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Abstract. One way of HIV infection spreading is through the cell division of infected

cells by mitosis expressed in mathematical models as a logistic process. Cell-to-cell

transmission is another factor in the spread and speed of disease. In this work, we

present a five-dimensional Ordinary Differential Equation model (ODE) with the logis-

tic form for proliferation of uninfected cells, cell-to-cell and virus-to-cell transmission

rate, two types of cellular and humoral immune responses, the cure rate for return-

ing infected cells to non-infectious cells, and two treatment rates, one for reducing

infectious cells and the other for blocking free viruses. We discuss the positivity and

boundedness of solutions, free-equilibrium points, steady-state equilibrium points, and

stability by the Routh Hurwitz criterion. The rate of reproduction is analyzed, and the

useful parameters for increasing or decreasing it are identified. Numerical simulations

are performed to investigate the dynamic behavior of model responses to treatment

effects on disease.

1. Introduction

AIDS, acquired immune deficiency syndrome, was first reported in the United States in

1981 by the Centers for Disease Control and Prevention. AIDS is a syndrome caused by a

retrovirus, Human Immunodeficiency Virus. The disease involves severe weakness of the

immune system that, by arrival, opportunistic infections in the body, eventually resulting

in death. AIDS is recognized as a global epidemic disease [14].

HIV is a lentivirus from the family of retroviruses. There are two types of HIV viruses:

HIV-1 and HIV-2. Most of the registered cases are HIV-1. HIV is a virus that attacks

components of the immune system such as lymphocyte cells with the CD+
4 receptor,

macrophages, and dendritic cells [3]. It should be noted that the interval between the

entry of the virus into the body and the time of diagnosis by the laboratory (sufficient

amount of antibody secreted in the blood) is the window period. It usually lasts about 2

to 12 weeks, but maybe longer if you have an autoimmune disease or hepatitis B. If the

Received May 29, 2021; Accepted November 15, 2021.

Communicated by Je-Chiang Tsai.

2020 Mathematics Subject Classification. 34A34, 34C11, 34D20.

Key words and phrases. HIV mathematical model, logistic growth, treatment rate, cure rate, cell-to-cell

transmission, stability.

*Corresponding author.

411



412 Najmeh Akbari, Rasoul Asheghi and Maryam Nasirian

affected person receives no treatment at the latency stage, and the CD+
4 cell count declines

over time to less than 200 cells per microliter, the person will enter stage AIDS. At this

stage, following the severe weakening of the immune system, opportunistic infections are

activated in the body and eventually lead to patient death [1].

Mathematical modeling is the attempt to present a mathematical model for a system

that applies not only to the natural sciences such as physics, biology, geology, meteorology,

engineering sciences, computer science, and artificial intelligence, but also to the social

sciences such as economics, psychology, sociology, and medicine. Mathematical modeling

helps researchers that analyze a system and predict its behavior. The process of describing

a system (e.g., disease spread) requires assumptions, access to data to estimate values of

the model parameters, quantitative or qualitative predictions, and comparison of results

with observational or experimental data. So the crucial role of mathematical models is

to help understand a system. Besides, mathematical models can help understand the

importance of interventions in disease control and predict the disease’s future status.

However, it is essential to understand the limitations of a model, the uncertainty in the

parameter values, the model’s non-linearity, and chance events in the model [15]. In recent

decades, several intracellular dynamic models have been defined for the HIV-1 virus. These

models describe the reaction between the virus and the host cells in diseased individuals

and are valuable for understanding the dynamics of viral infections and the effectiveness

of viral therapy [38].

The first HIV models at the late 1980 are expressed immediately after the discovery

of the HIV, by Merrill [26] in 1987, Anderson and May in 1989 [4]. In 1989, Perelson

proposed a model explaining many of the HIV infection’s immunological consequences.

In this model, the cell proliferation rate of CD+
4 T is logically expressed. Note that the

logistic law is based on the fact that the growth of T cells (or any normal cell) stops as

their population approaches Tmax. The term logistical growth here refers to the growth of

T cells’ population in the vicinity of a viral infection. One assumption of logistic growth of

T cells is that if T (0) < Tmax, for all t then T (t) < Tmax. Thus, when the T cell population

reaches its maximum, the presence of HIV will infect these cells [22, 28].

In 1993, Perelson et al. studied a model dynamics that showed the effects of AZT

antiviral drugs that inhibited the Reverse Transcription enzyme to prevent virus replica-

tion [30]. In 1996, Nowak and Bangam presented a simple model for antiviral immune

response, virus replication, and virus diversity. They proposed three models. In the first

model, a simple interaction between virus replication and host cells was demonstrated.

Since the immune responses reduce viral load, the second model included immune re-

sponses against infected cells and, finally, a model in which the virus can reproduce and

evade the immune responses that are the result of an HIV mutation [27]. In 1997, Kirschner
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et al. proposed a model used to simulate HIV infection chemotherapy. In this simulation,

antiviral drugs are including Reverse Transcription and Protease Inhibitors. In this model,

drug-resistant and susceptible viral strains have been shown to play an essential role in

the efficacy of HIV chemotherapy [21]. In 2007, Wodarz et al. used two cell types of

CD+
4 T cells and macrophages in their model and suggested that infected CD+

4 T cells

could stimulate by antigens and then divide. Then they expressed this rate as a logistic

function [37]. In 2009, Martin et al. argued that cell-to-cell transmission is a more robust

and more sensitive mechanism than the mechanism of virus-to-cell infection. Cell-to-cell

proliferation not only simplifies the rapid spread of the virus but also reduces the effect of

antibodies for viral Inhibitors by evading immune attacks [25]. In 2010, Gang Huang ex-

amined a set of differential equations with non-linear infection transmission rates. In this

model, to provide a more complex and general infection process, the contact rate between

the target cells and the virus non-linear is considered [18]. In 2011, Sigal et al. stated

that cell-to-cell expansion of HIV-1 reduces the efficacy of antiviral treatment because

cell-to-cell transmission can cause many infections in target cells, which can reduce the

sensitivity to antiviral drugs [31]. In 2011, Xu states the model in which the saturation

collision rate is used instead of the linear collision rate for virus and cell contact [39]. In

2012, Yan and Wang described a model that included both cell-mediated and humoral

immune responses and involved only the process of virus-to-cell infection [40]. In 2013,

Wang et al. presented an HIV model that included CTL immune response and antiviral

treatment. In this model, CD+
4 T cell proliferation in the presence of the virus is expressed

as a logistic function [36]. At 2015, Foutz et al. Stated the principle of HIV vaccine design

based on the combined efficacy of cellular and humoral immunity [13]. In 2016, Kamboj

announced a model of Reverse Transcription and Protease Inhibitors drug therapy with

the proliferation rate of logistic [19]. In 2017, Alawi et al. replaced the saturation function
β1υ(t)

1+αυ(t) instead of the bilinear infection rate [10]. In 2018, Lin et al. proposed an HIV-

1 model with virus-to-cell infection, cell-to-cell infection, cellular and humoral immune

response, and saturation incidence rate of the virus are considered [23].

