Monogenic Pisot and Anti-Pisot Polynomials

Lenny Jones

Abstract. A *Pisot* number is a real algebraic integer $\alpha > 1$ such that all of its Galois conjugates, other than α itself, lie inside the unit circle. An *anti-Pisot* number is a real algebraic integer $\alpha > 1$, such that exactly one Galois conjugate of α lies inside the unit circle, and α has at least one Galois conjugate, other than α itself, outside the unit circle. We call the minimal polynomials of these algebraic integers, respectively, Pisot and anti-Pisot polynomials. In this article, we find infinite families of Pisot (anti-Pisot) polynomials $f(x)$ such that $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis for the ring of integers of $\mathbb{Q}(\alpha)$, where α is a Pisot (anti-Pisot) number and deg(f) = n, for certain n. We refer to these polynomials as monogenic Pisot (anti-Pisot) polynomials.

1. Introduction

A Pisot (or Pisot–Vijayaraghavan) number [\[1\]](#page-15-1) is a real algebraic integer $\alpha > 1$ such that all other zeros of the minimal polynomial $f(x) \in \mathbb{Z}[x]$ of α lie inside the unit circle. We call $f(x)$ a Pisot polynomial. Examples of Pisot numbers include the integers larger than 1 and the Golden Ratio $\phi = (1 + \sqrt{5})/2$. Although Pisot numbers were known prior to 1920 [\[1\]](#page-15-1), it was not until the publication of Pisot's thesis [\[21\]](#page-16-0) in 1938 that widespread interest ensued. In 1944, Siegel [\[26\]](#page-17-0) proved that the smallest Pisot number (also known as the plastic number [\[20\]](#page-16-1)) is the real zero of $x^3 - x - 1$. Shortly before Siegel's paper, Salem [\[22\]](#page-16-2) proved the remarkable fact that the set of all Pisot numbers is closed. Aside from their many interesting intrinsic properties, Pisot numbers have found applications in harmonic analysis [\[13\]](#page-16-3), Fourier analysis [\[23\]](#page-17-1), dynamical systems [\[24\]](#page-17-2) and quasicrystals [\[14,](#page-16-4) [15\]](#page-16-5).

An anti-Pisot number [\[25\]](#page-17-3) is a real algebraic integer $\alpha > 1$, such that exactly one of the Galois conjugates of α lies inside the unit circle, and α has at least one Galois conjugate, other than α itself, outside the unit circle. We refer to the minimal polynomial of an anti-Pisot number as an *anti-Pisot polynomial*. Anti-Pisot numbers were used by Sidorov and Solomyak [\[25\]](#page-17-3) to study when certain sets related to anti-Pisot polynomials with coefficients in $\{-1, 0, 1\}$ are dense in R. Noting that if $\alpha \in (1, 2)$, with $\alpha \neq (1 + \sqrt{5})/2$, has a real conjugate β such that $1/|\beta|$ is a Pisot number, then α is an anti-Pisot number, Hare and

Communicated by Ming-Lun Hsieh.

Received March 18, 2021; Accepted October 21, 2021.

²⁰²⁰ Mathematics Subject Classification. Primary: 11R06; Secondary: 12F05, 11R09.

Key words and phrases. Pisot, anti-Pisot, monogenic, irreducible polynomial.

Sidorov [\[8\]](#page-15-2) have recently utilized anti-Pisot numbers in their study of conjugates of Pisot numbers.

Throughout this article, unless stated otherwise, when we say $f(x) \in \mathbb{Z}[x]$ is "irreducible" or "reducible", we mean over the rational numbers \mathbb{Q} . Let $f(x) \in \mathbb{Z}[x]$ be monic and irreducible with deg(f) = n. Suppose that $f(\theta) = 0$. Let $K = \mathbb{Q}(\theta)$ and let \mathbb{Z}_K denote the ring of integers of K. We then have the well-known equation $[4]$

(1.1)
$$
\Delta(f) = \left[\mathbb{Z}_K : \mathbb{Z}[\theta]\right]^2 \Delta(K),
$$

where $\Delta(*)$ denotes the discriminant of *. We say a monic polynomial $f(x) \in \mathbb{Z}[x]$ is *monogenic* if $f(x)$ is irreducible and $[\mathbb{Z}_K : \mathbb{Z}[\theta]] = 1$; or, equivalently from [\(1.1\)](#page-1-0), that $\Delta(f) = \Delta(K)$. Thus, $f(x)$ is monogenic if and only if

(1.2)
$$
\{1, \theta, \theta^2, \dots, \theta^{n-1}\} \text{ is a basis for } \mathbb{Z}_K.
$$

The basis in [\(1.2\)](#page-1-1) is called a *power basis*, which facilitates calculations in \mathbb{Z}_K . Observe from [\(1.1\)](#page-1-0) that if $\Delta(f)$ is squarefree, then $f(x)$ is monogenic.

The work in this article was motivated by [\[3,](#page-15-4)[28,](#page-17-4)[29\]](#page-17-5), and, in particular, by the following theorem of Cheng and Zhuang [\[3\]](#page-15-4):

Theorem 1.1. Let K be a real Galois extension over Q given by its integral basis β_1, β_2 , \ldots, β_n . There exists a polynomial time algorithm to determine integers a_1, a_2, \ldots, a_n such that

$$
\alpha = a_1 \beta_1 + a_2 \beta_2 + \cdots + a_n \beta_n,
$$

where α is a Pisot number and $K = \mathbb{Q}(\alpha)$.

Thus, given a Pisot (or anti-Pisot) number α whose Pisot (or anti-Pisot) polynomial $f(x)$ has degree n, it is somewhat natural to ask if $f(x)$ is monogenic. That is,

Question 1.2. When is $B = \{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}\$ a basis for \mathbb{Z}_K ?

Since α^k is a Pisot number for any integer $k \geq 1$ [\[1\]](#page-15-1), we make the interesting observation that if B is in fact a basis for \mathbb{Z}_K , then \mathbb{Z}_K possesses a basis in which every element, other than 1, is a Pisot number. We say that the minimal polynomial $f(x)$ for the Pisot number α is a monogenic Pisot polynomial when \mathbb{Z}_K has the power basis β . We define a monogenic anti-Pisot polynomial similarly.

