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Monogenic Pisot and Anti-Pisot Polynomials

Lenny Jones

Abstract. A Pisot number is a real algebraic integer α > 1 such that all of its Galois

conjugates, other than α itself, lie inside the unit circle. An anti-Pisot number is a

real algebraic integer α > 1, such that exactly one Galois conjugate of α lies inside the

unit circle, and α has at least one Galois conjugate, other than α itself, outside the

unit circle. We call the minimal polynomials of these algebraic integers, respectively,

Pisot and anti-Pisot polynomials. In this article, we find infinite families of Pisot

(anti-Pisot) polynomials f(x) such that {1, α, α2, . . . , αn−1} is a basis for the ring of

integers of Q(α), where α is a Pisot (anti-Pisot) number and deg(f) = n, for certain

n. We refer to these polynomials as monogenic Pisot (anti-Pisot) polynomials.

1. Introduction

A Pisot (or Pisot–Vijayaraghavan) number [1] is a real algebraic integer α > 1 such that

all other zeros of the minimal polynomial f(x) ∈ Z[x] of α lie inside the unit circle. We call

f(x) a Pisot polynomial. Examples of Pisot numbers include the integers larger than 1 and

the Golden Ratio φ = (1 +
√

5)/2. Although Pisot numbers were known prior to 1920 [1],

it was not until the publication of Pisot’s thesis [21] in 1938 that widespread interest

ensued. In 1944, Siegel [26] proved that the smallest Pisot number (also known as the

plastic number [20]) is the real zero of x3−x−1. Shortly before Siegel’s paper, Salem [22]

proved the remarkable fact that the set of all Pisot numbers is closed. Aside from their

many interesting intrinsic properties, Pisot numbers have found applications in harmonic

analysis [13], Fourier analysis [23], dynamical systems [24] and quasicrystals [14,15].

An anti-Pisot number [25] is a real algebraic integer α > 1, such that exactly one of the

Galois conjugates of α lies inside the unit circle, and α has at least one Galois conjugate,

other than α itself, outside the unit circle. We refer to the minimal polynomial of an anti-

Pisot number as an anti-Pisot polynomial. Anti-Pisot numbers were used by Sidorov and

Solomyak [25] to study when certain sets related to anti-Pisot polynomials with coefficients

in {−1, 0, 1} are dense in R. Noting that if α ∈ (1, 2), with α 6= (1 +
√

5)/2, has a real

conjugate β such that 1/|β| is a Pisot number, then α is an anti-Pisot number, Hare and
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Sidorov [8] have recently utilized anti-Pisot numbers in their study of conjugates of Pisot

numbers.

Throughout this article, unless stated otherwise, when we say f(x) ∈ Z[x] is “irre-

ducible” or “reducible”, we mean over the rational numbers Q. Let f(x) ∈ Z[x] be monic

and irreducible with deg(f) = n. Suppose that f(θ) = 0. Let K = Q(θ) and let ZK
denote the ring of integers of K. We then have the well-known equation [4]

(1.1) ∆(f) =
[
ZK : Z[θ]

]2
∆(K),

where ∆(∗) denotes the discriminant of ∗. We say a monic polynomial f(x) ∈ Z[x] is

monogenic if f(x) is irreducible and
[
ZK : Z[θ]

]
= 1; or, equivalently from (1.1), that

∆(f) = ∆(K). Thus, f(x) is monogenic if and only if

(1.2) {1, θ, θ2, . . . , θn−1} is a basis for ZK .

The basis in (1.2) is called a power basis, which facilitates calculations in ZK . Observe

from (1.1) that if ∆(f) is squarefree, then f(x) is monogenic.

The work in this article was motivated by [3,28,29], and, in particular, by the following

theorem of Cheng and Zhuang [3]:

Theorem 1.1. Let K be a real Galois extension over Q given by its integral basis β1, β2,

. . . , βn. There exists a polynomial time algorithm to determine integers a1, a2, . . . , an such

that

α = a1β1 + a2β2 + · · ·+ anβn,

where α is a Pisot number and K = Q(α).

Thus, given a Pisot (or anti-Pisot) number α whose Pisot (or anti-Pisot) polynomial

f(x) has degree n, it is somewhat natural to ask if f(x) is monogenic. That is,

Question 1.2. When is B = {1, α, α2, . . . , αn−1} a basis for ZK?

Since αk is a Pisot number for any integer k ≥ 1 [1], we make the interesting observation

that if B is in fact a basis for ZK , then ZK possesses a basis in which every element, other

than 1, is a Pisot number. We say that the minimal polynomial f(x) for the Pisot number

α is a monogenic Pisot polynomial when ZK has the power basis B. We define a monogenic

anti-Pisot polynomial similarly.

