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Abstract. In this paper, we have obtained upper bounds for the total chromatic

number of some classes of Cayley graphs, odd graphs and mock threshold graphs.

1. Introduction

All the graphs considered here are finite, simple and undirected. Let G = (V (G), E(G))

be a graph with the set of vertices V (G) and the set of edges E(G), respectively. A total

coloring of G is a mapping f : V (G) ∪ E(G) → C, where C is the set of colors and f

satisfies

(a) f(u) 6= f(v) for any two adjacent vertices u, v ∈ V (G),

(b) f(e) 6= f(e′) for any two incident edges e, e′ ∈ E(G) and

(c) f(v) 6= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident to v.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number

of colors that are used in a total coloring. It is clear that χ′′(G) ≥ ∆(G) + 1, where ∆(G)

is the maximum degree of G. Behzad [2] and Vizing [16] independently conjectured (Total

Coloring Conjecture (TCC)) that for every graph G, χ′′(G) ≤ ∆(G) + 2. The graphs that

can be totally colored with ∆(G) + 1 colors are said to be type-I graphs, and those with

total chromatic number ∆(G) + 2 are said to be type-II. The total coloring conjecture is

a long-standing conjecture and has defied several attempts for a proof. It has been shown

that the decision algorithm for total coloring is NP-complete even for cubic bipartite

graphs [14]. Still, a lot of progress has been made towards proving the TCC. It is easily

seen that TCC is true for complete graphs, bipartite, and complete multipartite graphs. It

was shown to be true for all graphs having maximum degree ∆(G) ≤ 5, ∆(G) ≥ 3n/4 and

∆(G) ≥ n− 5, where n is the number of vertices; using techniques like enlarge-matching
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argument and fan recoloring process [17]. For planar graphs, TCC is confirmed for all

∆(G) 6= 6 using the method of discharging. The total coloring conjecture has also been

confirmed for several other classes of graphs. Some of the surveys of techniques and other

results on total coloring include Yap [17], Borodin [4] and Geetha et al. [11].

2. Total coloring of Cayley graphs

Let Γ be a group with identity 1. For S ⊆ Γ, 1 /∈ S and S−1 = {s−1 : s ∈ S} = S the

Cayley graph X = Cay(Γ, S) is the undirected graph with vertex set V (X) = Γ and edge

set E(X) = {(a, b) : ab−1 ∈ S}. Cayley graphs are vertex transitive; that is, there exists

an automorphism that maps any vertex of the graph to any other vertex.

Cayley graphs associated with Γ = Zn, the group of integers modulo n under addition,

are called circulant graphs. In other words, given a sequence of positive integers 1 ≤
d1 < d2 < · · · < dl ≤ bn/2c, the circulant graph G = Cn(d1, d2, . . . , dl) has the vertex

set V = Zn = {0, 1, 2, . . . , n − 1}, and two vertices x and y are adjacent if and only if

x = (y ± di) (mod n) for some i, 1 ≤ i ≤ l. For positive integers n and k, 1 ≤ k <

bn/2c, the kth power of the cycle Cn, denoted by Ckn, has V (Ckn) = {v0, v1, . . . , vn−1} and

E(Ckn) = E1 ∪ E2 ∪ · · · ∪ Ek, where Ei = {ei0, ei1, . . . , ein−1} and eij = (vj , v(j+i) (mod n)),

0 ≤ j ≤ n − 1 and 1 ≤ i ≤ k. Note that the kth power of the cycle graph Cn is the

circulant graph over Zn with the generating set S = {1, 2, . . . , k, n− k, . . . , n− 2, n− 1}.
Campos and de Mello [6] proved that C2

n, n 6= 7, is type-I and C2
7 is type-II. They [5]

verified the TCC for Ckn when 2 < k < n/2 and n is even. They also showed that one

can obtain a (∆(Ckn) + 2)-total coloring for these graphs in polynomial time. Further,

they proved that Ckn with n ≡ 0 (mod ∆(Ckn) + 1) is type-I, and proposed the following

conjecture.