When a virus enters a CD+
4 T cell, several biological Processes can occur: the reverse

transcription of the viral RNA to DNA, binding of DNA to the infected cell DNA (called

provirus), transcription of the provirus, and translation to make viral polypeptides, frag-

mentation of polypeptides by HIV protease, and germination of new viruses [30]. After

entering viruses into resting CD+
4 T cells, the reverse transcription of the cell is completed

if the cell is activated. But, if viral RNA is not completely transcribed into DNA, then the

integrated virus stored in the resting CD+
4 T cells may die out over time. So, the reverse

transcription of DNA becomes unstable and can be quickly degraded. Thus, a proportion

of resting infected CD+
4 T cells can be reverted to the uninfected cells [11,42,43]. Authors
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of [29] state that when a virus enters a CD+
4 T, chemotherapy can affect it, and this

can change some infected cells into uninfected ones. Moreover, the current combination

of antiretroviral therapies, including the Reverse Transcription and Protease Inhibitors,

can restore some infected CD+
4 T cells to uninfected ones, by losing all cccDNA from

their nuclei [5]. In 2016, Kaminski developed a method for curing infected cells by gene

therapy or loss of all cccDNA from their nucleus [20]. With the above hypotheses, in the

papers [2, 7, 41], the reversibility process of a part of infected cells to uninfected cells is

considered with one parameter.

The mathematical model seems more realistic when all the factors contributing to the

spread of the disease are expressed in it. However, since the dynamic study of a mathemat-

ical model with many variables and parameters is difficult and practically impossible, in

most of the above models, for a simpler study of its dynamics, some existing factors are as-

sumed to be constant and not included in the model. The innovation of this model is that

with adding several factors from different papers such as cure rate, the proliferation rate

of healthy cells with logistic function, the infection rate of healthy cells non-linearly, the

spread of infection through cell-to-cell and virus-to-cell process, and cellular and humoral

immunity, dynamics are examined.

The paper is organized as follows. In Section 2, we formulate a model with five

state variables. In Section 3, we study the non-negative and boundedness of solutions.

In Section 4, we analyze infection-free equilibrium points. In Section 5, we investigate

steady-state equilibrium points. In Section 6, we examine the role of parameters in the

rate of reproduction. In Section 7, we consider the numerical simulation of the model (2.1).

In the last section, we conclude.

2. Model formulation

The population of CD+
4 T cells is stimulated by antigens and then divided. Therefore,

when their community reaches its maximum, their reproduction stops. Hence, their re-

production rate can be expressed as a logistic function. Also, to make a realistic model,

the saturation function was used instead of the bilinear infection rate. On the other hand,

because cell-to-cell transmission of the virus plays an essential role in reducing antibod-

ies effect on viral Inhibitors, it has been considered along with virus-to-cell transmission.

Also, due to antiviral drugs effectiveness in HIV chemotherapy’s success, their effect is

examined in the model. Then, both cellular and humoral immune systems have been used

together for the effectiveness of the principle of Foutz vaccine design. Besides, Kaminsky

gene therapy has been used to cure infected cells. A cure rate is stated as a method for

averting of infected cells to uninfected cells by gene therapy or loss of all cccDNA from

their nucleus.
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Parameters Description

r The rate at which the CD+
4 T-cells are reproduced.

m Maximum value of CD+
4 T-cells in the absence of the virus.

β1 The rate at which the virus infects the CD+
4 T-cells.

β2 The rate at which the CD+
4 T-cells are infected by the infected cells.

α The rate at which the viruses are saturated.

ρ The cure rate of the infected CD+
4 T-cells that reverted to the uninfected T-cells.

d The death rate of the CD+
4 T-cells.

δ The death rate of the infected CD+
4 T-cells.

ρ1 The rate at which the T-cells kill the infected CD+
4 T-cells.

η The treatment rate at which measure the efficacy of Reverse Transcriptase Inhibitor.

ε The treatment rate at which measure the efficacy of protease Inhibitor.

n Number of viruses produced by the infected CD+
4 T-cells.

µ The death rate of the viruses.

ρ2 The rate at which the B-cells kill the viruses.

c1 The rate at which the presence of the infected T-cells activates the T-cells.

b1 The death rate of the T-cells.

c2 The rate at which the presence of the virus activates the B-cells.

b2 The death rate of the B-cells.

Table 2.1: Used parameters in HIV mathematical model.

Now, we extend a mathematical model for HIV infection with two treatment rates,

cure rate, the transmission of infection by the virus-to-cell and cell-to-cell, logistic growth

for CD+
4 T-cell uninfected, the saturation function for the infection rate, and both types of

cellular and humoral immune systems. We use five state variables in the model. Popula-

tion of uninfected CD+
4 T-cells (x), Population of infected CD+

4 T-cells (y), Population of

infectious HIV virions (v), Population of T-cells (z), Population of B-cells (w). Also, two

parameters η, ε ∈ [0, 1] have been introduced as treatment rates of Reverse Transcriptase

Inhibitors (RTIs) and Protease Inhibitors (PIs) respectively. Reverse Transcriptase In-

hibitor prevents the transcriptase process in cells infected by the virus HIV, and Protease

Inhibitor blocks the protease enzyme, thereby preventing the production of infectious and

mature viruses. The proposed model is illustrated below.

dx

dt
= rx

(
1− x+ y

m

)
− (1− η)β1vx

1 + αv
− β2xy + ρy − dx,

dy

dt
=

(1− η)β1vx

1 + αv
+ β2xy − (δ + ρ)y − ρ1yz,

dv

dt
= (1− ε)nδy − µv − ρ2vw,

dz

dt
= c1yz − b1z,

dw

dt
= c2vw − b2w.

(2.1)
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All parameters in model (2.1) are positive and assumed to be independent of time. They

are described in Table 2.1.

3. Non-negative and boundedness of solutions

For biological reasons, we suppose that the initial values of the variables of the system (2.1)

are non-negative. Then, we prove that all of its solutions are also non-negative and

bounded.

Proposition 3.1. Let Γ(t) = (x(t), y(t), v(t), z(t), w(t)), with x(0) ≥ 0, y(0) ≥ 0, v(0) ≥
0, z(0) ≥ 0, w(0) ≥ 0, be a solution of the system (2.1). Then 0 ≤ x(t) ≤ M , 0 ≤ y(t) ≤
M , 0 ≤ v(t) ≤M , 0 ≤ z(t) ≤M , 0 ≤ w(t) ≤M for all t ≥ 0, for some M > 0.

Proof. We know that Γ(t) is the solution of system (2.1) with the initial values

{x(0) ≥ 0, y(0) ≥ 0, v(0) ≥ 0, z(0) ≥ 0, w(0) ≥ 0}.

Then

ẋ|x=0 = ρy ≥ 0, ẏ|y=0 =
η1vx

1 + αv
≥ 0, v̇|v=0 = δ1y ≥ 0, ż|z=0 = 0, ẇ|w=0 = 0.

The above computations show that the solutions of system (2.1) so long as y(x) > 0 with

non-negative initial values remain in the first quadrant for all t ≥ 0, and hence, they are

non-negative. Now we prove the boundedness property. To this end, we set T = x + y

with x, y ≥ 0, and from the sum of the first two equations of (2.1), we get

Ṫ = ẋ+ ẏ = rx

(
1− x+ y

m

)
− δy − dx− ρ1yz.

It is clear that when x + y ≥ m, we have Ṫ < 0, and so, T is decreasing, and hence it is

bounded. This implies that the functions x and y are bounded on [0,∞). From the third

equation of system (2.1), we have

v̇ = δ1y − µv − ρ2vw ≤ δ1y − µv,

which by integrating gives

v(t) ≤ v(0)e−µt + δ1

∫ t

0
y(s)e−µ(t−s) ds.

Noting that the function y is bounded on [0,∞), we can assume that |y(s)| ≤ K1 for some

K1 > 0, and hence

v(t) ≤ v(0) +
δ1K1

µ
(1− e−µt) ≤ v(0) +

δ1K1

µ
for all t ≥ 0.
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From the fourth equation, ż = c1yz − b1z, and by using the first and second equations of

(2.1), we have

ż + b1z = c1yz =
c1

ρ1

{
rx

(
1− x+ y

m

)
− (ẋ+ dx)− (ẏ + δy)

}
≤ c1

ρ1
{(r − d)x− δy − ẋ− ẏ}.

