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On a Higher-order Reaction-diffusion Equation with a Special Medium Void
via Potential Well Method

Tan Duc Do*, Nguyen Ngoc Trong and Bui Le Trong Thanh

Abstract. Let d € {1,2,3,...} and Q@ C R? be open bounded with Lipschitz boundary.

Consider the reaction-diffusion parabolic problem

icies A%y = k(t)|ulP~ u, (2,t) € Qx (0,T),

u(zx,t) = %(m,t) =0, (z,t) € 02 x (0,T),
u(z,0) = up(z), x € 9,

where T' > 0, p € (1,00), 0 # ug € HZ(Q) and v is the outward normal vector to 9.
We investigate the existence of a global weak solution to the problem together with

the decaying and blow-up properties using the potential well method.

1. Introduction

This paper concerns the existence of global solution to a class of parabolic equations
whose diffusion process is determined by the bi-harmonic operator with special coefficients.
The decaying rate for global solutions and blow-up estimates for local solutions are also
presented. The principal method for the investigation is the potential well technique
developed by Levine and Payne in 1970. This technique has been successfully employed
to solve various reaction-diffusion equations, as is well-known to experts in the field. Of
our particular interest here, Tan in [11] and Han in 3] investigated the weak solutions to

the equation of the form

|;%+Lu:f(u)7 (z,t) € Q x (0,T),
x,t) =0, (z,t) € 02 x (0,T),
z,0) =up(z), x€.

(1.1) u(
u(
Tan discussed the existence of a global weak solution as well as the decaying and blow-up

properties when L = A, and f(u) = u?, whereas Han derived an upper bound on the

blow-up time of weak solutions when L = A and f(u) = |u[P~1u.
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Various extensions of then follow. For examples, one may confer [14] for an
investigation of in the porous medium setting, [7] for the existence of global or
finite time blow-up weak solutions of when the initial energy is critical and most
recently [12] for a fractional Laplace operator consideration.

For our problem, let d € {1,2,3,...} and Q C R be open bounded with Lipschitz

boundary. We consider the following higher-order reaction-diffusion parabolic problem:
i+ A% = KOluP ", (2,0) € Q% (0,7),

(z,t) = %(m,t) =0, (x,t) € 092 x (0,T),

(x,0) = up(x), x €,

where T' > 0, p € (1,00), 0 # up € HZ(2) and v is the outward normal vector to 9.

(P)

u
u

We will focus on sufficient conditions for the existence of a global weak solution to (P)
together with the decaying and blow-up properties, the precise definitions of which are
given below. The appearance of the bi-harmonic operator A% and the coefficient k(t)
in the equation is motivated by the work of Philippin in [9] and Han in [3] respectively.
The special diffusion coefficient (or special medium void) 1/|x|* is driven by the inspiring
Rellich’s inequality (cf. [2, Corollary 6.3.5]) and parallels the inverse-square coefficient in
(1.1). The time-dependent function k(t) adds an extra new feature into our investigation.
In particular, all quantities and functionals used in the potential well method will also be
time-dependent. The details are shown below.

It is worth mentioning that other methods for the investigation of reaction-diffusion
equations exist beside the potential well technique. They include the first eigenvalue
method by Kaplan in 1963, the comparison method and other methods involving integra-
tion. A recent overview of the account can be found in the monograph [4].

Back to the problem (]ED, the following definitions are crucial to our development.

Definition 1.1. A function u(z,t) is called a weak solution to (P)) if u € L?(0,T; H3(£2))
with u(0) = o,

and u(z,t) satisfies
u .
) (1255¢) + (B 80) = B

for all ¢ € H3(Q2) and ¢ € [0, 7).

Definition 1.2. Let u(t) be a weak solution to (P]). Then u(t) is said to blow up at a
finite time T™ if u(t) exists for all ¢ € [0,7*) and

u(t) ||?

(1.3) P

= 00.
L)

t—T*
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Such a T™ is called the maximal existence time for u(¢). If (1.3]) does not happen for any
finite time T, then u(t) is called a global solution and the maximal existence time of u(t)

is oo.
Hereafter, for each u € H3(), define the following functionals:

e Energy functional:
k(t)

!

1
J(uvt) = iuAuHQL?(Q) - Lr1(Q)”

e Nehari functional:
1
I(u,t) = | Aul|72(q) — k() [l Q)"

Due to Lemma 2.2 below, these two functionals are well-defined whenever 2 < p+1 < 2%

where

o oo ifd <4,
I T

Next for each t > 0, define the following quantities:

e Nehari’s manifold:
= {u e H3(Q)\ {0} : I(u,t) = 0},
e Potential well depth:

1.4 d(t) = inf sup J(Au, t inf J(u,t
4 © u€HF (2)\{0} A>0 ( )= u€N (1) (u-1).
It is straightforward to verify that AN (t) is non-empty for each ¢ > 0. Furthermore, to
justify the second equality in ([1.4) we argue as follows. One has

d(t) = inf sup J(Au, t
() ue H (2)\{0} /\>I(; ( )

]{Z(t) )\p+1||qu+1 :|

2
= inf sup |: 5 ||AUH%Q(Q) - Pt 1 Lrt+1(Q)

ueHF (2)\{0} x>0

. A k(t
=it g g

ue HZ(2)\{0} +1 Lrt1(Q)
= inf  J(out)= inf J(Xou, t f J(v,t
uEHgl?Q)\{O} (Rou, ) )\oue}}?(fl)\{o} (Rou, 1) = velxr\l/() (v,2),

where \g > 0 is such that
Noll Aad22 ) = KONl =0 <= T(out) =0,

With the idea of potential well depth in mind, we are now able to define the stable

and unstable sets as follows for each ¢ > 0:
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e Stable set:
Si(t) ={ue H2(Q) : J(u,t) < doo and I(u,t) > 0}.

e Unstable set:

So(t) = {u € H2(Q) : J(u,t) < doo and I(u,t) < 0}.