Conjecture 2.1. Let G = Ckn with 2 ≤ k < bn/2c. Then

χ′′(G) =

∆(G) + 2 if k > n/3− 1 and n is odd,

∆(G) + 1 otherwise.

A Latin square is an n× n array consisting of n entries of numbers (or symbols) with

each row and column consisting of only one instance of each element. This means that the

rows and columns are permutations of one single n-vector with distinct entries. A Latin

square is said to be commutative if it is symmetric. A Latin square of numbers is said

to be idempotent if each diagonal element consists of the number equal to its row index.

In addition, if the rows of the Latin square are just cyclic permutations (one-shift of the

elements to the right) of the previous row, then the Latin square is said to be dfcirculant

(if the cyclic permutations are actually left shifts, it is called anti-circulant). The circulant
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(anti-circulant) Latin square can be generated from a single row vector. The Latin square

of order (2k + 1) shown in Table 2.1 is anti-circulant, commutative and idempotent.

1 k + 2 2 k + 3 · · · 2k + 1 k + 1

k + 2 2 k + 3 3 · · · k + 1 1

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

k + 1 1 k + 2 2 · · · k 2k + 1

Table 2.1

The entries of the Latin square above are as follows:

L = (lij) =

m if i+ j = 2m,

(k +m) (mod 2k + 1) + 1 if i+ j = 2m+ 1.

From the above description, it can be easily verified that the Latin square correspond-

ing to the matrix L is commutative, idempotent and anti-circulant.

The following lemma is due to Stong [15, Corollary 2.3.1].

Lemma 2.2. If Γ is an even order abelian group having generating set S, then Cay(Γ, S)

is 1-factorizable.

Lemma 2.3. The graph C
(n−2)/4
n , where (n− 2)/4 is an integer, is type-I.

Proof. We know that ∆(C
(n−2)/4
n ) = (n − 2)/2. To obtain a ((n − 2)/2 + 1) = n/2-total

coloring of C
(n−2)/4
n , we form the color matrix (a matrix whose diagonal entries represent

the color of the vertices and the other non-zero entries represent edge colors). We first

fill the non-zero entries and diagonal entries in the first n/2 × n sub-matrix of the color

matrix with the corresponding entries of the first n/2 rows of the Latin square which is

constructed as commutative, idempotent and anti-circulant. The first non-zero entry of

the (n/2 + 1)-th row of the color matrix is determined by the (n/2 + 1)-th entry of the

((n − 2)/4 + 2)-th row of the color matrix (as the color matrix is symmetric). The next

non-zero entries of the (n/2 + 1)-th row are determined by the cyclic order of the previous

row. Similarly, we determine the non-zero entries of the remaining rows (the first entry is

determined by the symmetry of the color matrix and the next entries are determined by

the cyclic order of the previous rows). Thus continuing, we can fill all the entries of the

color matrix. It is easily verified that it satisfies the total coloring conditions, giving us a

(n/2)-total coloring. In other words, C
(n−2)/4
n is type-I.



670 S. Prajnanaswaroopa, J. Geetha, K. Somasundaram, H.-L. Fu and N. Narayanan

Example 2.4. Let us consider the graph C2
10, whose adjacency matrix is given in Table 2.2.

0 1 1 0 0 0 0 0 1 1

1 0 1 1 0 0 0 0 0 1

1 1 0 1 1 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0

0 0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0 0

0 0 0 0 1 1 0 1 1 0

0 0 0 0 0 1 1 0 1 1

1 0 0 0 0 0 1 1 0 1

1 1 0 0 0 0 0 1 1 0

Table 2.2: Adjacency matrix of C2
10.

We use the (5×5)-anti-circulant, commutative and idempotent Latin square presented

in Table 2.3. The filled up color matrix for C2
10 (where n = 10 = 2(2(2) + 1) = 2(2(n −

2)/4 + 1)) is given in Table 2.4, which is a 5-total coloring of C2
10. Note that the entries

filled with 0’s in the color matrix do not represent colors.

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5

Table 2.3: Anti-circulant, idempotent

Latin square.

