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On Sobolev-type Inequalities on Morrey Spaces of an Integral Form

Takao Ohno* and Tetsu Shimomura

Abstract. We prove Sobolev-type inequalities for modified Riesz potentials of functions

in Morrey spaces of an integral form over non-doubling metric measure spaces. Our

results are new even for the doubling metric measure setting. In particular, our results

extend the previous results in Morrey spaces of an integral form in the Euclidean case.

1. Introduction

For 0 < α < N and a locally integrable function f on RN the Riesz potential Uαf of order

α is defined by

Uαf(x) =

∫
RN

|x− y|α−Nf(y) dy.

The classical Sobolev inequality says that the Riesz potential Uαf of order α with f ∈
Lp(RN ) belongs to Lp

∗
(RN ) when 1 < p < ∞ and 1/p∗ = 1/p − α/N > 0 (see, e.g. [2,

Theorem 3.1.4(b)]). Morrey spaces were introduced by C. B. Morrey [17] in 1938 to

study the existence and regularity of partial differential equations. Sobolev’s inequality

for Morrey spaces was studied by D. R. Adams [1]. We also refer to [4,12–14,18,22], etc.

In [15], the second author and Mizuta studied a Sobolev-type inequality for Uαf for

locally integrable functions f on RN satisfying

(1.1) sup
x∈G

(∫ dG

0
rν−Nϕ(r)

(∫
B(x,r)

|f(y)|p dy

)
dr

r

)1/p

<∞,

where 0 < ν ≤ N , G is a bounded open set in RN , dG = sup{d(x, y) : x, y ∈ G} and ϕ

is positive monotone functions on the interval (0,∞) satisfying the conditions (ϕ) and (i)

in [15].

We denote by (X, d, µ) a metric measure space, where X is a bounded set, d is a metric

on X and µ is a nonnegative complete Borel regular outer measure on X which is finite in

every bounded set. We often write X instead of (X, d, µ). For x ∈ X and r > 0, we denote

by B(x, r) the open ball in X centered at x with radius r and dX = sup{d(x, y) : x, y ∈ X}.
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We assume that dX < ∞, µ({x}) = 0 for x ∈ X and 0 < µ(B(x, r)) < ∞ for x ∈ X and

r > 0 for simplicity. We do not assume that µ has a so-called doubling condition. Recall

that a Radon measure µ is said to be doubling if there exists a constant c0 > 0 such that

µ(B(x, 2r)) ≤ c0µ(B(x, r)) for all x ∈ supp(µ) (= X) and r > 0 (see [3]). Otherwise µ

is said to be non-doubling. For examples of non-doubling metric measure spaces we refer

to [21, 26]. In connection with the 5r-covering lemma, the doubling condition had been

a key condition in harmonic analysis. However, Nazarov, Treil and Volberg showed that

the doubling condition is not necessary by using the modified maximal operator [19, 20].

In this paper, we show that this is the case for the modified Riesz potential operator.

For α > 0 and τ ≥ 1, we define the (modified) Riesz potential of order α for a locally

integrable function f on X by

Iα,τf(x) =

∫
X

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

(e.g., see [6,16,23,26]). Note here that we can not reduce the number τ any more (see [25]),

which is based on the idea of Stempak [27]. This is equal to Uαf when X = RN and

µ = dx. In the doubling metric measure setting, we use Iα,1f . For another type of Riesz

potentials like

Iηf(x) =

∫
X

f(y)

µ(B(x, d(x, y)))1−η dµ(y),

see [5, 10].

To obtain general results, we consider a weight function ω(r) : (0,∞) → (0,∞) satis-

fying the following conditions:

(ω0) ω(·) is continuous on (0,∞);

(ω1) ω(·) is almost increasing on (0,∞), namely there exists a constant c̃1 ≥ 1 such that

ω(r1) ≤ c̃1ω(r2) whenever 0 < r1 < r2 <∞;

(ω2) there exists a constant c̃2 > 1 such that

c̃−1
2 ω(r) ≤ ω(2r) ≤ c̃2ω(r) whenever r > 0;

(ω3) there exist constants ω0 > 0 and c̃3 ≥ 1 such that

c̃−1
3 rω0 ≤ ω(r) ≤ c̃3 for all 0 < r ≤ 2dX .