These two sets are crucial to our study. Here
doo = lim d(?).
w 1= Jim d(t)

It follows from Lemma below that d is positive finite number. Observe that J, I,
N, d, £1 and ¥ all depend on time, which is due to the presence of k(t) in (P)). This
time-dependent feature adds extra technicality into our analysis.

Due to the presence of the inverse coefficient 1/|x|*, it is worth emphasizing the dif-
ference between the two cases when 0 € Q and 0 ¢ Q. If 0 € Q then 1/|x|* develops a
singularity. This necessitates the use of Rellich’s inequality, which is valid for d > 5, in
the proofs of our main results. On the other hand, if 0 ¢ Q then there is no singularity
and (]ED can be regarded as a slight extension of the model in [3]. In this case our results
are valid for all d € {1,2,3,...}. To deal with these two cases simultaneously, we employ
the notation

5 if 0 e,

1 if0¢q.

Our first result concerns the existence of a global weak solution to when the initial

datum ug belongs to the stable set 3;.

Theorem 1.3. Let d > do and Q C R be open bounded with Lipschitz boundary. Let
2 <p+1<2% Letug € £1(0). Suppose k € C1[0,00) satisfies k(0) > 0 and k' (t) > 0 for
all t € [0,00). Furthermore suppose that lim;_,o k(t) = 1. Then there exists a global weak
solution to (]ED

Such a global weak solution in Theorem also enjoys a decaying property as given

next.

Theorem 1.4. Adopt the assumptions and notation from Theorem [1.3] Let u be the global
solution to (P). Then there exists an o > 0 such that

|Au(t)]|z2() = O(e™™)

when t — 00.
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Next we consider the blow-up behaviour of a weak solution to . The following result
provides an upper bound on the blow-up time for a weak solution to when the initial
datum ug belongs to the unstable set ¥o. In what follows, it is convenient to denote

u(t)

2

2
L) =4

L2(Q)

for each t € [0,T).

Theorem 1.5. Let d > dg and Q C R be open bounded with Lipschitz boundary. Let
2 <p+1<2* Letug € $2(0). Suppose k € C1[0,00) satisfies k(0) > 0 and k'(t) > 0
for allt € [0,00). Let u be a weak solution to with T > 0 being the maximal existence

time. Then T 1is finite and u blows up at T'. Moreover,

4pL(0)
T < (p—1)2(p + 1)(doo — J(ug,0))"

The critical case when the initial energy J(ug,0) = do is also investigated.

Theorem 1.6. Let d > dg and Q C R be open bounded with Lipschitz boundary. Let
2<p+1<2* Letug € HZ() be such that

J(up,0) =ds and I(up,0) < 0.

Suppose k € C'0,00) satisfies k(0) > 0 and k'(t) > 0 for all t € [0,00). Let u be a
weak solution to with T > 0 being the mazimal existence time. Then there exists a
to € (0,T) such that J(u(to),to) < co. Moreover, T is finite, u blows up at T and there

holds
4pL(to)

(p = 1)?(p + D(doo — J(u(to), t0))

The paper is planned as follows. In Section 2] we collect preliminary results for proving
our main theorems. Theorems and are proved in Section [3| The investigation of the
blow-up in finite time, which is the content of Theorems [I.5] and is done in Section [4]

T <ty+

2. Preliminaries

In this section we discuss some preliminary estimates to be used in the proof of the main

results. Recall that we set

5 if0eQ, 00 if d <4,
do = . and 2" = o .

Let us begin with the following Rellich’s inequality.
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Lemma 2.1. Letd > dg and u € H3(Q). Thenu/|z|* € L?() and there exists a constant
R =R(Q2,d) > 0 such that
Jul?

A |4d$<R/ |Au|? da.

Proof. First assume 0 € Q. Then d > 5. Let u € HZ() and U be its zero extension to
R4, Tt follows that u € H?(RY) by [1, Lemma 3.27] and

Jul? / > 16 / ~12 16 / 2
/Q|m|4 T Jua e S Ea— a2 Jo A= Ea e J, 1A

where we used [2, Corollary 6.3.5] in the second step. Hence the claim is valid with

16

R= d2(d—4)2

Next assume 0 ¢ . Then d > 1. Set

= inf |z|7* > 0.
o= b

We have
Jul?

g dr < <inf \x|4> / lu? dz < /ioC(Q,d)/ |V2u)? dz < HoC(Q,d)/ |Aul? da,
o || z€Q Q Q Q

where we used the Friedrichs inequality (cf. |8, Theorem 1.10]) and [10, Chapter 3, Propo-

sition 3| in the last two steps respectively. O

The next result is the Gagliardo—Nirenberg inequality.

Lemma 2.2. Let d € {1,2,3,...} and 2 < q < 2* with ¢ # oo when d = 4. Then there
exists an Nog = No(d, q) > 0 such that

lull ooy < NollAull gy llull 26
for all w € HZ(SY), where
a=———""¢(0,1].

Proof. Let u € HZ(Q). Tt follows from the Gagliardo-Nirenberg inequality (cf. [1, Theo-
rem 5.8 and Corollary 6.31]) that
(1
a0y < Ol @)Vl .

But
IV2ullr20) < C(d)|| Aullz2(q)

by [10, Chapter 3, Proposition 3]. Combining these two inequalities together justifies the

claim. 0
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The following result is immediate from Lemma and the Friedrichs inequality (cf. |8,
Theorem 1.10]).

