
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 26, No. 2, pp. 285–315, April 2022

DOI: 10.11650/tjm/211002

Boundedness of Solutions in a Fully Parabolic Quasilinear Chemotaxis Model

with Two Species and Two Chemicals

Aichao Liu and Binxiang Dai*

Abstract. This paper deals with a chemotaxis model with nonlinear signal production

in a smoothly bounded domain. When there is no logistic growth source, the solutions

of the system are globally bounded. This is also true if the logistic damping effect is

strong enough. We extend recent research on single-species and one stimulus obtained

by Tao et al. (2019, J. Math. Anal. Appl.) to two species chemotaxis system with

two chemicals by creating an extra subtle inequality. We also partially extended some

other related work.

1. Introduction

Chemotaxis refers to the guided migration of cells under the guidance of chemical gradi-

ents, which is crucial for a variety of biological processes. Chemotaxis has been confirmed

in many processes: including patterning of the slime mold Dictyostelium, embryonic mor-

phogenesis, wound healing, and tumor invasion (see [32] and therein). Continuous models

of chemotaxis have been developed to describe many such systems.

The following classical Keller–Segel model [20] was originally used to describe the

accumulation of Dictyostelium discotylum [21]

(1.1)



ut = 4u− χ∇ · (u∇v), x ∈ Ω, t > 0,

τvt = 4v − v + u, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

(u, τv)(x, 0) = (u0(x), τv0(x)), x ∈ Ω,

where u represents the density of Dictyostelium discotylum, v stands for the chemical

concentration of an attractant or repellent. Here Ω ⊂ Rn (n ≥ 1) is a smoothly bounded

domain and τ ≥ 0. The first equation of system (1.1) implies that the cell movement is

directed toward (i.e., χ > 0) the increasing chemoattractant concentration or away from
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(i.e., χ < 0) the increasing chemorepellent concentration. The parameter χ measures the

strength of the attraction or repulsion. The second equation of system (1.1) states that the

chemoattractant or chemorepellent is produced by cells and undergoes decay. Model (1.1)

is the basis of chemotactic models and has been studied deeply in the past four decades. To

the best of our knowledge, the results seem quite complete (see, for example, [2,14,16,47]).

The important results are listed below: no blow-up in one dimensional [15, 31, 52] except

for some extreme nonlinear diffusion models [3,6], critical mass blow-up in two dimensional

[14,16] and generic blow-up in higher dimensional [47].

Since the blow-up is an extreme case, a large amount of efforts were devoted to revising

the model (1.1) such that the modified models allow global bounded solutions and thus

produce patterns suitable for reality. Subsequently, various mechanisms such as adding

logistic dampening [24, 30, 45], nonlinear variants with chemotactic sensitivity and diffu-

sivity (see [38] and references therein) as well as the volume-filling effect [4, 33, 46], have

been introduced into the system (1.1) to prevent the finite-time blow-up. Therefore, some

scholars have studied the following chemotaxis model for two coupled equations

(1.2)



ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v) + f(u), x ∈ Ω, t > 0,

τvt = 4v − v + g(u), x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

(u, τv)(x, 0) = (u0(x), τv0(x)), x ∈ Ω.

Here τ ∈ {0, 1}, the positive function D(u) and nonnegative function S(u) stand for the

diffusivity and chemotactic sensitivity of the cells respectively, the functions f(u) and g(u)

indicate the growth of u and production of v respectively as well as the term S(u)∇v refers

to the cell movement towards the higher concentration gradient of the chemical signal. It

is worth mentioning that Painter and Hillen [33] initially emphasized the importance of

both nonlinear diffusion D(u) and sensitivity S(u). For chemotaxis models like (1.2),

one of the most important problems is whether solutions remain bounded or blow up in

finite/infinite time.

In the case of g(u) = u and there is no source (i.e., f ≡ 0), when τ = 1, Horstmann and

Winkler [17] proved that there exist radially symmetric solutions which blow up under the

condition that D(u) = 1, S(u) ≥ c0u
α with c0 > 0 and α > 2

n as well as Ω ⊂ Rn (n ≥ 2) is a

ball. Subsequently, Winkler [46] showed that there exist solutions which blow up in either

finite or infinite time if S(u)
D(u) grows faster than u

2
n as u → ∞ and some further technical

conditions are fulfilled. Cieślak and Stinner [7] showed that there exist solutions which

blow up in finite time if S(s) is non-decay for any s > 0 and some extra conditions are

satisfied; meanwhile there exist solutions which blow up in infinite time if both D(s) and

S(s) decay (i.e., in the sense of lims→∞D(s) = 0 and lims→∞ S(s) = 0) and are confined to
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some other conditions. In the same year, Tao and Winkler [38] showed that solutions are

bounded under the conditions that S(u)
D(u) ≤ cu

α with α < 2
n as well as Ω is a convex domain.

Subsequently, Ishida et al. [19] generalized the result in [38] to non-convex domain. When

there exists logistic source, Zheng [60] showed all solutions are global and bounded under

the conditions that D(u) = (1 + u)−α, S(u) = u(1 + u)β−1 and f(u) = r − µuk as well as

0 < α + β < max
{
k − 1 + α, 2

n

}
or β = k − 1 and µ is large enough. In addition, there

are some studies on τ = 0 [51, 59]. In the case of general g(u) and there is no source,

Liu and Tao [25] obtained the global boundedness of system (1.2) with τ = 1 under the

conditions that D(u) ≡ 1, S(u) ≡ u and g(u) = uγ with 0 < γ < 2
n . Subsequently, when

τ = 0 and Ω ⊂ Rn is a ball as well as D(u) ≡ 1 and S(u) ≡ u, Winkler [49] showed

the solution is global and bounded under the conditions that g(u) ≤ Kuγ with γ < 2
n

and K > 0; meanwhile the solution blows up in finite time under the conditions that

g(u) ≥ kuγ with γ > 2
n and k > 0. When there is logistic kinetics, the case with τ = 0

and D(u) = 1 has been investigated [10, 18, 62]. However, there is little literature on

system (1.2) with τ = 1. On Ω ⊆ R2, for functions (D,S, g) ∈ (C2([0,∞)))3 fulfilling

D(s) ≥ c0s
m−1, S(s) ≤ χ0s

α, g(s) ≤ κ0s
β and f(s) = rs − µs2 with c0 > 0, χ0 > 0,

κ0 > 0, m ∈ R, α > 0, β ∈ (0, 1], r ≥ 0 and µ > 0, Zheng et al. [63] obtained the global

existence of bounded solutions under the conditions that m > 2α, β ∈ (0, 1]. Recently, on

Ω ⊆ Rn (n ≥ 2), for functions (D,S) ∈ (C2([0,∞)))2, f ∈ C0([0,∞)) and g ∈ C1([0,∞))

satisfying d0(1 + s)−α ≤ D(s) ≤ d1(1 + s)−α1 , 0 ≤ S(s) ≤ s1s(1 + s)β−1, f(s) ≤ rs− µsk

and 0 ≤ g(s) ≤ g1s
γ with d0 > 0, d1 > 0, s1 > 0, α ∈ R, α1 ∈ R, β ∈ R, r ∈ R, µ > 0,

g1 > 0, γ > 0 and k > 1, Tao et al. [37] obtained the global existence of bounded solutions

under the conditions that f ≡ 0, γ ∈ (0, 1], α + β + γ < 1 + 2
n or f 6≡ 0, β + γ < k or

f 6≡ 0, β + γ = k, µ ≥ µ0 for some µ0 > 0. In addition, there are some papers on the

asymptotic behavior, to name a few, see [5, 8, 26,54].

In nature, populations always interact with each other. Studies have confirmed that

interactions of several populations via chemotactic mechanisms play an important role

in various biological processes [13, 34]. So far, existing literature is scarce and mainly

focuses on the case where there are two species and the two species produce the same

signal [1, 29, 36, 40, 57]. In order to understand the chemotactic interaction in presence

of several chemicals, Tao and Winkler [39] considered the following model involving two

species and two signals,

(1.3)



ut = 4u− χ∇ · (u∇v), τvt = 4v − v + ω, (x, t) ∈ Ω× (0,∞),

ωt = 4ω − ξ∇ · (ω∇z), τzt = 4z − z + u, (x, t) ∈ Ω× (0,∞),

∂u
∂ν = ∂v

∂ν = ∂ω
∂ν = ∂z

∂ν = 0, (x, t) ∈ ∂Ω× (0,∞),

(u, τv, ω, τz)(x, 0) = (u0(x), τv0(x), ω0(x), τz0(x)), x ∈ Ω.
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Here τ ∈ {0, 1}, u(x, t) and ω(x, t) denote the densities of the two species and the chem-

icals produced are z(x, t) and v(x, t) respectively. That is, besides diffusions of the two

species themselves, one species produces a chemical signal to affect the motion of the

other. The signs of χ ∈ R and ξ ∈ R determine the types of interactions, attraction or

repulsion. Model (1.3) can describe the chemotaxis driven cell sorting process [32], the

spatio-temporal evolution of two populations whose individuals move according to ran-

dom diffusion, and chemotactically directed motion leading to an interaction in a circular

manner.