In this article, we provide a partial answer to Question [1.2](#page-1-2) by finding sufficient conditions for the monogenity of certain classes of Pisot polynomials, as well as proving the existence of infinite families of monogenic Pisot and anti-Pisot polynomials. More precisely, we prove the following:

Theorem 1.3. Let n and t be integers with $n \geq 2$ and $t \geq 1$. Let

(1.3)
$$
f_{n,t}(x) = x^n - t \left(\frac{x^n - 1}{x - 1} \right).
$$

(1) Suppose that $t \geq 2$. If

$$
t
$$
 and
$$
\frac{(n+1)^{n+1}t - n^n(t+1)^{n+1}}{(1-nt)^2}
$$

are squarefree, then $f_{n,t}(x)$ is a monogenic Pisot polynomial.

(2) Suppose that $t = 1$ and $n = 2^m - 1$ for some integer $m \ge 2$. If

$$
\frac{(2^m-1)^{2^m-1}-2^{2^m(m-1)}}{(2^{m-1}-1)^2}
$$

is squarefree, then $f_{n,1}(x)$ is a monogenic Pisot polynomial.

Theorem 1.4. Let n and t be integers with $n \geq 5$ and $1 \leq |t| \leq n-4$. Suppose that either $|t| = 1$ or $\left(\frac{(n-3)(n+1)}{p}\right) = -1$ for each prime divisor p of t, where $\left(\frac{*}{p}\right)$ $\binom{*}{p}$ denotes the Legendre symbol. Then

$$
f(x) = x^n - (n - 1)x^{n-1} + x^{n-2} + t
$$

is a Pisot polynomial, and $f(x)$ is monogenic if

$$
t
$$
 and $(n^n t + n + 1)(t - (n - 3)(n - 2)^{n-2})$

are squarefree.

The next theorem proves the existence, in various situations, of infinite families of monogenic Pisot and anti-Pisot polynomials.

Theorem 1.5. In each of the following situations, there exist infinitely many prime values of the indeterminate t such that

- (1) $x^3 t(x^2 + a + 1)$ is a monogenic Pisot polynomial when $a \in \{0, 2\},$
- (2) $x^n t \left(\frac{x^{n-1}}{x-1} \right)$ $\binom{n}{x-1}$ is a monogenic Pisot polynomial when $n \in \{2,4\}$,
- (3) $x^n 16c^{n-1}n(nt+w)x^{n-1} + nt+w$ is a monogenic Pisot polynomial when c is a positive integer and $(n, w) \in \{(3, 1), (4, 2), (5, 1), (7, 1), (9, 2)\},\$
- (4) $x^n tx t$ is a monogenic anti-Pisot polynomial when $n \equiv 0 \pmod{2}$,
- (5) $x^n t(x^2 + (n-1)x + 1)$ is a monogenic anti-Pisot polynomial when $n \geq 4$,
- (6) $x^n-t(x^3+(\frac{5n+1}{2}))$ $\frac{n+1}{2}$) $x^2 + \left(\frac{3n^2 + 3n - 4}{2}\right)$ $\frac{-3n-4}{2}$) $x+\frac{3n^2-5n+4}{2}$ $\left(\frac{5n+4}{2}\right)$ is a monogenic anti-Pisot polynomial when $n \geq 5$ with $n \equiv 1 \pmod{4}$,
- (7) $x^n t(x^3 + (2n + 1)x^2 + (n^2 + 2n 1)x + n^2 n + 1)$ is a monogenic anti-Pisot polynomial when $n \geq 4$ with $n \equiv 0 \pmod{2}$ and $n \not\equiv 10 \pmod{14}$.

It turns out that all polynomials $f(x)$ in Theorem [1.5](#page-2-0) have the property that the largest degree of any irreducible factor of $\Delta(f)$ in the indeterminate t is at most 3. This fact allows us to achieve the results of Theorem [1.5](#page-2-0) unconditionally. In Theorem [1.5\(](#page-2-0)1), (2) and (3), more general results are attainable if we allow the degree of an irreducible factor of $\Delta(f)$ to be larger than 3. However, in this situation, the conclusions are conditional on the abc-conjecture for number fields (see Theorem [2.7](#page-5-0) and Corollary [2.8\)](#page-6-0).

- *Remarks* 1.6. (1) When $t = 1$, the polynomials $f_{n,1}(x)$ in [\(1.3\)](#page-2-1) are characteristic polynomials of generalized Fibonacci recurrence sequences, and the Pisot numbers that are zeros of $f_{n,1}(x)$ are known as *Littlewood Pisot numbers* [\[16\]](#page-16-6).
	- (2) The Pisot numbers α in Theorems [1.3](#page-2-2) and [1.4](#page-2-3) are units in $\mathbb{Z}_{\mathbb{Q}(\alpha)}$ whenever $|t| = 1$.
	- (3) The existence of infinitely many prime values of t, such that the polynomials in Theorem [1.5\(](#page-2-0)5) and (6) of are monogenic, was established in [\[12\]](#page-16-7).

2. Preliminaries

The formula for the discriminant of an arbitrary monic trinomial, due to Swan [\[27\]](#page-17-6), is given in the following theorem.

Theorem 2.1. Let $f(x) = x^n + Ax^m + B \in \mathbb{Q}[x]$, where $0 < m < n$, and let $d = \gcd(n, m)$. Then

$$
\Delta(f) = (-1)^{n(n-1)/2} B^{m-1} (n^{n/d} B^{(n-m)/d} - (-1)^{n/d} (n-m)^{(n-m)/d} m^{m/d} A^{n/d})^d.
$$

The next theorem is due to Perron [\[19\]](#page-16-8).

Theorem 2.2. Let $n \geq 2$ and let

$$
f(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0 \in \mathbb{C}[x]
$$

with $a_0 \neq 0$, be such that

$$
|a_{n-1}| > 1 + |a_{n-2}| + |a_{n-3}| + \cdots + |a_0|.
$$

Then $f(x)$ has exactly $n-1$ zeros inside the unit circle. Furthermore, if $f(x) \in \mathbb{Z}[x]$, then $f(x)$ is irreducible.

We then have the following corollary.

Corollary 2.3. Let $f(x)$ be a polynomial satisfying the hypotheses of Theorem [2.2](#page-3-0). If $f(1) < 0$, then $f(x)$ is a Pisot polynomial.

Proof. By Theorem [2.2,](#page-3-0) $f(x)$ is irreducible and has exactly one zero α with $|\alpha| \geq 1$. Hence, we deduce that $\alpha \in \mathbb{R}$ and $|\alpha| > 1$. Since the leading coefficient of $f(x)$ is positive, and $f(1) < 0$, it follows that $\alpha > 1$. Thus, $f(x)$ is a Pisot polynomial. \Box

The next theorem is a standard tool used to determine if an irreducible polynomial is monogenic.

