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Blow up and Decay for a Class of p-Laplacian Hyperbolic Equation with

Logarithmic Nonlinearity

Ying Chu*, Yuqi Wu and Libo Cheng

Abstract. In this paper, we study an initial boundary value problem for a p-Laplacian

hyperbolic equation with logarithmic nonlinearity. By combining the modified poten-

tial well method with the Galerkin method, the existence of the global weak solution

is studied, and the polynomial and exponential decay estimation under certain condi-

tions are also given. Moreover, by using the concavity method and other techniques,

we obtain the blow up results at finite time.

1. Introduction

In this paper, we study the following problem

(1.1)


utt −∆pu−∆ut = |u|q−2u log |u|, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω ⊂ Rn (n ≥ 1) is a bound domain with smooth boundary ∂Ω, p, q are constants

and they satisfy 2 < p < q < p(1 + 2/n).

During the past decades, many papers have been devoted to the study of qualitative

properties of solutions for hyperbolic equation, with many remarkable results. We can

refer to [1, 4, 5, 9, 12,14,16–18,21,24,25] and the references therein.

The semilinear hyperbolic equation

(1.2) utt −∆u = f(u),

was introduced by D’Alembert [1] to model the propagation of waves along vibrating

elastic string. Sattinger [21] first established a method of potential wells to deal with

the global existence of solutions to the problem (1.2). Payne and Sattinger [18] showed

that the solution blows up in finite time. In [9], the model (1.2) was studied by Lian et
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al., where f(u) = u ln |u|k, they modified the potential well method and combined with

logarithmic Sobolev inequality to obtain the global existence of the solution and the blow

up result under the condition of different initial energy. Later, in the case of nonlinearity

f(u) = |u|p lnu, the problem (1.2) is also considered by Lian et al. [10], and they establish

the global existence and finite time blow up of solutions.

For the classical strongly damped hyperbolic equation

(1.3) utt −∆u−∆ut = f(u),

Webb [24] gave the existence, uniqueness and the asymptotic behavior of the solution. In

the case of nonlinearity f(u) = u log |u|2, the model (1.3) was studied by Ma and Fang [14],

they proved the existence of global weak solutions, derived the energy decay estimates and

blow up at infinity.

In [26], Xu and Su studied the parabolic equation with strongly damped term

ut −∆ut −∆u = up,

where p > 1, they proved global existence, asymptotic behavior and finite time blow up of

solution with initial energy J(u0) ≤ d. Moreover, they also obtained finite time blow up

with high initial energy J(u0) > d by comparison principle. The relevant equations have

also been studied in [11,23].

For the initial boundary value problem of strongly damped hyperbolic equation

(1.4) utt −∆u− ω∆ut + µut = f(u),

where ω ≥ 0, µ > −ωλ1, λ1 is the first eigenvalue of the operator −∆ under homogeneous

Dirichlet boundary conditions. In the case of nonlinearity f(u) = |u|p−2u, Gazzolaa

and Squassina [4] investigated the problem (1.4), obtained the existence of global weak

solutions by the potential well method, and also proved the blow up results at finite time.

In the case of nonlinearity f(u) = u ln |u|, Lian and Xu [9] proved the local existence of the

weak solution by the contraction mapping principle, and under the framework of potential

well, studied the energy decay and global existence, and the blow up result of the solution

at infinite time.

In recent years, the p-Laplacian parabolic equation with logarithmic nonlinearity is

studied extensively. Le et al. [7] studied the following p-Laplacian parabolic equation with

logarithmic source term

ut −∆pu = |u|p−2u log |u|,

they obtained results of existence or nonexistence of global weak solutions and finite time

blow-up. Moreover, the large time decay of global weak solutions was studied.
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For parabolic equations with strongly damped and logarithmic source terms

(1.5) ut −∆ut −∆pu = |u|q−2u log |u|.

In the case where p is equal to q, Nhan and Truong [15] obtained results of global existence

and finite time blow up of the weak solution by using the potential well method and

logarithmic Sobolev inequality (see [19, 20]) to the problem (1.5). When 2 < p < q <

p(1 + 2/n), He et al. [6] investigated the decay and finite time blow up of the weak

solutions. When 1 < p ≤ q < p∗, the problem (1.5) was studied by Ding and Zhou in [2],

they mainly discuss the properties of global existence, blow up at infinity, and finite time

blow up.

As shown in the previous works, the research on the properties of solutions of p-

Laplacian parabolic equations is relatively perfect. There are not much literature for

strongly damped p-Laplace hyperbolic equations with logarithmic source term. For the

problem (1.1), the appearance of p-Laplacian operator ∆pu and logarithmic source terms

|u|q−2u log |u| bring some difficulties, so that we cannot use Sobolev inequality as in ref-

erence [14]. Here, we modify the potential well method and combine with the concavity

method to obtain the global existence of the weak solution, energy decay estimate, and

the blow up result of the solution at a finite time.

The paper is organized as follows. In Section 2, some useful lemmas and main results

are included. Section 3 is devoted to discussing global existence and energy decay estimate

for the problem (1.1). In the last section, we prove the blow up theorem and give the lower

and upper bounds for blow up time.

2. Preliminaries and main results

To get the main results of this paper, we first introduce some notations, definitions, and

lemmas. For convenience, we let

X0 =
{

(u, ut) | u ∈W 1,p
0 (Ω) \ {0}, ut ∈ L2(Ω) \ {0}

}
.