When τ = 0, Tao and Winkler [39] showed that system (1.3) possesses a unique

bounded classical solution whenever χ = −1 and n ≤ 3 or ξ = −1 and n ≤ 3; and under

the cases of χ = ξ = 1 and n = 2, the similar result holds if max
{
‖u0‖L1(Ω), ‖ω0‖L1(Ω)

}
<

4
CGN

; in addition, blow-up may occur if n = 2 and min
{
‖u0‖L1(Ω), ‖ω0‖L1(Ω)

}
> 4π.

Subsequently, some scholars obtained the boundedness criteria and blow-up criteria of

solutions in lower dimensional space [23, 55, 61]. However, in a varying biological envi-

ronment, according to the classical Lotka–Volterra kinetics [28], cells may proliferate and

compete for resources and space in order to survive. Therefore, proliferation and competi-

tion ingredients are incorporated into system (1.3). At that moment, most of works in this

direction mainly investigated the boundedness, stability, and convergence rate of solutions

when the logistic damping effect is strong enough (for example, see, [35,41–43,56,58,64]).

In a changing biological environment, the movement of cells involved in two species

and two chemicals should be described by nonlinear functions similar to the system (1.2).

As far as we know, for model (1.3), there is no similar work as system (1.2) due to technical

difficulties. This inspires us to consider the following system

(1.4)



ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v) + f(u), (x, t) ∈ Ω× (0,∞),

vt = 4v − v + g(ω), (x, t) ∈ Ω× (0,∞),

ωt = ∇ · (D̃(ω)∇ω)−∇ · (S̃(ω)∇z) + f̃(ω), (x, t) ∈ Ω× (0,∞),

zt = 4z − z + g̃(u), (x, t) ∈ Ω× (0,∞),

∂u
∂ν = ∂v

∂ν = ∂ω
∂ν = ∂z

∂ν = 0, (x, t) ∈ ∂Ω× (0,∞),

(u, v, ω, z)(x, 0) = (u0(x), v0(x), ω0(x), z0(x)), x ∈ Ω.

For the convenience of research, throughout this paper, we assume that the nonnegative

initial data (u0, v0, ω0, z0) satisfy

(1.5) (u0, v0, ω0, z0) ∈ C0(Ω)× C1(Ω)× C0(Ω)× C1(Ω), u0 6≡ 0, ω0 6≡ 0.

The functions D,S, D̃, S̃ ∈ C2([0,∞)) satisfy S(0) = 0 and S̃(0) = 0 as well as

(1.6)
d0(1 + u)−α ≤ D(u) ≤ d1(1 + u)−α1 , 0 ≤ S(u) ≤ s1u(1 + u)β−1,

d̃0(1 + ω)−α̃ ≤ D̃(ω) ≤ d̃1(1 + ω)−α̃1 , 0 ≤ S̃(ω) ≤ s̃1ω(1 + ω)β̃−1
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for all u, ω ≥ 0 with some d0, d1, s1, d̃0, d̃1, s̃1 > 0 and α, α1, β, α̃, α̃1, β̃ ∈ R. Moreover, we

assume that f, f̃ ∈ C2([0,∞)) with f(0), f̃(0) ≥ 0 and g, g̃ ∈ C2([0,∞)) fulfill

(1.7)
f(u) ≤ ru− µuk, 0 ≤ g̃(u) ≤ λ̃1u

γ̃ for all u ≥ 0,

f̃(ω) ≤ r̃ω − µ̃ωk̃, 0 ≤ g(ω) ≤ λ1ω
γ for all ω ≥ 0,

where r, r̃ ∈ R, µ, λ1, γ, µ̃, λ̃1, γ̃ > 0 and k, k̃ > 1.

The goal of this paper is to establish global existence and boundedness of classical solu-

tion of system (1.4) under the assumptions (1.5)–(1.7). Precisely, we obtain the following

main results.

Theorem 1.1. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary, f = f̃ ≡ 0

as well as nonnegative initial data (u0, v0, ω0, z0) satisfy (1.5). Suppose D, S, D̃, S̃ and

g, g̃ fulfill (1.6) and (1.7) respectively. If γ, γ̃ ∈ (0, 1] and α1 = α̃1 as well as

α = α̃ <
2

n
and α+ max

{
β + γ, β̃ + γ̃

}
< 1 +

2

n
,

then problem (1.4) admits a nonnegative classical solution (u, v, ω, z) which is globally

bounded.

Theorem 1.1 tells us that nonlinear variants involved in diffusivity, chemotactic sen-

sitivity and signal production are beneficial to the global existence of the solution when

there is no growth source. Theorem 1.1 also extends the study in [61] to the fully parabolic

quasilinear chemotaxis model.

Theorem 1.2. Let n ≥ 2 and nonnegative initial data (u0, v0, ω0, z0) satisfy (1.5). Sup-

pose D, S, D̃, S̃ and f , f̃ , g, g̃ fulfill (1.6) and (1.7) respectively, if k = k̃, β = β̃ and

one of the following is true

(1) max{γ, γ̃} < k − β;

(2) γ̃ < γ = k − β, µ > 2k+1s1, µ̃ > c̃p;

(3) γ < γ̃ = k − β, µ > cp, µ̃ > 2k+1s̃1;

(4) γ = γ̃ = k − β, µ > max
{

2k+1s1, cp
}

, µ̃ > max
{

2k+1s̃1, c̃p
}

,

then problem (1.4) possesses a nonnegative classical solution (u, v, ω, z) which is globally

bounded. Here cp and c̃p are defined in (3.41) and (3.39) respectively.

Theorem 1.2 shows that strong logistic damping effect is conducive to the global exis-

tence of solutions. Theorem 1.2 coincides with that in [37] when two species and signals

are exactly the same in system (1.4).

Before we prove the main results in the third Section, we first show the local existence

of a classical solution to (1.4) and provide some preliminary results. The paper ends with

a brief summary and discussion.
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2. Local existence and preliminaries

The proof of the local existence of solutions in time is similar to those in [24, 37], which

is achieved by employing a fixed point theorem. Though we will not give the detail, for

readers’ convenience, we cite some used knowledge related to the Neumann heat semigroup.

We state it here (for instance, see [17,44]). The operator A =: −4+1 is sectorial in Lp(Ω)

and therefore admits closed fractional powers Aθ, θ ∈ (0, 1) with dense domain D(Aθ).

Two basic and useful properties of Aθ are listed below.

(P1) If m ∈ {0, 1}, p ∈ [1,∞] and q ∈ (1,∞) with m− n
p < 2θ− n

q , then there exists some

positive constant C such that

(2.1) ‖φ‖Wm,p(Ω) ≤ C‖Aθφ‖Lq(Ω) for all φ ∈ D(Aθ).

(P2) For p < ∞, the Neumann heat semigroup (et4)t≥0 maps Lp(Ω) into D(Aθ) in any

of the space Lq(Ω) for q ≥ p, and there exist C > 0 and µ > 0 such that

(2.2) ‖Aθe−Atφ‖Lq(Ω) ≤ Ct
−θ−n

2
( 1
p
− 1
q

)
e−µt‖φ‖Lp(Ω) for all φ ∈ Lp(Ω).

Proposition 2.1. Let n ≥ 1 and nonnegative initial data (u0, v0, ω0, z0) satisfy (1.5).

Suppose D, S, D̃, S̃ and f , f̃ , g, g̃ fulfill (1.6) and (1.7) respectively. Then system (1.4)

admits a nonnegative local-in-time classical solution (u, v, ω, z) ∈ (C0(Ω × [0, Tmax)) ∩
C2,1(Ω × (0, Tmax)))4. Here Tmax denotes the maximum existence time. Moreover, if

Tmax <∞, then

lim sup
t→Tmax−

(
‖u‖L∞(Ω) + ‖v‖L∞(Ω) + ‖ω‖L∞(Ω) + ‖z‖L∞(Ω)

)
=∞.

The following result shows some fundamental properties of solution (u, v, ω, z) to prob-

lem (1.4) without logistic source.

Lemma 2.2. Let n ≥ 1, f = f̃ ≡ 0 and nonnegative initial data (u0, v0, ω0, z0) satisfy

(1.5). Suppose D, S, D̃, S̃ and g, g̃ fulfill (1.6) and (1.7) respectively, then the mass of u

and ω is conserved in the sense that

(2.3) ‖u‖L1(Ω) = ‖u0‖L1(Ω), ‖ω‖L1(Ω) = ‖ω0‖L1(Ω) for all t ∈ (0, Tmax).

Moreover, if γ ∈ (0, 1] and γ̃ ∈ (0, 1], then for any s ∈
[
1, n

(nγ−1)+

)
∩
[
1, n

(nγ̃−1)+

)
, there

exist positive constants C1 = C1(s, γ) and C2 = C2(s, γ̃) such that

(2.4) ‖v‖W 1,s(Ω) ≤ C1 and ‖z‖W 1,s(Ω) ≤ C2 for all t ∈ (0, Tmax).

Here ς+ = max{ς, 0}.
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Proof. Integrating the first and third equations in (1.4) over Ω, we deduce d
dt

∫
Ω u = 0

and d
dt

∫
Ω ω = 0 which imply (2.3). The assertion (2.4) can be obtained on the basis of a

method of Neumann semigroup estimates [22,37,53], so we will not give the detail.

Next, the following Lemma plays an important role in removing convexity of domains.