Lemma 2.3. Letd € {1,2,3,...}, u € H}(Q) and 2 < p+ 1 < 2*. Then there exists a
constant S, = Sp(d,p) > 0 such that

[l Lr+1 () < SpllAullr2(0)

Additionally, we note that the constant S, in Lemma can be made explicit and

sharp when d > 5. In fact, one has the following statement.

Lemma 2.4. [13, Theorem 1] Let d > 5 and u € H*(Q) N H3 (). Then
[ull p2x () < Aj;/dHAuHL%Q)?

where

A, = |72d(d — 4)(d — 4) <Féc(ic/l)2)>] o

provided that 02 is sufficiently smooth. Moreover, the inequality is sharp.

A remark is immediate.

Remark 2.5. We mainly deal with the case u € HZ(Q2). As such the domain 2 with a
Lipschitz boundary is sufficient to use Lemma
Next assume d > 5. Using Lemma [2.4) and Holder’s inequality, we obtain

Sp = ’Q‘pﬁi%AP‘

The roles of the energy and Nehari functionals are fundamental to our analysis. The

following identities hold for them.

Lemma 2.6. Let d > dg and 2 < p+1 < 2*. Suppose k € C*[0,00) satisfies k(0) > 0 and
K'(t) >0 for all t € [0,00). Let u be a weak solution to (P)). Then the following identities
hold.

(i) For a.e. to € [0,T), one has

J(u(to), to) + /Oto (

(ii) For a.e. ty € [0,T), one has

a1
dt \ 2

/‘C()
L2(Q) p+1

u(s) ||?
|2|2

(O] ey )) ds = J(uo,0).

u(to)
||

2
V"
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Proof. Regarding (i), first suppose that u; € L?(0,T; H3(€2)). Then by using u; as a test
function in ([1.2)), we obtain

2
Ut + (Au, Aug) = k() (JulP Y, ).

L2(Q)

22

On the other hand, direct calculations give

L Ju(t),6) = (Nuft), Aur(t)) — KOO u®), ur(®)) — a2, g

dt p+1

for each t € (0,7). Combining these two identities together yields that

d

2
(2.1) 3 sttty = - L0

2 Pt1

u (1)
|22

[l s

for each t € (0,7). Now (i) follows by integrating both sides of with respect to ¢
over (0,tg), where ty € (0,T).

To finish, we observe that holds without the assumption that u; € L?(0,T; H3(£2))
by an approximation argument.

The proof of (ii) follows the same line and hence is omitted. O
Next we present an explicit expression for the potential well depth.

Lemma 2.7. Let d € {1,2,3,...} and 2 < p+1 < 2*. Suppose k € C1[0,00) satisfies
k(0) > 0 and k'(t) > 0 for all t € [0,00). Then the following statements hold.
(i) One has
p—1
d(t) =
®) 2(p+1)
for all t € [0,00), where Sy, is given in Lemma [2.3]

k(t)2/ (=) Sp—Q(erl)/(p—l)

(ii) The potential well depth d is decreasing as a function of t on [0,00). Moreover,

doo := tlim d(t) € [0,d(0)].

— 00

Proof. (i) Let w € H2(Q)\ {0} and ¢ > 0. For each A > 0, define

k(D)

+1
Y 0 )\p+1 H Hp

)\2
F(A) = J(Aw,t) = ?HAMH%Q(Q) LpH1(Q)"

It is elementary to check that F' as a function of A on [0, 00) has exactly one critical point

() ( HAwH2 )1/(171)
olw)=——r"—
k(t )HwHLIH-I(Q)
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which is also the maximum point. With that in mind we now have

d(t) = inf sup J(Au, t) = inf F(Ao(u
) ueHg (2)\{0} x>0 ( ) ue Hg ()\{0} (olu))
. Ao(u)? 2 k(t) 1
= f — |A I p+1 p+
uEHgI?Q)\{O}{ g AUl = Aol iz o

2(p+1)/(p—1)
Pl k(t)Q/“p)( inf ||A“”L2(Q)>

2(p+1) weHZQ\{0} [[ullpri1(q)
p—1 2/(1-p) a—2(p+1)/(p—1)
- k(t ) g-2p+1)/(p=1)
2(p+1) ®) p

where we used Lemma [2.3] in the last step.
(ii) By hypothesis k is increasing on [0,00). This fact together with (i) justify the

claim. O

The next concavity argument is classic and is used extensively in the literature for a

sufficient condition of blow-up time.

Lemma 2.8. [5] Let 0 > 0. Let 1) > 0 be weakly twice-differentiable on a certain interval
(0,7) C (0,00) such that 1»(0) > 0, ¥'(0) > 0 and

W (#)(t) — (1+60)(¥'(1)* >0

for allt € (0,7). Then there exists a T > T such that v is continuously extended to (0,T)

with 5(0)
tl_i}%l, Y(t)=00 and T < 50/ (0)

3. Existence of a global weak solution

In this section we prove the existence of a global weak solution to , which is The-
orem Although the proof follows the standard arguments of Faedo—Galerkin ap-
proximation, the appearance of the fourth-order operator in (]ED necessitates a detailed

justification. For an ease of notation, in this section we employ the dot notation

0
—Up,.

Uy = (un)t = ot

Hereafter
a Ab:=min{a,b} and aVb:=max{a,b}.
Recall that we set

5 if0eQ, o ifd<4,
dg = . and 2% = .
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as well as
Si(t) ={ue H2(Q) : J(u,t) < doo and I(u,t) > 0}

and
o(t) ={u e H2(Q) : J(u,t) < doo and I(u,t) < 0}

for each t > 0.