1 4 2 0 0 0 0 0 5 3

4 2 5 3 0 0 0 0 0 1

2 5 3 1 4 0 0 0 0 0

0 3 1 4 2 5 0 0 0 0

0 0 4 2 5 3 1 0 0 0

0 0 0 5 3 1 4 2 0 0

0 0 0 0 1 4 2 5 3 0

0 0 0 0 0 2 5 3 1 4

5 0 0 0 0 0 3 1 4 2

3 1 0 0 0 0 0 4 2 5

Table 2.4: Color matrix of C2
10.
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Theorem 2.5. Let n ≡ 2 (mod 4) and (n−2)/4 < k < n/2. If S =
{
x ∈ Zn | (n−2)/4 <

x ≤ k
}

generates Zn, then Ckn is type-I.

Proof. Consider a circulant graph, sayH, on Zn with the generating set S =
{
x ∈ Zn | (n−

2)/4 < x ≤ k
}

=
{

(n−2)/4+1, (n−2)/4+2, . . . , k−1, k, n−k, n−k+1, . . . , n−(n−2)/4−
2, n−(n−2)/4−1

}
. Since the generating set of Ckn is {1, 2, . . . , k, n−k, n−k+1, . . . , n−1}

and since k > (n − 2)/4, we see that the edges of Ckn are a disjoint union of the edges of

C
(n−2)/4
n and the edges of H. Because S generates Zn, it follows from Lemma 2.2 that H

is 1-factorizable. Thus, H requires only ∆(H) colors for its edge coloring.

For constructing the color matrix of Ckn, we start with the type-I total coloring of

C
(n−2)/4
n given in Lemma 2.3, which colors all the vertices and some edges of Ckn. It remains

to give a coloring to the edges of the (added) circulant graph H, which require ∆(H) extra

colors. Thus, the total coloring of the graph Ckn requires at most 2((n−2)/4)+1+∆(H) =

2((n− 2)/4) +
(
2k − 2((n− 2)/4)

)
+ 1 = 2k + 1 colors, as required.

Theorem 2.6. Assume that n = s(2m+ 1), s is even, k/2 ≤ m ≤ k. Then, Ckn is type-I.

Proof. From the assumptions, n ≡ 0 (mod 2m+ 1). We know that there exists a commu-

tative idempotent Latin square of order 2m+ 1, that we denote by C ′. Let eij denote the

(ij)th entry in C ′. For m > k/2, we define an upper triangular Tableau D of order 2m−k
as follows:

D = (dij) =

eij if i = 1, 2, . . . , 2m− k and j = k + i+ 1, k + i+ 2, . . . , 2m+ 1,

empty otherwise.

The structure of Tableau D is presented in Table 2.5.

e1,k+2 e1,k+3 · · · · · · e1,2m+1

e2,k+3 e2,k+4 · · · e2,2m+1

· · · · · · e3,2m+1

· · ·
...

e2m−k,2m+1

Table 2.5: Tableau D.

We first define three Tableaux A, B and C of respective order k, k and 2m+ 1 using

portions of C ′, D and additional colors. The Tableau A is upper triangular whose entries

in the main diagonal are 2k + 1 and the subsequent sub-diagonals are filled respectively

with 2k, 2k − 1 down to 2m + 2. Similarly, Tableau B is lower triangular with main
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diagonal entries being 2m+ 2 and subsequent sub-diagonals increase values up to 2k + 1.

We consider the following cases:

(i) If m = k/2, the Tableaux A and B are presented in Table 2.6. We let Tableau

C = C ′. In this case, D is undefined.

2k + 1 2k 2k − 1 · · · 2m+ 2

2k + 1 2k · · · 2m+ 3

2k + 1 2k · · ·

2k + 1 2k

2k + 1

2m+ 2

2m+ 3 2m+ 2

2m+ 4 2m+ 3 2m+ 2

· · · · · · · · · 2m+ 2

2k + 1 · · · · · · · · · 2m+ 2

Table 2.6: Left-Tableau A and Right-Tableau B when m = k/2.

(ii) If k/2 < m < k, there will be 2m − k unfilled upper sub-diagonals in Tableau

A. We fill these unfilled upper sub-diagonals of A using the entries from D as shown in

Table 2.7. Similarly, there will be 2m − k unfilled lower sub-diagonals in Tableau B and

these sub-diagonals are filled using DT . The Tableau C is obtained by deleting D and DT

from C ′.