Lemma 2.3. [27] Let n ≥ 1 and Φ ∈ C2(Ω), if ∂Φ
∂ν

∣∣
∂Ω

= 0, then

∂|∇Φ|2

∂ν
≤ 2κΩ|∇Φ|2 on ∂Ω,

where κΩ > 0 is an upper bound for the curvatures of ∂Ω.

Then, we follow the ideas of [38, Lemma 3.1] and [17, Lemma 4.2] to establish the

following result which plays an important role in proving Proposition 3.1.

Proposition 2.4. Assume ρ ∈ (0, 1) and % ∈ (0, 1) as well as ρ + % < 1, then for any

η1 > 0 and η2 > 0, there exists some positive constant C = C(η1, η2, ρ, %) such that

aρb% ≤ η1a+ η2b+ C,

where a ≥ 0 and b ≥ 0.

Proof. Firstly, for any η1 > 0 and η > 0, applying Young’s inequality to the terms aρb%

and b
%

1−ρ respectively produces

aρb% ≤ η1a+ (1− ρ)

(
η1

ρ

)− ρ
1−ρ
· b

%
1−ρ and b

%
1−ρ ≤ %η

1− ρ
b+

1− (ρ+ %)

1− ρ
η
− %

1−(ρ+%) .

Next, we insert the second inequality into the first inequality to get

aρb% ≤ η1a+

(
η1

ρ

)− ρ
1−ρ

%ηb+

(
η1

ρ

)− ρ
1−ρ

[1− (ρ+ %)]η
− %

1−(ρ+%) .

Finally, substituting η = η2
%

(η1
ρ

) ρ
1−ρ into the above inequality yields

aρb% ≤ η1a+ η2b+

(
η1

ρ

)− ρ
1−(ρ+%)

·
(
η2

%

)− %
1−(ρ+%)

· [1− (ρ+ %)] = η1a+ η2b+ C,

where C =
(η1
ρ

)− ρ
1−(ρ+%) ·

(η2
%

)− %
1−(ρ+%) · [1− (ρ+ %)]. Hence, the proof is complete.

We also recall the following Gagliardo–Nirenberg’s interpolation inequality, which will

be used frequently in the proof of our main results.
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Lemma 2.5. [9] Let l and k be two integers satisfying l ∈ [0, k). Suppose that q, r ∈ [1,∞],

p > 0 and a ∈
[
l
k , 1
]

such that

(2.5)
1

p
− l

n
= a

(
1

q
− k

n

)
+ (1− a)

1

r
.

Then, for any φ ∈W k,q(Ω)∩Lr(Ω), there exist two positive constants c1 and c2 depending

only on Ω, q, k, r such that

(2.6) ‖Dlφ‖Lp(Ω) ≤ c1‖Dkφ‖aLq(Ω)‖φ‖
1−a
Lr(Ω) + c2‖φ‖Lr(Ω)

with the following exception: If q ∈ (1,∞) and k − l − n
q is a non-negative integer, then

(2.5) holds only for a ∈
[
l
k , 1
)
. Here Dkφ is expressed as Fréchet derivative of order k. In

particular, if l = 0, k = 1 and q = 2, we deduce from (2.6)

(2.7) ‖φ‖Lp(Ω) ≤ c1‖∇φ‖aL2(Ω)‖φ‖
1−a
Lr(Ω) + c2‖φ‖Lr(Ω),

where a ∈ (0, 1) satisfying
n

p
= a

(n
2
− 1
)

+
n

r
(1− a).

Finally, we give a result referred to as a variation of maximal Sobolev regularity.

Lemma 2.6. [12, Lemma 3.1] Let σ > 1. Consider the following evolution equation
Zt = 4Z − Z + h, (x, t) ∈ Ω× (0, T ),

∂Z
∂ν = 0, (x, t) ∈ ∂Ω× (0, T ),

Z(x, 0) = Z0(x), x ∈ Ω.

Then for each Z0 ∈ W 2,σ(Ω) (σ > n) with ∂Z0
∂ν

∣∣
∂Ω

= 0 and any h ∈ Lσ((0, T );Lσ(Ω)),

there exists a unique solution

Z ∈W 1,σ((0, T );Lσ(Ω)) ∩ Lσ((0, T );W 2,σ(Ω)).

Moreover, there exists positive constant Cσ, such that if t0 ∈ [0, T ), Z( · , t0) ∈ W 2,σ(Ω)

(σ > n) with ∂Z( · ,t0)
∂ν

∣∣
∂Ω

= 0, then∫ T

t0

∫
Ω
e
σ
2
τ |∆Z|σ ≤ Cσ

∫ T

t0

∫
Ω
e
σ
2
τ |h|σ + Cσe

σ
2
t0
[
‖Z( · , t0)‖σLσ + ‖∆Z( · , t0)‖σLσ

]
.

3. Boundedness

We divide this section into two subsections to prove the boundedness of the solution.
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3.1. Boundedness without logistic source

The goal of this subsection is to establish uniform-in-time boundedness for ‖u‖Lp(Ω) and

‖ω‖Lp(Ω) as well as ‖∇v‖Lq(Ω) and ‖∇z‖Lq(Ω) for arbitrarily large p and q.

In order to prove Theorem 1.1, we need some preparations. We first employ trace in-

equality, Hölder’s inequality, Gagliardo–Nirenberg’s inequality, Proposition 2.4 and Young’s

inequality to establish the following useful proposition.

Proposition 3.1. Let n ≥ 2 and nonnegative initial data (u0, v0, ω0, z0) satisfy (1.5).

Suppose D, S, D̃, S̃ and g, g̃ fulfill (1.6) and (1.7) respectively. If γ, γ̃ ∈ (0, 1] and

α1 = α̃1 as well as

α = α̃ <
2

n
and α+ max

{
β + γ, β̃ + γ̃

}
< 1 +

2

n
,

then for all p, q ∈ [1,∞), there exists positive constant C = C(p, q, α, α1, β, β̃, γ, γ̃) such

that

‖u‖Lp(Ω), ‖ω‖Lp(Ω), ‖∇v‖Lq(Ω), ‖∇z‖Lq(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. The Sobolev embedding theorem conveys to us that the lower order ‖u‖Lp(Ω) and

‖ω‖Lp(Ω) as well as ‖∇v‖Lq(Ω) and ‖∇z‖Lq(Ω) can be controlled by the higher order ‖u‖Lp(Ω)

and ‖ω‖Lp(Ω) as well as ‖∇v‖Lq(Ω) and ‖∇z‖Lq(Ω) respectively. Therefore, we only need

to prove that for sufficiently large numbers p and q there exists positive constant C =

C(p, q, α, α1, β, β̃, γ, γ̃) such that

‖u‖Lp(Ω), ‖ω‖Lp(Ω), ‖∇v‖Lq(Ω), ‖∇z‖Lq(Ω) ≤ C for all t ∈ (0, Tmax).

To quantify sufficiently large numbers p and q, for the sake of the proof we find the

lower bounds p and q of numbers p and q respectively as follows:

Under the assumptions γ, γ̃ ∈ (0, 1] and α1 = α̃1 as well as α = α̃ < 2
n and α +

max
{
β + γ, β̃ + γ̃

}
< 1 + 2

n , we can fix s ∈
[
1, n

(nγ−1)+

)
∩
[
1, n

(nγ̃−1)+

)
such that

(3.1) γ − 1

n
<

1

s
< 1 +

1

n
− (α+ β) and γ̃ − 1

n
<

1

s
< 1 +

1

n
− (α+ β̃).

Next, we can pick some a, ã, b, b̃ fulfilling

(3.2) a, ã ∈
(

1,min

{
n

n− 2
,

s

(s− 2)+

})
, b > max

{
n

2
,

1

2γ

}
, b̃ > max

{
n

2
,

1

2γ̃

}
.

Then, we can select p and q large enough satisfying

(3.3) p > max

{
1, 1 + α− α1, 1 + α+

2

s

}
and q > 1 +

s

2
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as well as 

n−2
n

[
1 + 2|α+β−1|

p−α
]
< 1

a < p+ α+ 2β − 2,

n−2
n

[
1 + 2|α+β̃−1|

p−α
]
< 1

ã < p+ α+ 2β̃ − 2,

n−2
nq < 1− 1

a ,
n−2
nq < 1− 1

ã ,

n−2
n ·

2γ
p−α <

1
b ,

n−2
n ·

2γ̃
p−α <

1

b̃
,

q < p−α
2 s.

Finally, it is easy to check that

(3.4)
n− 2

n

[
1 +

2(α+ β − 1)

p− α

]
=
n− 2

n
· p+ α+ 2β − 2

p− α
<

1

a
< p+ α+ 2β − 2

and

1− 2

s
<

1

a
< 1− n− 2

nq
,(3.5)

n− 2

n
· 2γ

p− α
<

1

b
<

2

n
,(3.6)

n− 2

n

[
1 +

2(α+ β̃ − 1)

p− α

]
=
n− 2

n
· p+ α+ 2β̃ − 2

p− α
<

1

ã
< p+ α+ 2β̃ − 2,(3.7)

1− 2

s
<

1

ã
< 1− n− 2

nq
(3.8)

as well as

(3.9)
n− 2

n
· 2γ̃

p− α
<

1

b̃
<

2

n

hold for all p ≥ p and q ≥ q. What we need to keep in mind is that when p ≥ p and q ≥ q,
(3.4)–(3.9) hold, which will guarantee that all of θ, δ, θ, δ, θ̃, δ̃, θ̃, δ̃ in (3.22)–(3.25) fall

in the interval (0, 1).