Throughout this paper, we denote the norm of Ls(Ω) for 1 ≤ s ≤ ∞ by ‖ · ‖s and the

norm of W 1,p
0 (Ω) by ‖ · ‖1,p. That is, for any u ∈ Ls(Ω),

‖u‖s = ‖u‖Ls(Ω) =


(∫

Ω |u(x)|s dx
)1/s

if 1 ≤ s <∞,

ess supx∈Ω |u(x)| if s =∞,

and for any u ∈W 1,p
0 (Ω),

‖u‖1,p = ‖u‖
W 1,p

0 (Ω)
=
(
‖u‖pp + ‖∇u‖pp

)1/p
.
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We denote the dual space of W 1,p
0 (Ω) by W−1,p′

0 (Ω), where p′ = p/(p−1). For (u, ut) ∈ X0,

let us introduce some functionals and sets as follows:

E(t) =
1

2
‖ut‖22 +

1

p
‖∇u‖pp −

1

q

∫
Ω
|u|q log |u| dx+

1

q2
‖u‖qq,

J(u) =
1

p
‖∇u‖pp −

1

q

∫
Ω
|u|q log |u| dx+

1

q2
‖u‖qq,

I(u) = ‖∇u‖pp −
∫

Ω
|u|q log |u| dx,

N =
{
u ∈W 1,p

0 (Ω) \ {0} | I(u) = 0
}
,

d = inf
u∈X0

{
sup
λ>0

J(λu)

}
= inf

u∈N
J(u),(2.1)

W1 = {(u, ut) ∈ X0 | E(t) < d}, W2 = {(u, ut) ∈ X0 | E(t) = d}, W = W1 ∪W2,

W+
1 = {(u, ut) ∈W1 | I(u) ≥ 0}, W+

2 = {(u, ut) ∈W2 | I(u) ≥ 0}, W+ = W+
1 ∪W

+
2 ,

W−1 = {(u, ut) ∈W1 | I(u) < 0}, W+
2 = {(u, ut) ∈W2 | I(u) < 0}, W− = W−1 ∪W

−
2 .

By the definition of J(u) and I(u), we get that

(2.2) J(u) =
1

q
I(u) +

(
1

p
− 1

q

)
‖∇u‖pp +

1

q2
‖u‖qq.

We give the definition of the weak solution to the problem (1.1) as follows:

Definition 2.1. We define a function u ∈ L∞(0, T ;W 1,p
0 (Ω)) with ut ∈ L2(0, T ;H1

0 (Ω)) to

be a weak solution of problem (1.1) over [0, T ], if it satisfies the initial condition u(x, 0) =

u0 ∈W 1,p
0 (Ω) \ {0}, ut(x, 0) = u1 ∈ L2(Ω) \ {0}, and

(ut, w) +

∫ t

0

(
|∇u|p−2∇u,∇w

)
dτ + (∇u,∇w)

= (u1, w) + (∇u0,∇w) +

∫ t

0

(
|u|q−2u log |u|, w

)
dτ

for any w ∈W 1,p
0 (Ω), and for a.e. t ∈ [0, T ].

For a fixed u ∈ W 1,p
0 (Ω) \ {0}, we consider the function j(λ) = J(λu) for λ > 0. This

map was introduced by Drabek and Pohozaev [3]. We list some properties of j in the

following lemma.

Lemma 2.2. Let u ∈W 1,p
0 (Ω) \ {0}, then the following results hold:

(1) limλ→0+ j(λ) = 0, limλ→+∞ j(λ) = −∞;

(2) There exists a unique λ∗ > 0 such that j′(λ∗) = 0;

(3) j(λ) is increasing on λ ∈ (0, λ∗), decreasing on λ ∈ (λ∗,+∞);
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(4) I(λu)

> 0, λ ∈ (0, λ∗),

< 0, λ ∈ (λ∗,+∞),
and I(λ∗u) = 0.

Proof. For u ∈W 1,p
0 (Ω) \ {0}, by the definition of j, we have

j(λ) =
λp

p
‖∇u‖pp −

λq

q

∫
Ω
|u|q log |u| dx− λq log λ

q
‖u‖qq +

λq

q2
‖u‖qq,

it is obvious that (1) holds due to ‖u‖q 6= 0. Through direct calculation, we get

j′(λ) = λp−1

(
‖∇u‖pp − λq−p

∫
Ω
|u|q log |u| dx− λq−p log λ‖u‖qq

)
.

Let k(λ) = λ1−pj′(λ), we have

k′(λ) = −λq−p−1

(
(q − p)

∫
Ω
|u|q log |u| dx+ (q − p) log λ‖u‖qq + ‖u‖qq

)
.

Hence, by taking

λ1 = exp

(
(q − p)

∫
Ω |u|

q log |u| dx+ ‖u‖qq
(p− q)‖u‖qq

)
> 0,

such that k′(λ) > 0 on (0, λ1), k′(λ) < 0 on (λ1,+∞) and k′(λ1) = 0. Since limλ→0+ k(λ) =

‖∇u‖pp > 0, limλ→+∞ k(λ) = −∞, there exists one λ∗ > 0 such that k(λ∗) = 0. So the

statements of (2) and (3) can be shown easily. The last property is only a simply corollary

of the fact I(λu) = λj′(λ). The proof of the lemma is complete.

Now, Lemma 2.2(4) shows that the Nehari manifold N is not empty. So the depth d

defined by (2.1) is meaningful. From (2.2) and the definition of N and d, it follows that

d ≥ 0. In the following lemma, we prove that d is positive and is obtained by some u ∈ N .

Lemma 2.3. d is positive and there is a positive function u ∈ N such that J(u) = d.

Proof. Now, we only need to prove that there is a positive function u ∈ N such that

J(u) = d. Let {uk}∞k=1 ⊂ N be a minimizing sequence for J . That is,

lim
k→∞

J(uk) = d.

It is simple to show that {|uk|}∞k=1 ⊂ N is also a minimizing sequence for J . Thus, without

loss of generality, we assume that uk > 0 a.e. in Ω for all k ∈ N . Since {J(uk)}∞k=1 is

bounded and I(uk) = 0, by (2.2), we infer that {uk}∞k=1 is bounded in W 1,p
0 (Ω). Let

µ > 0 be sufficiently small such that q + µ < p∗ = np/(n − p). Then the embedding



746 Ying Chu, Yuqi Wu and Libo Cheng

W 1,p
0 (Ω) ↪→ Lq+µ(Ω) is compact, so there exist a function u and a subsequence {uki}∞i=1

of {uk}∞k=1 such that

uki ⇀ u weakly in W 1,p
0 (Ω),

uki → u strongly in Lq+µ(Ω),

uki → u a.e. in Ω.

Thus, u ≥ 0 a.e. in Ω. By the dominated convergence theorem, we have∫
Ω
|u|q log |u| dx = lim

i→∞

∫
Ω
|uki |

q log |uki | dx,(2.3) ∫
Ω
|u|q dx = lim

i→∞

∫
Ω
|uki |

q dx.(2.4)

By the weak lower semicontinuity of ‖ · ‖1,p, we have

(2.5) ‖∇u‖p ≤ lim inf
i→∞

∥∥∇uki∥∥p.
Combining (2.3)–(2.5) and the definition of J(u), it follows that

(2.6) J(u) ≤ lim inf
i→∞

J(uki) = d.