Example 1.1. Let 0 < σ < ω0 and β ∈ R. Then

ω(r) = rσ(log(e+ 1/r))β

satisfies (ω0), (ω1), (ω2) and (ω3).
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Recall that f is a locally integrable function on X if f is an integrable function on all

balls B in X. Let p ≥ 1 and θ ≥ 1. In connection with (1.1), given ω(r) as above, we

define the Lp,ω,θ norm by

‖f‖Lp,ω,θ(X) = inf

{
λ > 0;

sup
x∈X

(∫ 2dX

0

ω(r)

µ(B(x, θr))

(∫
B(x,r)

(
|f(y)|
λ

)p
dµ(y)

)
dr

r

)
≤ 1

}
.

The space of all measurable functions f on X with ‖f‖Lp,ω,θ(X) < ∞ is denoted by

Lp,ω,θ(X). The space Lp,ω,θ(X) is called a Morrey space of an integral form. Here note

that 2dX can be replaced by κdX with κ > 1.

Our aim in this paper is to give a general version of Sobolev-type inequality for Riesz

potentials Iα,τf of functions in Morrey spaces Lp,ω,θ(X) of an integral form over non-

doubling metric measure spaces X (see Theorem 3.3), as an extension of [15, Theorem 5.4]

in the Euclidean case. Our results are new even for the doubling metric measure setting.

To this end, we apply Hedberg’s trick [8] by the use of the Hardy–Littlewood maximal

operator Mλ adapted to our setting (see Theorem 2.4). See Section 2 for the definition of

Mλ and Remarks 2.1 and 2.2 on the number λ.

2. Boundedness of the maximal operator

Throughout the paper, we let C denote various constants independent of the variables in

question and C(a, b, . . .) be a constant that depends on a, b, . . . only.

For a locally integrable function f on X and λ ≥ 1, the Hardy–Littlewood maximal

function Mλf is defined by

Mλf(x) = sup
r>0

1

µ(B(x, λr))

∫
B(x,r)

|f(y)| dµ(y).

For λ ≥ 1, we say that X satisfies (Mλ) if there exists a constant C > 0 such that

(2.1) µ({x ∈ X : Mλf(x) > k}) ≤ C

k

∫
X
|f(y)| dµ(y)

for all measurable functions f ∈ L1(X) and k > 0.

Remark 2.1. In (2.1), we can not reduce the number λ any more (Stempak [27]).

As for the precise value of λ, we know the following.

Remark 2.2. By a covering argument, Nazarov, Treil and Volberg [19, 20] proved that X

satisfies (M3) if X is a separable metric space. Meanwhile X satisfies (Mλ) for any λ > 0

if µ satisfies the doubling condition (see [9]). Terasawa [29] showed that X satisfies (Mλ)
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for λ ≥ 2 if µ(B(x, r)) is continuous in the variable r > 0 when x ∈ X is fixed. In [24],

Sawano showed that X satisfies (Mλ) for λ ≥ 2 if X is a separable metric space. Another

remarkable example of the Poincaré disc can be found in [28] where (2.1) with λ = 1 is

established despite the fact that the corresponding Riemannian volume µ is non-doubling.

As in [7, Appendix], the Euclidean space RN , endowed with µ ≡ e|x|
2
dx, fails to satisfy

(M1).

We know the following result.

Lemma 2.3. Let 1 < p0 <∞ and let λ ≥ 1. Suppose X satisfies (Mλ). Then there exists

a constant C > 0 such that ∫
X
{Mλf(x)}p0 dµ(x) ≤ C

for all measurable functions f on X with ‖f‖Lp0 (X) ≤ 1.

Now we are ready to show the boundedness of the maximal operator Mλ.

Theorem 2.4. Let 1 ≤ θ1 < θ2 and λ > θ1(θ2 + 1)/(θ2 − θ1). Assume that X satisfies

(Mλ). Further suppose

(ω1′) r 7→ r−ε1ω(r) is almost increasing in (0, dX ] for some ε1 > 0.

If p > 1, then there is a constant C > 0 such that

‖Mλf‖Lp,ω,θ2 (X) ≤ C‖f‖Lp,ω,θ1 (X)

for all f ∈ Lp,ω,θ1(X).

Proof. Let f be a nonnegative measurable function on X with ‖f‖Lp,ω,θ1 (X) ≤ 1. Let

z ∈ X and 0 < r ≤ 2dX . For κ1 = θ2/θ1 > 1, write

f(y) = f(y)χB(z,κ1r)(y) + f(y)χX\B(z,κ1r)(y) := f1(y) + f2(y),

where χE is the characteristic function of E.