We start with an approximation problem.

Lemma 3.1. Letd > dg and2 <p+1<2*. Letn € N, T > 0 and upo € C°(2). Then
the problem
pn (@) + A%uy = Bnluy), (x,t) € Q x (0,7,
(Pn) Up(z,t) = %L;(a:,t) =0, (x,t) € 09 x (0,77,
Un(2,0) = upp, x € Q,
admits a global solution u, € C([0,T]; H3(Q)) such that i, € L*(0,T; H3(Q)), where

pu(@) = e[ An and Bulun) = k(E)[(=n) V (junP~ ) A ).

Proof. We proceed via three steps.
Step 1: We construct and solve an approximate problem of (P,|) whose solutions pos-
sesses certain regularity. To this end, let {ex}rew C HZ(Q) be the set of all orthonormal

eigenvectors of A in the sense that
—Aej = )‘jej and (ei, €j) = (51

for all 4,5 € IN, where A\; € R and d;; is the Kronecker’s delta. Then {ej}ren forms a
complete orthogonal basis of HZ(f2) and

2 2
A €; = )\jej.
Set
Wi, = span{ey,...,ex}.

Let {unonew C C°(Q) be such that u,g — ug in HZ(Q) as n — oo. In what follows,
fix k € IN. Write
00 k
Upy = anjej and Uy = Z&njej € Wg.
j=1 j=1
Clearly,
(3.1) lim wupor = ug in Hg(Q)

n,k—o00
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We aim to look for a solution
(32) unk t l' Zﬁnkj 6] E Wk, fnkj € Cl([O’T])

to the problem

(Puk) /Q [pn(l')unk + AQUnk - Bn(unk)]ndl‘ =0, unk(z,0) = uno

for all n € W}. To this purpose, use 1 = e; for each i € IN as a test function to obtain

k

(pnunka ei) = Z (/ﬂ pn( )ejel d.iC) gnk] Zaljfnk]

J=1

Clearly a;; < n. Furthermore, one has

(A Unkaez - Zﬁnk] >\ 6]761 - )\ fnkl( )
7j=1

and

¢ni = d}m’(ta fnkly oo 7€nkk) = (Bn(unk)a ei)-

Hence {&1; }§:1 is determined by the following Cauchy problem

(C) Zaljgnk] + A2 gnk’]( ) Yni, gnk’z(o) = /Qunoei dzx.

A standard result on ODE systems now confirms the existence of a unique solution &,; €
C1([0,T)) to (C]). To see this, it suffices to verify that 1,; is Lipschitz continuous with
respect to ¢ on [0,7] and at the same time is Lipschitz continuous with respect to { =
(Enkts - - Enpr) in (C([0,T]))F. Since k(t) € C'([0,00)) by hypothesis, the former is clear.
To prove the latter, first observe that for all s € R, one has

(=n) v (IslP~'s) An = s s,

where s := (—n!/?) v s Anl/P. Now let A, B € (C([0,T]))* and write

k

k
CL:ZAJBJ' and b:ZBjej.
7=1

j=1

Correspondingly, we have

a=(—n")vVaAn'’? and b= (—n'P)vbAn'/P
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Then

|Yni(to, A) — tni(to, B)]
= k(to) | (|lal""a,e;) — (6]"~"b,¢s)]|

<[a ] /01 la+ 2(a— )Pl dz, ei>

+(p-1) </01 la+ z(a—b)P3[a+ z(a — b)]*[a — b] dz,el-> ’

< k(to)p3Pnlla — bl L2 lleill L2y < k(to)p3Pnlla — bl 2 q)lleill L2

= k(to)

!
< k(to)p3”nllA = Bll oy | D lleillrzi | leillzzy
=1

for each fixed ¢y € [0, T], where we used |6, (IV), p. 96] in the second step and the fact that
la — b| < |a —b| a.e. in [0, 7] x Q in the fourth step. That is, 1, is Lipschitz continuous
on (C([0,T)))* as claimed.

Thus there exists a unique solution u,; given by (3.2)) to (P,x) due to the prescribed
boundary conditions.

Step 2: We aim to derive some a priori estimates. For convenience, each estimate is

considered in a sub-step.

(i) We show that {prl/2unk}kem is uniformly bounded in L>(0,T; L?(£2)) and {u fren
is uniformly bounded in L?(0,T; H%(Q)).

Using 1 = uy) as a test function in , we derive

t
/Qpnu%k(t)dx-i-2/o | At (5)[172 () ds

t
:2/O/Qﬁn(unk(s))unk(8) dwdsﬁL/QPano;@I?dx.

Observe that

2/(:/9 B (Unk(8))unk(s) deds < 2n /Ot/ﬂ Unk(s) dzds

t
< 2n diam(Q)?|0['/2 / Unk(5)
0

2

ds
L2 ()

t
< 20 diam (P2 RY? [t (5) 20
0
t
< 4n* diam(Q)%|Q|RT + / [ Atk (5)[1 720 ds
0

t
KT+ / | At (8)[22g ds.
0
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where we used Lemma [2.] in the third step. It follows that
t
/ pti2 (1) d + / 1At (5)22(y ds < K0T + / prltimon 2 da.
Q 0 Q

Due to (3.1)) we conclude that {p%/zunk}kem is uniformly bounded in L*>°(0,T; L*(Q2)) and
{Unk }ren is uniformly bounded in L2(0, T; H*(12)).

(ii) We show that {pi/%nk}kem is uniformly bounded in L?(0,T; L*(2)) and {un fren
is uniformly bounded in L>(0,T; HZ(£2)).