Therefore,

z(t) ≤ e−b1t
{
z(0) +

c1

ρ1
(x(0) + y(0))

}
− c1

ρ1
(x(t) + y(t))

+
c1

ρ1

{∫ t

0
((r − d+ b1)x(s) + (b1 − δ)y(s))e−b1(t−s) ds

}
.

Now we consider the following cases:

(a) If (r − d+ b1) ≤ 0 and (b1 − δ) ≤ 0, then

z(t) ≤ z(0) +
c1

ρ1
[x(0) + y(0)].

(b) If (r − d + b1) ≤ 0 and (b1 − δ) > 0, then due to the fact that y(s) is bounded on

[0,∞) so that |y(s)| ≤ K1, we have

z(t) ≤ z(0) +
c1

ρ1

[
x(0) + y(0) +K1

(
1− δ

b1

)]
.

(c) If (r − d + b1) ≥ 0 and (b1 − δ) ≤ 0, then by using that x(s) is bounded on [0,∞),

we take |x(s)| ≤ K2 and we get

z(t) ≤ z(0) +
c1

ρ1

[
x(0) + y(0) +K2

(
1 +

r − d
b1

)]
.

(d) If (r − d+ b1) ≥ 0 and (b1 − δ) ≥ 0, then

z(t) ≤ z(0) +
c1

ρ1

[
x(0) + y(0) +K1

(
1 +

δ

b1

)
+K2

(
1 +

r − d
b1

)]
.

The equations ẇ = c2vw − b2w and v̇ = δ1y − µv − ρ2vw imply that

ẇ + b2w = c2vw =
c2

ρ2
{δ1y − (v̇ + µv)}.

By integrating, we obtain that

w(t) ≤ e−b2t
{
w(0) +

c2

ρ2
v(0)

}
+
c2

ρ2

{∫ t

0
[δ1y(s) + (b2 − µ)v(s)]e−b2(t−s) ds

}
.

Now we consider the following:
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(a) If b2 − µ ≤ 0, then w(t) ≤ w(0) + c2
ρ2

[
v(0) + δ1

b2
K1

]
.

(b) If b2 − µ ≥ 0, then by the boundedness of v, we assume |v| ≤ K3 and we get

w(t) ≤ w(0) + c2
ρ2

[
v(0) + δ1

b2
K1 +

(
1− µ

b2

)
K3

]
.

Putting all together with the above calculations, we conclude that all the solutions of

system (2.1) are bounded.

4. Infection-free equilibrium points

In this section, we study the conditions of existence and stability of the infection-free

equilibrium points of the system (2.1), and we compute the basic reproduction number

associated with them. According to [6], the basic reproduction number indicates the

number of secondary infections by an infectious cell during proliferation. In the HIV model,

the basic reproduction number plays an important role in spreading the reproduction of

infection among healthy CD+
4 T-cells. System (2.1) has two infection-free equilibrium

points E00 = (0, 0, 0, 0, 0) and E01 =
(m(r−d)

r , 0, 0, 0, 0
)
. At E01, the uninfected CD+

4 cells

reach to the maximal level. In this case, the disease cannot raid.

4.1. Local stability of the infection-free equilibrium points

We suppose R0 is the basic reproduction number of system (2.1) for the infection-free

equilibrium point E00 that is given by R0 = r
d .

Proposition 4.1. If R0 = r
d < 1, then the infection-free equilibrium point E00 =

(0, 0, 0, 0, 0) of system (2.1) is asymptotically stable and it is unstable when R0 > 1.

Proof. The Jacobian matrix of system (2.1) at E00 = (0, 0, 0, 0, 0) is given by

JE00 =



r − d ρ 0 0 0

0 −(δ + ρ) 0 0 0

0 δ1 −µ 0 0

0 0 0 −b1 0

0 0 0 0 −b2


.

It is obvious that, the eigenvalues of the matrix JE00 are

λ1 = r − d, λ2 = −(δ + ρ) < 0, λ3 = −µ < 0, λ4 = −b1 < 0, λ5 = −b2 < 0.

Now it is clear that for R0 < 1, all the eigenvalues of the Jacobian matrix JE00 are

negative, and hence, the free-equilibrium point E00 is locally asymptotically stable, and

it is unstable for R0 > 1.
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By a simple calculation, we can show that the basic reproduction number of sys-

tem (2.1) for the infection-free equilibrium point E01 is given by

(4.1) R1 =
m(r − d)(η1 +B)

rA
,

where η1 = (1 − η)β1, A = µ(δ+ρ)
δ1

, B = β2µ
δ1

, and δ1 = (1 − ε)nδ. The threshold number

R1 denotes the number of infectious cells produced by the proliferation of an infectious

cell [9].

Theorem 4.2. The disease-free equilibrium point E01 is asymptotically stable when 0 <

R1 < 1 and it is unstable when R1 > 1.

Proof. To simplify the calculations, we set A = µ(δ+ρ)
δ1 and B = µβ2

δ1
. Then, the Jacobian

matrix of system (2.1) at the disease-free equilibrium point E01 is given by

JE01 =



d− r 1
r (rρ+ (d− r)(r + β2m)) η1m

r (d− r) 0 0

0 β2m
r (r − d)− (δ + ρ) −η1m

r (d− r) 0 0

0 δ1 −µ 0 0

0 0 0 −b1 0

0 0 0 0 −b2


.

The characteristic polynomial of JE01 is equal to

PJE01
(λ) = (d− r − λ)(−b1 − λ)(−b2 − λ)(λ2 + a1λ+ a2).

Thus, the eigenvalues of the Jacobian matrix JE01 are

λ1 = d− r < 0, λ2 = −b1 < 0, λ3 = −b2 < 0,

λ4 =
−a1 +

√
a2

1 − 4a2

2
< 0, λ5 =

−a1 −
√
a2

1 − 4a2

2
< 0,

where

a1 = (δ + ρ+ µ)− β2m

r
(r − d),

a2 = µ(δ + ρ)− µmβ2

r
(r − d)− δ1η1m

r
(r − d) = δ1

(
A− m

r
(r − d)(η1 +B)

)
.

For 0 < R1 = m(r−d)(η1+B)
rA < 1, we have a2 > 0, which implies

β2m

r
(r − d) < (δ + ρ)− δ1η1m

r
(r − d) < δ + ρ < δ + ρ+ µ.

The above gives a1 > 0. Therefore, the eigenvalues λ1, λ2, λ3, λ4 and λ5 are negative,

and this shows that E01 is locally asymptotically stable.
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5. Steady-state equilibrium points

In this section, we discuss the conditions of existence and stability of the infection steady-

state equilibrium points. All the steady-state equilibrium points exist when R1 > 1. It

shows the presence and spread of the disease. We can show that for R1 > 1, system (2.1)

has four equilibrium points. It has an equilibrium point E1 = (x1, y1, v1, 0, 0), where

x1 =
A(1 + αv1)

η1 +B(1 + αv1)
, y1 =

µ

δ1
v1,

and v1 is the positive real root of the equation ψ3v
3 + ψ2v

2 + ψ1v + ψ0 = 0, for ψ0 < 0,

where

ψ3 =
Bα2µ

δ1
(rA+ δBm),

ψ2 = −mAα2B(r − d) + rA2α2 +
µrAα

δ1
(η1 + 2B) +

2δµmBα

δ1
(η1 +B),

ψ1 = −mAα(r − d)(η1 + 2B) + 2rA2α+
µrA

δ1
(η1 +B) +

δµm

δ1
(η1 +B)2,

ψ0 = −mA(r − d)(η1 +B) + rA2.