Theorem 2.4. (Dedekind's Criterion [\[4\]](#page-15-3)) Let θ be an algebraic integer, and let K denote the number field $\mathbb{Q}(\theta)$ with ring of integers \mathbb{Z}_K . Let $T(x) \in \mathbb{Z}[x]$ be the monic minimal polynomial of θ . Let p be a prime number and let $\overline{*}$ denote reduction of $*$ modulo p (in \mathbb{Z} , $\mathbb{Z}[x]$ or $\mathbb{Z}[\theta]$). Let

$$
\overline{T}(x) = \prod_{i=1}^{s} \overline{\gamma_i}(x)^{e_i}
$$

be the factorization of $T(x)$ modulo p in $\mathbb{F}_p[x]$, and set

$$
g(x) = \prod_{i=1}^{s} \gamma_i(x),
$$

where the $\gamma_i(x) \in \mathbb{Z}[x]$ are arbitrary monic lifts of the $\overline{\gamma_i}(x)$. Let $h(x) \in \mathbb{Z}[x]$ be a monic lift of $\overline{T}(x)/\overline{g}(x)$ and set

$$
F(x) = \frac{g(x)h(x) - T(x)}{p} \in \mathbb{Z}[x].
$$

Then

 $[\mathbb{Z}_K : \mathbb{Z}[\theta]] \not\equiv 0 \pmod{p} \iff \gcd(\overline{F}, \overline{g}, \overline{h}) = 1 \text{ in } \mathbb{F}_p[x].$

Theorem 2.5. [\[5\]](#page-15-5) Let p be a prime and let $f(x) \in \mathbb{Z}[x]$ be a monic p-Eisenstien polynomial with deg(f) = n. Let $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$. Then

- (1) $p^{n-1} \mid \mid \Delta(K)$ if $n \not\equiv 0 \pmod{p}$,
- (2) $p^n | \Delta(K)$ if $n \equiv 0 \pmod{p}$.

The following theorem of Jakhar, Khanduja and Sangwan gives necessary and sufficient conditions for a monic irreducible trinomial to be monogenic. It can be thought of as a more "streamlined" version of Theorem [2.4](#page-4-0) in this special case.

Theorem 2.6. [\[11\]](#page-16-9) Let $n \geq 2$ be an integer. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field with $\theta \in \mathbb{Z}_K$, the ring of integers of K, having minimal polynomial $f(x) = x^n + Ax^m + B$ over Q, where $gcd(m, n) = d_0$, $m = m_1 d_0$ and $n = n_1 d_0$. A prime factor q of $\Delta(f)$ does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if q satisfies one of the following conditions:

- (i) when $q \mid A$ and $q \mid B$, then $q^2 \nmid B$;
- (ii) when $q \mid A$ and $q \nmid B$, then

$$
either q \mid a_2 \text{ and } q \nmid b_1 \text{ or } q \nmid a_2 \left((-B)^{m_1} a_2^{n_1} + (-b_1)^{n_1} \right),
$$

where $a_2 = A/q$ and $b_1 = \frac{B + (-B)^{q^j}}{q}$, such that $q^j \mid n$ with $j \ge 1$;

(iii) when $q \nmid A$ and $q \mid B$, then

either
$$
q \mid a_1
$$
 and $q \nmid b_2$ or $q \nmid a_1 b_2^{m-1} \big((-A)^{m_1} a_1^{n_1-m_1} - (-b_2)^{n_1-m_1} \big),$

where
$$
a_1 = \frac{A + (-A)^{q^t}}{q}
$$
, such that $q^l \mid (n - m)$ with $l \ge 0$, and $b_2 = B/q$;

(iv) when $q \nmid AB$ and $q \mid m$ with $n = s'q^k$, $m = sq^k$, $q \nmid \gcd(s', s)$, then the polynomials

$$
x^{s'} + Ax^s + B \quad and \quad \frac{Ax^{sq^k} + B + (-Ax^s - B)^{q^k}}{q}
$$

are coprime modulo q;

(v) when $q \nmid ABm$, then

$$
q^{2} \nmid (B^{n_{1}-m_{1}}n_{1}^{n_{1}} - (-1)^{m_{1}}A^{n_{1}}m_{1}^{m_{1}}(m_{1}-n_{1})^{n_{1}-m_{1}}).
$$

Combining work of Helfgott [\[9\]](#page-15-6) and Pasten [\[18\]](#page-16-10), with earlier work of [\[10\]](#page-16-11), we arrive at the following "state of affairs" with regard to squarefree values of polynomials at prime arguments.

Theorem 2.7. Let $f(x) \in \mathbb{Z}[x]$, and suppose that $f(x)$ factors into a product of distinct irreducibles, where the largest degree of any irreducible factor of $f(x)$ is d. Define

$$
N_f(X) = |\{p \le X : p \text{ is prime and } f(p) \text{ is squarefree}\}|.
$$

Then, the following asymptotic holds unconditionally if $d \leq 3$, and holds, assuming the abc-conjecture for number fields for $f(x)$, if $d \geq 4$:

$$
N_f(X) \sim c_f \frac{X}{\log(X)},
$$

where

$$
c_f = \prod_{r \text{ prime}} \left(1 - \frac{\rho_f(r^2)}{r(r-1)} \right)
$$

and $\rho_f(r^2)$ is the number of $z \in (\mathbb{Z}/r^2\mathbb{Z})^*$ such that $f(z) \equiv 0 \pmod{r^2}$.

The unconditional part of the following immediate corollary of Theorem [2.7](#page-5-0) is a main tool used in the proof of Theorem [1.5.](#page-2-0)

Corollary 2.8. Let $f(x) \in \mathbb{Z}[x]$, and suppose that $f(x)$ factors into a product of distinct irreducibles, where the largest degree of any irreducible factor of $f(x)$ is d. We suppose further that, for each prime r, there exists some $z \in (\mathbb{Z}/r^2\mathbb{Z})^*$ such that $f(z) \not\equiv 0 \pmod{r^2}$. If $d \leq 3$, or if $d \geq 4$ and assuming the abc-conjecture for number fields for $f(x)$, then there exist infinitely many primes p such that $f(p)$ is squarefree.

Remark 2.9. The assumption that, for each prime r, there exists some $z \in (\mathbb{Z}/r^2\mathbb{Z})^*$ such that $f(z) \neq 0 \pmod{r^2}$, is made in Corollary [2.8](#page-6-0) to avoid the situation that $c_f = 0$ in Theorem [2.7.](#page-5-0)

Definition 2.10. If $f(z) \equiv 0 \pmod{r^2}$, for some prime r and all $z \in (\mathbb{Z}/r^2\mathbb{Z})^*$, then we say that $f(x)$ has an *obstruction* at r.