It follows from (3.2)) that 1, € HZ(). Therefore using 1 = i, as a test function in

(P.x) leads to
t
2 /0 /Q puii2y(s) deds + | Ak (8) 220
t
—9 / /Q Bt () it (5) dals + | At ()22
0

//ﬂn Unk(8)) k(s )da:ds<// EACTION dxds—i—//pnunk 2 dads
g/ dmds—l—// Pnlnk(s 2 dxds.
Q Pn

(3.3)

But

Define
le{xEQ:|x]*42n} and ng{ﬂ:GQ:|x|f4<n}.
Then
t 2 t 2 t 2
/ n dxds = / n dxds + / n dzxds
0JQ Pn 0JQ; Pn 0JQs Pn
t n2
= n|Ql\t—|—// T dads
0JQo |3§'|
< n||T + n? diam(Q)*|Q|T =: K>T.
Consequently,

2 /Ot /Q Br (i (8)) i (8) deds < KoT + /0 t /Q i (5)2 dads.

Combining this last display with (3.3)), we arrive at

t
/O /Q pui2y(s) dads + | At (8)] 22y < KoT + [ Atk (0) 22

Again using (3.1) we infer that {p}l/gunk}kG]N is uniformly bounded in L?(0,T; L?(2)) and
{tnk }rew is uniformly bounded in L°(0, T; H3(Q)).



66 Tan Duc Do, Nguyen Ngoc Trong and Bui Le Trong Thanh

(iii) We show that {1,k } ke is uniformly bounded in L2(0, T; L3(€2)). As a by-product,
we obtain u,; € C([0,T]; L*(2)).
Notice that

//unk dazds—// — Pnlnk(s 2 dads
Q Pn

t

1

=/' %%m>ww+/ L it (s)? dads
0J9; Pn Q9 Pn

1 t
< <+diam(9)4> / / Ptink(s)? dzds.
n 0JQ

Hence {t }ren is uniformly bounded in L2(0,T; L?(12)).

(iv) We show that {pp 1,k ke is uniformly bounded in L (0, T; L(€2)) and {tk fren
is uniformly bounded in L?(0,7; H3(2)). Hence as a by-product, we also have u,; €
C((0, T}, HA(Q).

First we show that ppii, € H 2(Q). As U € HE(Q), we have A4, € H2(Q).
Then

(i, )| = | = (A%, 1) + ((Bn(wnk) ) )]
< | - (AQﬂnkv ‘ ‘f‘P’( ‘unk|p lunka ’ + }(k, ’unk|p unkan)’
< 1A%kl 20 Inll 20

+pk(T) [ [un P~ 1HLd/4 Q)HunkHL2d/(d (@)1l L2472 (g
+ ( sup k'(s >H|unk|p 1HLd/4 k| Loasa-o @ 10l L2as -0 (@)
0<s<T

= || A%kl -2 171l 12 )

+ pk(T )HunkHL(p 1)d/4 Q)HﬂnkHL?*(Q)H77HL2*(Q)

+ < sup k’(S)) ||Unk!id/4 k]l p2asca-a ) 1l 2ar@-0) (0
0<s<T

for all n € HZ(Q2). By hypothesis, p + 1 < 2%, from which it follows that (p — 1)d/4 < 2*.

Therefore, we further obtain

| (Priing, n)| < || A2 k]| g2 Q)HUHH?

+ (D)5 [l |25 Ikl L2 (@) 1l L2 (@)

/
4—Q§£}k@0|m 2 e e g 5

< 0
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for all n € HZ(Q), where we use the convention that 1/0o = 0 in case 2* = oo hereafter.

This means pyii, € H 2(9).

Next choose 1 = i, to be a test function in the equation

pn(x)(unk)tt + A2unk = (/Bn(unk))t

t
/ i ()2 dar — / ot (0)2 dz + 2 / / A2 dae
Q Q 0JQ
t
0JQ

- 2pf0fﬂ 8) [tk (8) [P~ Mg (5)? dads
2 [0 K (8) [t (8) P i ()i () deds if By () = k(E) kPt

Then

Next we estimate the right-hand side of (3.4). Again notice that p + 1 < 2* implies
(p—1)d/4 < 2*. Let € € (0,1) be such that (p — 1)(¢ + d/4) < 2*. Then

2(d+4 8 8
Adtde) 5, 8y, By
d+4e — 4 d+4e —4 d—4

and

/Q|unk‘p_1u721k dr < H’unk|p_1‘ L8+d/4(Q)Hu%kHL(d+45)/(d+4S—4)(Q)

||UnkHL<p 1)(e+d/4)( Hunk||%2(d+4e)/(d+4874)(9)
< clo|mE"T HunkHLg* A | G2 ) ik 2

where

b 41 dtde—4\ _ d c (0.1)
T 2\2  2(d+4e) ) d+4e '

and we used Holder’s inequality and Lemma [2.2]in the last step.

Thus
/ / ) [t ()P Vet (5)? dzdls

< ) [ Junsts ||L2*(m||Aunk<s>||%2(m||unk<s>||;;3mds
At ds+C /(2=e) g
H unk HL2 s+ ”unk ||L2(Q) S

< 4/ [ At (5) 172y ds + C (T + sup |1lnk||L2(o,T;L2(Q))> ,
0 keN
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where we used the fact that {u,i}ren is uniformly bounded in L>(0,T; HZ(Q)) in the
second step as well as Young’s inequality and the fact that {4, } ke is uniformly bounded
in L2(0,T; L?(2)) in the third step.
Analogously,
/Q k[P~ Mty d < H\unklp_lHLd/4(Q)Hunk|!L2d/<d—4>(Q)IIﬂnkHLZd/<d—4>(Q)
= HunkHL(p Dd/4(Q) Hunk”L2*(Q)”UnkHL2* Q)

4_p-1
< O™ [[unk - g 1 AGnk L2

where we used Holder’s inequality and Lemma in the last step.