Combining (2.3), (2.5) and the definition of I(u), we get

(2.7) I(u) ≤ lim inf
i→∞

I(uki) = 0.

Since uki ∈ N , we have I(uki) = 0. So, by using the fact x−µ log x ≤ (eµ)−1 for x ≥ 1 and

the Sobolev embedding inequality, we obtain

‖∇uki‖
p
p =

∫
Ω
|uki |

q log |uki | dx ≤
∫
{x∈Ω:|uki |≥1}

|uki |
q log |uki | dx

≤ (eµ)−1

∫
{x∈Ω:|uki |≥1}

|uki |
q+µ dx ≤ (eµ)−1‖uki‖

q+µ
q+µ ≤ C(eµ)−1‖∇uki‖

q+µ
p ,

where C is the Sobolev constant satisfying ‖uki‖q+µ ≤ C‖∇uki‖p. This implies that∫
Ω
|uki |

q log |uki | dx = ‖∇uki‖
p
p ≥

(eµ
C

) p
q+µ−p

.

Combining the above inequality with (2.3), we get∫
Ω
|u|q log |u| dx ≥

(eµ
C

) p
q+µ−p

.

Thus, we have u 6= 0.
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If I(u) < 0, then by Lemma 2.2, there exist a λ∗ such that 0 < λ∗ < 1 and I(λ∗u) = 0.

Therefore, we have

d ≤ J(λ∗u) =

(
1

p
− 1

q

)
‖∇(λ∗u)‖pp +

1

q2
‖λ∗u‖qq

= λp∗

{(
1

p
− 1

q

)
‖∇u‖pp +

1

q2
‖u‖qq

}
≤ λp∗ lim inf

i→∞

{(
1

p
− 1

q

)
‖∇uki‖

p
p +

1

q2
‖uki‖

q
q

}
= λp∗ lim inf

i→∞
J(uki)

= λp∗d.

Since λp∗ < 1, the above formula contradicts the fact that d > 0. Then, by (2.7), we have

I(u) = 0. So, u ∈ N . From (2.6) and the definition of d, we obtain J(u) = d.

Theorem 2.4. Let 2 < p < q < p(1 + 2/n), if (u0, u1) ∈W+, then the problem (1.1) has

a global weak solution u ∈ L∞(0, T ;W 1,p
0 (Ω)) with ut ∈ L2(0, T ;H1

0 (Ω)) and (u, ut) ∈W+

for 0 ≤ t <∞. Meanwhile, u satisfies the energy inequality

(2.8) E(t) +

∫ t

0
‖∇ut‖22 dτ ≤ E(0), 0 ≤ t <∞.

Furthermore, there exists a positive constant K0 such that the energy functional E(t)

satisfies the following polynomial decay estimate

E(t) ≤ K0

1 + t
for all t ∈ [0,+∞).

In particular, if E(0) < min
{
d, q−ppq

( eµ
Cq+µ

) p
q+µ−p

}
, I(u0) ≥ 0 and 0 < µ < p∗ − q, then

there exist positive constants K1 and K2, such that the E(t) satisfies the exponential decay

estimate as follows:

E(t) ≤ K1e
−K2t for all t ∈ [0,+∞).

Theorem 2.5. Assume that (u0, u1) ∈ W− and 2 < q < p∗, then the weak solution u of

the problem (1.1) blows up in finite time, that is, there exists a T ∗ > 0 such that

lim
t→T ∗−

(
‖u‖22 +

∫ t

0
‖∇u‖22 dτ

)
= +∞.

Moreover, the upper bound for blow up time T ∗ can be estimated by

T ∗ ≤ 2bT 2
0 + 2‖u0‖22

(q − 2)
(
bT0 +

∫
Ω u0u1 dx

)
− 2‖∇u0‖22

,

where b and T0 are defined in (4.5) and (4.6).
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Theorem 2.6. Assume that all the conditions of Theorem 2.5 hold and 2 < q < 1 +

n/(n− p), then the weak solution u of the problem (1.1) become unbounded at finite time

t = T ∗ with

lim
t→T ∗−

‖ut‖22 + ‖∇u‖pp = +∞.

Moreover, the lower bound for blow up time T ∗ can be estimated by

T ∗ ≥
∫ ∞
F (0)

dy

y + 1
2(e(q − 1))−2|Ω|+ 1

2(eµ)−2|Ω|+ 1
2(eµ)−2Cp(q−1+µ)pq−1+µyq−1+µ

,

where 0 < µ < (2n− p)/(n− p)− q and F (0) = 1
2‖u1‖22 + 1

p‖∇u0‖pp.

3. Global existence and energy decay estimate

In this section, we focus on proving Theorem 2.4, which is divided into 5 steps.

Step 1: Global existence for the case of (u0, u1) ∈ W+
1 . By the definition of E(t) and

(2.2), we know that 0 ≤ J(u0) ≤ E(0) < d, then we have respectively

(i) If E(0) = 0 and I(u0) ≥ 0, then this implies that (u0, u1) = (0, 0), which is trivial

case;

(ii) If 0 < E(0) < d and I(u0) = 0, then it contradicts with the definition of potential

depth d.

Therefore, we only need to consider the case of 0 < E(0) < d and I(u0) > 0.

First, we select {wj(x)} as the orthogonal basis of W 1,p
0 (Ω) and construct the approx-

imate solution um(x, t) of problem (1.1) as follows:

um(x, t) =
m∑
j=1

gmj (t)wj(x), m = 1, 2, . . . ,

which satisfy

(umt, wj) +

∫ t

0

(
|∇um|p−2∇um,∇wj

)
dτ + (∇um,∇wj)

=

∫ t

0

(
|um|q−2um log |um|, wj

)
dτ + (u1m, wj) + (∇u0m,∇wj) for j = 1, 2, . . . ,m,

(3.1)

u0m = um(x, 0) =

m∑
j=1

gmj (0)wj(x)→ u0 strongly in W 1,p
0 (Ω),(3.2)

u1m = umt(x, 0) =
m∑
j=1

gmjt (0)wj(x)→ u1 strongly in L2(Ω).(3.3)
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Now, differentiating of (3.1) with respect to t, multiplying the obtained equation by gmjt (t),

summing for j, and integrating over [0, t], we can compute

(3.4) E(um, umt) +

∫ t

0
‖∇umt‖22 dτ = E(u0m, u1m) < d, 0 ≤ t < +∞

for sufficiently large m.