The following proposition contains a new discriminant formula that is useful to us here.

Proposition 2.11. Let n and t be integers with $n \geq 2$. Let

$$
f(x) = xn - t\left(\frac{x^{n} - 1}{x - 1}\right) = xn - t(xn-1 + xn-2 + \dots + x + 1).
$$

Then

$$
\Delta(f) = \frac{(-1)^{(n+1)n/2}t^{n-1}((n+1)^{n+1}t - n^n(t+1)^{n+1})}{(1-nt)^2}.
$$

Proof. Observe that

$$
(x-1)f(x) = x^{n+1} - (t+1)x^n + t.
$$

Using familiar properties of the discriminant, we see that

(2.1)
$$
\Delta((x-1)f(x)) = \Delta(x-1)\Delta(f)R(x-1,f)^2 = \Delta(f)(1-nt)^2,
$$

where R is the resultant. By Theorem [2.1,](#page-3-1) we have that

(2.2)
$$
\Delta(x^{n+1} - (t+1)x^n + t) = (-1)^{(n+1)n/2} t^{n-1} ((n+1)^{n+1} t - (-1)^{n+1} n^n (-(t+1))^{n+1}).
$$

Equating [\(2.1\)](#page-6-1) and [\(2.2\)](#page-6-2), and solving for $\Delta(f)$ completes the proof.

We require the following additional discriminant formula, which appears in [\[12\]](#page-16-7).

 \Box

Theorem 2.12. Let n and k be integers with $n > k \geq 1$. Let

$$
f(x) = x^n + tg(x),
$$

where $t \in \mathbb{Q}$ and

$$
g(x) = a_k x^k + a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]
$$

with $a_0a_k \neq 0$. Define

$$
\widehat{g}(x) := a_k(n-k)x^k + a_{k-1}(n-(k-1))x^{k-1} + \cdots + a_1(n-1)x + a_0n,
$$

and suppose that

$$
\widehat{g}(x) = \prod_{i=1}^{k} (A_i x + B_i),
$$

where the $A_ix + B_i \in \mathbb{Z}[x]$ are not necessarily distinct. If $f(x)$ is irreducible, then

$$
\Delta(f) = \frac{(-1)^{\frac{n(n+2k-1)}{2}} t^{n-1} \prod_{i=1}^k ((-B_i)^n + t \sum_{j=0}^k a_j A_i^{n-j} (-B_i)^j)}{a_0}
$$

.

Remark 2.13. Note that $f(x)$ is a trinomial in Theorem [2.12](#page-7-0) when $k = 1$, and Swan's formula in Theorem [2.1](#page-3-1) with $m = 1$ is recovered in this situation.

We require the next lemma for the proof of Theorem [1.3.](#page-2-2)

Lemma 2.14. Let $m \geq 2$ be an integer. Then, for j with $1 \leq j \leq 2^m - 1$,

$$
(1) [7] \binom{2^m}{j} \equiv \begin{cases} 2 \pmod{4} & \text{if } j = 2^{m-1}, \\ 0 \pmod{4} & \text{otherwise}, \end{cases}
$$

 (2) $\binom{2^m-1}{i}$ $j^{(-1)} \equiv 1 \pmod{2}.$

Remark 2.15. Lemma [2.14\(](#page-7-1)2) follows directly from a theorem of Lucas on binomial coefficients modulo p. A statement and proof of this theorem can be found in [\[6\]](#page-15-8).

3. Proof of Theorem [1.3](#page-2-2)

Proof of Theorem [1.3](#page-2-2). For any $n \geq 2$ and $t \geq 1$, the fact that $f_{n,t}(x)$ in [\(1.3\)](#page-2-1) is a Pisot polynomial follows from [\[2,](#page-15-9) Theorem 2]. Next, we address the monogenity of $f_{n,t}(x)$. Let

(3.1)
$$
D := \frac{(n+1)^{n+1}t - n^n(t+1)^{n+1}}{(1-nt)^2}.
$$

Suppose that $f_{n,t}(\alpha) = 0$, and let $K = \mathbb{Q}(\alpha)$.

We begin with Theorem [1.3\(](#page-2-2)1). Let p be a prime divisor of t. Since t is squarefree, we have that $f_{n,t}(x)$ is p-Eisenstein, and is therefore irreducible. Moreover, $gcd(t, D) \equiv 0$ (mod p) if and only if $n \equiv 0 \pmod{p}$, and in this case, we have that $p \parallel D$ since D is squarefree. Therefore, it follows from Proposition [2.11](#page-6-3) and Theorem [2.5](#page-4-1) that $\Delta(K)$ = $\Delta(f_{n,t})$, and hence, $f_{n,t}(x)$ is monogenic.

We turn now to Theorem [1.3\(](#page-2-2)2). Since $n = 2^m - 1$ and $t = 1$, we see that

$$
D = \frac{2^{2^m - 2} (2^{2^m(m-1)} - (2^m - 1)^{2^m - 1})}{(1 - 2^{m-1})^2} \equiv 0 \pmod{4}
$$

since $m \geq 2$. Hence, D is never squarefree in this situation, and Theorem [1.3\(](#page-2-2)1) is ineffective in determining whether $f_{n,1}(x)$ is monogenic. To establish this part of the theorem, we use Theorem [2.4](#page-4-0) with $p = 2$ to show that

$$
\left[\mathbb{Z}_K : \mathbb{Z}[\alpha]\right] \not\equiv 0 \pmod{2}.
$$

Since discriminants are translation invariant, we can use $T(x) := f_{n,1}(x+1)$ in place of $f_{n,t}(x)$ in Theorem [2.4](#page-4-0) to show [\(3.2\)](#page-8-0). To see how $T(x)$ factors modulo 2 into irreducibles, we define

$$
\mathcal{F}(x) := (x - 1)f_{n,1}(x) = x^{n+1} - 2x^n + 1 = x^{2^m} - 2x^{2^m - 1} + 1
$$

so that

$$
T(x) = \frac{\mathcal{F}(x+1)}{x} = \frac{(x+1)^{2^m} - 2(x+1)^{2^m-1} + 1}{x}
$$

=
$$
\sum_{j=1}^{2^m} {2^m \choose j} x^{j-1} - 2 \sum_{j=1}^{2^m-1} {2^m - 1 \choose j} x^{j-1}.
$$