By Lemma 2.3 and (ω2), we have∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
B(z,r)

{Mλf1(x)}p dµ(y)

)
dr

r

≤
∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
X
{Mλf1(x)}p dµ(y)

)
dr

r

≤ C
∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
X
f1(y)p dµ(y)

)
dr

r
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≤ C
∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
B(z,κ1r)

f(y)p dµ(y)

)
dr

r
(2.2)

≤ C
∫ 2κ1dX

0

ω(κ−1
1 r)

µ(B(z, θ2κ
−1
1 r))

(∫
B(z,r)

f(y)p dµ(y)

)
dr

r

≤ C
∫ 2dX

0

ω(r)

µ(B(z, θ1r))

(∫
B(z,r)

f(y)p dµ(y)

)
dr

r

≤ C.

Next we treat f2. Let

κ2 = λ

(
1− 1

κ1

)
− 1

κ1
= λ

(
1− θ1

θ2

)
− θ1

θ2
.

Then note that κ2 > θ1 and

(2.3) B(z, κ2d(z, y)) ⊂ B(x, λd(x, y))

for x ∈ B(z, r) and y ∈ X \B(z, κ1r). Indeed, when w ∈ B(z, κ2d(z, y)), we have

d(w, x) ≤ d(w, z) + d(z, x) < κ2d(z, y) +
1

κ1
d(z, y) = λ

(
1− 1

κ1

)
d(z, y)

≤ λ
(

1− 1

κ1

)(
1− 1

κ1

)−1

d(x, y) = λd(x, y).

For γ = κ2θ
−1
1 > 1, let j0 be the smallest integer κ1γ

j0/2r ≥ dX . For x ∈ B(z, r) and

0 < ε < ε1, we see from Hölder’s inequality and (2.3) that

Mλf2(x) = sup
ρ>0

1

µ(B(x, λρ))

∫
B(x,ρ)

f2(y) dµ(y)

≤ sup
ρ>0

(
1

µ(B(x, λρ))

∫
B(x,ρ)

f2(y)p dµ(y)

)1/p

≤ C

(∫
X\B(z,κ1r)

1

µ(B(x, λd(x, y)))
f(y)p dµ(y)

)1/p

≤ C

(∫
X\B(z,κ1r)

1

µ(B(z, κ2d(z, y)))
f(y)p dµ(y)

)1/p

.

We decompose

Mλf2(x) ≤ C

 j0∑
j=1

∫
B(z,κ1γj/2r)\B(z,κ1γ(j−1)/2r)

1

µ(B(z, κ2d(z, y)))
f(y)p dµ(y)

1/p
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≤ C
j0∑
j=1

(∫
B(z,κ1γj/2r)\B(z,κ1γ(j−1)/2r)

1

µ(B(z, κ2d(z, y)))
f(y)p dµ(y)

)1/p

≤ C
j0∑
j=1

(
1

µ(B(z, κ1κ2γ(j−1)/2r))

∫
B(z,κ1γj/2r)

f(y)p dµ(y)

)1/p

(2.4)

= C

j0∑
j=1

(
1

µ(B(z, κ1γ(j+1)/2θ1r))

∫
B(z,κ1γj/2r)

f(y)p dµ(y)

)1/p

≤ C

 j0∑
j=1

(
(κ1γ

j/2r)ε/pω(κ1γ
j/2r)−1/p

)p′1/p′

×

 j0∑
j=1

(κ1γ
j/2r)−εω(κ1γ

j/2r)

µ(B(z, κ1γ(j+1)/2θ1r))

∫
B(z,κ1γj/2r)

f(y)p dµ(y)

1/p

by Hölder’s inequality, where 1/p+ 1/p′ = 1. Here note from (ω1′) that

 j0∑
j=1

(
(κ1γ

j/2r)ε/pω(κ1γ
j/2r)−1/p

)p′1/p′

≤ Crε1/pω(r)−1/p

 j0∑
j=1

(κ1γ
j/2r)(ε/p−ε1/p)p′

1/p′

≤ Crε/pω(r)−1/p

(2.5)

for 0 < ε < ε1. Further note from (ω2) that

j0∑
j=1

(κ1γ
j/2r)−εω(κ1γ

j/2r)

µ(B(z, κ1γ(j+1)/2θ1r))

∫
B(z,κ1γj/2r)

f(y)p dµ(y)

≤ C
j0∑
j=1

∫ κ1γ(j+1)/2r

κ1γj/2r

t−εω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)
dt

t

≤ C
∫ γdX

κ1γ1/2r

t−εω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)
dt

t

≤ C
∫ 2dX

r

t−εω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)
dt

t
.