It follows that
// $)|unk(s) lunk(s)unk(s) dxds

< C< sup k’/ >/ Hunk ||L2*(Q)||Aunk(5)||L2(Q) ds

0<s<T
I L
<5 | 18 (s) ey ds + O,
0

where we used the fact that {ux}ren is uniformly bounded in L>(0,7; HZ(2)) and
Young’s inequality in the second step.
Back to (3.4), we now obtain

t
/ pritni ()2 d + / / | Aty (5)[2 dads
Q 0JQ

Jo Ptk (0)? dx + C (T + suppe [tk || L2022(2))) 1 B (unk) = k() k[P~ unk

<

Since uni(0) € C°(N2) satisfies

we may conclude that {p, %, } rew is uniformly bounded in L°°(0,T; L?(£2)) and {t, brew
is uniformly bounded in L?(0,T; H3(Q)).

Step 3: We acquire a global weak solution to (P,). Having achieved the a-priori
estimates in Step 2, by using a subsequence when necessary, we may now let £k — oo in
- ) to obtain a weak solution u,, to with the required regularity. O

In view of Lemma we are now in a position to prove Theorem
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Proof of Theorem [I.3] Since ug € ¥1(0), there exists a constant ¢y > 0 such that
J(up,0) + €9 < deo

By Lemma for each n € IN there exists a weak solution u,, € C([0,T]; H3(Q)) with
U, € L*(0,T; H3(2)) to the problem (B,)), where ung € C°(9) is such that

lim .0 = up in HZ ().

n—o0
By choosing a sufficiently large n € IN, we may assume also that
(3.5) J(uno, 0) < J(’LLO, O) + €0 < doo

Using ., as a test function in , we derive that

//pnun d:r:ds+//A U (8)Tn(s) dxds
//5n Un ) Un (s )d$d5<// [t (8) P un (8) i (8) dds.

On noticing that
. d (1

T d 1
[ e = & (10l g i)

we can rewrite the above inequality as

and

(3.6) /O t /Q Prtin(8)? drds + J(un(t),t) < J(tno,0) < doo,

where we used in the last step. This implies u,(t) € 31 for each ¢ € [0,7]. Indeed,
by way of contradiction we assume the opposite statement holds. Let t* be the minimal
time at which wu,(t*) ¢ X;. Then using the fact that u, € C([0,T]; H3())) we infer
un(t*) € 031. That is, either J(un(t*),t*) = doo or I(un(t*),t*) = 0. The former is
impossible due to (3.6). Consequently, we must have I(u,(t*),t*) = 0 or equivalently

A (E) 1720y = k() [[un(t )Iliﬁl
whence

* *\ p_l *\ (|2 p_l -2 *\ (12
I (un(t*),t) = m”ﬁun(t Wiz = msp [t (E) N7 o410
1

L(l_L)_
p=1 oo ()72 A () | 20y \ 777N P

2(p+1) " [ull Lo+
p—1
2(p+1)

v

k(t*)2/(1fp)Spf2(p+1)/(p*1) =d(t*) > dwo.
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This contradicts (3.6). Hence u,(t) € X1(t) for each t € [0,T] as claimed.
Let ¢ € [0,T]. Then wu,(t) € 31(¢) implies
12w (®)|F20) > kO un(®F 141 ).

Using (3.6) we further obtain

(3.7) // priin(s)? dads + <—’“()> At (B2 < (110, 0) < .

In particular, one has

11 1 koo
<2 - p+1> HAun(t)H?ﬂ(Q) = (2 - +1> HAu”(t)H%2(Q)
1

p + p+1
where koo := limy_o0 k(t) = 1 by hypothesis. Now it follows from Lemma (3.8) and

(35) that

1)/2
/Q |un ()P d < S;;“(||Aun(t)lliz(m)(p+ !/

1)/2—-1
= SpH (| Aun(®)72() " 1A (®)] 20
(p+1)/2—-1
| Aeun (1) 2240

(p+1)/2—-1
| A (8)[1Z2(q

(3.8)

1 1 \!
(3.9) < syt <2—> J (tno, 0)

< sy <1 - 1>_1 (J(uo,0) + €0)

= 8| Aun (8)[|72 (0

Note that
(p+1)/2—-1

1 1\ ! 1 1 \' p-1
0<s<SP (- ———) d ==~
= [(2 p+1> m] [(2 p+1> 2(p+1)
Next we use u, as a test function in (P, to arrive at
1 2 ! 2 ' +1 1 2
— | ppus dx+ |Auy(s)]” deds < |un($)|PT" deds + = | ppunydx
2 Ja 0Jo 0Jo 2 Ja
¢ 1
< 6// | Ay, (s)|? dzds + / pnuy dz,
0Jo 2 Ja

where we used (3.9)) in the second step.
It follows that

1 K 1
(3.10) / pnu? dx + (1 — 5)// |Auy, (s)|? deds < / pnulydr < C,
2 Jo 0Ja 2 Jo
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where C' > 0 is independent of n and 7T'. Consequently, {u, }nen is uniformly bounded in
L2(0,T; HF ().
By (3.7) and (3.10)), the following properties hold:

(
Up —> U a.e. in (0,7) x Q,

pil Pun > e i L2(0,T; LA(9)),

Au, % Au in L2(0,T; L*(Q)),

Up > U in L2(0,T; LPT1()),
(un = u in L>(0,T; LP*1(Q))

for all T > 0. The theorem now follows by taking limits when n — oo in (P,)). Since
T > 0 is arbitrary, the solution is global. O