Then, by Lemma [2.14,](#page-7-1) we have that $\overline{T}(x) = x^{2^m-1}$. Hence, we may let $g(x) = x$ and $h(x) = x^{2^m-2}$ to calculate $F(x)$ in Theorem [2.4:](#page-4-0)

$$
F(x) = \frac{g(x)h(x) - T(x)}{2} = \frac{x^{2^m - 1} - (\sum_{j=1}^{2^m} {\binom{2^m}{j}} x^{j-1} - 2 \sum_{j=1}^{2^m - 1} {\binom{2^m - 1}{j}} x^{j-1})}{2}
$$

=
$$
-\sum_{j=1}^{2^m - 1} {\binom{2^m}{j}} x^{j-1} + \sum_{j=1}^{2^m - 1} {\binom{2^m - 1}{j}} x^{j-1}.
$$

Then, by Lemma [2.14,](#page-7-1)

$$
\overline{F}(x) = x^{2^m-2} + x^{2^m-3} + \dots + x^{2^{m-1}} + x^{2^{m-1}-2} + x^{2^{m-1}-3} + \dots + x + 1.
$$

Thus, $gcd(\overline{F}, \overline{g}) = 1$, which establishes [\(3.2\)](#page-8-0). Consequently, if

$$
\frac{2^{2^m(m-1)} - (2^m - 1)^{2^m - 1}}{(1 - 2^{m-1})^2}
$$

is squarefree, then $f(x)$ is monogenic.

Remark 3.1. Computer computations verify that D , as defined in (3.1) , is squarefree when $t = 1$ and $3 \leq n \leq 49$.

 \Box

4. Proof of Theorem [1.4](#page-2-3)

Proof of Theorem [1.4](#page-2-3). We have that

$$
f(x) = xn - (n - 1)xn-1 + xn-2 + t \in \mathbb{Z}[x]
$$

with $1 \leq |t| \leq n-4$, such that either $|t| = 1$ or $\left(\frac{(n-3)(n+1)}{p}\right) = -1$ for each prime divisor of t.

Using Corollary [2.3,](#page-4-2) straightforward calculations show that $f(x)$ is, in fact, a Pisot polynomial for any integer t with $1 \leq |t| \leq n-4$.

Next, to establish the fact that $f(x)$ is monogenic if

(4.1)
$$
t
$$
 and $(n^n t + n + 1)(t - (n - 3)(n - 2)^{n-2})$ are squarefree,

we need to calculate $\Delta(f)$. To accomplish this task, we define

$$
\mathcal{F}(x) := \frac{f(x)}{t} = x^n + \frac{1}{t}(x^2 - (n-1)x + 1),
$$

where \tilde{f} denotes the reciprocal of f. Note that $\mathcal{F}(x)$ is irreducible since $f(x)$ is irreducible. Let $g(x) = x^2 - (n-1)x + 1$ and

$$
\widehat{g}(x) = (n-2)x^2 - (n-1)^2x + n = (x-n)((n-2)x - 1).
$$

Then, we apply Theorem [2.12](#page-7-0) to $\mathcal{F}(x)$, with

 $a_2 = a_0 = 1$, $a_1 = -(n+1)$, $A_1 = 1$, $B_1 = -n$, $A_2 = n-2$ and $B_2 = -1$,

to get

$$
\Delta(f) = \Delta(\tilde{f}) = \Delta(t\mathcal{F}) = t^{2n-2}\Delta(\mathcal{F})
$$

= $t^{2n-2}(-1)^{n(n+3)/2}\frac{1}{t^{n-1}}\left(n^n + (n+1)\frac{1}{t}\right)\left(1 - (n-3)(n-2)^{n-2}\frac{1}{t}\right)$
= $(-1)^{n(n+3)/2}t^{n-3}(n^nt + n + 1)(t - (n-3)(n-2)^{n-2}).$

Let $f(\alpha) = 0$, and let $K = \mathbb{Q}(\alpha)$. Assume that conditions [\(4.1\)](#page-9-0) hold. Note that if $|t| = 1$, then

$$
\Delta(K) \equiv 0 \pmod{(n^n t + n + 1)(t - (n - 3)(n - 2)^{n-2})}
$$

since $(n^n t + n + 1)(t - (n - 3)(n - 2)^{n-2})$ is squarefree. Hence, $\Delta(f) = \Delta(K)$, and $f(x)$ is monogenic in this case. Now suppose that $|t| > 1$, and let p be a prime divisor of t. Since $\left(\frac{(n-3)(n+1)}{p}\right) = -1$, it follows that $x^2 - (n-1)x + 1$ is irreducible over \mathbb{F}_p . Hence,

$$
f(x) \equiv x^{n-2}(x^2 - (n-1)x + 1) \pmod{p}
$$

is the factorization of $f(x)$ into irreducibles over \mathbb{F}_p . We claim that $[\mathbb{Z}_K : \mathbb{Z}[\alpha]] \neq 0$ (mod p). Calculating $F(x)$ in Theorem [2.4](#page-4-0) with

$$
T(x) := f(x), \quad g(x) := x(x^2 - (n-1)x + 1) \quad \text{and} \quad h(x) := x^{n-3},
$$

we see that

$$
F(x) = \frac{g(x)h(x) - T(x)}{p}
$$

=
$$
\frac{x^{n-2}(x^2 - (n-1)x + 1) - (x^n - (n-1)x^{n-1} + x^{n-2} + t)}{p} = \frac{-t}{p}.
$$

Thus, \overline{F} is a nonzero constant since t is squarefree. Therefore, $gcd(\overline{F}, \overline{h}) = 1$ in $\mathbb{F}_p[x]$. Hence, by Theorem [2.4,](#page-4-0) the claim that $[\mathbb{Z}_K : \mathbb{Z}[\alpha]] \not\equiv 0 \pmod{p}$ is established. Consequently, as in the case of $|t| = 1$, we have that $f(x)$ is monogenic since

$$
(n^n t + n + 1)(t - (n - 3)(n - 2)^{n-2})
$$

is squarefree.

Remark 4.1. In the proof of Theorem [1.4,](#page-2-3) a recent result of Otake and Shaska [\[17\]](#page-16-12) can also be used to calculate $\Delta(\mathcal{F})$.

5. Proof of Theorem [1.5](#page-2-0)

Proof of Theorem [1.5](#page-2-0). We give details only for Theorem [1.5\(](#page-2-0)2), (3) and (7), since many of the techniques are similar. Unless otherwise indicated, we assume that the domain for the indeterminate t is the set of positive integers.