(5.1)

In addition, by setting A2 = δ1
µ (η1+Bα2) and α2 = 1+αv2, system (2.1) has an equilibrium

point E2 = (x2, y2, v2, z2, 0), where

x2 =
(δ + ρ+ ρ1z2)α2

A2
, y2 =

b1
c1
, v2 =

δ1b1
c1µ

,

and z2 is the unique positive solution of the equation T2z
2 + T1z + T0 = 0 for T0 < 0,

where

T2 = ρ2
1α

2
2 > 0,

T1 = 2(δ + ρ)ρ1α
2
2 −

(
m(r − d)

r
− b1
c1

)
ρ1α2A2 +

ρ1mb1A
2
2

rc1
,

T0 = (δ + ρ)2α2(1−R1) +
Aδ1α2b1
c1µ

(
Aαδ2

1

µ2
+A2

)
+
δmb1
rc1

A2
2.

(5.2)

Let N = ρ2
µ , A3 = µb2

c2δ1
and α3 = 1 + αv3. Then, system (2.1) has another equilibrium

point E3 = (x3, y3, v3, 0, w3), where

x3 =
A(Nw3 + 1)α3

η1 +B(Nw3 + 1)α3
, y3 = A3(Nw3 + 1), v3 =

b2
c2
,
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and w3 is the positive real root of the equation Q3w
3 + Q2w

2 + Q1w + Q0 = 0 when

Q0 < 0, where

Q3 = mδA3N
3B2α2

3 +AA3BN
3α2

3r > 0,

Q2 = rA2N2α2
3 −m(r − d)AN2α2

3B + 2rAα2
3A3N

2B + rAα3A3N
2(Bα3 + η1)

+mδA3N
2B2α2

3 + 2mδA3N
2Bα3(Bα3 + η1),

Q1 = 2rA2Nα2
3 −mAα2

3BN(r − d)−mAα3N(r − d)(Bα3 + η1) + rAα2
3A3BN

+ 2rAα3A3N(Bα3 + η1) + 2mδA3BNα3(Bα3 + η1) +mδA3N(Bα3 + η1)2,

Q0 = rA2α2
3 −mAα3(r − d)(Bα3 + η1) + rAα3A3(Bα3 + η1) +mδA3(Bα3 + η1)2.

By letting ρ2 = Nµ, N1 = δ1b1c2
µc1b2

, N2 = N1µρ1
δ1

and α4 = 1 + αv4, we see that the fourth

equilibrium point of the system (2.1) is E4 = (x4, y4, v4, z4, w4), in which

x4 =
(N1A+N2z4)α4

η1 +BN1α4
, y4 =

b1
c1
, v4 =

b2
c2
, w4 =

N1 − 1

N
,

and z4 is the positive real root of the quadratic equation Ψ2z
2 + Ψ1z + Ψ0 = 0, where

Ψ2 = rN2
2α

2
4,

Ψ1 = 2rN1AN2α
2
4 −N2α4(m(r − d)− ry4)(BN1α4 + η1) +my4ρ1(BN1α4 + η1)2,

Ψ0 = rN2
1A

2α2
4 −N1Aα4m(r − d)(BN1α4 + η1) + ry4N1Aα4(BN1α4 + η1)

+my4δ(BN1α4 + η1)2.

(5.3)

5.1. Local stability of the equilibrium points

Theorem 5.1. The following holds:

(i) If R1 < 1, then the equilibrium point E1 does not exist.

(ii) If R1 = 1, then the equilibrium point E1 = E01.

(iii) If R1 > 1, then the equilibrium point E1 exists and it is locally asymptotically stable

for v1 < min
{
b1δ1
c1µ

, b2c2

}
, and it is unstable for v1 >

b1δ1
c1µ

or v1 >
b2
c2

.

Proof. It is clear that if R1 < 1, then all the coefficients defined in (5.1) of the polynomial

ψ3v
3 + ψ2v

2 + ψ1v + ψ0 are positive and it has no positive roots. If R1 = 1, then ψ0 = 0

and the only non-negative root of the polynomial ψ3v
3 + ψ2v

2 + ψ1v + ψ0 is zero. Then

E1 = E01. To show the existence of E1 = (x1, y1, v1, 0, 0), we prove that the equation

ψ3v
3 + ψ2v

2 + ψ1v + ψ0 = 0,

with ψ0 < 0 has at least a positive real root. Since

ψ0 = rA2 −mA(r − d)(η1 +B) = rA2

(
1− m(r − d)(η1 +B)

rA

)
= rA2(1−R1),
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then ψ0 < 0 when R1 > 1. Now we use the linearization method to determine the stability

of the equilibrium point E1. The Jacobian matrix evaluated at the equilibrium point E1

is given by

JE1 =



− rx1
m −

ρy1
x1

− rx1
m + ρ− β2x1 −η1x1

α2
1

0 0

η1v1
α1

+ β2y1 −η1δ1x1
α1µ

η1x1
α2
1

−ρ1y1 0

0 δ1 −µ 0 −ρ2v1

0 0 0 c1y1 − b1 0

0 0 0 0 c2v1 − b2


.

The characteristic equation of the Jacobian matrix JE1 is given by

PJE1
(λ) = (c2v1 − b2 − λ)(c1y1 − b1 − λ)(λ3 + θ1λ

2 + θ2λ+ θ3),

where

θ1 = µ+
r

m
x1 + ρ

y1

x1
+
η1δ1x1

α1µ
> 0,

θ2 =
µrx1

m
+
ρµy1

x1
+
η1δ1αv1x1

α2
1

+
rη1δ1x

2
1

α1µm
+
rAv1

m
ηβ2y1 > 0,

θ3 =
rη1δ1αv1x

2
1

mα2
1

+
η1δµv1

α2
1

+
rAµv1

m
+ β2δµy1 > 0.

Therefore, the eigenvalues are given by

λ1 = c2v1 − b2, λ2 = c1y1 − b1 =
c1µ

δ1
v1 − b1.

For v1 < min
{
b1δ1
c1µ

, b2c2

}
, we have λ1, λ2 < 0. The other eigenvalues of JE1 have nega-

tive real parts. So the equilibrium point E1 is locally asymptotically stable when v1 <

min
{
b1δ1
c1µ

, b2c2

}
and unstable when v1 >

b1δ1
c1µ

or v1 >
b2
c2

.

Theorem 5.2. The following holds:

(i) If R1 ≤ 1, then the equilibrium point E2 does not exist.

(ii) If R1 > 1 and T0 = α2(δ + ρ)2(1 −R1) + Aδ1α2b1
c1µ

(Aαδ21
µ2

+ A2

)
+ δmb1

rc1
A2

2 < 0, then

the equilibrium point E2 exists and it is locally asymptotically stable for v2 <
b2
c2

.

Proof. According to Descartes’s rule, there exists at least one positive real root z = z2 for

the equation

T2z
2 + T1z + T0 = 0,
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provided T2 > 0 and T0 < 0, with the coefficients defined in (5.2). We use the linearization

method to study the local stability of the equilibrium point E2. The Jacobian matrix

calculated at the equilibrium point E2 is given by

JE2 =



− rx2
m −

ρy2
x2

− rx2
m + ρ− β2x2 −η1x2

α2
2

0 0

η1v2
α2

+ β2y2 −η1δ1x2
α2µ

η1x2
α2
2

−ρ1y2 0

0 δ1 −µ 0 −ρ2v2

0 c1z2 0 0 0

0 0 0 0 c2v2 − b2


.