In this article, we provide a partial answer to Question 1.2 by finding sufficient con-

ditions for the monogenity of certain classes of Pisot polynomials, as well as proving the

existence of infinite families of monogenic Pisot and anti-Pisot polynomials. More pre-

cisely, we prove the following:
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Theorem 1.3. Let n and t be integers with n ≥ 2 and t ≥ 1. Let

(1.3) fn,t(x) = xn − t
(
xn − 1

x− 1

)
.

(1) Suppose that t ≥ 2. If

t and
(n+ 1)n+1t− nn(t+ 1)n+1

(1− nt)2

are squarefree, then fn,t(x) is a monogenic Pisot polynomial.

(2) Suppose that t = 1 and n = 2m − 1 for some integer m ≥ 2. If

(2m − 1)2
m−1 − 22

m(m−1)

(2m−1 − 1)2

is squarefree, then fn,1(x) is a monogenic Pisot polynomial.

Theorem 1.4. Let n and t be integers with n ≥ 5 and 1 ≤ |t| ≤ n − 4. Suppose that

either |t| = 1 or
( (n−3)(n+1)

p

)
= −1 for each prime divisor p of t, where

(∗
p

)
denotes the

Legendre symbol. Then

f(x) = xn − (n− 1)xn−1 + xn−2 + t

is a Pisot polynomial, and f(x) is monogenic if

t and (nnt+ n+ 1)(t− (n− 3)(n− 2)n−2)

are squarefree.

The next theorem proves the existence, in various situations, of infinite families of

monogenic Pisot and anti-Pisot polynomials.

Theorem 1.5. In each of the following situations, there exist infinitely many prime values

of the indeterminate t such that

(1) x3 − t(x2 + a+ 1) is a monogenic Pisot polynomial when a ∈ {0, 2},

(2) xn − t
(
xn−1
x−1

)
is a monogenic Pisot polynomial when n ∈ {2, 4},

(3) xn − 16cn−1n(nt + w)xn−1 + nt + w is a monogenic Pisot polynomial when c is a

positive integer and (n,w) ∈ {(3, 1), (4, 2), (5, 1), (7, 1), (9, 2)},

(4) xn − tx− t is a monogenic anti-Pisot polynomial when n ≡ 0 (mod 2),

(5) xn − t(x2 + (n− 1)x+ 1) is a monogenic anti-Pisot polynomial when n ≥ 4,
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(6) xn−t
(
x3+

(
5n+1

2

)
x2+

(
3n2+3n−4

2

)
x+ 3n2−5n+4

2

)
is a monogenic anti-Pisot polynomial

when n ≥ 5 with n ≡ 1 (mod 4),

(7) xn − t(x3 + (2n + 1)x2 + (n2 + 2n − 1)x + n2 − n + 1) is a monogenic anti-Pisot

polynomial when n ≥ 4 with n ≡ 0 (mod 2) and n 6≡ 10 (mod 14).

It turns out that all polynomials f(x) in Theorem 1.5 have the property that the

largest degree of any irreducible factor of ∆(f) in the indeterminate t is at most 3. This

fact allows us to achieve the results of Theorem 1.5 unconditionally. In Theorem 1.5(1), (2)

and (3), more general results are attainable if we allow the degree of an irreducible factor

of ∆(f) to be larger than 3. However, in this situation, the conclusions are conditional on

the abc-conjecture for number fields (see Theorem 2.7 and Corollary 2.8).

Remarks 1.6. (1) When t = 1, the polynomials fn,1(x) in (1.3) are characteristic poly-

nomials of generalized Fibonacci recurrence sequences, and the Pisot numbers that

are zeros of fn,1(x) are known as Littlewood Pisot numbers [16].

(2) The Pisot numbers α in Theorems 1.3 and 1.4 are units in ZQ(α) whenever |t| = 1.

(3) The existence of infinitely many prime values of t, such that the polynomials in

Theorem 1.5(5) and (6) of are monogenic, was established in [12].

2. Preliminaries

The formula for the discriminant of an arbitrary monic trinomial, due to Swan [27], is

given in the following theorem.

Theorem 2.1. Let f(x) = xn+Axm+B ∈ Q[x], where 0 < m < n, and let d = gcd(n,m).

Then

∆(f) = (−1)n(n−1)/2Bm−1(nn/dB(n−m)/d − (−1)n/d(n−m)(n−m)/dmm/dAn/d
)d
.

The next theorem is due to Perron [19].

Theorem 2.2. Let n ≥ 2 and let

f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 ∈ C[x]

with a0 6= 0, be such that

|an−1| > 1 + |an−2|+ |an−3|+ · · ·+ |a0|.