Next, we will show that

(3.5) (um, umt) ∈W+
1 , 0 ≤ t < +∞

for sufficiently large m. Arguing by contradiction, if it is false, then there exists t∗ ∈
[0,+∞) such that (um(t∗), umt(t∗)) ∈ ∂W+

1 , so

(3.6) E(um(t∗), umt(t∗)) = d,

or

(3.7) I(um(t∗)) = 0.

Nevertheless, it is clear that (3.6) could not occur by (3.4). If (3.7) holds, then by the

definition of d, we have

E(um(t∗)) > J(um(t∗)) ≥ d,

which is also contradictive with (3.4). Therefore, (3.5) is valid. Thus, (um, umt) ∈ W+
1

such that

d > E(um, umt) > J(um) =
1

q
I(um) +

(
1

p
− 1

q

)
‖∇um‖pp +

1

q2
‖um‖qq

for sufficiently large m and 0 ≤ t < +∞. So it follows that

‖∇um‖pp <
pqd

q − p
, ‖um‖qq < q2d,(3.8) ∫ t

0
‖∇umt‖22 dτ < d.(3.9)

By (3.8), (3.9), there exist functions u, χ and a subsequence of {um}∞m=1 which we still

denote it by {um}∞m=1 such that

um
∗
⇀ u weakly star in L∞(0,∞;W 1,p

0 (Ω)),(3.10)

umt ⇀ ut weakly in L2(0,∞;H1
0 (Ω)),(3.11)

|∇um|p−2∇um
∗
⇀ χ weakly star in L∞(0,∞;W−1,p′

0 (Ω)).(3.12)

By Aubin–Lions–Simon Lemma (see [22, Corollary 4]), we get

um → u strongly in C(0,∞;L2(Ω)),
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so um → u a.e. (x, t) ∈ Ω× [0,∞), m→ +∞. This implies

(3.13) |um|q−2um log(|um|)→ |u|q−2u log(|u|) a.e. (x, t) ∈ Ω× [0,+∞).

Furthermore, since 2 < q < p(1+2/n) < p∗, we can choose µ > 0 such that (q−1+µ)q′ <

p∗, where q′ = q/(q − 1). Therefore, through direct calculation, we get∫
Ω
|φm|q

′
dx =

∫
{x∈Ω:|um|<1}

|φm|q
′
dx+

∫
{x∈Ω:|um|≥1}

|φm|q
′
dx

≤ (e(q − 1))−q
′ |Ω|+ (eµ)−q

′
∫
{x∈Ω:|um|≥1}

|um|(q−1+µ)q′ dx

≤ (e(q − 1))−q
′ |Ω|+ (eµ)−q

′
C(q−1+µ)q′‖∇um‖(q−1+µ)q′

p

≤ (e(q − 1))−q
′ |Ω|+ (eµ)−q

′
C(q−1+µ)q′

(
pqd

q − p

) (q−1+µ)q′
p

,

(3.14)

where φm = |um|q−1 log |um|, C is the optimal Sobolev constant satisfying ‖um‖(q−1+µ)q′ ≤
C‖∇um‖p. Hence, from (3.13), (3.14) and Lions Lemma (see [13, Lemma 1.3, p. 12]), we

have

(3.15) |um|q−2um log |um| → |u|q−2u log |u| weakly star in L∞(0,∞;Lq
′
(Ω)).

By (3.10)–(3.12) and (3.15), passing to the limit in (3.1)–(3.3) as m → +∞, it follows

that u satisfies the initial condition u(x, 0) = u0 in W 1,p
0 (Ω), ut(x, 0) = u1 in L2(Ω), and

(ut, w) +

∫ t

0
(χ,∇w) dτ + (∇u,∇w) = (u1, w) + (∇u0,∇w) +

∫ t

0

(
|u|q−2u log |u|, w

)
dτ

for all w ∈W 1,p
0 (Ω) and for a.e. t ∈ [0,+∞).

Finally, by the method of Browder and Minty in the theory of monotone operators,

we obtain

χ = |∇u|p−2∇u,

which implies

(ut, w) +

∫ t

0

(
|∇u|p−2∇u,∇w

)
dτ + (∇u,∇w)

= (u1, w) + (∇u0,∇w) +

∫ t

0

(
|u|q−2u log |u|, w

)
dτ

for all w ∈W 1,p
0 (Ω) and for a.e. t ∈ [0,+∞).

Finally, since (u0, u1) ∈W+
1 , by a standard contradiction argument it is easy to show

that (u, ut) ∈W+
1 for 0 ≤ t < +∞.

Step 2: Global existence for the case of (u0, u1) ∈ W+
2 . We will prove this step by

considering two cases E(0) = d, I(u0) = 0 and E(0) = d, I(u0) > 0.
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(1) E(0) = d, I(u0) = 0: From the definition of d, we have J(u0) ≥ d. However,

1

2
‖u1‖22 + J(u0) = E(0) = d,

it follows that J(u0) < d. So Case (1) is impossible.

(2) E(0) = d, I(u0) > 0: In order to prove the global existence result of problem (1.1),

we first choose a sequence {γm}∞m=1 ⊂ (0, 1) such that limm→∞ γm = 1. Then we consider

the following problem

(3.16)


utt −∆pu−∆ut = |u|q−2u log u, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0m, ut(x, 0) = u1m, x ∈ Ω,

where u0m = γmu0, u1m = γmu1. Since I(u0) > 0, it follows from Lemma 2.2 that λ∗ > 1.

Hence, we get

I(u0m) = I(γmu0) > 0, J(u0m) = J(γmu0) < J(u0),

and

0 < E(u0m, u1m) =
1

2
‖u1m‖22 + J(u0m) <

1

2
‖u1‖22 + J(u0) = E(0) = d.

