
Ω
|u0|p−1u0ψ ̸= 0.
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With the above two facts in mind, one has∥∥∥∥ut(0)|x|2

∥∥∥∥2
L2(Ω)

=

[
sup

φ∈L2(Ω)\{0}

(
ut(0)/|x|2, φ

)
∥φ∥L2(Ω)

]2
≥

[(
ut(0)/|x|2, ψ

)
∥ψ∥L2(Ω)

]2

=

[
(∆u0,∆ψ)− k(0)(|u0|p−1u0, ψ)

∥ψ∥L2(Ω)

]2
> 0.

This justifies the claim.

Now we prove Theorem 1.6.

Proof of Theorem 1.6. We aim to show that the maximal existence time T <∞ and then

to provide an upper bound for T . Set

W (t) =
{
w ∈ H2

0 (Ω) : J(w, t) < d(t) and I(w, t) < 0
}
.

We first show that there exists a t0 ∈ (0, T ) such that u(t) ∈W (t) for all t ∈ [t0, T ).

Since I(u(t), t) is continuous as a function of t over [0, T ), using the fact that I(u0, 0) <

0 we deduce that there exists a t1 ∈ (0, T ) such that

I(u(t), t) < 0

for all t ∈ [0, t1). In addition, the fact that I(u0, 0) < 0 also implies u0 is not a weak

solution to problem (E) given in Lemma 4.1. As such Lemma 4.1 confirms that∥∥∥∥ut(0)|x|2

∥∥∥∥2
L2(Ω)

> 0.

By continuity there exists a t0 ∈ (0, t1) such that I(u(t0), t0) < 0 and∥∥∥∥ut(t)|x|2

∥∥∥∥2
L2(Ω)

> 0

for all t ∈ [0, t0). Then in view of Lemmas 2.6(i) and 2.7(ii), we deduce that

(4.10) J(u(t), t) ≤ J(u(t0), t0) < J(u0, 0) < d∞ < d(t)

for all t ∈ [t0, T ). Hence it suffices to prove that I(u(t), t) < 0 for all t ∈ [t0, T ). To achieve

this, we proceed via proof by contradiction. Now suppose there is a t2 ∈ [t0, T ) such that

I(u(t2), t2) = 0 and I(u(t), t) < 0 for all t ∈ [0, t2), then

J(u(t2), t2) ≥ inf
w∈N (t2)

J(w, t2) = d(t2)

by virtue of (1.4). This contradicts (4.10), whence no such t2 exists. That is, u(t) ∈W (t)

for all t ∈ [t0, T ) as required.

For the rest of the proof, we repeat the arguments used in Step 2 in the proof of

Theorem 1.5, with u0 being replaced by u(t0). This completes our proof.
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