Then f(x) has exactly n−1 zeros inside the unit circle. Furthermore, if f(x) ∈ Z[x], then

f(x) is irreducible.
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We then have the following corollary.

Corollary 2.3. Let f(x) be a polynomial satisfying the hypotheses of Theorem 2.2. If

f(1) < 0, then f(x) is a Pisot polynomial.

Proof. By Theorem 2.2, f(x) is irreducible and has exactly one zero α with |α| ≥ 1. Hence,

we deduce that α ∈ R and |α| > 1. Since the leading coefficient of f(x) is positive, and

f(1) < 0, it follows that α > 1. Thus, f(x) is a Pisot polynomial.

The next theorem is a standard tool used to determine if an irreducible polynomial is

monogenic.

Theorem 2.4. (Dedekind’s Criterion [4]) Let θ be an algebraic integer, and let K denote

the number field Q(θ) with ring of integers ZK . Let T (x) ∈ Z[x] be the monic minimal

polynomial of θ. Let p be a prime number and let ∗ denote reduction of ∗ modulo p (in Z,

Z[x] or Z[θ]). Let

T (x) =
s∏
i=1

γi(x)ei

be the factorization of T (x) modulo p in Fp[x], and set

g(x) =
s∏
i=1

γi(x),

where the γi(x) ∈ Z[x] are arbitrary monic lifts of the γi(x). Let h(x) ∈ Z[x] be a monic

lift of T (x)/g(x) and set

F (x) =
g(x)h(x)− T (x)

p
∈ Z[x].

Then [
ZK : Z[θ]

]
6≡ 0 (mod p) ⇐⇒ gcd(F , g, h) = 1 in Fp[x].

Theorem 2.5. [5] Let p be a prime and let f(x) ∈ Z[x] be a monic p-Eisenstien polynomial

with deg(f) = n. Let K = Q(θ), where f(θ) = 0. Then

(1) pn−1 || ∆(K) if n 6≡ 0 (mod p),

(2) pn | ∆(K) if n ≡ 0 (mod p).

The following theorem of Jakhar, Khanduja and Sangwan gives necessary and sufficient

conditions for a monic irreducible trinomial to be monogenic. It can be thought of as a

more “streamlined” version of Theorem 2.4 in this special case.
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Theorem 2.6. [11] Let n ≥ 2 be an integer. Let K = Q(θ) be an algebraic number field

with θ ∈ ZK , the ring of integers of K, having minimal polynomial f(x) = xn +Axm +B

over Q, where gcd(m,n) = d0, m = m1d0 and n = n1d0. A prime factor q of ∆(f) does

not divide
[
ZK : Z[θ]

]
if and only if q satisfies one of the following conditions:

(i) when q | A and q | B, then q2 - B;

(ii) when q | A and q - B, then

either q | a2 and q - b1 or q - a2
(
(−B)m1an1

2 + (−b1)n1
)
,

where a2 = A/q and b1 = B+(−B)q
j

q , such that qj || n with j ≥ 1;

(iii) when q - A and q | B, then

either q | a1 and q - b2 or q - a1bm−12

(
(−A)m1an1−m1

1 − (−b2)n1−m1
)
,

where a1 = A+(−A)ql

q , such that ql || (n−m) with l ≥ 0, and b2 = B/q;

(iv) when q - AB and q | m with n = s′qk, m = sqk, q - gcd(s′, s), then the polynomials

xs
′
+Axs +B and

Axsq
k

+B + (−Axs −B)q
k

q

are coprime modulo q;

(v) when q - ABm, then

q2 -
(
Bn1−m1nn1

1 − (−1)m1An1mm1
1 (m1 − n1)n1−m1

)
.

Combining work of Helfgott [9] and Pasten [18], with earlier work of [10], we arrive at

the following “state of affairs” with regard to squarefree values of polynomials at prime

arguments.

Theorem 2.7. Let f(x) ∈ Z[x], and suppose that f(x) factors into a product of distinct

irreducibles, where the largest degree of any irreducible factor of f(x) is d. Define

Nf (X) = |{p ≤ X : p is prime and f(p) is squarefree}|.

Then, the following asymptotic holds unconditionally if d ≤ 3, and holds, assuming the

abc-conjecture for number fields for f(x), if d ≥ 4:

Nf (X) ∼ cf
X

log(X)
,

where

cf =
∏

r prime

(
1−

ρf (r2)

r(r − 1)

)
and ρf (r2) is the number of z ∈ (Z/r2Z)∗ such that f(z) ≡ 0 (mod r2).
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The unconditional part of the following immediate corollary of Theorem 2.7 is a main

tool used in the proof of Theorem 1.5.