(2.6)

By (2.4), (2.5) and (2.6), we have

Mλf2(x) ≤ Crε/pω(r)−1/p

(∫ 2dX

r

t−εω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)
dt

t

)1/p

.
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Hence, we obtain∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
B(z,r)

{Mλf2(x)}p dµ(y)

)
dr

r

≤ C
∫ 2dX

0
rε

(∫ 2dX

r

t−εω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)
dt

t

)
dr

r

≤ C
∫ 2dX

0

t−εω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)(∫ t

0
rε
dr

r

)
dt

t

≤ C
∫ 2dX

0

ω(t)

µ(B(z, θ1t))

(∫
B(z,t)

f(y)p dµ(y)

)
dt

t

≤ C.

(2.7)

Thus, in view of (2.2) and (2.7), we complete the proof.

Remark 2.5. Note that (ω1′) implies (ω1). Let ω(r) = rσ(log(e + 1/r))β be as in Exam-

ple 1.1. Then note that (ω1′) holds for 0 < ε1 < σ.

3. Sobolev-type inequality

We recall the following lemma.

Lemma 3.1. [11, Lemma 5.1(3)] Set

ω−1(r) = sup{s > 0 | ω(s) < r}

for r > 0. Then

ω(ω−1(r)) = r

for all r > 0 with ω−1(r) <∞.

We consider the following condition:

(ωα) for α > 0, there exist constants ε2 > 0 and A1 ≥ 1 such that

rε2+α
2 ω(r2)−1/p ≤ A1r

ε2+α
1 ω(r1)−1/p

whenever 0 < r1 < r2 < dX .

Lemma 3.2. Let 1 ≤ θ < τ . Assume that (ωα) holds. Then there exists a constant C > 0

such that ∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) ≤ Cδαω(δ)−1/p

for all x ∈ X, 0 < δ < dX/2 and nonnegative f ∈ Lp,ω,θ(X) with ‖f‖Lp,ω,θ(X) ≤ 1.
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Proof. Let f be a nonnegative measurable function with ‖f‖Lp,ω,θ(X) ≤ 1. Let x ∈ X and

0 < δ < dX/2. We find by (ωα)∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

≤
∫
X\B(x,δ)

d(x, y)α

µ(B(x, τd(x, y)))
ω(d(x, y))−1/p dµ(y)

+

∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
· f(y)p−1

ω(d(x, y))−(p−1)/p
dµ(y)

≤
∫
X\B(x,δ)

d(x, y)α

µ(B(x, τd(x, y)))
ω(d(x, y))−1/p dµ(y)

+ Cδαω(δ)−1/p

∫
X\B(x,δ)

ω(d(x, y))

µ(B(x, τd(x, y)))
f(y)p dµ(y)

= I1 + CI2.

Let j0 be the smallest integer such that τ j0δ ≥ dX . By (ω1), (ω2) and (ωα), we have

I1 =

j0∑
j=1

∫
B(x,τ jδ)\B(x,τ j−1δ)

d(x, y)α

µ(B(x, τd(x, y)))
ω(d(x, y))−1/p dµ(y)

≤ C
j0∑
j=1

(τ jδ)αω(τ jδ)−1/p ≤ C
∫ τdX

δ
ραω(ρ)−1/p dρ

ρ

≤ C
∫ dX

δ
ραω(ρ)−1/p dρ

ρ
≤ Cδαω(δ)−1/p.

Next, for γ = τθ−1 > 1, let j1 be the smallest positive integer such that γj1/2δ ≥ dX .

Then we have by (ω1) and (ω2)

I2 = Cδαω(δ)−1/p
j1∑
j=1

∫
B(x,γj/2δ)\B(x,γ(j−1)/2δ)

ω(d(x, y))

µ(B(x, τd(x, y)))
f(y)p dµ(y)

≤ Cδαω(δ)−1/p
j1∑
j=1

ω(γj/2δ)

µ(B(x, γ(j+1)/2θδ))

∫
B(x,γj/2δ)

f(y)p dµ(y)

≤ Cδαω(δ)−1/p
j1∑
j=1

∫ γ(j+1)/2δ

γj/2δ

ω(t)

µ(B(x, θt))

(∫
B(x,t)

f(y)p dµ(y)

)
dt

t
.