Next we prove Theorem

Proof of Theorem [1.4l Let t € [0,T). By repeating the arguments used to obtain (3.8)) in
the proof of Theorem we also have that

1 1
<2 - p~l—1> 18U () [ 720y < I (u0,0)-

This and Lemma [2.3] together imply

1)/2
/Q ()P da < ST (|| Au()|[220)) P

1)/2—1
= S| Au(t)|220) "2 AU 22 g

(3.11) ) Lo (p+1)/2—-1

<SPt [(2 - p+1> J (uo, 0) [Au(t)][72 (0

=: 8[| Au(t)[|72(0y-
Note that

_ (p+1)/2-1 1 (p—1)/2
1 1 ! 1 1 p—1
0<s<SPH |- - —— ] du = (=~ =1.
P [(2 p+1> ] [(2 p+1> 2(p+1)

Hence (3.11)) leads to
(3.12) I(u(t), t) = | Au®)l|72i0) = kO lullf g

> (1= 0k(1) | Au(®)| 220y = (1 )| Au(®)]22

since k is increasing on [0, c0) with lim;_, o k() = 1 by assumptions.
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Next observe that

1 2 k@)  jpe1 _ p—1 9 1
J(u(t),t) = §HAU||L2(Q) - m”“”,;pﬂ(g) = WHAUHLQ(Q) + ml(u(f),t).
Two consequences are immediate from this equality. First using Lemma (i), we arrive
at
(3.13) T(0,0) > J(u(t),t) > L1 || Au|?
. 05 ) 2(p + 1) L2(Q)

as I(u(t),t) > 0. Secondly using ([3.12]), we have

J(u(t), t) < <2(p +p1;(1 —5+ pi 1) I(u(t), t).

Next we use Lemma (ii) to derive

(3.14) /tTI(u(S)’S) e /tT <1|é|82)’“t(5>> T /tT L'(s)ds

= L) - L(T) < L(1) < /Q Au(b)[? da,

where
2

1 [ u(t)

L(t) = - ||—=
2| 2% || L2 ()
for each t € [0,T") and we used Lemma in the last step.

Combining (3.12f), (3.13) and (3.14) together yields

/tT T(u(s), s) ds < <2(p fg& 5+ pi 1) /tTI(u(s),s) ds

p—1 1\ (p+DR B
S(2(1z)+1)(1—5)+p+1> b1 J(u(t), t) = AJ(u(t),t).

Letting T' — oo in the above inequality, one has

/t T J(u(s), s)ds < AJ(u(t), 1),

Set

Then the above inequality can be rewritten as

, 1
M(t) < = M(2).

Using Gronwall’s inequality, we deduce that

M(t) < M(A) exp <—t_AA> < AJ(u(A), A) exp <1 _ ;) .
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In addition, as J(u(-),-) is decreasing on [0, 00), it holds that

M(t) > /tAHJ(u(s),s) ds > AJ(u(A+1t),A+1).

Hence

(3.15) T(u(A+1), A+1) < J(u(A), A) exp <1 - 2)

provided that ¢t > A.

Lastly, we combine (3.15) with (3.13) to arrive at

2(p+1
2(]) + 1) 3 _ —at
< ij(u(A), A) exp <1 A> = Be s
where ( )
2(p+1 1
B = ﬁJ(U(A), A)e and o = Z
The proof is complete. O

4. Upper bound for blow-up time

In this section we work with the upper bounds for the blow-up time. These are the contents
of Theorems [[L5 and [[L6l Recall that we set

2

u(t)

1
L(t) ==
©=3 |p

L)

for each t € [0,T).
First we prove Theorem which deals with the case of ug being in the unstable set.

Proof of Theorem [I.5. We aim to show that the maximal existence time T' < oo and then
to provide an upper bound for 7. We divide the proof into two steps.
Step 1: We will show that

(4.1) I(u(t),t) <0 foralltel0,T).

Since I(u(t),t) is continuous as a function of ¢ over [0,T"), using the fact that I(up,0) < 0
we deduce that there exists a t; € (0,7") such that

I(u(t),t) < 0
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forallt € [0,%1). If thereisaty € (0,7) such that to > t1, I(u(t2),t2) = 0and I(u(t),t) <0
for all t € [0, t2), then

(4.2) J(u(tg), tg) Z weij{lfgtg) J(’LU, tg) = d(tg)

by virtue of (L.4). On the other hand, Lemmas [2.6{i) and [2.7)(ii) together give
J(u(t),t) < J(up,0) < deo < d(t)

for all t € [0,T). This means (4.2)) is impossible, which implies (4.1)).
Step 2: In view of Step 1,

1Aul72 () < RO AullTii g < ROSE [ AulF2 g,

for all t € [0,7T), where we used Lemma in the second step. Therefore, Lemma i)
and the hypothesis that J(ug,0) < do implies

2 1 2 1 2 1
(43) 80y = 25 ey = 222 225D 5,0
for all t € [0, 7).
Next fix 7 € [0,T) as well as
(4.4) g€ < pzl(doo—J(uo,O))> and o € <(pL_(01))5,oo>.