The characteristic equation of the matrix JE2 is given by

PJE2
(λ) = (c2v2 − b2 − λ)(λ4 + n1λ

3 + n2λ
2 + n3λ+ n4),

where

n1 = µ+
r

m
x2 + ρ

y2

x2
+
η1δ1x2

α1µ
,

n2 = ρ1b1z2 + µ

(
r

m
x2 + ρ

y2

x2

)
+
η1δ1αv2x2

α2
2

+
rη1δ1

mµα2
x2

2 +
β2b1
c1

(δ + ρ1z2)

+
rb1
mc1

(δ + ρ+ ρ1z2),

n3 = ρ1b1z2

(
r

m
x2 + ρ

y2

x2
+ µ

)
+
rη1δ1αv2x

2
2

mα2
2

+
rµ2v2

mδ1
(δ + ρ+ ρ1z2)

+
β2µv2

δ1
(δ + ρ1z2),

n4 = µδ1b1z2

(
r

m
x2 + ρ

y2

x2

)
> 0.

We have that λ1 = c2v2 − b2 < 0 when v2 < b2
c2

. Now, we apply the Routh–Hurwitz

criterion for the fourth-order polynomial λ4+n1λ
3+n2λ

2+n3λ+n4 to study the remaining

eigenvalues. On this basis, we compute

∆1 = n1 > 0, ∆2 = n1n2 − n3 > 0, ∆3 = ∆2n3 − (n1n4)n1 > 0.

That due to lengthy calculations, we will not write them here. Therefore, all the roots of

the characteristic polynomial λ4 + n1λ
3 + n2λ

2 + n3λ + n4 have negative real parts, and

hence, E2 is locally asymptotically stable.

Theorem 5.3. The following statements are satisfied:

(i) If R0 ≤ 1, then the equilibrium point E3 does not exist.
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(ii) If R0 > 1 and

Q0 = rA2α2
3−mAα3(r−d)(Bα3 +η1)+rAα3A1(Bα3 +η1)+mδA3(Bα3 +η1)2 < 0,

then the equilibrium point E3 exists and it is locally asymptotically stable when y3 <
b1
c1

.

Proof. If R0 ≤ 1, then Qi > 0 for i = 0, 1, 2, 3. Hence, we do not have any positive real

root for w. We assume R0 > 1 and Q0 < 0, then the equation

Q3w
3 +Q2w

2 +Q1w +Q0 = 0

has at least a positive real root and we get the equilibrium point E3 = (x3, y3, v3, 0, w3).

The Jacobian matrix evaluated at E3 is given by

JE3 =



− rx3
m − ρ

y3
x3
− rx3

m + ρ− β2x3 −η1x3
α2
3

0 0

η1v3
α3

+ β2y3 −η1v3x3
α3y3

η1x3
α2
3

−ρ1y3 0

0 δ1 −ρ2w3 − µ 0 −ρ2v3

0 0 0 c1y3 − b1 0

0 0 c2w3 0 0


.

The characteristic polynomial of the matrix JE3 is as follows:

PJE3
(λ) = (c1y3 − b1 − λ)(λ4 + e1λ

3 + e2λ
2 + e3λ+ e4),

where

e1 = ρ2w3 +
rx3

m
+ ρ

y3

x3
+
η1v3x3

α3y3
+ µ > 0,

e2 = ρ2b2w3 + µ(Nw3 + 1)

(
rx3

m
+ ρ

y3

x3

)
+
η1δ1αv2x3

α2
3

+
r

m
x3

(
rx3

m
+ ρ

y3

x3
+
η1v3

α3
+ β2y3

)
+ β2δy3 > 0,

e3 = ρ2b2w3

(
rx3

m
+ ρ

y3

x3
+
η1v3x3

α3y3

)
+
rδ1x3y3

mα3
(η1 +B(Nw3 + 1)α3)

+
rη1δ1x

2
3αv3

mα2
3

+
η1δ1δy3

α2
3

> 0,

e4 = ρ2v3w3

(
r

m
x3

(
η1v3x3

α3y3
+
η1v3

α3
+ β2y3

)
+ β2δy3

)
> 0.

One of the eigenvalues of the Jacobian matrix JE3 is λ1 = c1y3−b2, which is negative when

y3 <
b1
c1

. Now, to investigate the other eigenvalues of JE3 , we apply the Routh–Hourwitz

criterion to the fourth-order polynomial λ4 + e1λ
3 + e2λ

2 + e3λ+ e4, and we get

∆1 = e1 > 0, ∆2 = e1e2 − e3 > 0, ∆3 = ∆2e3 − (e1e4)e1 > 0.
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Thus, all the eigenvalues of the matrix JE3 have negative real parts. Hence, the equilibrium

point E3 is locally asymptotically stable.

For the fourth endemic equilibrium point E4, we have the following result.

Theorem 5.4. The following statements are satisfied:

(i) If R0 ≤ 1, then the equilibrium point E4 does not exist.

(ii) If R0 > 1 and

Ψ0 = rN2
1A

2α2
4 −N1Aα4m(r − d)(BN1α4 + η1) + ry3N1Aα4(BN1α4 + η1) < 0,

then the endemic equilibrium point E4 exists and it is locally asymptotically stable.

Proof. If R0 ≤ 1, then Ψi > 0 for i = 0, 1, 2. Hence we do not have any positive value

for z4. We assume R0 > 1 and Ψ0 < 0. Then, the equation Ψ2z
2 + Ψ1z + Ψ0 = 0, with

the coefficients defined in (5.3), has exactly one positive root z = z4 = −Ψ1+
√

∆
2Ψ2

, where

∆ = Ψ2
1 − 4Ψ0Ψ2. So we get the unique equilibrium point E4 = (x4, y4, v4, z4, w4). To

analyze its stability, we compute the Jacobian matrix at the point E4, which is given by

JE4 =



− rx4
m − ρ

y4
x4
− rx4

m + ρ− β2x4 −η1x4
α2
4

0 0

η1v4
α4

+ β2y4 −η1v4x4
α4y4

η1x4
α2
4

−ρ1y4 0

0 δ1 −ρ2w4 − µ 0 −ρ2v4

0 c1z4 0 0 0

0 0 c2w4 0 0


.

The characteristic polynomial of the matrix JE4 is obtained as follows:

PJE4
(λ) = λ5 + q1λ

4 + q2λ
3 + q3λ

2 + q4λ+ q5,

where

q1 = ρ1w4 +
r

m
x4 + ρ

y4

x4
+
η1δ1x4

α4µ
+ µ > 0,

q2 = c1ρ1y4z4 + c2ρ2v4w4 + µN1

(
r

m
x4 + ρ

y4

x4

)
+
η1δ1αv4x4

α2
4

+
rη1v4x

2
4

mα4y4

+ δβ2y4 + β2v4N2z4 +
rx4v4

mα4
(η1 +BN1α4) > 0,

q3 = (ρ2b2w4 + ρ1b1z4)

(
r

m
x4 + ρ

y4

x4
+
η1δ1x4

α4µ

)
+ b1ρ1ρ2w4z4 + b1µρ1z4

+
rη1δ1αv4x

2
4

mα2
4

+ µN1δβ2y4 + µN1β2v4N2z4 +
rµN1x4v4

mα4
(η1 +BN1α4)
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+
η1δ1v4

α2
4

(δy4 +N2z4) > 0,

q4 = ρ1ρ2b1b2z4w4 + ρ1b1z4µN1

(
r

m
x4 + ρ

y4

x4

)
+ ρ2b2w4

(
rη1v4x

2
4

mα4y4
+ δβ2y4 + β2v4N2z4 +

rx4v4

mα4
(η1 +BN1α4)

)
> 0,

q5 = ρ1ρ2b1b2w4z4

(
r

m
x4 + ρ

y4

x4

)
> 0.