Using the similar arguments as previous Step 1, we find that problem (3.16) admits a

global weak solution um which satisfies

um ∈ L∞(0,∞;W 1,p
0 (Ω)), umt ∈ L2(0,∞;H1

0 (Ω))

with initial data

um(x, 0) = u0m → u0 strongly in W 1,p
0 (Ω),

umt(x, 0) = u1m → u1 strongly in L2(Ω),

and

(umt, υ) +

∫ t

0

(
|∇um|p−2∇um,∇υ

)
dτ + (∇um,∇υ)

= (u1m, υ) + (∇u0m,∇υ) +

∫ t

0

(
|um|q−2um log |um|, υ

)
dτ

for any υ ∈W 1,p
0 (Ω), and for a.e. 0 ≤ t <∞.

The remainder of the proof can be processed similarly as previous Step 1. We derive

(ut, υ) +

∫ t

0

(
|∇u|p−2∇u,∇υ

)
dτ + (∇u,∇υ)

= (u1, υ) + (∇u0,∇υ) +

∫ t

0

(
|u|q−2u log |u|, υ

)
dτ
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for fixed υ ∈ W 1,p
0 (Ω), for a.e. 0 ≤ t < ∞. Hence, u is a global weak solution for

problem (1.1). From (u0, u1) ∈ W+
2 , by a standard contradiction argument it is easy to

show that (u, ut) ∈W+
2 for 0 ≤ t < +∞.

Step 3: Energy inequality. Now, we show that the weak solution satisfies the energy

inequality (2.8). First, we prove

lim
m→∞

∫
Ω
|um|q log |um| dx =

∫
Ω
|u|q log |u| dx,

and

lim
m→∞

∫
Ω
|um|q dx =

∫
Ω
|u|q dx.

In fact, by Hölder inequality, for each fixed t > 0, we have∣∣∣∣∫
Ω
|um|q log |um| dx−

∫
Ω
|u|q log |u| dx

∣∣∣∣
≤
∫

Ω

∣∣|um|q log |um| − |u|q log |u|
∣∣ dx

≤
∫

Ω

∣∣q|ϕ1|q−1 log |ϕ1|+ |ϕ1|q−1
∣∣|u− um| dx

≤ q
(∫

Ω

∣∣|ϕ1|q−1 log |ϕ1|
∣∣q′ dx)1/q′

‖u− um‖q + ‖ϕ1‖q−1
q ‖u− um‖q

≤ C‖u− um‖q → 0,

and ∣∣∣∣∫
Ω
|um|q dx−

∫
Ω
|u|q dx

∣∣∣∣ ≤ ∫
Ω

∣∣|um|q − |u|q∣∣ dx ≤ q ∫
Ω
|ϕ2|q−1|u− um| dx

≤ q‖ϕ2‖q−1
q ‖u− um‖q ≤ C‖u− um‖q → 0,

where ϕi = u+ θium, 0 < θi < 1 (i = 1, 2).

On the other hand, making use of Fatou Lemma and (3.4), we deduce

1

2
‖ut‖22 +

1

p
‖∇u‖pp +

∫ t

0
‖∇ut‖22 dτ

≤ 1

2
lim inf
m→∞

‖umt‖22 +
1

p
lim inf
m→∞

‖∇um‖pp + lim inf
m→∞

∫ t

0
‖∇umt‖22 dτ

= lim inf
m→∞

[
E(u0m, u1m) +

1

q

∫
Ω
|um|q log |um| dx−

1

q2

∫
Ω
|um|q dx

]
= E(0) +

1

q

∫
Ω
|u|q log |u| dx− 1

q2

∫
Ω
|u|q dx.

Hence, (2.8) hold.
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Step 4: Polynomial decay estimate of energy for the case of (u0, u1) ∈ W+. Since

(u0, u1) ∈ W+, a standard contradiction argument shows (u, ut) ∈ W+ for each t. First,

from the definition of energy functional E(t), (2.2) and I(u) ≥ 0, we derive

E(0) ≥ E(t) +

∫ t

0
‖∇ut‖22 dτ

=
1

2
‖ut‖22 +

1

q
I(u) +

q − p
pq
‖∇u‖pp +

1

q2
‖u‖qq +

∫ t

0
‖∇ut‖22 dτ

≥ 1

2
‖ut‖22 +

q − p
pq
‖∇u‖pp +

1

q2
‖u‖qq +

∫ t

0
‖∇ut‖22 dτ.

(3.17)

A combination of (3.17) and E(0) ≤ d, we get

(3.18)

∫ t

0
‖ut‖22 dτ ≤

1

λ1

∫ t

0
‖∇ut‖22 dτ ≤

d

λ1
,

where λ1 is the first eigenvalue of the following problem−∆φ(x) = λφ(x), x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω

for φ(x) ∈ H1
0 (Ω).

Next, multiplying the first equation of problem (1.1) by u and integrating over Ω×(0, t).

Using Young inequality, we have∫ t

0
I(u) dτ = −

∫ t

0
(utt, u) dτ −

∫ t

0
(∇ut,∇u) dτ

= −
∫

Ω
utu dx+

∫
Ω
u1u0 dx+

∫ t

0
‖ut‖22 dτ +

1

2
‖∇u0‖22 −

1

2
‖∇u‖22

≤ 1

2
‖u‖2H1

0
+

1

2
‖ut‖22 +

∫ t

0
‖ut‖22 dτ +

1

2
‖u1‖22 +

1

2
‖u0‖2H1

0

≤ C2

2
‖u‖2W 1,p +

1

2
‖ut‖22 +

∫ t

0
‖ut‖22 dτ +

1

2
‖u1‖22 +

1

2
‖u0‖2H1

0
,

(3.19)

where C stands for the best constant in the embedding W 1,p(Ω) ↪→ H1
0 (Ω). Using (3.17),

(3.18) and u ∈ L∞(0, T ;W 1,p
0 (Ω)), then (3.19) implies that

(3.20)

∫ t

0
I(u) dτ ≤ C for 0 < t < +∞.

From I(u) ≥ 0, we know that there exists a λ∗ > 1 such that I(λ∗u) = 0. This implies

(3.21) λq∗

{(
1

p
− 1

q

)
‖∇u‖pp +

1

q2
‖u‖qq

}
≥ J(λ∗u) ≥ d.
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Combining (2.2) and (2.8), we have

(3.22)

(
1

p
− 1

q

)
‖∇u‖pp +

1

q2
‖u‖qq ≤ J(u) < E(t) ≤ E(0) ≤ d.