The choices of § and o are justified below by (4.6) and (4.7) respectively. Define the

nonnegative functional

h
Glh) = /0 L(s)ds + (7 — BYL(0) + B(h + 02,

where h € [0, 7]. Then

G'(h) = L(h) — L(0) + 28(h + o) :2/h (1‘“'32) (s )) ds + 28(h + o)
and

G (h) = 2 <T(?, w(h )) 28— —21(u(h), h) + 28
s —2(p + 1)J(u(h), h) + (p — )| Au(h)[|72(q) + 28

u(s)|* K'(s)

=2(p+1) . p+1|| u(s )\Zﬁim) s]

J(uo,O)—/0h<

+(p = Dl Au(h)|172() + 26

|2
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for each h € [0, 7], where we used Lemma [2.6]in the fourth step.

In what follows, it is convenient to denote
2

O(h) = <2 /Oh L(s) d8+5(h+a)2) (/Oh » d8+6>
(] () o) o

for each h € [0, 7], where we used Cauchy—Schwartz inequality to verify the last step.

u(s)
|22

In view of Lemma [2.8] consider

(4.6)
GG ) - LT m)y

— G()G"(h) —2(p + 1) [/Oh <l|i£82),ut(s)> ds + B(h + 0)] 2

2

ds+ p
L2()

ut(8)
||

=G(h)G"(h) +2(p+1)

h
6(h) — (G(h) — (7 — W)L(0)) ( /0

2

h
> G(h)G"(h) —2(p+ 1)G(h) ( /0 . d8+5>
u(8) 2

h
G"(h) —2(p+1) (/0 e ds + 5)

= G(h)[ = 2(p + 1)J (ug,0) + (p = 1) [ Au(h)|[2(q) — 208]
> G(h)[2(p + 1)(dos — I (u0,0)) = 2pB] >0

for all h € [0, 7], where we used (4.5)), (4.3) and (4.4)) in the last three steps respectively.
Next observe that

ug($)
||

> G(h)

G(0) = 7L(0) + B >0 and G'(0) = 280 > 0.
Consequently, Lemma [2.8| implies

- 2G(0)  2(rL(0)+ Bo?)  L(0) ryC
“(p-1)G0) 20p-1)Bc  (p—1)fc  p—1

This in turn yields

or equivalently

- _& —1 B 50.2
(4.7) T < p—1 (1 = 1)50> - (p—1)Bo — L(0)
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Minimizing this last display over the range of ¢ in (4.4) leads to

4L(0)
(4.8) T < -1

Then we minimize (4.8) over the the range of § in (4.4]) to see that

4pL(0)
(4.9) TS o D2+ D(dee — J(u0,0))

Lastly, (4.9) holds for all 7 € (0,T), from we deduce that

4pL(0)
T< (p—1)2(p + 1)(doo — J(uo,0))

as required. ]

Now it remains to prove Theorem [1.6, To this end, it is necessary to present the

following technical result.

Lemma 4.1. Letd > 1 and p > 1. Suppose k € C1[0,00) satisfies k(0) > 0 and k'(t) > 0
for allt € [0,00). Let u be a weak solution to with initial datum ug € HZ(Q). Then

u (0) ]|

|2

>0
L2(Q)

if ug is not a weak solution to the problem

A2u = k(0)|ulP~tu ifx e,

E
® u(z) =0 if x € 0N2.

Proof. First, since u is a weak solution to (P|), we have

(1240 + (B0 p) = KOJuPu. )

for all ¢ € H3(Q) and ¢ € [0, 7). In particular,

u (0 _
( i|4)’¢) + (Aug, Ap) = k(t)(luoP~ uo, @)
for all p € HZ(L).

Secondly, suppose that ug is not a weak solution to . Then there exists a function
0 # ¢ € C(R2) such that

(Aug, Avp) — k(0) /Q ‘UO’pflqu #0.
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With the above two facts in mind, one has
2 2
. (w©)/Ie.0) ] [ ((0)/laf?.0)
2@ |eerznoy  llellzze - 1] 20
2
(Ao, As) — k<o><\uorp—1uo,w>] >0

u (0) ]

|22

1120

This justifies the claim. O
Now we prove Theorem

Proof of Theorem [1.6] We aim to show that the maximal existence time T' < oo and then
to provide an upper bound for T'. Set

W(t) = {we HZ(Q) : J(w,t) < d(t) and I(w,t) < 0}.

We first show that there exists a tg € (0,7") such that u(t) € W(t) for all t € [to,T).
Since I(u(t),t) is continuous as a function of ¢ over [0, T), using the fact that I(ug,0) <
0 we deduce that there exists a t; € (0,7") such that

I(u(t),t) < 0

for all ¢ € [0,¢1). In addition, the fact that I(ug,0) < 0 also implies ug is not a weak
solution to problem (E|) given in Lemma As such Lemma confirms that

u (0) |2

e > 0.

()

By continuity there exists a ¢ty € (0,¢1) such that I(u(to),to) < 0 and

’U,t(t)
|2

2

>0
L2(Q)

for all ¢ € [0,%9). Then in view of Lemmas [2.6{i) and [2.7)ii), we deduce that
(4.10) J(u(t),t) < J(u(to),to) < J(U(), 0) < dg < d(t)

for all ¢ € [to,T). Hence it suffices to prove that I(u(t),t) < 0 for all ¢ € [tp,T"). To achieve
this, we proceed via proof by contradiction. Now suppose there is a to € [to,T) such that
I(u(ta),t2) = 0 and I(u(t),t) <0 for all t € [0, t2), then

to).t9) > inf ty) = d(t
J(u(tz),t2) > wel,/I\lf(tg)J(w7 2) = d(t2)

by virtue of ([1.4). This contradicts (4.10]), whence no such ¢, exists. That is, u(t) € W(t)
for all ¢t € [tg,T) as required.

For the rest of the proof, we repeat the arguments used in Step 2 in the proof of
Theorem with ug being replaced by wu(tg). This completes our proof. O
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