Hence

I2 ≤ Cδαω(δ)−1/p

∫ γdX

γ1/2δ

ω(t)

µ(B(x, θt))

(∫
B(x,t)

f(y)p dµ(y)

)
dt

t

≤ Cδαω(δ)−1/p

∫ 2dX

0

ω(t)

µ(B(x, θt))

(∫
B(x,t)

f(y)p dµ(y)

)
dt

t

≤ Cδαω(δ)−1/p
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since we have by (ω1) and (ω2)∫ γdX

2dX

ω(t)

µ(B(x, θt))

(∫
B(x,t)

f(y)p dµ(y)

)
dt

t

≤ Cω(dX)

µ(X)

∫
X
f(y)p dµ(y)

≤ C
∫ 2dX

dX

ω(t)

µ(B(x, θt))

(∫
B(x,t)

f(y)p dµ(y)

)
dt

t

≤ C
∫ 2dX

0

ω(t)

µ(B(x, θt))

(∫
B(x,t)

f(y)p dµ(y)

)
dt

t

when γ > 2. Thus we obtain the required result.

Before stating the main theorem we give the assumptions for the function in Sobolev-

type inequalities. We consider a function

Ψ(t) : [0,∞)→ [0,∞)

satisfies

(Ψ1) Ψ(·) is continuous on [0,∞);

(Ψ2) t 7→ Ψ(t)/t is almost increasing on (0,∞), namely there exists a constant A2 ≥ 1

such that

Ψ(t1)/t1 ≤ A2Ψ(t2)/t2 whenever 0 < t1 < t2;

(Ψ3) there exists a constant A3 ≥ 1 such that

Ψ
(
tω−1(t−p)α

)
≤ A3t

p for all t ≥ 1.

We write ψ(t) = sup0<s≤t(Ψ(s)/s) and

Ψ(t) =

∫ t

0
ψ(r) dr

for t ≥ 0. Then Ψ(·) is convex and

Ψ(t/2) ≤ Ψ(t) ≤ A2Ψ(t)

for all t ≥ 0.

Let θ ≥ 1. Given Ψ(t) and ω(r) as above, we define the LΨ,ω,θ norm by

‖f‖LΨ,ω,θ(X) = inf

{
λ > 0;

sup
x∈X

(∫ 2dX

0

ω(r)

µ(B(x, θr))

(∫
B(x,r)

Ψ
(
|f(y)|/λ

)
dµ(y)

)
dr

r

)
≤ 1

}
.
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The space of all measurable functions f on X with ‖f‖LΨ,ω,θ(X) < ∞ is denoted by

LΨ,ω,θ(X).

As an application of Mλ, we establish a Sobolev-type inequality for Iα,τf of functions

in Lp,ω,θ1(X) in the non-doubling setting.

Theorem 3.3. Let X be a non-doubling metric measure space. Let 1 ≤ θ1 < θ2 and

θ1(θ2 + 1)/(θ2 − θ1) < λ < τ . Assume that X satisfies (Mλ) and (ω1′) and (ωα) hold. If

p > 1, then there exists a constant C > 0 such that

‖Iα,τf‖LΨ,ω,θ2 (X) ≤ C‖f‖Lp,ω,θ1 (X)

for all f ∈ Lp,ω,θ1(X).

Proof. Let f be a nonnegative measurable function on X such that ‖f‖Lp,ω,θ1 (X) ≤ 1. Let

x ∈ X and 0 < δ < dX/2. If Mλf(x) < 1, then

Iα,τf(x) =

∫
B(x,dX)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) ≤ CdαXMλf(x) ≤ C

by λ < τ (see [21, p. 134]). If ω−1
(
{Mλf(x)}−p

)
≥ dX/2 and Mλf(x) ≥ 1, then

Iα,τf(x) =

∫
B(x,dX)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)χ{y∈X:Mλf(y)≥1}(x)

≤ CdαXMλf(x)χ{y∈X:Mλf(y)≥1}(x)

≤ CMλf(x)ω−1
(
{Mλf(x)}−p

)α
χ{y∈X:Mλf(y)≥1}(x).

By Lemma 3.2, we find

Iα,τf(x) =

∫
B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y) +

∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, τd(x, y)))
dµ(y)

≤ C
{
δαMλf(x) + δαω(δ)−1/p

}
.