Corollary 2.8. Let f(x) ∈ Z[x], and suppose that f(x) factors into a product of distinct

irreducibles, where the largest degree of any irreducible factor of f(x) is d. We suppose

further that, for each prime r, there exists some z ∈ (Z/r2Z)∗ such that f(z) 6≡ 0 (mod r2).

If d ≤ 3, or if d ≥ 4 and assuming the abc-conjecture for number fields for f(x), then

there exist infinitely many primes p such that f(p) is squarefree.

Remark 2.9. The assumption that, for each prime r, there exists some z ∈ (Z/r2Z)∗ such

that f(z) 6≡ 0 (mod r2), is made in Corollary 2.8 to avoid the situation that cf = 0 in

Theorem 2.7.

Definition 2.10. If f(z) ≡ 0 (mod r2), for some prime r and all z ∈ (Z/r2Z)∗, then we

say that f(x) has an obstruction at r.

The following proposition contains a new discriminant formula that is useful to us

here.

Proposition 2.11. Let n and t be integers with n ≥ 2. Let

f(x) = xn − t
(
xn − 1

x− 1

)
= xn − t(xn−1 + xn−2 + · · ·+ x+ 1).

Then

∆(f) =
(−1)(n+1)n/2tn−1((n+ 1)n+1t− nn(t+ 1)n+1)

(1− nt)2
.

Proof. Observe that

(x− 1)f(x) = xn+1 − (t+ 1)xn + t.

Using familiar properties of the discriminant, we see that

(2.1) ∆((x− 1)f(x)) = ∆(x− 1)∆(f)R(x− 1, f)2 = ∆(f)(1− nt)2,

where R is the resultant. By Theorem 2.1, we have that

∆(xn+1 − (t+ 1)xn + t)

= (−1)(n+1)n/2tn−1((n+ 1)n+1t− (−1)n+1nn(−(t+ 1))n+1).
(2.2)

Equating (2.1) and (2.2), and solving for ∆(f) completes the proof.

We require the following additional discriminant formula, which appears in [12].
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Theorem 2.12. Let n and k be integers with n > k ≥ 1. Let

f(x) = xn + tg(x),

where t ∈ Q and

g(x) = akx
k + ak−1x

k−1 + ak−2x
k−2 + · · ·+ a1x+ a0 ∈ Z[x]

with a0ak 6= 0. Define

ĝ(x) := ak(n− k)xk + ak−1(n− (k − 1))xk−1 + · · ·+ a1(n− 1)x+ a0n,

and suppose that

ĝ(x) =
k∏
i=1

(Aix+Bi),

where the Aix+Bi ∈ Z[x] are not necessarily distinct. If f(x) is irreducible, then

∆(f) =
(−1)

n(n+2k−1)
2 tn−1

∏k
i=1

(
(−Bi)n + t

∑k
j=0 ajA

n−j
i (−Bi)j

)
a0

.

Remark 2.13. Note that f(x) is a trinomial in Theorem 2.12 when k = 1, and Swan’s

formula in Theorem 2.1 with m = 1 is recovered in this situation.

We require the next lemma for the proof of Theorem 1.3.

Lemma 2.14. Let m ≥ 2 be an integer. Then, for j with 1 ≤ j ≤ 2m − 1,

(1) [7]

(
2m

j

)
≡

2 (mod 4) if j = 2m−1,

0 (mod 4) otherwise,

(2)
(
2m−1
j

)
≡ 1 (mod 2).

Remark 2.15. Lemma 2.14(2) follows directly from a theorem of Lucas on binomial coef-

ficients modulo p. A statement and proof of this theorem can be found in [6].

3. Proof of Theorem 1.3

Proof of Theorem 1.3. For any n ≥ 2 and t ≥ 1, the fact that fn,t(x) in (1.3) is a Pisot

polynomial follows from [2, Theorem 2]. Next, we address the monogenity of fn,t(x). Let

(3.1) D :=
(n+ 1)n+1t− nn(t+ 1)n+1

(1− nt)2
.

Suppose that fn,t(α) = 0, and let K = Q(α).



Monogenic Pisot and Anti-Pisot Polynomials 241

We begin with Theorem 1.3(1). Let p be a prime divisor of t. Since t is squarefree,

we have that fn,t(x) is p-Eisenstein, and is therefore irreducible. Moreover, gcd(t,D) ≡ 0

(mod p) if and only if n ≡ 0 (mod p), and in this case, we have that p || D since D is

squarefree. Therefore, it follows from Proposition 2.11 and Theorem 2.5 that ∆(K) =

∆(fn,t), and hence, fn,t(x) is monogenic.