2k + 1 2k · · · 2m+ 2 e1,k+2 · · · e1,2m e1,2m+1

2k + 1 2k · · · 2m+ 2 · · · e2,2m+1

2k + 1 2k · · · 2m+ 2
...

2k + 1 2k · · · 2m+ 2 ek+2,2m+1

2k + 1 2k 2m+ 2

2k + 1 2k
...

2k + 1 2k

2k + 1

Table 2.7: Tableaux A for k/2 < m < k.

(iii) If m = k, then A = D and B = DT . Again the Tableau C is obtained by deleting

D and DT from C ′.

We now arrange the three Tableaux as given below to form the n × n color matrix.

We place s copies of Tableau C (of order 2m + 1) along the main diagonal as depicted

in Table 2.8. Each cell represents a sub-matrix of order 2m + 1. In the cell (i, i + 1),

0 < i < s, a copy of B (i odd) or AT (i even) is placed bottom-left justified. Similarly, in

the cell (i + 1, i) a copy of BT (i odd) or A (i even) is placed top-right justified. A copy
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of A and AT are respectively placed at cells (1, s) and (s, 1).

C B A

BT C AT

A C B

BT C AT

A C B

AT BT C

Table 2.8: Color matrix structure.

Observe that if we place Tableau B (justified bottom-left) and A (top-right) in a color

matrix of order n, the first entry of B starts at row 2m − k + 2 of the coloring matrix.

Thus, the rows of A and B are placed with a shift of 2m − k + 1, strictly more than the

order of Tableau D. This ensures that entries in the rows (columns) of A and B do not

clash.

From the above observation, the entries in rows (columns) of Tableau A placed at cell

(1, s) and Tableau B at (1, 2) (at (s− 1, s)), respectively do not clash. By symmetry, the

colors in BT at (2, 1) (at (s, s− 1)) and AT at (s, 1) won’t clash either.

Hence, we obtain a proper total coloring of Ckn, which is a type-I total coloring.

Example 2.7. For the color matrix of the graph C4
20, since 20 = 4(4 + 1) = 4(2m+ 1) for

m = 2, we take Tableaux C ′, A, B to be as shown in Table 2.9. The color matrix is given

in Table 2.10.

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5

9 8 7 6

9 8 7

9 8

9

6

7 6

8 7 6

9 8 7 6

Table 2.9: Tableau C ′ (left), Tableau A and Tableau B (right) for C4
20.
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1 4 2 5 3 9 8 7 6

4 2 5 3 1 6 9 8 7

2 5 3 1 4 7 6 9 8

5 3 1 4 2 8 7 6 9

3 1 4 2 5 9 8 7 6

6 7 8 9 1 4 2 5 3

6 7 8 4 2 5 3 1 9

6 7 2 5 3 1 4 8 9

6 5 3 1 4 2 7 8 9

3 1 4 2 5 6 7 8 9

9 8 7 6 1 4 2 5 3

9 8 7 4 2 5 3 1 6

9 8 2 5 3 1 4 7 6

9 5 3 1 4 2 8 7 6

3 1 4 2 5 9 8 7 6

6 7 8 9 1 4 2 5 3

9 6 7 8 4 2 5 3 1

8 9 6 7 2 5 3 1 4

7 8 9 6 5 3 1 4 2

6 7 8 9 3 1 4 2 5

Table 2.10: Color matrix of C4
20.

1 6 2 7 3 8 4 9 5

6 2 7 3 8 4 9 5 1

2 7 3 8 4 9 5 1 6

7 3 8 4 9 5 1 6 2

3 8 4 9 5 1 6 2 7

8 4 9 5 1 6 2 7 3

4 9 5 1 6 2 7 3 8

9 5 1 6 2 7 3 8 4

5 1 6 2 7 3 8 4 9

11 10 4 9 5

11 10 5 1

11 10 6

11 10

11

10

11 10

4 11 10

9 5 11 10

5 1 6 11 10

Table 2.11: Tableau C ′ (left), A, B (right) for C5
18.
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Example 2.8. For the case of the color matrix of the graph C5
18, since 18 = 2(8 + 1) =

2(2m+ 1) for m = 4, we have Tableaux C ′, A, B to be as shown in Table 2.11. The color

matrix is shown in Table 2.12.