It follows from (3.21) and (3.22) that

λ∗ >

(
d

E(0)

)1/q

> 1.

On the other hand, we have

0 = I(λ∗u) = λp∗‖∇u‖pp − λq∗
∫

Ω
|u|q log |u| dx− λq∗ log λ∗‖u‖qq

= λq∗I(u)−
(
λq∗ − λp∗

)
‖∇u‖pp − λq∗ log λ∗‖u‖qq.

Hence, we obtain

I(u) =

(
1− 1

λq−p∗

)
‖∇u‖pp + log λ∗‖u‖qq.

Combining the above equation with (3.20), we obtain

(3.23)

∫ t

0
‖∇u‖pp dτ ≤ C,

and

(3.24)

∫ t

0
‖u‖qq dτ ≤ C.

Differentiating E(t) and using (1.1), we can compute

E′(t) = −
∫

Ω
|∇ut|2 dx ≤ 0.

Since

(3.25)
d

dt
[(1 + t)E(t)] = (1 + t)E′(t) + E(t) ≤ E(t),

then integrating (3.25) over (0, t), we can have

(1 + t)E(t) ≤ E(0) +

∫ t

0
E(t) dτ

= E(0) +
1

2

∫ t

0
‖ut‖22 dτ +

1

q

∫ t

0
I(u) dτ +

(
1

p
− 1

q

)∫ t

0
‖∇u‖pp dτ

+
1

q2

∫ t

0
‖u‖qq dτ.

(3.26)
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Thus, applying E(0) ≤ d, (3.18), (3.20), (3.23) and (3.24) to (3.26), we can derive that

there exists a positive constants K0 such that the energy functional E(t) satisfies the

following polynomial decay estimation

E(t) ≤ K0

1 + t
for all t ∈ [0,+∞).

Step 5: Exponential decay estimate of energy for the case of E(0) < min
{
d, q−ppq

×
( eµ
Cq+µ

) p
q+µ−p

}
and I(u0) ≥ 0. We define

L(t) = E(t) + ε

∫
Ω
uut dx+

ε

2

∫
Ω
|∇u|2 dx,

where ε is a positive constant to be specified later.

By the Young inequality, we can easily know that there exist two positive constant α1

and α2 such that

(3.27) α1E(t) ≤ L(t) ≤ α2E(t) for all t ∈ [0,+∞).

That is to say, L(t) and E(t) are equivalent.

Now, differentiating L(t) and using (1.1), we have

L′(t) = E′(t) + ε

∫
Ω
|ut|2 dx+ ε

∫
Ω
uutt dx+ ε

∫
Ω
∇u∇ut dx

= −
∫

Ω
|∇ut|2 dx+ ε

∫
Ω
|ut|2 dx+ ε

∫
Ω
u
[
∆pu+ |u|q−2u log |u|

]
dx

= −
∫

Ω
|∇ut|2 dx+ ε

∫
Ω
|ut|2 dx− ε

∫
Ω
|∇u|p dx+ ε

∫
Ω
|u|q log |u| dx

= −βεE(t) +
βε

2
‖ut‖22 +

βε

p
‖∇u‖pp −

βε

q

∫
Ω
|u|q log |u| dx+

βε

q2
‖u‖qq

−
∫

Ω
|∇ut|2 dx+ ε

∫
Ω
|ut|2 dx− ε

∫
Ω
|∇u|p dx+ ε

∫
Ω
|u|q log |u| dx

≤ −βεE(t) +

(
βε

2
+ ε− λ1

)
‖ut‖22 +

(
βε

p
− ε
)
‖∇u‖pp

+

(
ε− βε

q

)∫
Ω
|u|q log |u| dx+

βε

q2
‖u‖qq.

(3.28)

By virtue of the Sobolev embedding inequality and (3.17), we obtain∫
Ω
|u|q log |u| dx ≤

∫
{x∈Ω:|u|≥1}

|u|q log |u| dx ≤ (eµ)−1

∫
{x∈Ω:|u|≥1}

|u|q+µ dx

≤ (eµ)−1‖u‖q+µq+µ ≤ (eµ)−1Cq+µ‖∇u‖q+µp

≤ (eµ)−1Cq+µ
(
pqE(0)

q − p

) q+µ−p
p

‖∇u‖pp,

(3.29)
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and

(3.30) ‖u‖qq ≤ Cq‖∇u‖qp ≤ Cq
(
pqE(0)

q − p

) q−p
p

‖∇u‖pp,

where C is the Sobolev constant satisfying ‖u‖q+µ ≤ C‖∇u‖p, ‖u‖q ≤ C‖∇u‖p. Inserting

(3.29) and (3.30) into (3.28), it follows that

L′(t) ≤ −βεE(t) +

(
βε

2
+ ε− λ1

)
‖ut‖22

+ ε

{
β

p
+
Cq+µ

eµ

(
pqE(0)

q − p

) q+µ−p
p

− 1− β

q

Cq+µ

eµ

(
pqE(0)

q − p

) q+µ−p
p

+
β

q2
Cq
(
pqE(0)

q − p

) q−p
p
}
‖∇u‖pp.

(3.31)

Since E(0) < q−p
pq

( eµ
Cq+µ

) p
q+µ−p , we get

Cq+µ

eµ

(
pqE(0)

q − p

) q+µ−p
p

− 1 < 0.

By choosing β > 0 small enough such that

β

p
+
Cq+µ

eµ

(
pqE(0)

q − p

) q+µ−p
p

+
β

q2
Cq
(
pqE(0)

q − p

) q−p
p

− 1 < 0.

Then, choosing ε small enough such that

βε

2
+ ε− λ1 < 0.

Hence, a combination of (3.27) and (3.31) yields

(3.32) L′(t) ≤ −βεE(t) ≤ −βε
α2

L(t).

Finally, integrating (3.32) over (0, t), we can deduce that there exist K1 = L(0)/α1 and

K2 = βε/α2 such that

E(t) ≤ K1e
−K2t for all t ∈ [0,+∞).

This completes the proof of Theorem 2.4.