We turn now to Theorem 1.3(2). Since n = 2m − 1 and t = 1, we see that

D =
22

m−2(22
m(m−1) − (2m − 1)2

m−1)

(1− 2m−1)2
≡ 0 (mod 4)

since m ≥ 2. Hence, D is never squarefree in this situation, and Theorem 1.3(1) is

ineffective in determining whether fn,1(x) is monogenic. To establish this part of the

theorem, we use Theorem 2.4 with p = 2 to show that

(3.2)
[
ZK : Z[α]

]
6≡ 0 (mod 2).

Since discriminants are translation invariant, we can use T (x) := fn,1(x + 1) in place of

fn,t(x) in Theorem 2.4 to show (3.2). To see how T (x) factors modulo 2 into irreducibles,

we define

F(x) := (x− 1)fn,1(x) = xn+1 − 2xn + 1 = x2
m − 2x2

m−1 + 1

so that

T (x) =
F(x+ 1)

x
=

(x+ 1)2
m − 2(x+ 1)2

m−1 + 1

x

=
2m∑
j=1

(
2m

j

)
xj−1 − 2

2m−1∑
j=1

(
2m − 1

j

)
xj−1.

Then, by Lemma 2.14, we have that T (x) = x2
m−1. Hence, we may let g(x) = x and

h(x) = x2
m−2 to calculate F (x) in Theorem 2.4:

F (x) =
g(x)h(x)− T (x)

2
=
x2

m−1 −
(∑2m

j=1

(
2m

j

)
xj−1 − 2

∑2m−1
j=1

(
2m−1
j

)
xj−1

)
2

= −
2m−1∑
j=1

(
2m

j

)
2

xj−1 +

2m−1∑
j=1

(
2m − 1

j

)
xj−1.

Then, by Lemma 2.14,

F (x) = x2
m−2 + x2

m−3 + · · ·+ x2
m−1

+ x2
m−1−2 + x2

m−1−3 + · · ·+ x+ 1.

Thus, gcd(F , g) = 1, which establishes (3.2). Consequently, if

22
m(m−1) − (2m − 1)2

m−1

(1− 2m−1)2

is squarefree, then f(x) is monogenic.

Remark 3.1. Computer computations verify that D, as defined in (3.1), is squarefree when

t = 1 and 3 ≤ n ≤ 49.
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4. Proof of Theorem 1.4

Proof of Theorem 1.4. We have that

f(x) = xn − (n− 1)xn−1 + xn−2 + t ∈ Z[x]

with 1 ≤ |t| ≤ n− 4, such that either |t| = 1 or
( (n−3)(n+1)

p

)
= −1 for each prime divisor

of t.

Using Corollary 2.3, straightforward calculations show that f(x) is, in fact, a Pisot

polynomial for any integer t with 1 ≤ |t| ≤ n− 4.

Next, to establish the fact that f(x) is monogenic if

(4.1) t and (nnt+ n+ 1)(t− (n− 3)(n− 2)n−2) are squarefree,

we need to calculate ∆(f). To accomplish this task, we define

F(x) :=
f̃(x)

t
= xn +

1

t
(x2 − (n− 1)x+ 1),

where f̃ denotes the reciprocal of f . Note that F(x) is irreducible since f(x) is irreducible.

Let g(x) = x2 − (n− 1)x+ 1 and

ĝ(x) = (n− 2)x2 − (n− 1)2x+ n = (x− n)((n− 2)x− 1).

Then, we apply Theorem 2.12 to F(x), with

a2 = a0 = 1, a1 = −(n+ 1), A1 = 1, B1 = −n, A2 = n− 2 and B2 = −1,

to get

∆(f) = ∆(f̃) = ∆(tF) = t2n−2∆(F)

= t2n−2(−1)n(n+3)/2 1

tn−1

(
nn + (n+ 1)

1

t

)(
1− (n− 3)(n− 2)n−2

1

t

)
= (−1)n(n+3)/2tn−3(nnt+ n+ 1)(t− (n− 3)(n− 2)n−2).