By using the Routh–Hurwitz criterion for the fifth-order polynomials, we get

∆1 = q1 > 0, ∆2 = q1q2 − q3 > 0,

∆3 = ∆2q3 − q2
1q4 > 0, ∆4 = ∆3q4 −∆2q2q5 + q1q4q5 − q2

5 > 0.

As ∆3q4 + q1q4q5 > ∆2q2q5 + q2
5, we deduce that ∆4 > 0. This implies that all the

eigenvalues of the Jacobian matrix JE4 have negative real parts. Therefore E4 is locally

asymptotically stable.

6. Analysis of the basic reproductive number

In this section, we analyze the basic production rate, and we examine the effect of different

parameters for the viral load related to the basic reproduction number, R1, mentioned

in the equation (4.1). The basic production number indicates the prevalence of infection

in the population, and it is important ideas in epidemic theory for mathematicians [17].

The different ways exist for behavior Sensitivity Analysis. In this section, we apply the

normalized forward index. The normalized forward index is defined as follows:

ΘR1
s =

(
∂R1

∂s

)(
s

R1

)
,

where s states existence parameters in (4.1). By replacing η1 = (1 − η)β1, A = µ(δ+ρ)
δ1

,

B = β2µ
δ1

, and δ1 = (1− ε)nδ in R1, we obtain

(6.1) R1 =
m(r − d){(1− η)(1− ε)nδβ1 + β2µ}

µ(δ + ρ)
,

that with partial derivation (6.1) respect to s, we get

∂R1

∂m

m

R1
= 1,

∂R1

∂r

r

R1
=

d

r − d
,

∂R1

∂d

d

R1
= − d

r − d
,
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∂R1

∂n

n

R1
=

(1− η)(1− ε)nδβ1

(1− η)(1− ε)nδβ1 + β2µ
,

∂R1

∂δ

δ

R1
=

δ

δ + ρ

[
(1− η)(1− ε)nρβ1 − β2µ

(1− η)(1− ε)nδβ1 + β2µ

]
,

∂R1

∂β1

β1

R1
=

(1− η)(1− ε)nδβ1

(1− η)(1− ε)nδβ1 + β2µ
,(6.2)

∂R1

∂β2

β2

R1
=

β2µ

(1− η)(1− ε)nδβ1 + β2µ
,

∂R1

∂µ

µ

R1
= − (1− η)(1− ε)nδβ1

(1− η)(1− ε)nδβ1 + β2µ
,

∂R1

∂ρ

ρ

R1
= − ρ

δ + ρ
,

∂R1

∂η

η

R1
= − (1− ε)nδβ1η

(1− η)(1− ε)nδβ1 + β2µ
,

∂R1

∂ε

ε

R1
= − (1− η)nδβ1ε

(1− η)(1− ε)nδβ1 + β2µ
.

The index (6.2) obtained from the parameters existing in the system (2.1) indicates

the sensitivity of the system parameters. It is positive for the parameters r, m, n, β1

and β2, which means that increasing them raises the reproduction rate number R1 and

as a result the disease spreads. While this index is negative for the parameters d, ρ, η,

ε and µ and it shows that increasing these parameters decreases the reproduction rate

number R1. When the value of R1 reaches less than one, the disease disappear. When

(1 − η)(1 − ε)nρβ1 − β2µ > 0, the index for δ is positive and the index is negative for

(1− η)(1− ε)nρβ1 − β2µ < 0.

7. Numerical simulation

7.1. Stability of equilibrium points

In this section, we examine the theoretical results of model (2.1) by numerical simulations.

First, we illustrate the stability of equilibrium points for the different values of R0 and R1.

In the following, we examine the effect of cell-to-cell transmission on the spread of infection

for different values β2. Then, the sensitivity analysis is used to identify important factors

in increasing or decreasing the rate of reproduction. The parameters of ρ2, c2 and b2

may vary with different types of antibodies [35]. Initial values in Table 7.2 are expressed

according to clinical data of HIV-infected patients during the symptomatic phase [16].

Since several biological studies indicate that some patients with HIV are treated after

three to six months, our chosen interval will change between 100 days to 150 days [24].

In Figure 7.1, by using from Column 1 of Table 7.1, we have R0 = 0.41 < 1, then
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E0 = (0, 0, 0, 0, 0) or disease-free equilibrium point is stable. It shows that the treatment

reduces the virus load and the disease will disappear.

Parameters unit Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 References

r day−1 0.0082 2 2 2 2 2 Assumed

m 1000 1000 15000 100000 5× 104 300000 Assumed

β1 ml . (virion . day)−1 4.8× 10−7 4.8× 10−7 4.8× 10−7 4.8× 10−7 4.8× 10−7 4.8× 10−7 [34]

β2 ml . (virion . day)−1 4.7× 10−7 4.7× 10−7 4.7× 10−7 4.7× 10−7 4.7× 10−7 4.7× 10−7 [34]

α cells−1 .ml 0.001 0.001 0.001 0.001 0.001 0.001 [8, 12,32,33]

ρ day−1 0.01 0.01 0.01 0.01 0.01 0.01 [8, 12,32,33]

d day−1 0.02 0.02 0.02 0.02 0.02 0.02 [8, 12,32,33]

δ day−1 0.5 0.5 0.5 0.5 0.5 0.5 [8, 12,32,33]

ρ1 ml . (cells . day)−1 0.001 0.001 0.001 0.001 0.001 0.001 [8, 12,32,33]

η 0.4 0.4 0.1 0.55 0.55 0.55 [8, 12,32,33]

ε 0.55 0.55 0.2 0.45 0.45 0.2 [8, 12,32,33]

n ml . virion 1200 1200 1200 1200 1200 1200 [8, 12,32,33]

µ day−1 3 3 3 3 3 3 [8, 12,32,33]

ρ2 ml . (virion . day)−1 0.5 0.5 0.5 0.001 0.001 0.001 [35]

c1 ml . (cells . day)−1 0.021 0.021 0.021 0.021 0.021 0.021 Assumed

b1 day−1 0.2 0.2 0.2 0.2 0.2 0.2 [8, 12,32,33]

c2 ml . (virion . day)−1 10−11 10−11 10−11 10−11 10−4 10−4 [35]

b2 day−1 0.1 0.1 0.1 0.1 0.01 0.1 [35]

Table 7.1: Values of parameters in HIV mathematical model.

Variables Initial value unit

x(t) x(0) = 200 cell .ml−1

y(t) y(0) = 80 cell .ml−1

v(t) v(0) = 12000 cell .ml−1

z(t) z(0) = 50 cell .ml−1

w(t) w(0) = 100 cell .ml−1

Table 7.2: The initial values in HIV

mathematical model.

s value

m 1

r 0.01010101057

d −0.01010101010

n 0.9932461561

δ 0.01285399907

β1 0.9932461561

β2 0.006753843943

µ −0.9932461565

ρ −0.01960784314

η −0.1103606840

ε −0.2483115390

Table 7.3: The calculated values of ΘR1
s .
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Figure 7.1: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of system (2.1)

with treatment and without treatment for Column 1 of Table 7.1 at time t for R0 = 0.41 <

1 at free-equilibrium point of E0 = (0, 0, 0, 0, 0).