With the above preparations at hand, we define

φ(ζ) =

∫ ζ

0

∫ ρ

0

(1 + σ)p−α−2

D(σ)
dσdρ, ψ(ζ) =

∫ ζ

0

∫ ρ

0

(1 + σ)p−α−2

D̃(σ)
dσdρ, ζ ≥ 0.

It is easy to check that the assumption p > 1 + α − α1 in (3.3) ensures that φ and ψ

are well-defined and nonnegative. Multiplying the first equation in (1.4) by φ(u) and

integrating by parts over Ω, we can deduce

d

dt

∫
Ω
φ(u) = −

∫
Ω
φ′′(u)D(u)|∇u|2 +

∫
Ω
φ′′(u)S(u)∇u · ∇v

= −
∫

Ω
(1 + u)p−α−2|∇u|2 +

∫
Ω

(1 + u)p−α−2 S(u)

D(u)
∇u · ∇v

≤ −
∫

Ω
(1 + u)p−α−2|∇u|2 +

s1

d0

∫
Ω

(1 + u)p+β−2|∇u| · |∇v|

≤ −1

2

∫
Ω

(1 + u)p−α−2|∇u|2 +
s2

1

2d2
0

∫
Ω

(1 + u)p+α+2β−2|∇v|2,

(3.10)
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where we have used Young’s inequality in the last two inequalities. Rewriting (3.10)

produces

(3.11)
d

dt

∫
Ω
φ(u) +

2

(p− α)2

∫
Ω
|∇(1 + u)

p−α
2 |2 ≤ s2

1

2d2
0

∫
Ω

(1 + u)p+α+2β−2|∇v|2.

A straightforward calculation shows 4|∇v|2 = 2|D2v|2 +2∇v ·∇4v. Applying the second

equation in (1.4) and the pointwise estimate |4v|2 ≤ n|D2v|2, we can easily get

(3.12) (|∇v|2)t +
2

n
|4v|2 + 2|∇v|2 ≤ 4|∇v|2 + 2∇v · ∇g(ω).

Multiplying (3.12) by |∇v|2(q−1) and applying Lemma 2.3, we can find some positive

constant C1 = C1(q) such that

1

q

d

dt

∫
Ω
|∇v|2q +

2

n

∫
Ω
|∇v|2(q−1)|4v|2 + 2

∫
Ω
|∇v|2q

≤
∫

Ω
|∇v|2(q−1)4|∇v|2 + 2

∫
Ω
|∇v|2(q−1)∇v · ∇g(ω)

= −(q − 1)

∫
Ω
|∇v|2(q−2)|∇|∇v|2|2 +

∫
∂Ω
|∇v|2(q−1)∂|∇v|2

∂ν

− 2(q − 1)

∫
Ω
|∇v|2(q−2)∇|∇v|2 · ∇v · g(ω)− 2

∫
Ω
|∇v|2(q−1)4v · g(ω)

≤ −q − 1

2

∫
Ω
|∇v|2(q−2)|∇|∇v|2|2 + 2κΩ

∫
∂Ω
|∇v|2q

+
2

n

∫
Ω
|∇v|2(q−1)|4v|2 +

[
2(q − 1) +

n

2

] ∫
Ω
|∇v|2(q−1)g2(ω)

= −2(q − 1)

q2

∫
Ω
|∇|∇v|q|2 + 2κΩ

∫
∂Ω
|∇v|2q

+
2

n

∫
Ω
|∇v|2(q−1)|4v|2 +

[
2(q − 1) +

n

2

] ∫
Ω
|∇v|2(q−1)g2(ω)

≤ −q − 1

q2

∫
Ω
|∇|∇v|q|2 + C1

∫
∂Ω
|∇v|2q

+
2

n

∫
Ω
|∇v|2(q−1)|4v|2 +

[
2(q − 1) +

n

2

] ∫
Ω
|∇v|2(q−1)g2(ω)

(3.13)

for all t ∈ (0, Tmax), where we have used the trace inequality (see [37, Proposition 3.1]

and [11, Propositions 4.22 and 4.24])

2κΩ‖h‖2L2(∂Ω) ≤
q − 1

q2
‖∇h‖2L2(Ω) + C1‖h‖2L2(Ω) for all h ∈W 1,2(Ω).
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Collecting (3.13) and (1.7) leads to

1

q

d

dt

∫
Ω
|∇v|2q +

q − 1

q2

∫
Ω
|∇|∇v|q|2

≤ λ2
1

[
2(q − 1) +

n

2

] ∫
Ω
ω2γ |∇v|2(q−1) + (C1 − 2)

∫
Ω
|∇v|2q

≤ λ2
1

[
2(q − 1) +

n

2

] ∫
Ω

(1 + ω)2γ |∇v|2(q−1) + (C1 − 2)

∫
Ω
|∇v|2q.

(3.14)

A linear combination (3.11) and (3.14) results in

d

dt

∫
Ω

{
φ(u) +

1

q
|∇v|2q

}
+

2

(p− α)2

∫
Ω
|∇(1 + u)

p−α
2 |2 +

q − 1

q2

∫
Ω
|∇|∇v|q|2

≤ C2

∫
Ω

(1 + u)p+α+2β−2|∇v|2 + C2

∫
Ω
|∇v|2q + C2

∫
Ω

(1 + ω)2γ |∇v|2(q−1),

(3.15)

where positive constants C1 > 2 and C2 = max
{ s21

2d20
, λ2

1

[
2(q−1)+ n

2

]
, C1−2

}
. Performing

similar operations on the third and fourth equations of (1.4) produces

d

dt

∫
Ω

{
ψ(ω) +

1

q
|∇z|2q

}
+

2

(p− α)2

∫
Ω
|∇(1 + ω)

p−α
2 |2 +

q − 1

q2

∫
Ω
|∇|∇z|q|2

≤ C̃2

∫
Ω

(1 + ω)p+α+2β̃−2|∇z|2 + C̃2

∫
Ω
|∇z|2q + C̃2

∫
Ω

(1 + u)2γ̃ |∇z|2(q−1),

(3.16)

where positive constants C̃2 = max
{ s̃21

2d̃20
, λ̃2

1

[
2(q − 1) + n

2

]
, C̃1 − 2

}
and C̃1 > 2. A

combination (3.15) and (3.16) yields

d

dt

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
+

2

(p− α)2

∫
Ω
|∇(1 + u)

p−α
2 |2

+
2

(p− α)2

∫
Ω
|∇(1 + ω)

p−α
2 |2 +

q − 1

q2

∫
Ω
|∇|∇v|q|2 +

q − 1

q2

∫
Ω
|∇|∇z|q|2

≤ C2

∫
Ω

(1 + u)p+α+2β−2|∇v|2 + C̃2

∫
Ω

(1 + ω)p+α+2β̃−2|∇z|2 + C2

∫
Ω

(1 + ω)2γ |∇v|2(q−1)

+ C̃2

∫
Ω

(1 + u)2γ̃ |∇z|2(q−1) + C2

∫
Ω
|∇v|2q + C̃2

∫
Ω
|∇z|2q.

(3.17)

In order to control the first four integrals on the right hand by the last four integrals on

the left hand side, we use Hölder’s inequality four times to estimate the integrals on the

right hand side of (3.17) as follows

(3.18)

∫
Ω

(1 + u)p+α+2β−2|∇v|2 ≤
{∫

Ω
(1 + u)(p+α+2β−2)a

} 1
a

·
{∫

Ω
|∇v|2a′

} 1
a′

,
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∫
Ω

(1 + ω)2γ |∇v|2(q−1) ≤
{∫

Ω
(1 + ω)2γb

} 1
b

·
{∫

Ω
|∇v|2(q−1)b′

} 1
b′

,(3.19) ∫
Ω

(1 + ω)p+α+2β̃−2|∇z|2 ≤
{∫

Ω
(1 + ω)(p+α+2β̃−2)ã

} 1
ã

·
{∫

Ω
|∇z|2ã′

} 1
ã′

,∫
Ω

(1 + u)2γ̃ |∇z|2(q−1) ≤
{∫

Ω
(1 + u)2γ̃b̃

} 1

b̃

·
{∫

Ω
|∇z|2(q−1)̃b′

} 1

b̃′
,

where all of a, b, ã, b̃ satisfy (3.2). And then we get a′ = a
a−1 > 1, b′ = b

b−1 > 1,

ã′ = ã
ã−1 > 1, b̃′ = b̃

b̃−1
> 1. In view of Lemma 2.2 and (3.4), applying the Gagliardo–

Nirenberg’s inequality (2.7) results in

{∫
Ω

(1 + u)(p+α+2β−2)a

} 1
a

= ‖(1 + u)
p−α
2 ‖

2(p+α+2β−2)
p−α

L
2α(p+α+2β−2)

p−α (Ω)

≤ C3

{
‖∇(1 + u)

p−α
2 ‖

2(p+α+2β−2)θ
p−α

L2(Ω)
‖(1 + u)

p−α
2 ‖

2(p+α+2β−2)(1−θ)
p−α

L
2

p−α (Ω)
+ ‖(1 + u)

p−α
2 ‖

2(p+α+2β−2)
p−α

L
2

p−α (Ω)