Let f(α) = 0, and let K = Q(α). Assume that conditions (4.1) hold. Note that if

|t| = 1, then

∆(K) ≡ 0 (mod (nnt+ n+ 1)(t− (n− 3)(n− 2)n−2))

since (nnt+n+ 1)(t− (n− 3)(n− 2)n−2) is squarefree. Hence, ∆(f) = ∆(K), and f(x) is

monogenic in this case. Now suppose that |t| > 1, and let p be a prime divisor of t. Since( (n−3)(n+1)
p

)
= −1, it follows that x2 − (n− 1)x+ 1 is irreducible over Fp. Hence,

f(x) ≡ xn−2(x2 − (n− 1)x+ 1) (mod p)
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is the factorization of f(x) into irreducibles over Fp. We claim that
[
ZK : Z[α]

]
6≡ 0

(mod p). Calculating F (x) in Theorem 2.4 with

T (x) := f(x), g(x) := x(x2 − (n− 1)x+ 1) and h(x) := xn−3,

we see that

F (x) =
g(x)h(x)− T (x)

p

=
xn−2(x2 − (n− 1)x+ 1)− (xn − (n− 1)xn−1 + xn−2 + t)

p
=
−t
p
.

Thus, F is a nonzero constant since t is squarefree. Therefore, gcd(F , h) = 1 in Fp[x].

Hence, by Theorem 2.4, the claim that
[
ZK : Z[α]

]
6≡ 0 (mod p) is established. Conse-

quently, as in the case of |t| = 1, we have that f(x) is monogenic since

(nnt+ n+ 1)(t− (n− 3)(n− 2)n−2)

is squarefree.

Remark 4.1. In the proof of Theorem 1.4, a recent result of Otake and Shaska [17] can

also be used to calculate ∆(F).

5. Proof of Theorem 1.5

Proof of Theorem 1.5. We give details only for Theorem 1.5(2), (3) and (7), since many

of the techniques are similar. Unless otherwise indicated, we assume that the domain for

the indeterminate t is the set of positive integers.

We begin with Theorem 1.5(2) where f(x) = xn − t
(
xn−1
x−1

)
. For arbitrary n ≥ 2, the

fact that f(x) is a Pisot polynomial follows from results of Brauer [2]. We give details

only for the case n = 4, where in this case, we see that

f(x) = x4 − t(x3 + x2 + x+ 1)

since they are similar when n = 2. Then, by Proposition 2.11,

(5.1) ∆(f) =
t3(55t− 44(t+ 1)5)

(1− 4t)2
= −t3δ(t),

where

δ(t) = 16t3 + 88t2 + 203t+ 256,

which is easily seen to be irreducible by the Rational Zero Theorem. We want to apply

Corollary 2.8 to δ(t), so we must first show that δ(t) has no obstructions at any prime
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r (see Definition 2.10). If, for some prime r, δ(z) ≡ 0 (mod r2) for all z ∈ (Z/r2Z)∗,

then δ(z) ≡ 0 (mod r) for all z ∈ (Z/rZ)∗. Hence, |(Z/rZ)∗| = r − 1 ≤ 3 since δ(t) has

at most 3 distinct zeros modulo r. Thus, we only have to check the primes r ∈ {2, 3}.
Since δ(1) ≡ 3 (mod 4) and δ(1) ≡ 5 (mod 9), δ(t) has no obstructions at these primes.

Hence, by Corollary 2.8, there exist (unconditionally) infinitely many primes p such that

δ(p) is squarefree. Let p > 2 be such a prime, and let α be the unique Pisot zero of

f(x) = x4 − p(x3 + x2 + x + 1). Let K = Q(α), and let ZK be the ring of integers of

K. Since δ(p) is squarefree, we see from (5.1) that ∆(K) ≡ 0 (mod δ(p)). Since f(x)

is p-Eisenstein and gcd(4, p) = 1, we have from Theorem 2.5 that p3 || ∆(K). Thus,

|∆(f)| = |∆(K)| from (5.1), which completes the proof that f(x) is monogenic.

Next, we address Theorem 1.5(3) where f(x) = xn − 16cn−1n(nt + w)xn−1 + nt + w.

Since

16cn−1n(nt+ w) > nt+ w and f(1) = 1− 16cn−1n(nt+ w) + nt+ w < 0

for any positive integer values of c, t, w and n, it follows from Corollary 2.3 that f(x) is

a Pisot polynomial, and hence irreducible.

We have by Theorem 2.1 that

∆(f) = (−1)(n
2−n+2)/2nn(nt+ w)n−2D(t),

where

(5.2) D(t) = (nt+ w)(16ncn(n−1)(n− 1)n−1(nt+ w)n−1 − 1).

For each value of n ∈ {3, 4, 5, 7, 9}, we give the factored form of ∆(f) in Table 5.1 to see

that no irreducible factor of D(t) has degree larger than 3.

n ∆(f)

3 33T 2(27c3T − 1)(27c3T + 1)

4 −28T 3(21633c12T 3 − 1)

5 −55T 4(27c5T − 1)(27c5T + 1)(214c10T 2 + 1)

7 77T 6(21733c21T 3 − 1)(21733c21T 3 + 1)

9 −318T 8(215c18T 2 − 1)(215c18T 2 + 1)(215c18T 2 + 28c9T + 1)(215c18T 2 − 28c9T + 1)

Table 5.1: Factored form of ∆(f) with T := nt+ w.