1 6 2 7 3 8 11 10 4 9 5

6 2 7 3 8 4 9 11 10 5 1

2 7 3 8 4 9 5 1 11 10 6

7 3 8 4 9 5 1 6 2 11 10

3 8 4 9 5 1 6 2 7 10 11

8 4 9 5 1 6 2 7 3 11 10

9 5 1 6 2 7 3 8 4 11 10

1 6 2 7 3 8 4 9 5 11 10

2 7 3 8 4 9 5 1 6 11 10

10 11 4 9 5 1 6 2 7 3 8

10 11 5 1 6 2 7 3 8 4 9

10 11 6 2 7 3 8 4 9 5 1

10 11 7 3 8 4 9 5 1 6 2

11 10 3 8 4 9 5 1 6 2 7

10 11 8 4 9 5 1 6 2 7 3

4 10 11 9 5 1 6 2 7 3 8

9 5 10 11 1 6 2 7 3 8 4

5 1 6 10 11 2 7 3 8 4 9

Table 2.12: Color matrix for C5
18.

Theorem 2.9. Let n, s, m and k be positive integers with n = s(2m + 1) − 1, s is even

and k/2 ≤ m ≤ k. Then Ckn satisfies TCC.

Proof. From the previous theorem, it follows that Ckn+1 is (2k + 1)-total colorable. It

remains to show that this coloring could be modified to a (2k + 2)-total coloring for Ckn.

To this end, we first delete the (n + 1)st row and (n + 1)st column of the color matrix of

Ckn+1. Then, we fill the entries of the lower and upper (n − k + 1)st sub-diagonal of the

color matrix with the new color 2k + 2. It is easy to verify that this is the required total

coloring. Note that, here we are adding a new color in the color matrix. So there is no

clash of colors in the rows and columns. As an example, see the color matrix for C3
14 in

Table 2.13 and that of C3
13, obtained from it by deleting the last row and last column and

then using color 2k + 2 = 8 in the n− k + 1 = 11th sub-diagonal (3-rd from the right) as

shown in Table 2.14.
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1 5 2 6 3 7 4

5 2 6 3 7 4 1

2 6 3 7 4 1 5

6 3 7 4 1 5 2

7 4 1 5 2 6 3

1 5 2 6 3 7 4

2 6 3 7 4 1 5

3 7 4 1 5 2 6

4 1 5 2 6 3 7

5 2 6 3 7 4 1

6 3 7 4 1 5 2

3 7 4 1 5 2 6

7 4 1 5 2 6 3

4 1 5 2 6 3 7

Table 2.13: Color matrix for C3
14.

1 5 2 6 8© 3 7

5 2 6 3 7 8© 4

2 6 3 7 4 1 8©

6 3 7 4 1 5 2

7 4 1 5 2 6 3

1 5 2 6 3 7 4

2 6 3 7 4 1 5

3 7 4 1 5 2 6

4 1 5 2 6 3 7

5 2 6 3 7 4 1

8© 6 3 7 4 1 5

3 8© 7 4 1 5 2

7 4 8© 1 5 2 6

Table 2.14: Color matrix of C3
13, with new color 8 circled.

We observe the following:
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The graph Ckn satisfies TCC if n = t(2k + 1) + 1, where n, t, k are positive integers.

The proof is as follows:

If t is odd then n = t(2k + 1) + 1 is even and we know that Ckn satisfy TCC [5].

Suppose that t is even. As before, by using Theorem 2.6, Ckn−1 is (2k + 1)-total

colorable. We show that this coloring could be modified to a (2k + 2)-total coloring for

Ckn. Here, we add a row and a column at the end of the color matrix of Ckn−1. Further,

delete the first k colors (from top) of the lower and upper (k + 1)st and (n − k)th sub-

diagonals of the original color matrix of Ckn−1. Assign these colors to the nth-row and

nth-column of the color matrix of Ckn. Assign the new color 2k + 2 to the new vertex and

also to the lower and upper (k + 1)st sub-diagonals of the color matrix of Ckn.