We begin with Theorem [1.5\(](#page-2-0)2) where $f(x) = x^n - t\left(\frac{x^{n-1}}{x-1}\right)$ $\frac{x^{n}-1}{x-1}$). For arbitrary $n \geq 2$, the fact that $f(x)$ is a Pisot polynomial follows from results of Brauer [\[2\]](#page-15-9). We give details only for the case $n = 4$, where in this case, we see that

$$
f(x) = x^4 - t(x^3 + x^2 + x + 1)
$$

since they are similar when $n = 2$. Then, by Proposition [2.11,](#page-6-3)

(5.1)
$$
\Delta(f) = \frac{t^3 (5^5 t - 4^4 (t+1)^5)}{(1-4t)^2} = -t^3 \delta(t),
$$

where

$$
\delta(t) = 16t^3 + 88t^2 + 203t + 256,
$$

which is easily seen to be irreducible by the Rational Zero Theorem. We want to apply Corollary [2.8](#page-6-0) to $\delta(t)$, so we must first show that $\delta(t)$ has no obstructions at any prime

 \Box

r (see Definition [2.10\)](#page-6-4). If, for some prime r, $\delta(z) \equiv 0 \pmod{r^2}$ for all $z \in (\mathbb{Z}/r^2\mathbb{Z})^*$, then $\delta(z) \equiv 0 \pmod{r}$ for all $z \in (\mathbb{Z}/r\mathbb{Z})^*$. Hence, $|(\mathbb{Z}/r\mathbb{Z})^*| = r - 1 \leq 3$ since $\delta(t)$ has at most 3 distinct zeros modulo r. Thus, we only have to check the primes $r \in \{2,3\}$. Since $\delta(1) \equiv 3 \pmod{4}$ and $\delta(1) \equiv 5 \pmod{9}$, $\delta(t)$ has no obstructions at these primes. Hence, by Corollary [2.8,](#page-6-0) there exist (unconditionally) infinitely many primes p such that $\delta(p)$ is squarefree. Let $p > 2$ be such a prime, and let α be the unique Pisot zero of $f(x) = x^4 - p(x^3 + x^2 + x + 1)$. Let $K = \mathbb{Q}(\alpha)$, and let \mathbb{Z}_K be the ring of integers of K. Since $\delta(p)$ is squarefree, we see from [\(5.1\)](#page-10-0) that $\Delta(K) \equiv 0 \pmod{\delta(p)}$. Since $f(x)$ is p-Eisenstein and $gcd(4, p) = 1$, we have from Theorem [2.5](#page-4-1) that $p^3 \mid |\Delta(K)|$. Thus, $|\Delta(f)| = |\Delta(K)|$ from [\(5.1\)](#page-10-0), which completes the proof that $f(x)$ is monogenic.

Next, we address Theorem [1.5\(](#page-2-0)3) where $f(x) = x^n - 16c^{n-1}n(nt+w)x^{n-1} + nt+w$. Since

$$
16c^{n-1}n(nt+w) > nt+w \text{ and } f(1) = 1 - 16c^{n-1}n(nt+w) + nt+w < 0
$$

for any positive integer values of c, t, w and n, it follows from Corollary [2.3](#page-4-2) that $f(x)$ is a Pisot polynomial, and hence irreducible.

We have by Theorem [2.1](#page-3-1) that

$$
\Delta(f) = (-1)^{(n^2 - n + 2)/2} n^n (nt + w)^{n-2} D(t),
$$

where

(5.2)
$$
D(t) = (nt+w)(16^n c^{n(n-1)}(n-1)^{n-1}(nt+w)^{n-1} - 1).
$$

For each value of $n \in \{3, 4, 5, 7, 9\}$, we give the factored form of $\Delta(f)$ in Table [5.1](#page-11-0) to see that no irreducible factor of $D(t)$ has degree larger than 3.

$$
\begin{array}{c|c} n & \Delta(f) \\ \hline 3 & 3^3T^2(2^7c^3T-1)(2^7c^3T+1) \\ 4 & -2^8T^3(2^{16}3^3c^{12}T^3-1) \\ 5 & -5^5T^4(2^7c^5T-1)(2^7c^5T+1)(2^{14}c^{10}T^2+1) \\ 7 & 7^7T^6(2^{17}3^3c^{21}T^3-1)(2^{17}3^3c^{21}T^3+1) \\ 9 & -3^{18}T^8(2^{15}c^{18}T^2-1)(2^{15}c^{18}T^2+1)(2^{15}c^{18}T^2+2^8c^9T+1)(2^{15}c^{18}T^2-2^8c^9T+1) \end{array}
$$

Table 5.1: Factored form of $\Delta(f)$ with $T := nt + w$.

Since the arguments are similar for each value of $n \in \{3, 4, 5, 7, 9\}$, we give details only for $n = 9$. Recall that $w = 2$ in this case. We wish to apply Corollary [2.8](#page-6-0) to the polynomial

$$
D(t) = (9t + 2)(2^{60}c^{72}(9t + 2)^8 - 1).
$$

To do so, we must first show that $D(t)$ has no obstructions at any prime r. From [\(5.2\)](#page-11-1), we see that if $D(z) \equiv 0 \pmod{r^2}$ for all $z \in (\mathbb{Z}/r^2\mathbb{Z})^*$, then $D(z) \equiv 0 \pmod{r}$ for all $z \in (\mathbb{Z}/r\mathbb{Z})^*$. Hence, $|(\mathbb{Z}/r\mathbb{Z})^*| = r - 1 \leq 9$ since $D(t)$ has at most 9 distinct zeros modulo r. Thus, we have reduced the problem to showing that $D(t)$ has no obstructions at $r \in \{2,3,5,7\}$. Observe that $D(1) \equiv 1 \pmod{2}$, so that $D(t)$ has no obstructions at $r = 2$. In Table [5.2,](#page-12-0) we give, for each $r \in \{3, 5, 7\}$ and every congruence class of c (mod r^2), values of integers z with $gcd(z, r) = 1$ and the corresponding values of $D(z)$ (mod r^2) for which $D(z) \not\equiv 0 \pmod{r^2}$.

r	$[\{c \pmod{r^2}\}, z, D(z) \pmod{r^2}]$
3	$[\{0, \pm 3\}, 1, 7], [\{\pm 1, \pm 2, \pm 4\}, 1, 6]$
5	$[\{0, \pm 5, \pm 10\}, 1, 14], [\{\pm 1, \pm 7\}, 1, 5], [\{\pm 2, \pm 11\}, 2, 5],$
	$[\{\pm 3, \pm 4\}, 1, 20], [\{\pm 6, \pm 8\}, 1, 15], [\{\pm 9, \pm 12\}, 1, 10]$
	$[\{0, \pm 7, \pm 14, \pm 21\}, 1, 38], [\{\pm 1, \pm 18, \pm 19\}, 1, 4], [\{\pm 2, \pm 11, \pm 13\}, 1, 25],$
	$[\{\pm 3, \pm 5, \pm 8\}, 1, 18], [\{\pm 4, \pm 22, \pm 23\}, 1, 46], [\{\pm 6, \pm 10, \pm 16\}, 1, 39],$
	$[\{\pm 9, \pm 15, \pm 24\}, 1, 32], [\{\pm 12, \pm 17, \pm 20\}, 1, 11]$

Table 5.2: No obstructions for $D(t)$ at $r \in \{3, 5, 7\}$.