Since the arguments are similar for each value of n ∈ {3, 4, 5, 7, 9}, we give details

only for n = 9. Recall that w = 2 in this case. We wish to apply Corollary 2.8 to the
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polynomial

D(t) = (9t+ 2)(260c72(9t+ 2)8 − 1).

To do so, we must first show that D(t) has no obstructions at any prime r. From (5.2),

we see that if D(z) ≡ 0 (mod r2) for all z ∈ (Z/r2Z)∗, then D(z) ≡ 0 (mod r) for all

z ∈ (Z/rZ)∗. Hence, |(Z/rZ)∗| = r − 1 ≤ 9 since D(t) has at most 9 distinct zeros

modulo r. Thus, we have reduced the problem to showing that D(t) has no obstructions

at r ∈ {2, 3, 5, 7}. Observe that D(1) ≡ 1 (mod 2), so that D(t) has no obstructions

at r = 2. In Table 5.2, we give, for each r ∈ {3, 5, 7} and every congruence class of c

(mod r2), values of integers z with gcd(z, r) = 1 and the corresponding values of D(z)

(mod r2) for which D(z) 6≡ 0 (mod r2).

r [{c (mod r2)}, z,D(z) (mod r2)]

3 [{0,±3}, 1, 7], [{±1,±2,±4}, 1, 6]

5
[{0,±5,±10}, 1, 14], [{±1,±7}, 1, 5], [{±2,±11}, 2, 5],

[{±3,±4}, 1, 20], [{±6,±8}, 1, 15], [{±9,±12}, 1, 10]

7

[{0,±7,±14,±21}, 1, 38], [{±1,±18,±19}, 1, 4], [{±2,±11,±13}, 1, 25],

[{±3,±5,±8}, 1, 18], [{±4,±22,±23}, 1, 46], [{±6,±10,±16}, 1, 39],

[{±9,±15,±24}, 1, 32], [{±12,±17,±20}, 1, 11]

Table 5.2: No obstructions for D(t) at r ∈ {3, 5, 7}.

Therefore, we conclude from Corollary 2.8 that there exist (unconditionally, from Ta-

ble 5.1) infinitely many primes p such that D(p) is squarefree. Let p > 3 be such a prime,

and let α be the unique Pisot zero of f(x) = x9−144c8(9p+2)x8 +9p+2. Let K = Q(α),

and let ZK be the ring of integers of K. Since D(p) is squarefree, we see from Table 5.1,

that ∆(K) ≡ 0 (mod D(p)/(9p+ 2)). To complete the proof that f(x) is monogenic, we

use Theorem 2.6 to show that
[
ZK : Z[α]

]
6≡ 0 (mod 3q) for any prime q dividing 9p+ 2.

Applying Theorem 2.6 to f(x), we have that A = −144c8(9p+ 2) and B = 9p+ 2. Since

9p+ 2 is squarefree, we see immediately that any prime q dividing 9p+ 2 satisfies condi-

tion (i) of Theorem 2.6. Hence,
[
ZK : Z[α]

]
6≡ 0 (mod q). So, we now consider the prime

3. In this case, we have that 3 | A and 3 - B. Hence, we use condition (ii) of Theorem 2.6,

and since

a2 = A/3 = −48c8(9p+ 2) and b1 =
(9p+ 2) + (−(9p+ 2))9

3
≡ 1 (mod 3),

we see that 3 | a2 and 3 - b1. Thus, we deduce that
[
ZK : Z[α]

]
6≡ 0 (mod 3), and

therefore, f(x) is a monogenic Pisot polynomial.
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Finally, we establish Theorem 1.5(7), where

(5.3) f(x) = xn − t(x3 + (2n+ 1)x2 + (n2 + 2n− 1)x+ n2 − n+ 1),

such that n ≥ 4, n ≡ 0 (mod 2) and n 6≡ 10 (mod 14). Note that f(x) is p-Eisenstein,

and hence irreducible, if t is a prime p > n2 − n+ 1.

We show now that f(x) is an anti-Pisot polynomial when t is a sufficiently large prime.

The special case n = 4 is handled first. In this situation, we have that

(5.4) f(x) = x4 − tx3 − 9tx2 − 23tx− 13t.

When t is a prime with t > 256, we see from Table 5.3 that f(x) has four real zeros ρ1,

ρ2, ρ3 and α, where

−5 < ρ1 < −4, −4 < ρ2 < −3, −1 < ρ3 < 0 and α > 1.