The entries of the lower (k+1)st and upper (n−k)th sub-diagonals of the color matrix

are projected vertically in the corresponding cells of the last row. Similarly, the entries

of the upper (k + 1)st and lower (n− k)th sub-diagonals of the color matrix are projected

horizontally in the corresponding cells of the last column.

1 5 2 8© © 7 4 6©

5 2 6 3 8© © 1 7©

2 6 3 7 4 8© © 1©

8© 3 7 4 1 5 2

8© 4 1 5 2 6 3

8© 5 2 6 3 7 4

2 6 3 7 4 1 5

3 7 4 1 5 2 6

4 1 5 2 6 3 7

5 2 6 3 7 4 1

6 3 7 4 1 5 2

© 7 4 1 5 2 6 3©

7 © 1 5 2 6 3 4©

4 1 © 2 6 3 7 5©

6© 7© 1© 3© 4© 5© 8©

Table 2.15: Color matrix for C3
15.

The idempotent, anti-circulant, commutative Latin square that we have chosen has

a special property. Diagonal of the matrix obtained by cyclic left shifts of the columns

of this Latin square has distinct colors (all 2k + 1) appearing on its main diagonal. We

observe that by our construction, the k colors deleted in the lower and upper (k+1)st and
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(n − k)th sub-diagonals are actually entries of the diagonal of a matrix after k left shifts

of the columns. Hence there is no clash in the colors in the last row and last column of

the color matrix Ckn. The color matrix of C3
14 in Table 2.13 can be modified by adding

one row and column to give the color matrix of C3
15 as shown in Table 2.15.

In Table 2.15, the circled numbers show the changes from the color matrix of C3
14.

Theorem 2.10. Let G be a Cayley graph on a nilpotent group Γ of even order n with

maximum degree ∆(G) ≥ n/2 and the generating set S not containing any element of

order two. If G is total colorable with x colors and if G′ is also a Cayley graph on the

same group with maximum degree ∆(G′), ∆(G) ≤ ∆(G′) ≤ n− 2 formed with generating

set S′ = S∪S′′ such that S′′ generates the whole group, then the graph G′ is total colorable

with x + (∆(G′) −∆(G)) colors. In particular, if G is type-I (type-II, respectively), then

G′ is also type-I (satisfies TCC, respectively).

Proof. Let s be an element of order two in Γ (which is guaranteed by Cauchy’s theorem).

Since the vertices of the graph G, say gi, i ∈ {1, 2, . . . , n}, can be arranged in n/2 in-

dependent color classes as {g1, g1s}, {g2, g2s}, . . . , {gn/2, gn/2s}, we get an n/2 coloring of

the vertices. Since G′ − E(G) is the Cayley graph of a nilpotent group, it is 1-factorable

(see [15, Corollary 2.4.1]). Therefore, we only need ∆(G′)−∆(G) extra colors to color the

edges of G′−E(G), thereby giving a total coloring of G′ with x+ (∆(G′)−∆(G)) colors.

Thus, if G is a type-I graph, then G′ also would be type-I. When G is type-II, it may so

happen that G′ be type-I or type-II, nevertheless TCC holds for G′.

For a positive integer n > 1, the unitary Cayley graph Xn = Cay(Zn, Un) is defined by

the additive group of the ring Zn of integer modulo n and the multiplicative group Un of

its units. If we represent the elements of Zn by the integers 0, 1, . . . , n− 1, then it is well

known that

Un = {a ∈ Zn : gcd(a, n) = 1}.

So Xn has the vertex set V (Xn) = Zn = {0, 1, 2, . . . , n− 1} and edge set

E(Xn) = {(a, b) : a, b ∈ Zn, gcd(a− b, n) = 1}.

Boggess et al. [3] studied the structure of unitary Cayley graphs where they have discussed

the chromatic number, vertex and edge connectivities, planarity and crossing number.

Klotz and Sander [12] have determined the clique number, the independence number

and the diameters of unitary Cayley graphs. They have given a necessary and sufficient

condition for the perfectness of Xn.