4. Blow-up in the finite time

In this section, we mainly prove Theorems 2.5 and 2.6.
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First, (u0, u1) ∈ W−, by Faedo–Galerkin methods (see [4, 12, 13]), it is not difficult to

obtain a local solution u of problem (1.1) satisfying the energy inequality

(4.1) E(t) +

∫ t

0
‖∇ut‖22 dτ ≤ E(0) ≤ d, 0 ≤ t ≤ T ∗,

where T ∗ is the maximal existence time of the solution u.

Next, we introduce the following lemmas which plays an important role in proving our

main results.

Lemma 4.1. Assume that (u0, u1) ∈W−, then we have (u, ut) ∈W− for any t > 0.

Proof. To prove (u, ut) ∈W− for any t > 0. We suppose on the contrary that (u, ut) /∈W−

on t = t0, then there exists a sequence {tn}, tn → t−0 , such that I(u(tn)) < 0, E(u(tn)) ≤ d.

By the weak lower semicontinuity of I(u(tn)) and E(u(tn)) in W 1,p
0 (Ω), we have

I(u(t0)) ≤ lim inf
n→∞

I(u(tn)) ≤ 0, E(t0) ≤ lim inf
n→∞

E(u(tn)) ≤ d.

By the assumption of (u, ut) /∈W− on t = t0, then I(u(t0)) ≥ 0 or E(u(t0)) > d.

Case 1. I(u(t0)) > 0 is impossible, because of the weak lower semicontinuity of

I(u(tn)). If I(u(t0)) = 0, by the definition of d, E(t) and J(u), we can obtain

d = inf
u∈N

J(u) ≤ J(u(t0)) < E(u(t0)) ≤ d.

Obviously, the above formula is contradictory.

Case 2. E(u(t0)) > d is obviously impossible. This contradicts the weak lower semi-

continuity of E(u(tn)) in W 1,p
0 (Ω).

Thus, (u, ut) ∈W− for any t > 0.

Lemma 4.2. [8] Let M(t) be a positive C2 function, which satisfies, for t > 0, inequality

M(t)M ′′(t)− (1 + α)[M ′(t)]2 ≥ 0

for some α > 0. If M(0) > 0 and M ′(0) > 0, then there exists a time T ∗ ≤M(0)/(αM ′(0))

such that limt→T ∗−M(t) =∞.

Proof of Theorem 2.5. We define

M(t) = ‖u‖22 +

∫ t

0
‖∇u‖22 dτ + (T − t)‖∇u0‖22 + b(t+ T0)2,

where b and T0 are positive constants, which will be described later.
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By calculating the first-order differential and second-order differential of M(t), we

obtain that

M ′(t) = 2

∫
Ω
uut dx+ 2

∫ t

0

∫
Ω
∇u∇ut dxdτ + 2b(t+ T0),(4.2)

M ′′(t) = 2

∫
Ω
|ut|2 dx+ 2

∫
Ω
uttu dx− 2

∫
Ω
u∆ut dx+ 2b

= 2

∫
Ω
|ut|2 dx+ 2

∫
Ω
u[∆pu+ |u|q−2u log |u|] dx+ 2b

= 2

∫
Ω
|ut|2 dx− 2

∫
Ω
|∇u|p dx+ 2

∫
Ω
|u|q log |u| dx+ 2b

= 2

∫
Ω
|ut|2 dx− 2I(u) + 2b.

(4.3)

Combining (4.2) with (4.3), we get

M(t)M ′′(t)− q + 2

4
[M ′(t)]2

= 2M(t)

(∫
Ω
|ut|2 dx−

∫
Ω
|∇u|p dx+

∫
Ω
|u|q log |u| dx+ b

)
− (q + 2)

(∫
Ω
uut dx+

∫ t

0

∫
Ω
∇u∇ut dxdτ + b(t+ T0)

)2

= 2M(t)

(∫
Ω
|ut|2 dx−

∫
Ω
|∇u|p dx+

∫
Ω
|u|q log |u| dx+ b

)
+ (q + 2)

[
G(t)−

(
M(t)− (T − t)‖∇u0‖22

)(
‖ut‖22 +

∫ t

0
‖∇ut‖22 dτ + b

)]
,

(4.4)

where

G(t) =

(
‖u‖22 +

∫ t

0
‖∇u‖22 dτ + b(t+ T0)2

)(
‖ut‖22 +

∫ t

0
‖∇ut‖22 dτ + b

)
−
(∫

Ω
uut dx+

∫ t

0

∫
Ω
∇u∇ut dxdτ + b(t+ T0)

)2

.

Using Hölder inequality and Young’s inequality, it is easy to testify that G(t) ≥ 0. There-

fore, by (4.4) and G(t) ≥ 0, we can get the following inequality

M(t)M ′′(t)− q + 2

4
[M ′(t)]2 ≥M(t)ξ(t),

where

ξ(t) = −q‖ut‖22 − 2‖∇u‖pp + 2

∫
Ω
|u|q log |u| dx− (q + 2)

∫ t

0
‖∇ut‖22 dτ − qb.

By the definition of E(t) and (4.1), we have

ξ(t) = −2qE(t) +

(
2q

p
− 2

)
‖∇u‖pp +

2

q
‖u‖qq − (q + 2)

∫ t

0
‖∇ut‖22 dτ − qb

≥ −2qd+

(
2q

p
− 2

)
‖∇u‖pp +

2

q
‖u‖qq + (q − 2)

∫ t

0
‖∇ut‖22 dτ − qb.
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Since (u0, u1) ∈W− and Lemma 4.1, we have (u, ut) ∈W− for any t > 0, i.e., I(u) < 0.

Using Lemma 2.2, then there exists a λ∗ ∈ (0, 1) such that I(λ∗u) = 0. Hence, by the

definition of d and (2.2), the following formula holds(
1

p
− 1

q

)
‖∇u‖pp +

1

q2
‖u‖qq ≥

(
1

p
− 1

q

)
λp∗‖∇u‖pp +

1

q2
λq∗‖u‖qq = J(λ∗u) ≥ d,

taking b small enough, which satisfies

(4.5) 0 < b ≤
−2qd+

(2q
p − 2

)
‖∇u‖pp + 2

q‖u‖
q
q + (q − 2)

∫ t
0 ‖∇ut‖

2
2 dτ

q
,

thus, we can see that ξ(t) ≥ 0.