Thus, α is an anti-Pisot number and f(x) is an anti-Pisot polynomial.

z −5 −4 −3 −2 −1 0 1

f(z) 2t+ 625 −t+ 256 2t+ 81 5t+ 16 2t+ 1 −13t −46t+ 1

Table 5.3: Values of f(x) in (5.4).

Suppose now that n ≥ 6, and define

F (x) :=
−f̃(x)

t(n2 − n+ 1)

= xn +

(
n2 + 2n− 1

n2 − n+ 1

)
xn−1 +

(
2n+ 1

n2 − n+ 1

)
xn−2

+

(
1

n2 − n+ 1

)
x+

1

t(n2 − n+ 1)
,

where

f̃(x) = −t(n2 − n+ 1)xn − t(n2 + 2n− 1)xn−1 − t(2n+ 1)xn−2 − txn−3 + 1

is the reciprocal of f(x) in (5.3). Note that if t > 0, then the constant term and every

coefficient of F (x) are positive. Then

S :=
n2 + 2n− 1

n2 − n+ 1
− 1− 2n+ 1

n2 − n+ 1
− 1

n2 − n+ 1
− 1

t(n2 − n+ 1)

=
tn− 4t− 1

t(n2 − n+ 1)
≥ 2t− 1

t(n2 − n+ 1)
> 0.
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It follows from Theorem 2.2 that F (x) has exactly one zero ρ with |ρ| ≥ 1. Note that

ρ ∈ R. Consequently, f(x) in (5.3) has exactly one zero β with |β| ≤ 1, and in fact,

β = 1/ρ ∈ R. Hence, if |β| = 1, then β = ±1. However,

f(−1) = (n− 2)t+ (−1)n > 0 and f(1) = −(2n2 + 3n+ 2)t+ 1 < 0.

Thus, |β| < 1. By Descartes’ rule of signs, we see from (5.3), that f(x) has exactly one

positive real zero α. Since f(1) < 0, we conclude that α > 1. Therefore, for any prime

value p of t with p > n2 − n + 1, we have that f(x) is an anti-Pisot polynomial and α is

an anti-Pisot number.

We show next that f(x) is monogenic. Let

g(x) = x3 + (2n+ 1)x2 + (n2 + 2n− 1)x+ n2 − n+ 1,

and

ĝ(x) = (n− 3)x3 + (n− 2)(2n+ 1)x2 + (n− 1)(n2 + 2n− 1)x+ n(n2 − n+ 1)

= (x+ 1)(x+ n)((n− 3)x+ n2 − n+ 1).

Then, assuming that f(x) is irreducible, we apply Theorem 2.12 with t replaced with −t
to get

(5.5) ∆(f) = (−1)(n
2+7n)/2tn−1((n− 2)t+ (−1)n)(t+ (−1)n−1nn)Z,

where

Z = (n− 3)n−3(4n2 − 3n+ 22)t+ (−1)n(n2 − n+ 1)n−1.

Recall that n ≡ 0 (mod 2). Then

δ(t) :=
∆(f)

(−1)(n2+7n)/2tn−1

= ((n− 2)t+ 1)(t− nn)((n− 3)n−3(4n2 − 3n+ 22)t+ (n2 − n+ 1)n−1).

(5.6)

We desire to apply Corollary 2.8 to δ(t). Observe that the three linear factors of δ(t) in

(5.6) are distinct. We must also show that δ(t) has no obstructions. Straightforward gcd

arguments show that

gcd((n− 3)n−3(4n2 − 3n+ 22), (n2 − n+ 1)n−1) = 1

when n ≡ 0 (mod 2) and n 6≡ 10 (mod 14). Thus, we may proceed as in the proofs of

Theorem 1.5(2) and (3) to conclude that we only have to check for obstructions of δ(t) at

the primes r ∈ {2, 3}. It is easy to see that δ(1) 6≡ 0 (mod 4). It is also straightforward

to show that δ(1) + δ(−1) 6≡ 0 (mod 9), so that at least one of δ(1) and δ(−1) is not
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congruent to 0 (mod 9), for any n ≡ 0 (mod 2). Thus, δ(t) has no obstructions, and

therefore, by Corollary 2.8, there exist infinitely many primes p > n2 − n + 1 such that

δ(p) is squarefree. For such a prime p, it follows that ∆(K) ≡ 0 (mod δ(p)). To complete

the proof that f(x) is monogenic, we need to show that

(5.7)
[
ZK : Z[α]

]
6≡ 0 (mod p).

But (5.7) follows immediately from Theorem 2.5 and (5.5), since f(x) is Eisenstein with

respect to p > n2 − n+ 1 > n.
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