The graph Xn is regular of degree |Un| = ϕ(n), where ϕ(n) denotes the Euler function.

Let the prime factorization of n be pα1
1 pα2

2 · · · p
αt
t where p1 < p2 < · · · < pt. If n = p is a

prime number, then Xn = Kp is the complete graph on p vertices. If n = pα is a prime
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power then Xn is a complete p-partite graph. In the following theorem, we prove that

TCC holds for unitary Cayley graphs.

Theorem 2.11. A unitary Cayley graph Xn is (∆(Xn) + 2)-total colorable.

Proof. We know that a unitary Cayley graph can be obtained from a balanced r-partite

graph (A complete multipartite graph is balanced if the partite sets all have the same

cardinality) by deleting some edges. Suppose n = p is a prime number, then Xn is the

complete graph on p vertices. Also, if n = pα, a prime power, then Xn is a complete

p-partite graph and TCC holds for these two graphs [17].

On the other hand, if n = 2k, k ∈ N , then the unitary Cayley graph Xn is a bipartite

graph which is (∆(Xn) + 2)-total colorable.

Suppose n 6≡ 0 (mod 2). Let p1 | n be the smallest odd prime. Since p1 is the smallest

prime, kp1, kp1 + 1, . . . , (k + 1)p1 − 1, where k = 0, 1, 2, . . . , n/p1 − 1 induces n/p1 vertex

disjoint cliques each of order p1. Since p1 is odd, we can color all the vertices and edges

of these n/p1 cliques using p1 colors [17]. Now remove the edges of these cliques. The

remaining graph is a (ϕ(n)− p1 + 1)-regular graph where the vertices are already colored.

We color the edges of this resultant graph with ϕ(n) − p1 + 2 colors. Thus, we only use

ϕ(n) + 2 = ∆(Xn) + 2 colors for the total coloring of Xn. This concludes the proof.

3. Mock threshold graphs and odd graphs

A graph is weakly chordal if neither the graph nor the complement of the graph has

an induced cycle on five or more vertices. A simple graph G on [n] = {1, 2, . . . , n} is

threshold, if G can be built sequentially from the empty graph by adding vertices one at a

time, where each new vertex is either isolated (nonadjacent to all the previous vertices) or

dominant (connected to all the previous vertices). A graph G is said to be mock threshold

if there is a vertex ordering v1, . . . , vn such that for every i (1 ≤ i ≤ n) the degree of vi

d(vi) in the subgraph of G induced by the vertices {v1, . . . , vi}, denoted by G[v1, . . . , vi], is

0, 1, i− 2, or i− 1. Mock threshold graphs are a simple generalization of threshold graphs

that, are perfect graphs. Mock threshold graphs are perfect and indeed weakly chordal

but not necessarily chordal [1]. Similarly, the complement of a mock threshold graph is

also mock threshold.

In the following, we prove that the TCC holds for mock threshold graphs.

Note. A total coloring of Kn can be constructed as follows: (This total coloring is due

to Hinz and Parisse [10].)

When n is even, we first construct an edge coloring of Kn and extend it. We denote

[n]0 = {0, 1, 2, . . . , n − 1}. For k ∈ [n]0, let τk be the transposition of k and n − 1 on
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[n]0. For even n, cn(i, j) = (τi(j) + τj(i) + 2) (mod n + 1), for i, j ∈ [n]0, i 6= j, defines

an (n + 1)-edge coloring of Kn. In this coloring assignment, line k ∈ [n]0 will have the

missing colors k and (k + 1) (mod n). We color cn(i) = i for all i ∈ [n]0.

When n is odd, we use the same coloring of Kn−1. In the coloring assignment of Kn−1,

still the color (k+ 1) (mod n) is missing in line k ∈ [n]0. We use these colors to color the

edges incident with the nth vertex and color n to the nth vertex.

Theorem 3.1. Total coloring conjecture holds for mock threshold graphs.

Proof. Consider the mock threshold graphG with vertex ordering v1, v2, . . . , vi, . . . , vn. We

prove this theorem using induction on the order of the induced subgraph G[v1, v2, . . . , vk].