}

≤ C4

{∫
Ω
|∇(1 + u)

p−α
2 |2

} (p+α+2β−2)θ
p−α

+ C4,

(3.20)

where positive constants C3 = C3(p, α) and C4 = C4(p, α, β); the assumptions p > 1 and

(3.4) guarantee θ =
p−α
2
− p−α

2a(p+α+2β−2)
1
n
− 1

2
+ p−α

2

∈ (0, 1). We use Lemma 2.2 and the Gagliardo–

Nirenberg’s inequality (2.7) once again to obtain{∫
Ω
|∇v|2a′

} 1
a′

= ‖|∇v|q‖
2
q

L
2a′
q (Ω)

≤ C5

{
‖∇|∇v|q‖

2δ
q

L2(Ω)
‖|∇v|q‖

2(1−δ)
q

L
s
q (Ω)

+ ‖|∇v|q‖
2
q

L
s
q (Ω)

}
≤ C6

{∫
Ω
|∇|∇v|q|2

} δ
q

+ C6,

(3.21)

where positive constants C5 = C5(q, s) and C6 = C6(q, s, a, γ); the assumptions (3.5) and

q > 1 + s
2 in (3.3) warrant δ =

q
s

+ q
2a
− q

2
1
n
− 1

2
+ q
s

∈ (0, 1). Inserting (3.20) and (3.21) into (3.18),

we can find some positive constant C7 = C7(p, q, α, β, a, s, γ) fulfilling

C2

∫
Ω

(1 + u)p+α+2β−2|∇v|2

≤ C7

{[∫
Ω
|∇(1 + u)

p−α
2 |2

] (p+α+2β−2)θ
p−α

[ ∫
Ω
|∇|∇v|q|2

] δ
q

+

[ ∫
Ω
|∇(1 + u)

p−α
2 |2

] (p+α+2β−2)θ
p−α

+

[ ∫
Ω
|∇|∇v|q|2

] δ
q

+ 1

}
.

(3.22)
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Similarly, (3.6) and Lemma 2.2 along with the Gagliardo–Nirenberg’s inequality (2.7)

indicate that{∫
Ω

(1 + ω)2γb

} 1
b

= ‖(1 + ω)
p−α
2 ‖

4γ
p−α

L
4γb
p−α
≤ C8

{∫
Ω
|∇(1 + ω)

p−α
2 |2

} 2γ
p−α θ

+ C8

and {∫
Ω
|∇v|2(q−1)b′

} 1
b′

= ‖|∇v|q‖
2(q−1)
q

L
2(q−1)b′

q (Ω)

≤ C9

{∫
Ω
|∇|∇v|q|2

} (q−1)δ
q

+ C9,

where the positive constants C8 = C8(p, α, b, γ) and C9 = C9(q, s, b, γ); p > 1 in (3.3)

and b > 1
2γ in (3.2) as well as n−2

n ·
2γ
p−α <

1
b in (3.6) ensure θ =

p−α
2
− p−α

4γb
1
n
− 1

2
+ p−α

2

∈ (0, 1); (3.8)

warrants 1
s >

n−2
2nq ; q > 1 + s

2 in (3.3) guarantees s < 2b(q−1)
b−1 ; in the same way, 1

s >
n−2
2nq

and s < 2b(q−1)
b−1 as well as 1

b <
2
n ≤

2
n + 1

q

(
1 − 2

n

)
ensure δ =

q
s

+ q
2(q−1)b

− q
2(q−1)

1
n
− 1

2
+ q
s

∈ (0, 1).

Inserting the above two inequalities into (3.19) gives us

C2

∫
Ω

(1 + ω)2γ |∇v|2(q−1)

≤ C10

{[∫
Ω
|∇(1 + ω)

p−α
2 |2

] 2γθ
p−α
[ ∫

Ω
|∇|∇v|q|2

] (q−1)δ
q

+

[ ∫
Ω
|∇(1 + ω)

p−α
2 |2

] 2γθ
p−α

+

[ ∫
Ω
|∇|∇v|q|2

] (q−1)δ
q

+ 1

}
,

(3.23)

where positive constant C10 = C10(p, α, b, γ, q, s). In precisely the same manner, we get

there exist positive constants C̃7 and C̃10 such that

C̃2

∫
Ω

(1 + ω)p+α+2β̃−2|∇z|2

≤ C̃7

{[∫
Ω
|∇(1 + ω)

p−α
2 |2

] (p+α+2β̃−2)θ̃
p−α

[ ∫
Ω
|∇|∇z|q|2

] δ̃
q

+

[ ∫
Ω
|∇(1 + ω)

p−α
2 |2

] (p+α+2β̃−2)θ̃
p−α

+

[ ∫
Ω
|∇|∇z|q|2

] δ̃
q

+ 1

}
(3.24)

as well as

C̃2

∫
Ω

(1 + u)2γ̃ |∇z|2(q−1)

≤ C̃10

{[∫
Ω
|∇(1 + u)

p−α
2 |2

] 2γ̃θ̃
p−α
[ ∫

Ω
|∇|∇z|q|2

] (q−1)δ̃
q

+

[ ∫
Ω
|∇(1 + u)

p−α
2 |2

] 2γ̃θ̃
p−α

+

[ ∫
Ω
|∇|∇z|q|2

] (q−1)δ̃
q

+ 1

}
.

(3.25)
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Here positive constant C̃10 = C̃10(p, α, b̃, γ̃, q, s); (3.7) and p > 1 in (3.3) ensure θ̃ =
p−α
2
− p−α

2ã(p+α+2β̃−2)
1
n
− 1

2
+ p−α

2

∈ (0, 1); (3.8) and q > 1+ s
2 in (3.3) guarantee δ̃ =

q
s

+ q
2ã
− q

2
1
n
− 1

2
+ q
s

∈ (0, 1); p > 1

in (3.3) and b̃ > 1
2γ̃ in (3.2) as well as n−2

n ·
2γ̃
p−α <

1

b̃
in (3.9) warrant θ̃ =

p−α
2
− p−α

4γ̃b̃
1
n
− 1

2
+ p−α

2

∈ (0, 1);

(3.8) warrants 1
s >

n−2
2nq ; q > 1+ s

2 in (3.3) guarantees s < 2b̃(q−1)

b̃−1
; 1
s >

n−2
2nq and s < 2b̃(q−1)

b̃−1

as well as 1

b̃
< 2

n ≤
2
n + 1

q

(
1− 2

n

)
in (3.9) ensure δ̃ =

q
s

+ q

2(q−1)b̃
− q

2(q−1)

1
n
− 1

2
+ q
s

∈ (0, 1).

Next, if the following four inequalities hold

(3.26)

p+ α+ 2β − 2

p− α
θ +

δ

q
< 1,

2γθ

p− α
+
q − 1

q
δ < 1,

p+ α+ 2β̃ − 2

p− α
θ̃ +

δ̃

q
< 1,

2γ̃θ̃

p− α
+
q − 1

q
δ̃ < 1,

then applying Young’s inequality to (3.17), we can find some positive constant C16 such

that

d

dt

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
+

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
≤ C16.

To this end, we define Hi(q) (i = 1, 2, 3, 4) as follows

H1(q) =
p+ α+ 2β − 2

p− α
θ +

δ

q
=

p+α+2β−2
2 − 1

2a
1
n −

1
2 + p−α

2

+
1
s + 1

2a −
1
2

1
n −

1
2 + q

s

,

H2(q) =
2γθ

p− α
+
q − 1

q
δ =

γ − 1
2b

1
n −

1
2 + p−α

2

+
q−1
s + 1

2b −
1
2

1
n −

1
2 + q

s

,

H3(q) =
p+ α+ 2β̃ − 2

p− α
θ̃ +

δ̃

q
=

p+α+2β̃−2
2 − 1

2ã
1
n −

1
2 + p−α

2

+
1
s + 1

2ã −
1
2

1
n −

1
2 + q

s

,

H4(q) =
2γ̃θ̃

p− α
+
q − 1

q
δ̃ =

γ̃ − 1

2b̃
1
n −

1
2 + p−α

2

+

q−1
s + 1

2b̃
− 1

2

1
n −

1
2 + q

s

.

Let q(p) = p−α
2 s, then

H1(q(p)) =
p+α+2β−2

2 − 1
2a

1
n −

1
2 + p−α

2

+
1
s + 1

2a −
1
2

1
n −

1
2 + p−α

2

=
p+α+2β−2

2 − 1
2 + 1

s
1
n −

1
2 + p−α

2

.

Thanks to the assumption a < s
(s−2)+

in (3.2), we derive

(p+ α+ 2β − 2)− 1 +
2

s
> (p+ α+ 2β − 2)− 1 +

2

s
>

1

a
− 1 +

2

s
> 0,

hence, p+α+2β−2
2 − 1

2 + 1
s > 0. From (3.3), we deduce p > p > 1 +α+ 2

s > 1 +α− 2
n , which

implies 1
n −

1
2 + p−α

2 > 0. It is easy to verify that 1
s < 1 + 1

n − (α + β) in (3.1) ensures

H1(q(p)) < 1. Similarly, we will obtain 1
s > γ − 1

n in (3.1) guarantees H2(q(p)) < 1;
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1
s < 1 + 1

n − (α + β̃) in (3.1) warrants H3(q(p)) < 1; 1
s > γ̃ − 1

n in (3.1) guarantees

H4(q(p)) < 1.