In Figure 7.2, from Column 2 of Table 7.1, we obtain R1 = 0.05122764706 < 1 and

R0 = 100 > 1, then E01 = (990, 0, 0, 0, 0) is asymptotically stable. This leads to the

saturation of the population of uninfected cells and eventually eliminate the disease.

Figure 7.2: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of system (2.1)

with treatment and without treatment at time t for Column 2 of Table 7.1 with R0 =

100 > 1 and R1 = 0.05122764706 < 1 at E01 = (990, 0, 0, 0, 0).

In Figure 7.3, by replacing values from Column 3 of Table 7.1 in system (2.1), we

obtain R1 = 2.026297059 > 1 that despite the condition ψ0 = −0.0002085467695 < 0,

we have E1 = (14841.86236, 6.496271350, 1039.403416, 0, 0) is asymptotically stable. In

other words, by increasing the proliferation rate of the uninfected cells population and

decreasing the level of treatment relative to Column 2, the values of infected cells and the
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virus in Table 7.1 are decreased such that they converge to y1 and v1. Still, the levels of

cellular and humoral immune cells converge to zero.

Figure 7.3: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of

system (2.1) with treatment and without treatment at time t for Column 3 of Ta-

ble 7.1 with R1 = 2.026297059 > 1 and ψ0 = −0.0002085467695 < 0 at E1 =

(14841.86236, 6.496271350, 1039.403416, 0, 0).

In Figure 7.4, from Column 4 of Table 7.1, we obtain R1 = 4.703470589 > 1 and since

T0 = −1.464981642 < 0, the equilibrium E2 = (98984.77489, 9.523809524, 1047.619048,

685.1145481, 0) exists and it is asymptotically stable. This means that treatment reduces

the level of proliferation of viral and infectious cells and prevents excessive cellular immu-

nity.

Figure 7.4: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of

system (2.1) with treatment and without treatment at time t for Column 4 of Ta-

ble 7.1 with R1 = 4.703470589 > 1 and T0 = −1.464981642 < 0 at E2 =

(98984.77489, 9.523809524, 1047.619048, 685.1145481, 0).
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In Figure 7.5, we choose parameters from Column 5 of Table 7.1 into system (2.1)

and derive R1 = 2.351735294 > 1 and Q0 = −0.00005940827650 < 0. Then, it can

be concluded that E3 = (49497.49885, 1.996874149, 100, 0, 3589.684691) is an equilibrium

point and it is asymptotically stable. By observing Figure 7.5, stimulation of the humoral

immune system and timely treatment can significantly reduce virus replication and the

number of infected cells.

Figure 7.5: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of

system (2.1) with treatment and without treatment at time t for Column 5 of Ta-

ble 7.1 with R1 = 2.351735294 > 1 and Q0 = −0.00005940827650 < 0 at E3 =

(49497.49885, 1.996874149, 100, 0, 3589.684692).

Figure 7.6: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of

system (2.1) with treatment and without treatment at time t for Column 6 of Ta-

ble 7.1 with R1 = 20.39982353 > 1 and Ψ0 = −0.001109190902 < 0 at E4 =

(296974, 9.523809524, 1000, 2997.258841, 1571.428572).
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We find R1 = 20.39982353 > 1 and Ψ0 = −0.001109190902 < 0 for parameters chosen

from Column 6 of Table 7.1; see Figure 7.6. Therefore, E4 = (296974, 9.523809524, 1000,

2997.258841, 1571.428572) is the asymptotically stable equilibrium point for the differential

system. In this case, trajectories associated with different initial values typically converge

to this equilibrium. Here, the virus load is controlled by the treatment, yet the virus

remains in the body.

We simulate the stability of E4 by the Routh Hurwitz method. The Jacobian matrix

at the point E4 is given by

JE4 =



−1.979824674 −2.109401970 −0.01603657726 0 0

0.0001124761905 −3.367681224 0.01603657726 −0.009523809524 0

0 480.0 −4.571428572 0 −1.0

0 62.94243566 0 0.0 0

0 0 0.1571428572 0 0.0


.

The characteristic polynomial of matrix JE4 is obtained as follows:

PJE4
(λ) = λ5 + 9.918934470λ4 + 24.17243443λ3 + 20.00924654λ2

+ 6.567388432λ+ 0.186498605.

The Routh Hurwitz table is derived as

RR =



1 2417243443
100000000

410461777
62500000 λ5

991893447
100000000

1000462327
50000000

37299721
200000000 λ4

2197555465515418021
99189344700000000

405968730569025319
61993340437500000 0 λ3

9382146379552317657964235963
549388866378854505250000000

37299721
200000000 0 λ2

118339541585510199203652409882048623457
18764292759104635315928471926000000000 0 0 λ

37299721
200000000 0 0 1


.

There is no change of sign in the first Column of the Routh Hurwitz table. Hence,

PJE4
(λ) has no positive root. We derive the Routh Hurwitz table for computing the

number of negative roots as

RL =



1 2417243443
100000000

410461777
62500000 λ5

−991893447
100000000 −1000462327

50000000 − 37299721
200000000 λ4

2197555465515418021
99189344700000000

405968730569025319
61993340437500000 0 λ3

−9382146379552317657964235963
549388866378854505250000000 − 37299721

200000000 0 λ2

118339541585510199203652409882048623457
18764292759104635315928471926000000000 0 0 λ

− 37299721
200000000 0 0 1


.
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There are five sign changes in the first Column of table RL. Thereby, PJE4
(λ) has five

negative roots.

Figure 7.7 depicts the impact of the accident rate β2 on the infection cell-to-cell trans-

missions (i.e., through cell-to-cell transmission) for different values of β2 = 0, 0.00000047,

and 0.0000047.

Figure 7.7: The integral curves of the solutions x(t), y(t), v(t), z(t) and w(t) of system (2.1)

for different values of β2.

By using values from Column 3 of Table 7.1, we compute the reproduction rate numbers

in Table 7.3. These illustrate the role of essential parameters in the system for the increase

or decrease of the infection.

7.2. Global dynamics and convergence dynamics

For reproduction rate number R1 > 1, model (2.1) has four equilibrium points, where

only E4 is an internal (positive) equilibrium point (see Theorem 5.4). Numerical simu-

lation shows that model (2.1) with parameter values taken from Column 3 of Table 7.1

has only one equilibrium point E1 = (14841.86236, 6.496271350, 1039.403416, 0, 0). So-

lutions starting from any initial point with non-negative coordinates converge to E1.

See Figure 7.8. Model (2.1) with parameter values given in Column 4 of Table 7.1 has

two equilibrium points E2 = (98984.77489, 9.523809524, 1047.619048, 685.1145481, 0) and

E1 = (98953.6, 37.0242, 4073, 0, 0). The linear subspace {z = w = 0} is a invariant man-

ifold and thus, in this case, the solutions starting from this subspace converge to E1.

However, the solutions starting from outside this subspace converge to E2. See Figure 7.9.

When the cellular immune and humoral immune cells are not active in the body, these

immune factors may remain inactive. However, any small activity in either the cellu-

lar immune or humoral immune leads to an amplification of the cellular immune (up to

685.1145481) while the humoral immune collapses to zero.
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(a) (b) (c) (d)

Figure 7.8: The integral curves of system (2.1) in the rescaled space with the parameter

values given in Column 3 of Table 7.1 and with different initial values. (a) x(0) = 200,

y(0) = 80, v(0) = 12000, z(0) = 100, w(0) = 50, (b) x(0) = 1000, y(0) = 200, v(0) = 500,

z(0) = 0, w(0) = 0, (c) x(0) = 0.001, y(0) = 0.001, v(0) = 0.001, z(0) = 0.001, w(0) =

0.001 and (d) x(0) = 2000, y(0) = 800, v(0) = 13000, z(0) = 300, w(0) = 500 converging

to E1 = (14841.86236, 6.496271350, 1039.403416, 0, 0).