Through the above discussion, we get that

M(t)M ′′(t)− q + 2

4
[M ′(t)]2 ≥ 0.

By the definition of M(t), M(0) = ‖u0‖22 +T‖∇u0‖22 +bT 2
0 > 0, we choose T0 large enough,

which satisfies

(4.6) T0 >
(q − 2)

(
‖u0‖22 + ‖u1‖22

)
+ 4‖∇u0‖22

2(q − 2)b
,

thus, M ′(0) = 2bT0 + 2
∫

Ω u0u1 dx ≥ 2bT0 − ‖u0‖22 − ‖u1‖22 > 0.

According to Lemma 4.2, M(t)→∞ (t→ T ∗), T ∗ satisfying

T ∗ ≤ 4M(0)

(q − 2)M ′(0)
=

2bT 2
0 + 2‖u0‖22 + 2T‖∇u0‖22

(q − 2)
(
bT0 +

∫
Ω u0u1 dx

) ,
that is,

T ∗ ≤ 4M(0)

(q − 2)M ′(0)
=

2bT 2
0 + 2‖u0‖22

(q − 2)
(
bT0 +

∫
Ω u0u1 dx

)
− 2‖∇u0‖22

,

limt→T ∗−M(t) =∞. This completes the proof of Theorem 2.5.

Proof of Theorem 2.6. We define the function

F (t) =
1

2
‖ut‖22 +

1

p
‖∇u‖pp,

by calculating the first-order differential of F (t), we get

F ′(t) =

∫
Ω
ututt dx+

∫
Ω
|∇u|p−2∇u∇ut dx

=

∫
Ω
ut
(
∆ut + |u|q−2u log |u|

)
dx

= −‖∇ut‖22 +

∫
Ω
ut|u|q−2u log |u| dx.

(4.7)
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Due to 2 < q < 1 + n/(n − p), we choose µ > 0 small enough such that q − 1 + µ <

n/(n− p). By the Young inequality and Sobolev inequality, we have∫
Ω
ut|u|q−2u log |u| dx

≤ 1

2

∫
Ω
|ut|2 dx+

1

2

∫
Ω

∣∣|u|q−2u log |u|
∣∣2 dx

=
1

2
‖ut‖22 +

1

2

∫
{x∈Ω:|u|<1}

∣∣|u|q−2u log |u|
∣∣2 dx+

1

2

∫
{x∈Ω:|u|≥1}

∣∣|u|q−2u log |u|
∣∣2 dx

≤ 1

2
‖ut‖22 +

1

2
(e(q − 1))−2|Ω|+ 1

2
(eµ)−2

∫
{x∈Ω:|u|≥1}

|u|2(q−1+µ) dx

≤ 1

2
‖ut‖22 +

1

2
(e(q − 1))−2|Ω|+ 1

2
(eµ)−2|Ω|+ 1

2
(eµ)−2

∫
Ω
|u|p(q−1+µ) dx

≤ 1

2
‖ut‖22 +

1

2
(e(q − 1))−2|Ω|+ 1

2
(eµ)−2|Ω|+ 1

2
(eµ)−2Cp(q−1+µ)‖∇u‖p(q−1+µ)

p

≤ F (t) +
1

2
(e(q − 1))−2|Ω|+ 1

2
(eµ)−2|Ω|+ 1

2
(eµ)−2Cp(q−1+µ)pq−1+µF (t)q−1+µ,

(4.8)

where we used
∣∣xq−1 log x

∣∣ ≤ (e(q − 1))−1 for 0 < x < 1 while x−µ log x ≤ (eµ)−1 for

x ≥ 1, µ > 0, and C is the Sobolev constant satisfying ‖u‖p(q−1+µ) ≤ C‖∇u‖p. By (4.7)

and (4.8), we obtain

F ′(t) ≤ F (t) +
1

2
(e(q − 1))−2|Ω|+ 1

2
(eµ)−2|Ω|+ 1

2
(eµ)−2Cp(q−1+µ)pq−1+µF (t)q−1+µ.

Integrating the above inequality over (0, t), we see that∫ F (t)

F (0)

dy

y + 1
2(e(q − 1))−2|Ω|+ 1

2(eµ)−2|Ω|+ 1
2(eµ)−2Cp(q−1+µ)pq−1+µyq−1+µ

≤ t.

Applying Theorem 2.5, we get limt→T ∗− F (t) = +∞. Hence, we obtain a lower bound for

T ∗ estimated by

T ∗ ≥
∫ ∞
F (0)

dy

y + 1
2(e(q − 1))−2|Ω|+ 1

2(eµ)−2|Ω|+ 1
2(eµ)−2Cp(q−1+µ)pq−1+µyq−1+µ

.

The proof is complete. Here, it needs to noted that C in the text is constant, and the C

in each row and even in the same row is different.
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no. 2, 185–207.

[5] B. Guo and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic

equation with nonlinear sources, Appl. Math. Lett. 60 (2016), 115–119.

[6] Y. He, H. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic p-

Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl. 75 (2018),

no. 2, 459–469.

[7] C. N. Le and X. T. Le, Global solution and blow-up for a class of p-Laplacian evolution

equations with logarithmic nonlinearity, Acta Appl. Math. 151 (2017), 149–169.

[8] H. A. Levine, Some nonexistence and instability theorems for solutions of formally

parabolic equations of the form Put = −Au+ F (u), Arch. Rational Mech. Anal. 51

(1973), 371–386.

[9] W. Lian, M. S. Ahmed and R. Xu, Global existence and blow up of solution for

semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal. 184

(2019), 239–257.

[10] , Global existence and blow up of solution for semi-linear hyperbolic equa-

tion with the product of logarithmic and power-type nonlinearity, Opuscula Math. 40

(2020), no. 1, 111–130.

[11] W. Lian, J. Wang and R. Xu, Global existence and blow up of solutions for pseudo-

parabolic equation with singular potential, J. Differential Equations 269 (2020), no. 6,

4914–4959.



762 Ying Chu, Yuqi Wu and Libo Cheng

[12] W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and

strong damping terms and logarithmic source term, Adv. Nonlinear Anal. 9 (2020),

no. 1, 613–632.
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