Similar to the proof in [37], by a continuity argument, for any p ≥ p, there exists

q ∈ [q, q(p)) close to q(p) satisfying Hi(q) < 1 (i = 1, 2, 3, 4), which together with the fact

q(p)→∞ as p→∞ guarantees (3.26) for all p ≥ p and q ≥ q.
We define the following parameters

ε1 =
1

2(C7 + C̃10)(p− α)2
, ε2 =

q − 1

4(C7 + C10)q2
,

ε3 =
1

2(C̃7 + C10)(p− α)2
, ε4 =

q − 1

4(C̃7 + C̃10)q2
.

With H1(q) < 1 at hand, we see the exponent p+α+2β−2
p−α θ ∈ (0, 1) and δ

q ∈ (0, 1) as

well as p+α+2β−2
p−α θ + δ

q < 1. Applying Proposition 2.4 to the first term on the right-hand

side of (3.22) produces

C7

{∫
Ω
|∇(1 + u)

p−α
2 |2

} (p+α+2β−2)θ
p−α

·
{∫

Ω
|∇|∇v|q|2

} δ
q

≤ C7

{
ε1

∫
Ω
|∇(1 + u)

p−α
2 |2 + ε2

∫
Ω
|∇|∇v|q|2

}
+ C1.

Using Young’s inequality to the second and third terms on the right-hand side of (3.22)

gives us {∫
Ω
|∇(1 + u)

p−α
2 |2

} (p+α+2β−2)θ
p−α

≤ ε1
∫

Ω
|∇(1 + u)

p−α
2 |2 +

˜̃
C1

and {∫
Ω
|∇|∇v|q|2

} δ
q

≤ ε2
∫

Ω
|∇|∇v|q|2 + Ĉ1.

Here all of C1,
˜̃
C1 and Ĉ1 are positive constants. Repeating the process over and over

again for (3.23)–(3.25), and inserting these results into (3.17), a straightforward calculation

shows there exist positive constants C ′i (i = 1, 2, 3, 4) such that

d

dt

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
+

2

(p− α)2

∫
Ω

|∇(1 + u)
p−α

2 |2

+
2

(p− α)2

∫
Ω

|∇(1 + ω)
p−α

2 |2 +
q − 1

q2

∫
Ω

|∇|∇v|q|2 +
q − 1

q2

∫
Ω

|∇|∇z|q|2

≤ C7

[
ε1

∫
Ω

|∇(1 + u)
p−α

2 |2 + ε2

∫
Ω

|∇|∇v|q|2 + ε1

∫
Ω

|∇(1 + u)
p−α

2 |2 + ε2

∫
Ω

|∇|∇v|q|2 + C ′
1

]
+ C10

[
ε3

∫
Ω

|∇(1 + ω)
p−α

2 |2 + ε2

∫
Ω

|∇|∇v|q|2 + ε3

∫
Ω

|∇(1 + ω)
p−α

2 |2 + ε2

∫
Ω

|∇|∇v|q|2 + C ′
2

]
+ C̃7

[
ε3

∫
Ω

|∇(1 + ω)
p−α

2 |2 + ε4

∫
Ω

|∇|∇z|q|2 + ε3

∫
Ω

|∇(1 + ω)
p−α

2 |2 + ε4

∫
Ω

|∇|∇z|q|2 + C ′
3

]
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+ C̃10

[
ε1

∫
Ω

|∇(1 + u)
p−α

2 |2 + ε4

∫
Ω

|∇|∇z|q|2 + ε1

∫
Ω

|∇(1 + u)
p−α

2 |2 + ε4

∫
Ω

|∇|∇z|q|2 + C ′
4

]
+ C2

∫
Ω

|∇v|2q + C̃2

∫
Ω

|∇z|2q.

Meanwhile, a simple rearrangement leads to there exists some positive constant C11 such

that

d

dt

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
+

1

(p− α)2

∫
Ω
|∇(1 + u)

p−α
2 |2 +

1

(p− α)2

∫
Ω
|∇(1 + ω)

p−α
2 |2

+
q − 1

2q2

∫
Ω
|∇|∇v|q|2 +

q − 1

2q2

∫
Ω
|∇|∇z|q|2

≤ C2

∫
Ω
|∇v|2q + C̃2

∫
Ω
|∇z|2q + C11.

(3.27)

In view of the assumption α < 2
n , we obtain pσ

p−α < 1, and then there exists some positive

constant C13 such that∫
Ω
φ(u) ≤ 1

d0p(p− 1)

∫
Ω

(1 + u)p =
1

d0p(p− 1)
‖(1 + u)

p−α
2 ‖

2p
p−α

L
2p
p−α (Ω)

≤ C12

{∫
Ω
|∇(1 + u)

p−α
2 |2

} pσ
p−α

+ C12

≤ 1

(p− α)2

∫
Ω
|∇(1 + u)

p−α
2 |2 + C13,

(3.28)

where σ =
p−α
2
− p−α

2p
1
n
− 1

2
+ p−α

2

∈ (0, 1) and positive constants C12 = C12(p, α) as well as we have

applied Young’s inequality to the integral
[ ∫

Ω |∇(1 + u)
p−α
2 |2

] pσ
p−α . Following the same

argument as u(x, t), we obtain there exists some positive constant C̃13 such that

(3.29)

∫
Ω
ψ(ω) ≤ 1

(p− α)2

∫
Ω
|∇(1 + ω)

p−α
2 |2 + C̃13.

Applying the Gagliardo–Nirenberg’s inequality (2.7) once again, we get there exist positive

constants C14 and C15 such that

(3.30)

(
1

q
+ C2

)∫
Ω
|∇v|2q ≤ C14

[∫
Ω
|∇|∇v|q|2

]σ
+ C14 ≤

q − 1

2q2

∫
Ω
|∇|∇v|q|2 + C15,

where σ =
q
s
− 1

2
1
n
− 1

2
+ q
s

∈ (0, 1). Following the same argument as v(x, t), we deduce there exists

positive constant C̃15 such that

(3.31)

(
1

q
+ C̃2

)∫
Ω
|∇z|2q ≤ q − 1

2q2

∫
Ω
|∇|∇z|q|2 + C̃15.
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Collecting (3.27)–(3.31), a simple rearrangement leads to

d

dt

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
+

∫
Ω

{
φ(u) + ψ(ω) +

1

q
|∇v|2q +

1

q
|∇z|2q

}
≤ C16,

where positive constant C16 = C11 + C13 + C̃13 + C15 + C̃15. By an ODE comparison

argument, we derive∫
Ω
φ(u) +

∫
Ω
ψ(ω) +

1

q

∫
Ω
|∇v|2q +

1

q

∫
Ω
|∇z|2q

≤ max

{∫
Ω
φ(u0) +

∫
Ω
ψ(ω0) +

1

q

∫
Ω
|∇v0|2q +

1

q

∫
Ω
|∇z0|2q, C16

}
.

Obviously, with the definition of φ(u) and ψ(ω) at hand, we obtain there exist positive

constants C17 and C̃17 such that

(1 + u)p+α1−α ≤ C17[φ(u) + u+ 1] and (1 + ω)p+α1−α ≤ C̃17[ψ(ω) + ω + 1].

And then, we can find some positive constant C18 satisfying∫
Ω

(1 + u)p+α1−α ≤ C18,

∫
Ω

(1 + ω)p+α1−α ≤ C18,

∫
Ω
|∇v|2q ≤ C18,

∫
Ω
|∇z|2q ≤ C18

for all t ∈ (0, Tmax). Substituting p with p+ α− α1 produces

sup
t∈(0,Tmax)

∫
Ω

(1 + u)p <∞ and sup
t∈(0,Tmax)

∫
Ω

(1 + ω)p <∞.

Using the Sobolev embedding L2q(Ω) ↪→ L2q−1(Ω) leads to

sup
t∈(0,Tmax)

∫
Ω
|∇v|2q−1 <∞ and sup

t∈(0,Tmax)

∫
Ω
|∇z|2q−1 <∞.

As summarized above, we arrive at the desired estimate.

Now, we are in the position to complete the proof of Theorem 1.1, our proof reads as

follows.

Proof of Theorem 1.1. We first take p0 > max{1, 1 + α − α1, βq1} large enough fulfilling

(A.8)–(A.10) in [38] (Here, q1 is chosen as follows). With Proposition 3.1 at hand, we can

find some positive constant C19 = C19(β, γ, γ̃) satisfying

sup
t∈(0,Tmax)

‖u‖Lp0 (Ω) ≤ C19, sup
t∈(0,Tmax)

‖ω‖Lp0 (Ω) ≤ C19.

Next, Choosing q1 > n+ 2 such that

S(u)∇v ∈ L∞((0, Tmax), Lq1(Ω)), S̃(ω)∇z ∈ L∞((0, Tmax), Lq1(Ω)).
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In fact, when β ≤ 0, we will see S(u) ≤ s1(1 + u)β ≤ s1 and

‖S(u)∇v( · , t)‖Lq1 (Ω) ≤ s1‖∇v‖Lq1 (Ω) <∞ for all t ∈ (0, Tmax);

when β > 0, note that S(u) ≤ s1(1 + u)β. Using Hölder’s inequality yields

‖S(u)∇v‖Lq1 (Ω) ≤ s1‖1 + u‖βLp0 (Ω) · ‖∇v‖
L

q1p0
p0−βq1 (Ω)

<∞ for all t ∈ (0, Tmax).