Therefore, we conclude from Corollary [2.8](#page-6-0) that there exist (unconditionally, from Ta-ble [5.1\)](#page-11-0) infinitely many primes p such that $D(p)$ is squarefree. Let $p > 3$ be such a prime, and let α be the unique Pisot zero of $f(x) = x^9 - 144c^8(9p+2)x^8 + 9p+2$. Let $K = \mathbb{Q}(\alpha)$, and let \mathbb{Z}_K be the ring of integers of K. Since $D(p)$ is squarefree, we see from Table [5.1,](#page-11-0) that $\Delta(K) \equiv 0 \pmod{D(p)/(9p+2)}$. To complete the proof that $f(x)$ is monogenic, we use Theorem [2.6](#page-5-1) to show that $[\mathbb{Z}_K : \mathbb{Z}[\alpha]] \not\equiv 0 \pmod{3q}$ for any prime q dividing $9p + 2$. Applying Theorem [2.6](#page-5-1) to $f(x)$, we have that $A = -144c^8(9p + 2)$ and $B = 9p + 2$. Since $9p + 2$ is squarefree, we see immediately that any prime q dividing $9p + 2$ satisfies condi-tion (i) of Theorem [2.6.](#page-5-1) Hence, $[\mathbb{Z}_K : \mathbb{Z}[\alpha]] \not\equiv 0 \pmod{q}$. So, we now consider the prime 3. In this case, we have that $3 \nvert A$ and $3 \nvert B$. Hence, we use condition (ii) of Theorem [2.6,](#page-5-1) and since

$$
a_2 = A/3 = -48c^8(9p+2)
$$
 and $b_1 = \frac{(9p+2) + (-(9p+2))^9}{3} \equiv 1 \pmod{3}$,

we see that $3 \mid a_2$ and $3 \nmid b_1$. Thus, we deduce that $[\mathbb{Z}_K : \mathbb{Z}[\alpha]] \not\equiv 0 \pmod{3}$, and therefore, $f(x)$ is a monogenic Pisot polynomial.

Finally, we establish Theorem $1.5(7)$, where

(5.3)
$$
f(x) = x^{n} - t(x^{3} + (2n+1)x^{2} + (n^{2} + 2n - 1)x + n^{2} - n + 1),
$$

such that $n \geq 4$, $n \equiv 0 \pmod{2}$ and $n \not\equiv 10 \pmod{14}$. Note that $f(x)$ is p-Eisenstein, and hence irreducible, if t is a prime $p > n^2 - n + 1$.

We show now that $f(x)$ is an anti-Pisot polynomial when t is a sufficiently large prime. The special case $n = 4$ is handled first. In this situation, we have that

(5.4)
$$
f(x) = x^4 - tx^3 - 9tx^2 - 23tx - 13t.
$$

When t is a prime with $t > 256$, we see from Table [5.3](#page-13-0) that $f(x)$ has four real zeros ρ_1 , ρ_2 , ρ_3 and α , where

$$
-5 < \rho_1 < -4, \quad -4 < \rho_2 < -3, \quad -1 < \rho_3 < 0 \quad \text{and} \quad \alpha > 1.
$$

Thus, α is an anti-Pisot number and $f(x)$ is an anti-Pisot polynomial.

$$
\begin{array}{c|ccccccccc}\nz & -5 & -4 & -3 & -2 & -1 & 0 & 1 \\
\hline\nf(z) & 2t + 625 & -t + 256 & 2t + 81 & 5t + 16 & 2t + 1 & -13t & -46t + 1\n\end{array}
$$

Table 5.3: Values of $f(x)$ in [\(5.4\)](#page-13-1).

Suppose now that $n \geq 6$, and define

l.

$$
F(x) := \frac{-f(x)}{t(n^2 - n + 1)}
$$

= $x^n + \left(\frac{n^2 + 2n - 1}{n^2 - n + 1}\right) x^{n-1} + \left(\frac{2n + 1}{n^2 - n + 1}\right) x^{n-2} + \left(\frac{1}{n^2 - n + 1}\right) x + \frac{1}{t(n^2 - n + 1)},$

where

$$
\widetilde{f}(x) = -t(n^2 - n + 1)x^n - t(n^2 + 2n - 1)x^{n-1} - t(2n + 1)x^{n-2} - tx^{n-3} + 1
$$

is the reciprocal of $f(x)$ in [\(5.3\)](#page-13-2). Note that if $t > 0$, then the constant term and every coefficient of $F(x)$ are positive. Then

$$
S := \frac{n^2 + 2n - 1}{n^2 - n + 1} - 1 - \frac{2n + 1}{n^2 - n + 1} - \frac{1}{n^2 - n + 1} - \frac{1}{t(n^2 - n + 1)}
$$

=
$$
\frac{tn - 4t - 1}{t(n^2 - n + 1)} \ge \frac{2t - 1}{t(n^2 - n + 1)} > 0.
$$

It follows from Theorem [2.2](#page-3-0) that $F(x)$ has exactly one zero ρ with $|\rho| \geq 1$. Note that $\rho \in \mathbb{R}$. Consequently, $f(x)$ in [\(5.3\)](#page-13-2) has exactly one zero β with $|\beta| \leq 1$, and in fact, $\beta = 1/\rho \in \mathbb{R}$. Hence, if $|\beta| = 1$, then $\beta = \pm 1$. However,

$$
f(-1) = (n-2)t + (-1)^n > 0
$$
 and $f(1) = -(2n^2 + 3n + 2)t + 1 < 0$.

Thus, $|\beta|$ < 1. By Descartes' rule of signs, we see from [\(5.3\)](#page-13-2), that $f(x)$ has exactly one positive real zero α . Since $f(1) < 0$, we conclude that $\alpha > 1$. Therefore, for any prime value p of t with $p > n^2 - n + 1$, we have that $f(x)$ is an anti-Pisot polynomial and α is an anti-Pisot number.