(a) (b) (c)

(d) (e) (f)

Figure 7.9: The integral curves of system (2.1) in the rescaled space with the parameter

values given in Column 4 of Table 7.1 and with different initial values. (a) x(0) = 200,

y(0) = 80, v(0) = 12000, z(0) = 100, w(0) = 50, (b) x(0) = 36000, y(0) = 25, v(0) = 4037,

z(0) = 0.1, w(0) = 0.1, (c) x(0) = 36000, y(0) = 25, v(0) = 4037, z(0) = 0, w(0) = 0,

(d) x(0) = 0.001, y(0) = 0.001, v(0) = 0.001, z(0) = 0.001, w(0) = 0.001, (e) x(0) =

100, y(0) = 200, v(0) = 100, z(0) = 100, w(0) = 0, (f) x(0) = 0.001, y(0) = 0.001,

v(0) = 0.001, z(0) = 0, w(0) = 0 converging to E1 = (98953.6, 37.0242, 4072.66, 0, 0) and

E2 = (98984.77489, 9.523809524, 1047.619048, 685.1145481, 0).

If we use the parameter values given in Column 5 of Table 7.1, then model (2.1) ad-

mits three equilibrium points E3 = (49497.49885, 1.996874149, 100, 0, 3589.684692), E2 =

(49487.6, 9.5, 1048, 87.5001, 0) and E1 = (17534.8, 8.847, 1415.5, 0, 0). In this case, all so-
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lutions starting from outside the invariant subspace {w = 0} converge to E3; the solutions

with initial values z = w = 0 converge to E1, and the other solutions with w = 0 con-

verge to E2. See Figure 7.10. Here, we have three equilibria. When immune of cellular

is inactive and humoral immune is active, the cellular dynamics of the system converge

to E3. Since the cellular immune of E3 is zero, the cellular immune in the body remains

inactive. By simulating the model with the parameter values from Column 6 of Table 7.1,

we see that there are four equilibrium points E1 = (171905, 166.8, 26683.9, 0, 0), E2 =

(296970, 9.5, 1524, 3696.2, 0), E3 = (296892, 86.55, 1000, 0, 38545), and E4 = (296974,

9.523809524, 1000, 2997.258841, 1571.428572). By choosing different initial values, we ob-

serve that the solutions with any initial point with positive coordinates converge to E4.

But the solutions with z = w = 0 converge to E1, the solutions with w = 0 and z 6= 0 con-

verge to E2, and the solutions with z = 0 and w 6= 0 converge to E3. See Figure 7.11. The

above simulation suggests that E4 is globally asymptotically stable. Among the equilibria,

E4 stands to attract the cellular dynamics of the system for when immune of cellular and

humoral are both active.

(a) (b) (c)

(d) (e) (f)

Figure 7.10: The integral curves of system (2.1) in the rescaled space with the parameter

values given in Column 5 of Table 7.1 and with different initial values. (a) x(0) = 200,

y(0) = 80, v(0) = 12000, z(0) = 100, w(0) = 50, (b) x(0) = 49000, y(0) = 9,

v(0) = 1000, z(0) = 80, w(0) = 0.1, (c) x(0) = 49000, y(0) = 12, v(0) = 1400,

z(0) = 0.001, w(0) = 0.001, (d) x(0) = 1000, y(0) = 200, v(0) = 0.001, z(0) = 0.001,

w(0) = 0, (e) x(0) = 0.001, y(0) = 0.001, v(0) = 0.001, z(0) = 0, w(0) = 0,

(f) x(0) = 2000, y(0) = 800, v(0) = 13000, z(0) = 1000, w(0) = 500 converging

to E1 = (49483.9, 12.8684, 1415.52, 0, 0), E2 = (49487.6, 9.52381, 1047.62, 87.5001, 0) and

E3 = (49497.49885, 1.996874149, 100, 0, 3589.684692).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.11: The integral curves of system (2.1) in the rescaled space with the parameter

values given in Column 5 of Table 7.1 and with different initial values. (a) x(0) = 200,

y(0) = 80, v(0) = 12000, z(0) = 100, w(0) = 50, (b) x(0) = 296000, y(0) = 166,

v(0) = 26600, z(0) = 0.1, w(0) = 0.1, (c) x(0) = 296900, y(0) = 9, v(0) = 1500,

z(0) = 3690, w(0) = 0.1, (d) x(0) = 296800, y(0) = 86, v(0) = 999, z(0) = 0.1,

w(0) = 38500, (e) x(0) = 0.001, y(0) = 0.001, v(0) = 0.001, z(0) = 0.001, w(0) = 0.001,

(f) x(0) = 1000, y(0) = 2000, v(0) = 1000, z(0) = 500, w(0) = 0, (g) x(0) =

200, y(0) = 80, v(0) = 12000, z(0) = 0, w(0) = 0, (h) x(0) = 0, y(0) = 80,

v(0) = 12000, z(0) = 0, w(0) = 50 converging to E1 = (296791, 166.774, 26683.9, 0, 0),

E2 = (296970, 9.52381, 1523.81, 3696.16, 0), E3 = (296892, 86.5524, 1000, 0, 38545.2) and

E4 = (296974, 9.523809524, 1000, 2997.258841, 1571.428572).

8. Conclusion

In this paper, we first formulate and then analyse a definitive in-vivo mathematical model

for the dynamics of the human immunodeficiency virus (HIV). This model investigates the

effect of cellular and humoral immune response on the CD+
4 uninfected cells, the CD+

4

infected cells, and the virus. Since infected CD+
4 T-cells affect the rate of proliferation of

uninfected CD+
4 T-cells, the rate of the spread of uninfected CD+

4 T-cells in the model
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was considered as a logistic function. Also, in this model, the effect of cell-to-cell and

virus-to-cell transmission in the spread of the disease have considered. In this model,

the rate of cure and its impact on improving infected CD+
4 T-cells to uninfected CD+

4

T-cells have impacted. Then, compatibility with biological hypotheses, the boundedness,

and the non-negativity of solutions was proved. We also showed that this model has six

equilibrium points, including two free infection points and four endemic points. Then, the

equilibrium points asymptotic stability was investigated by the Routh Hurwitz method.

The treatment parameters were considered as two parameters (the effectiveness of Reverse

Transcriptase and Protease Inhibitors) time-independent in the model (2.1) and were

examined their dynamics. Since global dynamic is biologically relevant, global dynamic

analysis for various parameter values and the infected equilibrium points of model (2.1) is

numerically examined. In all cases, the treatment is not sufficient to eliminate the disease

and the virus remains in the body once the body is infected. However, the treatment

appears to beneficial to control the amount of virus in the body and rate of infections.

Entry of any amount of virus into the body and the production of infected cells cause

initial increases in cellular and humoral immune cells. However, they are finally stabilized

and the treatment balances the number of viruses, healthy and infected cells. In there

words, the virus load, the number of infected and healthy cells, cellular and humoral

immune systems are either reduced or increased according to their relative values to the

globally asymptotic equilibrium point E4.

Finally, by simulating the model (2.1), using Mathematica and Mapple software, the

convergence of equilibrium points for the appropriate parameters, the effect of the cell-to-

cell transfer on disease spread, sensitivity analysis of reproduction for some parameters,

and its effect on decreasing or increasing this amount was shown.
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