Following the same argument, we derive ‖S̃(ω)∇z‖Lq1 (Ω) <∞ for all t ∈ (0, Tmax). Finally,

with the aid of a Moser-type iteration method [38, Lemma A.1], we deduce there exists

some positive constant C20 = C20(β, γ, γ̃) such that

sup
t∈(0,Tmax)

‖u‖L∞(Ω) ≤ C20 and sup
t∈(0,Tmax)

‖ω‖L∞(Ω) ≤ C20.

Note that v(x, t) solves
vt −4v + v = g(ω), (x, t) ∈ Ω× (0, Tmax),

∂v
∂ν = 0, (x, t) ∈ ∂Ω× (0, Tmax),

v(x, 0) = v0(x), x ∈ Ω.

Applying the variation-of-constants formula to v(x, t) and the solution estimates for the

heat equation with zero Neumann boundary condition [17,22,44] leads to

v(x, t) = et(4−1)v0 +

∫ t

0
e(t−s)(4−1)g(ω(x, s)).

Meanwhile, choosing θ ∈
(

2n+1
2(n+1) , 1−

n(γ−1)
2(n+1)

)
, we obtain from (2.1) and (2.2) there exists

some positive constant C such that

‖v‖W 1,∞(Ω) ≤ C‖Aθv‖Ln+1(Ω)

≤ C‖Aθet(4−1)v0‖Ln+1(Ω) + C

∫ t

0
‖Aθe(t−s)(4−1)g(ω)‖Ln+1(Ω)

≤ Ct−θe−µt‖v0‖Ln+1(Ω) + Cλ1

∫ t

0
(t− s)−θ−

n
2
γ−1
n+1 e−µ(t−s)‖ω‖γ

Ln+1(Ω)

≤ C
[
t−θ + Γ

(
1− θ − n

2

γ − 1

n+ 1

)]
for all t ∈ (0, Tmax),

where Γ(·) denotes the Gamma function. Especially, we get

‖v‖W 1,∞(Ω) ≤ C
[
t−θ + Γ

(
1− θ − n

2

γ − 1

n+ 1

)]
≤ C

[
t−θ0 + Γ

(
1− θ − n

2

γ − 1

n+ 1

)]
for all t ∈ (t0, Tmax). This leads to supt∈(t0,Tmax) ‖v‖L∞(Ω) ≤ C21. It is obvious that

supt∈[0,t0] ‖v‖L∞(Ω) < ∞ by Proposition 2.1. Therefore, we get supt∈(0,Tmax) ‖v‖L∞(Ω) <
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∞. Similarly, applying the variation-of-constants formula to z(x, t), following the same

argument as v(x, t), we can also infer supt∈(t0,Tmax) ‖z‖W 1,∞(Ω) ≤ C̃21. In particular, we

get supt∈(0,Tmax) ‖z‖L∞(Ω) ≤ C̃21. As summarized above, we get

sup
t∈(0,Tmax)

(
‖u‖L∞(Ω) + ‖v‖L∞(Ω) + ‖ω‖L∞(Ω) + ‖z‖L∞(Ω)

)
<∞.

By Proposition 2.1, we have Tmax =∞. This completes the proof.

3.2. Boundedness with logistic source

In this subsection, we first employ the variation-of-constants formula and maximal Sobolev

regularity to establish the following useful proposition.

Proposition 3.2. Let n ≥ 2 and nonnegative initial data (u0, v0, ω0, z0) satisfy (1.5).

Suppose D, S, D̃, S̃ and f , f̃ , g, g̃ fulfill (1.6) and (1.7) respectively. If k = k̃, β = β̃

and one of the following conditions holds

(1) max{γ, γ̃} < k − β;

(2) γ̃ < γ = k − β, µ > 2k+1s1, µ̃ > c̃p;

(3) γ < γ̃ = k − β, µ > cp, µ̃ > 2k+1s̃1;

(4) γ = γ̃ = k − β, µ > max{2k+1s1, cp}, µ̃ > max{2k+1s̃1, c̃p},

then for any p ∈ [1,∞), there exists some positive constant C = C(p, β, γ, µ, k, γ̃, µ̃) such

that

‖u( · , t)‖Lp(Ω) ≤ C, ‖ω( · , t)‖Lp(Ω) ≤ C for all t ∈ (0, Tmax).

Here cp and c̃p are defined in (3.41) and (3.39) respectively.

Proof. We only need to prove that for p satisfying p > max{1, 2 − β} there exists some

positive constant C such that

‖u( · , t)‖Lp(Ω) ≤ C, ‖ω( · , t)‖Lp(Ω) ≤ C for all t ∈ (0, Tmax).

Let t0 := min
{

1, 1
2Tmax

}
and p > max{1, 2− β} as well as t ∈ (t0, Tmax). Multiplying the

first equation in (1.4) by (1 + u)p−1, then (1.6) and (1.7) lead to that there exists some

positive constant C1 = C1(p, r, µ) such that

1

p

d

dt

∫
Ω

(1 + u)p = −(p− 1)

∫
Ω

(1 + u)p−2D(u)|∇u|2

+ (p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v +

∫
Ω

(1 + u)p−1f(u)
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≤ (p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v + r

∫
Ω

(1 + u)p−1u

− µ
∫

Ω
(1 + u)p−1uk

≤ (p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v + r

∫
Ω

(1 + u)p−1u(3.32)

− µ

2k−1

∫
Ω

(1 + u)p+k−1 + µ

∫
Ω

(1 + u)p−1

≤ (p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v + 2r+

∫
Ω

(1 + u)p

− µ

2k−1

∫
Ω

(1 + u)p+k−1 + C1.

Let m = p+k−1
k−β , based on (3.32) as well as Young’s inequality, we get there exists some

positive constant C2 = C2(p, r, µ, k) such that

1

p

d

dt

∫
Ω

(1 + u)p +
m

2p

∫
Ω

(1 + u)p

≤ (p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v +

(
m

2p
+ 2r+

)∫
Ω

(1 + u)p

− µ

2k−1

∫
Ω

(1 + u)p+k−1 + C1

≤ (p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v − µ

2k

∫
Ω

(1 + u)p+k−1 + C2.

(3.33)

Let

φ1(ζ) = (p− 1)

∫ ζ

0
(1 + σ)p−2S(σ) for ζ ≥ 0.

Thanks to the assumption (1.6), we derive

0 ≤ φ1(ζ) ≤ s1(p− 1)

p+ β − 1
(1 + ζ)p+β−1, ζ ≥ 0.

Due to k > β, we see p+ β − 1 = (m− 1)(k− β) > 0 implies m > 1. Integrating by parts

over Ω, we therefore infer that there exists some positive constant C3 such that

(p− 1)

∫
Ω

(1 + u)p−2S(u)∇u · ∇v

=

∫
Ω
∇φ1(u) · ∇v ≤ s1(p− 1)

p+ β − 1

∫
Ω

(1 + u)p+β−1|4v|

≤ µ

2k+1

∫
Ω

(1 + u)p+k−1 + C3

∫
Ω
|4v|m,

(3.34)

where C3 = C3(p, β, µ, k) = s1(p−1)(k−β)
(p+β−1)(p+k−1)

[
2k+1s1
µ · p−1

p+k−1

] p+β−1
k−β . Inserting (3.34) into

(3.33) produces

1

p

d

dt

∫
Ω

(1 + u)p +
m

2p

∫
Ω

(1 + u)p ≤ − µ

2k+1

∫
Ω

(1 + u)p+k−1 + C3

∫
Ω
|4v|m + C2.
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Along with the variation-of-constants formula, we deduce there exists some positive con-

stant C4 such that

1

p

∫
Ω

(1 + u)p ≤ − µ

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1 + C3

∫ t

t0

∫
Ω
e−

m
2

(t−s)|4v|m

+ C2

∫ t

t0

e−
m
2

(t−s) +
1

p
e−

m
2

(t−t0)

∫
Ω

(1 + u(t0))p

≤ − µ

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1 + C3e
−m

2
t

∫ t

t0

∫
Ω
e
m
2
s|4v|m + C4,

(3.35)

where C4 =: 2C2
m + 1

p

∫
Ω(1 + u(t0))p = C4(p, r, µ, k, β). In view of Lemma 2.6 and (3.35),

we get there exist positive constants Cm and C5 such that

1

p

∫
Ω

(1 + u)p ≤ − µ

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1

+ C3Cm

∫ t

t0

∫
Ω
e−

m
2

(t−s)λm1 ω
mγ(s)

+ C3Cme
−m

2
(t−t0)

[
‖v( · , t0)‖mLm(Ω) + ‖4v( · , t0)‖mLm(Ω)

]
+ C4

≤ − µ

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1

+ C3Cmλ
m
1

∫ t

t0

∫
Ω
e−

m
2

(t−s)ωmγ(s) + C5,

(3.36)

where C5 = C5(p, γ, µ, k, β). Similarly, from the third and fourth equations of (1.4), we

deduce there exist positive constants C̃3, C̃m and C̃5 such that

1

p

∫
Ω

(1 + ω)p ≤ − µ̃

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + ω)p+k−1

+ C̃3C̃mλ̃
m
1

∫ t

t0

∫
Ω
e−

m
2

(t−s)umγ̃(s) + C̃5,

(3.37)

where C̃5 = C̃5(p, γ̃, µ̃, k, β). Summing up (3.36) and (3.37) leads to

1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p

≤ − µ

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1 + C̃3C̃mλ̃
m
1

∫ t

t0

∫
Ω
e−

m
2

(t−s)umγ̃(s) + C̃5

− µ̃

2k+1

∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + ω)p+k−1 + C3Cmλ
m
1

∫ t

t0

∫
Ω
e−

m
2

(t−s)ωmγ(s) + C5.