If ω−1
(
{Mλf(x)}−p

)
< dX/2 and Mλf(x) ≥ 1, then take δ = ω−1

(
{Mλf(x)}−p

)
. Then

we have

Iα,τf(x) ≤ CMλf(x)ω−1
(
{Mλf(x)}−p

)α
χ{y∈X:Mλf(y)≥1}(x)

by Lemma 3.1. Therefore we obtain

Iα,τf(x) ≤ C ′1 max
{
Mλf(x)ω−1

(
{Mλf(x)}−p

)α
χ{y∈X:Mλf(y)≥1}(x), 1

}
,

so that by (Ψ2) and (Ψ3), we have

Ψ
(
Iα,τf(x)/C ′1

)
≤ C

{
Ψ
(
Mλf(x)ω−1

(
{Mλf(x)}−p

)α)
χ{y∈X:Mλf(y)≥1}(x) + 1

}
≤ C

[
{Mλf(x)}p + 1

]
.



On Sobolev-type Inequalities on Morrey Spaces of an Integral Form 841

Therefore we obtain by Theorem 2.4,∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
B(z,r)

Ψ
(
Iα,τf(x)/C ′1

)
dµ(x)

)
dr

r

≤ C

{∫ 2dX

0

ω(r)

µ(B(z, θ2r))

(∫
B(z,r)

{Mλf(x)}p dµ(x)

)
dr

r
+

∫ 2dX

0
ω(r)

dr

r

}
≤ C

for all z ∈ X since∫ 2dX

0
ω(r)

dr

r
=

∫ 2dX

0
r−ε1ω(r) · rε1 dr

r
≤ C

∫ 2dX

0
rε1

dr

r
≤ C

by (ω1′) and (ω3). This completes the proof of the theorem.

As in the proof of Theorem 3.3, we can prove the following theorem for the doubling

metric measure case.

Theorem 3.4. Let X be a doubling metric measure space. Assume that (ω1′) and (ωα)

hold. If p > 1, then there exists a constant C > 0 such that

‖Iα,1f‖LΨ,ω,1(X) ≤ C‖f‖Lp,ω,1(X)

for all f ∈ Lp,ω,1(X).

4. Corollaries

In this section, we give consequences of Theorems 3.3 and 3.4.

Let

ω(r) = rσ(log(e+ 1/r))β

be as in Example 1.1 and set

Ψ(t) =
{
t(log(e+ t))αβ/σ

}p∗
,

where 1/p∗ = 1/p − α/σ. If 1 < p < σ/α, then ω(r) satisfies condition (ωα) and Ψ(t)

satisfies condition (Ψ3).

Example 4.1. Let X1 = {(x, 0) ∈ R2 : 0 ≤ x < 1} and X2 = {(x, y) ∈ R2 : |x| < 1, x1 <

0} and define (X, d, µ) = (X1, d2,m1) ∪ (X2, d2,m2), where d2 denotes the 2-dimensional

Euclidean distance and mi denotes the i-dimensional Lebesgue measure. It is easy to show

that µ is non-doubling. Since X is a separable metric space, X satisfies (Mλ) for λ ≥ 2

(see Remark 2.2).
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Let θ ≥ 1 and p ≥ 1. Consider the function

f(y) = d2(0, y)−aχX2(y)

for a < min{2/p, σ/p}. Then note that∫ 4

0

ω(r)

µ(B(x, θr))

(∫
B(x,r)

|f(y)|p dµ(y)

)
dr

r

≤ C
∫ 4

0

ω(r)

µ(B(x, θr))

(∫
B(0,r)∩X2

|f(y)|p dµ(y)

)
dr

r

≤ C
∫ 4

0

ω(r)

µ(B(x, θr))
r2−ap dr

r

≤ C
∫ 4

0
rσ−ap(log(e+ 1/r))β

dr

r
<∞

for all x ∈ X since µ(B(x, θr)) ≥ Cr2 for all x ∈ X and 0 < r < 4. Therefore f ∈
Lp,ω,θ(X), so that Lp,ω,θ(X) 6= {0}.

Corollary 4.2. Let X be a non-doubling metric measure space. Let 1 ≤ θ1 < θ2 and

θ1(θ2 + 1)/(θ2 − θ1) < λ < τ . Assume that X satisfies (Mλ). If 1 < p < σ/α, then there

exists a constant C > 0 such that

‖Iα,τf‖LΨ,ω,θ2 (X) ≤ C‖f‖Lp,ω,θ1 (X)

for all f ∈ Lp,ω,θ1(X).

Corollary 4.3. Let X be a doubling metric measure space. If 1 < p < σ/α, then there

exists a constant C > 0 such that

‖Iα,1f‖LΨ,ω,1(X) ≤ C‖f‖Lp,ω,1(X)

for all f ∈ Lp,ω,1(X).
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