For k ≤ 4, the maximum degree of all induced subgraphs are less than or equal to 3. We

know that a graph with maximum degree less than or equal to 3 satisfies TCC [13].

Let us assume that G[v1, v2, . . . , vk], k ≥ 4 satisfies TCC.

Claim. The graph G[v1, v2, . . . , vk, vk+1] satisfies TCC.

The degree of the vertex vk+1 in G[v1, v2, . . . , vk+1] can be 0, 1, k − 1 or k. We have

the following cases.

Case 1: d(vk+1) = 0. In this case the vertex vk+1 is an isolated vertex. From the

induction assumption, it follows that G[v1, v2, . . . , vk, vk+1] satisfies TCC.

Case 2: d(vk+1) = 1. In this case, the vertex vk+1 is adjacent to a vertex, say vi, in

G[v1, v2, . . . , vk]. Since G[v1, v2, . . . , vk] is total colorable graph with at most ∆(G[v1, v2,

. . . , vk]) + 2 colors, at each vertex there will be at least one missing color. We assign

this missing color to the edge (vi, vk+1), and for the vertex vk+1, we assign a color of a

vertex which is not adjacent to vk+1 and not the color of vi. Therefore, G[v1, v2, . . . , vk+1]

satisfies TCC.

Case 3: d(vk+1) = k − 1. Assume that the vertex vk+1 is not adjacent to vi and also

assume that ∆(G[v1, v2, . . . , vk+1]) = k − 1. We consider the following two cases:

Subcase 1: k is even. Construct a complete graph induced by the vertices v1, v2, . . . ,

vi−1, vi+1, . . . , vk+1. Color this even complete graph using colors in the set {0, 1, . . . , k} as

given previously [10]. In this coloring, there is one missing color at each of the vertices

and they are distinct. Now, color the edges (vi, vj), i 6= j, j = 1, 2, . . . , k + 1, with

the missing colors. Assign the color k − 1 to the vertex vi. To get a total coloring of

G[v1, v2, . . . , vk, vk+1], we remove the added edges and there is no change in the maximum

degree.

Subcase 2: k is odd. In this case k + 1 is even, say 2p. It is known that a graph of

order 2p with maximum degree 2p− 2 satisfies TCC (see [7, 9]).

Case 4: d(vk+1) = k. The maximum degree of G[v1, v2, . . . , vk, vk+1] is k. Con-

struct a complete graph on the vertex set {v1, v2, . . . , vk, vk+1}. We know that the com-
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plete graph satisfies TCC. After removing the added edges we get a total coloring of

G[v1, v2, . . . , vk, vk+1]. It follows that mock threshold graphs satisfy TCC.

The Kneser graph K(n, k) is the graph whose vertices correspond to the collection of

k-element subsets of a set of n elements, and two vertices are adjacent if and only if the

two corresponding sets are disjoint. An odd graph On is the Kneser graph K(2n−1, n−1).

Theorem 3.2. Odd graphs satisfy TCC.

Proof. Consider a (2n− 1)-element set X. Let On be an odd graph defined on X. Let x

be any element of X. Then, among the vertices of On, exactly
(
2n−2
n−2

)
vertices correspond

to sets that contain x. Because all these sets contain x, they are not disjoint, and form an

independent set of On. That is, On has 2n − 1 different independent sets of size
(
2n−2
n−2

)
.

Further, every maximum independent set must have this form, so, On has exactly 2n− 1

maximum independent sets.

If I is a maximum independent set, formed by the sets that contain x, then the

complement of I is the set of vertices that do not contain x. This complementary set

induces a matching in G. Each vertex of the independent set is adjacent to n vertices

of the matching, and each vertex of the matching is adjacent to n − 1 vertices of the

independent set [8].

Based on the decomposition, we give a total coloring of On in the following way:

Assign n colors to the edges between the vertices in the maximum independent set

I and the vertices in the matching. Color the edges in matching and the vertices in I

with a new color. Color one set of vertices in the matching with another new color and

the second set of vertices with the missing colors at these vertices. This will give a total

coloring of On using at most n+ 2 = ∆(On) + 2 colors. The result follows.
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