We show next that $f(x)$ is monogenic. Let

$$
g(x) = x3 + (2n + 1)x2 + (n2 + 2n - 1)x + n2 - n + 1,
$$

and

$$
\widehat{g}(x) = (n-3)x^3 + (n-2)(2n+1)x^2 + (n-1)(n^2+2n-1)x + n(n^2-n+1)
$$

= $(x+1)(x+n)((n-3)x + n^2 - n + 1).$

Then, assuming that $f(x)$ is irreducible, we apply Theorem [2.12](#page-7-0) with t replaced with $-t$ to get

(5.5)
$$
\Delta(f) = (-1)^{(n^2+7n)/2} t^{n-1} ((n-2)t + (-1)^n)(t + (-1)^{n-1}n^n) \mathcal{Z},
$$

where

$$
\mathcal{Z} = (n-3)^{n-3} (4n^2 - 3n + 22)t + (-1)^n (n^2 - n + 1)^{n-1}.
$$

Recall that $n \equiv 0 \pmod{2}$. Then

(5.6)
$$
\delta(t) := \frac{\Delta(f)}{(-1)^{(n^2+7n)/2}t^{n-1}} = ((n-2)t+1)(t-n^n)((n-3)^{n-3}(4n^2-3n+22)t+(n^2-n+1)^{n-1}).
$$

We desire to apply Corollary [2.8](#page-6-0) to $\delta(t)$. Observe that the three linear factors of $\delta(t)$ in (5.6) are distinct. We must also show that $\delta(t)$ has no obstructions. Straightforward gcd arguments show that

$$
\gcd((n-3)^{n-3}(4n^2-3n+22), (n^2-n+1)^{n-1})=1
$$

when $n \equiv 0 \pmod{2}$ and $n \not\equiv 10 \pmod{14}$. Thus, we may proceed as in the proofs of Theorem [1.5\(](#page-2-0)2) and (3) to conclude that we only have to check for obstructions of $\delta(t)$ at the primes $r \in \{2, 3\}$. It is easy to see that $\delta(1) \not\equiv 0 \pmod{4}$. It is also straightforward to show that $\delta(1) + \delta(-1) \neq 0 \pmod{9}$, so that at least one of $\delta(1)$ and $\delta(-1)$ is not

congruent to 0 (mod 9), for any $n \equiv 0 \pmod{2}$. Thus, $\delta(t)$ has no obstructions, and therefore, by Corollary [2.8,](#page-6-0) there exist infinitely many primes $p > n^2 - n + 1$ such that δ(p) is squarefree. For such a prime p, it follows that $\Delta(K) \equiv 0 \pmod{\delta(p)}$. To complete the proof that $f(x)$ is monogenic, we need to show that

(5.7)
$$
\boxed{\mathbb{Z}_K : \mathbb{Z}[\alpha] \neq 0 \pmod{p}}.
$$

But [\(5.7\)](#page-15-0) follows immediately from Theorem [2.5](#page-4-1) and [\(5.5\)](#page-14-1), since $f(x)$ is Eisenstein with respect to $p > n^2 - n + 1 > n$. \Box

Acknowledgments

The author thanks the referee for the valuable comments and suggestions.

References

- [1] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.-P. Schreiber, *Pisot and Salem Numbers*, Birkhäuser Verlag, Basel, 1992.
- [2] A. Brauer, On algebraic equations with all but one root in the interior of the unit circle, Math. Nachr. 4 (1951), 250–257.
- [3] Q. Cheng and J. Zhuang, On certain computations of Pisot numbers, Inform. Process. Lett. 113 (2013), no. 8, 271–275.
- [4] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 2000.
- [5] K. Conrad, Totally ramified primes and Eisenstein polynomials, available at https://kconrad.math.uconn.edu/blurbs/gradnumthy/totram.pdf.
- [6] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592.
- [7] P. W. Haggard and J. O. Kiltinen, Binomial expansions modulo prime powers, Internat. J. Math. Math. Sci. 3 (1980), no. 2, 397–400.
- [8] K. G. Hare and N. Sidorov, Conjugates of Pisot numbers, Int. J. Number Theory 17 (2021), no. 6, 1307–1321.
- [9] H. A. Helfgott, *Square-free values of* $f(p)$, f cubic, Acta Math. **213** (2014), no. 1, 107–135.
- [10] C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics 70, Cambridge University Press, Cambridge, 1976.
- [11] A. Jakhar, S. K. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory 13 (2017) , no. 10, 2505–2514.
- [12] L. Jones, Generating infinite families of monogenic polynomials using a new discriminant formula, Albanian J. Math. 14 (2020), no. 1, 37–45.
- [13] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland Mathematical Library 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972.
- [14] , Quasicrystals, Diophantine approximation and algebraic numbers, in: Beyond Quasicrystals (Les Houches, 1994), 3–16, Springer, Berlin, 1995.
- [15] R. V. Moody, The Mathematics of Long-range Aperiodic Order, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences 489, Kluwer Academic Publishers Group, Dordrecht, 1997.
- [16] K. Mukunda, Littlewood Pisot numbers, J. Number Theory 117 (2006), no. 1, 106– 121.
- [17] S. Otake and T. Shaska, On the discriminant of certain quadrinomials, in: Algebraic Curves and Their Applications, 55–72, Contemp. Math. 724, Amer. Math. Soc., Providence, RI, 2019.
- [18] H. Pasten, The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments, Int. J. Number Theory 11 (2015), no. 3, 721–737.
- [19] O. Perron, Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math. 132 (1907), 288–307.
- [20] T. Piezas, F. van Lamoen and E. Weisstein, Plastic constant, available at https://mathworld.wolfram.com/PlasticConstant.html.
- [21] C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 7 (1938), no. 3-4, 205–248.
- [22] R. Salem, A remarkable class of algebraic integers: Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103–108.
- [23] $____\$, Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, Mass, 1963.
- [24] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269–278.
- [25] N. Sidorov and B. Solomyak, On the topology of sums in powers of an algebraic number, Acta Arith. **149** (2011), no. 4, 337-346.
- [26] C. L. Siegel, Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944), 597–602.
- [27] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106.
- [28] T. Vávra and F. Veneziano, *Pisot unit generators in number fields*, J. Symbolic Comput. 89 (2018), 94–108.
- [29] T. Zaïmi, On small Pisot numbers in a number field, Maghreb Math. Rev. 8 (1999), no. 1-2, 163–167.

Lenny Jones

Professor Emeritus, Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania 17257, USA

E-mail address: lkjone@ship.edu