To obtain the boundedness of
∫

Ω(1+u)p and
∫

Ω(1+ω)p, we subdivide the relationship

between mγ and p+ k − 1 as well as mγ̃ and p+ k − 1 into four cases as below.
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Case 1. When mγ̃ < p + k − 1 and mγ < p + k − 1, applying Young’s inequality to

the integrals
∫ t
t0

∫
Ω e
−m

2
(t−s)umγ̃(s) and

∫ t
t0

∫
Ω e
−m

2
(t−s)ωmγ(s), we derive there exists some

positive constant C6 such that

1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ C6.

Case 2. When mγ̃ < p + k − 1 and mγ = p + k − 1, applying Young’s inequality to

the integral
∫ t
t0

∫
Ω e
−m

2
(t−s)umγ̃(s), we can see there exists some positive constant C7 such

that

(3.38)
1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ −
[

µ̃

2k+1
− C3Cmλ

m
1

] ∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + ω)p+k−1 + C7.

Thanks to the assumption µ > 2k+1s1, we deduce

C3Cmλ
m
1 2k+1

= 2k+1Cmλ
m
1 s1(k − β)

p− 1

(p+ β − 1)(p+ k − 1)

(
2k+1s1

µ

) p+β−1
k−β

(
p− 1

p+ k − 1

) p+β−1
k−β

≤ 2k+1Cmλ
m
1 s1(k − β) := c̃p = c̃p(k, β, p).

(3.39)

By virtue of µ̃ > c̃p, collecting (3.38) and (3.39) results in there exists some positive

constant C8 such that
1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ C8.

Case 3. When mγ̃ = p+ k− 1 and mγ < p+ k− 1. By the same procedure to Case 2,

we deduce there exists some positive constant C9 such that

(3.40)
1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ −
[ µ

2k+1
− C̃3C̃mλ̃

m
1

] ∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1 + C9.

Thanks to the assumption µ̃ > 2k+1s̃1, we have

C̃3C̃mλ̃
m
1 2k+1

= 2k+1C̃mλ̃
m
1 s̃1(k − β)

p− 1

(p+ β − 1)(p+ k − 1)

(
2k+1s̃1

µ̃

) p+β−1
k−β

(
p− 1

p+ k − 1

) p+β−1
k−β

≤ 2k+1C̃mλ̃
m
1 s̃1(k − β) := cp = cp(k, β, p).

(3.41)

In view of µ > cp, combining (3.40) and (3.41) shows that there exists some positive

constant C10 such that

1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ C10.
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Case 4. When mγ̃ = p+ k − 1 and mγ = p+ k − 1. Following the same argument as

in Cases 2 and 3, we obtain there exists some positive constant C11 such that

1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ −
[ µ

2k+1
− C̃3C̃mλ̃

m
1

] ∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + u)p+k−1

≤ −
[

µ̃

2k+1
− C3Cmλ

m
1

] ∫ t

t0

∫
Ω
e−

m
2

(t−s)(1 + ω)p+k−1 + C11.

With the assumptions µ > max{2k+1s1, cp} and µ̃ > max{2k+1s̃1, c̃p} at hand, we derive

there exists some positive constant C12 such that

1

p

∫
Ω

(1 + u)p +
1

p

∫
Ω

(1 + ω)p ≤ C12.

As described above, we arrive at the desired result.

With Proposition 3.2 at hand, we can prove Theorem 1.2 as follows.

Proof of Theorem 1.2. We first take p0 > max{1, 2 − β} large enough fulfilling (A.8)–

(A.10) in [38]. With Proposition 3.2 at hand, we can find some constant C13 = C13(β, γ, r,

µ, k, γ̃, r̃, µ̃) > 0 satisfying

sup
t∈(0,Tmax)

‖u‖Lp0 (Ω) ≤ C13 and sup
t∈(0,Tmax)

‖ω‖Lp0 (Ω) ≤ C13.

Next, choosing q1 > n+ 2 and q2 >
n+2

2 such that

(S(u)∇v, S̃(ω)∇z) ∈ (L∞((t0, Tmax), Lq1(Ω)))2,

(f(u), f̃(ω)) ∈ (L∞((t0, Tmax), Lq2(Ω)))2.
(3.42)

In fact, in one case, note that supt∈(0,Tmax) ‖ω‖Ln+1(Ω) < ∞, we apply the variation-of-

constants formula once more to v(x, t) as the proof of Theorem 1.1 to get

sup
t∈(t0,Tmax)

‖v‖W 1,∞(Ω) <∞ and sup
t∈(t0,Tmax)

‖z‖W 1,∞(Ω) <∞.

And then when β ≤ 0, we infer

‖S(u)∇v‖Lq1 (Ω) ≤ s1‖∇v‖L∞(Ω)|Ω|
1
q1 <∞ for all t ∈ (t0, Tmax);

meanwhile when β > 0, we can see

‖S(u)∇v‖Lq1 (Ω) ≤ s1‖∇v‖L∞(Ω)‖1 + u‖β
Lβq1 (Ω)

<∞ for all t ∈ (t0, Tmax).

In summary, we deduce S(u)∇v ∈ Lq1(Ω) for all t ∈ (t0, Tmax). Similarly, we obtain

S̃(ω)∇z ∈ Lq1(Ω) for all t ∈ (t0, Tmax). In another case, note that f(u) ≤ ru − µuk, we
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easily get ‖f(u)‖Lq2 (Ω) ≤ r‖u‖Lq2 (Ω) + µ‖u‖k
Lkq2 (Ω)

<∞ for all t ∈ (0, Tmax). Similarly we

have ‖f̃(ω)‖Lq2 (Ω) <∞ for all t ∈ (0, Tmax). Finally, with (3.42) at hand, with the aid of

a Moser-type iteration method [38, Lemma A.1], we get

sup
t∈(t0,Tmax)

‖u‖L∞(Ω) ≤ C14, sup
t∈(t0,Tmax)

‖ω‖L∞(Ω) ≤ C14,

where C14 = C14(β, γ, γ̃, r, r̃, µ, µ̃, k). It is obvious that supt∈[0,t0] ‖u‖L∞(Ω) < ∞ and

supt∈[0,t0] ‖ω‖L∞(Ω) < ∞ by Proposition 2.1. In summary, with the aid of the above

estimates, we infer

sup
t∈(0,Tmax)

‖u‖L∞(Ω) <∞, sup
t∈(0,Tmax)

‖ω‖L∞(Ω) <∞.

As described above, we deduce

sup
t∈(0,Tmax)

(
‖u‖L∞(Ω) + ‖v‖L∞(Ω) + ‖ω‖L∞(Ω) + ‖z‖L∞(Ω)

)
<∞.

Now Tmax =∞ follows from Proposition 2.1 and hence the proof is complete.

4. Conclusion

In this article, we studied a fully parabolic quasilinear chemotaxis model with nonlinear

signal production. When there is no growth source, nonlinear variants with diffusivity,

chemotactic sensitivity and signal production ensure the global existence of the solutions.

We also showed that strong logistic damping effect warrants the global existence of the

solutions.

It is necessary to point out that under the cases of

f(u) = ru− µuk, f̃(ω) = r̃ω − µ̃ωk̃, g̃(u) = g̃1u
γ̃ , g(ω) = g1ω

γ ,

the stabilities of the solutions remain open. We guess that the bounded solutions warranted

by Theorem 1.2 have the property∥∥∥∥∥u−
(
r+

µ

) 1
k−1

∥∥∥∥∥
L∞(Ω)

→ 0,

∥∥∥∥∥z − g̃1

(
r+

µ

) γ̃
k−1

∥∥∥∥∥
L∞(Ω)

→ 0,

∥∥∥∥∥ω −
(
r̃+

µ̃

) 1

k̃−1

∥∥∥∥∥
L∞(Ω)

→ 0,

∥∥∥∥∥v − g1

(
r̃+

µ̃

) γ

k̃−1

∥∥∥∥∥
L∞(Ω)

→ 0.

If it is true, we can study the convergence rate of the solutions, but unfortunately, we do not

make a clear answer to this guess. It is worth mentioning that for single-species chemotaxis

systems involving linear diffusion and logistic-type terms, results on large time stabilization
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have already been obtained by Winkler for k = 2 in [48] and substantially smaller k

in [50]. In addition, for a fully parabolic quasilinear single-species chemotaxis model

involving general logistic source and signal production, result on large time stabilization

has already been achieved by Ding et al. [8]. These may be very helpful to solve our guess.

We leave it for future work.
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