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Traveling Waves for a Discrete Diffusion Epidemic Model with Delay

Jingdong Wei*, Zaili Zhen, Jiangbo Zhou and Lixin Tian

Abstract. This paper is concerned with traveling wave solutions in a discrete diffusion
epidemic model with delayed transmission. Employing the way of contradictory dis-
cussions and the bilateral Laplace transform, we obtain the nonexistence of nontrivial
positive bounded traveling wave solutions. Utilizing the super-/sub-solutions method
and the fixed point theory, we derive the existence of nontrivial positive traveling wave
solutions with both super-critical and critical speeds. Our results indicate that the

critical speed is the minimal speed.

1. Introduction

Considering the environment which individuals live in can be divided into countably dis-
crete niches and the influence of latent period of the disease, we investigate a discrete

diffusion epidemic model with delay

Sn Sn n\l—T
d dt(t) = ds[Sn+1(t) + Sp—1(t) — 2S,()] — 5n(£+1it()75[—7(-3+1%n(t)’

(1L1) {98 = dilLog1 (&) + T () — 2L0)] + 5 — (v + ) Ia(t),

)
nlt) = 4, [Ro1(t) + Rn1(t) — 2Ru(8)] +v1a(t), n€Z,

where S,,(t), I (t) and R, (t) refer to the densities of susceptible, infected and recovered
individuals in time ¢ and niches n, respectively. The coefficients dg, d;, d, > 0 denote the
diffusion rates of each class, § > 0 stands for the transmission rate, v > 0 represents the
recovery rate, 6 > 0 is the disease-induced death rate and 7 > 0 is the latent period.
Model with standard incidence 8S1/(S + I+ R) describes that individuals can move
freely in a patchy habitat and a part of infected individuals will be removed from the
community due to disease-induced death, while other recovered individuals will return
into the population, which capture the dynamical behavior of disease propagation.

In mathematical biology, traveling wave solutions can describe the phase transition

that an epidemic transmits geographically with a constant speed from the initial state to

Received August 25, 2020; Accepted December 24, 2020.

Communicated by Je-Chiang Tsai.

2020 Mathematics Subject Classification. 34K10, 34C37, 92D25, 46N60.

Key words and phrases. discrete diffusion, epidemic model, latent period, super-/sub-solutions method,
minimal speed.

*Corresponding author.

831



832 Jingdong Wei, Zaili Zhen, Jiangbo Zhou and Lixin Tian

the final state. The main purpose in this paper is to explore the existence and the minimal
speed of traveling wave solutions for (1.1). By a traveling wave solution with a constant
speed ¢ of (1.1), we mean that it is in the form of

(SnaImRn)(t) = (S?Ia R)(f), §=n+ct,

which satisfies the following ordinary differential system

eS'(€) = dy[S(€+1) + S(§ = 1) = 25(8)] — s Aot

ds
(1.2)  qel'(§) = dill(§+1) + (€ - >—2I<s>]+S(fifg”ﬁﬂﬁ(@—<v+5>f<s>7
CRI(§) = d,[R(€+1) + R(E — 1) = 2R()] +71(€), €ER,

with the asymptotic boundary conditions
(Sv I R)(_OO) = (Sla 0, O) and (Sa I, R)(—I—OO) = (527 07/7(51 - SQ)/(7 + 5))7

where S; > 0 is a given constant and the constant Sy € [0,.S7) will be proved to exist.

In the last several decades, many theoretical issues concerning local-diffusion (or
nonlocal-diffusion) epidemic models with (or without) time delay have been attracted
considerable attention. Particularly, the existence and nonexistence of traveling waves for
these models have been well-studied because these information can forecast whether or
not an epidemic transmit in the crowd and how fast the epidemic invades geographically.

In recent years, Wang et al. [20] studied a local-diffusion epidemic model

8, = d19,28 — BSI/(S + I + R),
(1.3) Ol = doOyr I + BST/(S+ I+ R) — (v + )1,
O¢R = d30z: R + 1,

where S(z,t), I(z,t) and R(x,t) are the densities of susceptible, infected and recovered
individuals in location z and time £, respectively. For the biological interpretation of
model and its coefficients, one can refer to [20]. They proved that if Ry = 5/(y+9) >
1, ¢ > ¢ = 2y/da(f—v—0) and d3 < 2da, then has a nontrivial nonnegative
traveling wave solution satisfying S(—o0) 1= S_o > S(4+00) := Soc > 0, I(£o0) = 0,
R(—o0) = 0 and R(+00) = Y(S—oc — Sec)/(7y+6); if 0 < Ry < 1 or ¢ < ¢*, then
admits no nontrivial nonnegative traveling waves. In reality, latent period of many
diseases seems to be inevitable. Removing the unnatural condition d3 < 2ds, He and
Tsai [12] obtained the existence of nontrivial nonnegative traveling wave solutions with
both super-critical and critical speeds for a discrete delayed version of . For the

investigation of other local-diffusion epidemic systems, we suggest the readers to see [,
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6-84/10,|13,/14}122123,|25|, 28, 132,|37-40./43]. To describe a long range process in a spatially

continuous environment, Yang et al. [34] explored the nonlocal version of system ([1.3])

0SS =di(JxS—85)—pBSI/(S+I+R),
(1.4) Ol =do(JxI—1)+BSI/(SH+I+R)—(y+0)I,
O R =ds(J*R— R)+~I,

where “x” is the standard convolution with respect to spatial variable, J € C*(R), J(x) =
J(—z) >0, [J(y)dy = 1 and J is compactly supported. They showed that when
Ry = /(v + d) > 1, there is a constant ¢* > 0 such that for every ¢ > ¢*, system (|1.4))
admits a nontrivial nonnegative traveling wave solution with S(—o00) := S_ > S(400) :=
Soo > 0, I(+c0) = 0 and R(—o0) = 0. Moreover, R(+00) = v(S—co — Soc)/(y + 9) if
limsupg_, o R(§) < +00. When 0 < Rg < 1or 0 < c < c*, system has no nontrivial
nonnegative traveling waves. Very recently, Wei et al. [25] investigated a nonlocal delayed
version of model and derived the existence of nontrivial positive traveling waves with
super-critical and critical speeds. For more study of nonlocal diffusion epidemic systems,
we refer to [2,/3,(9L/15H19,[21,33},[35,/41,/44]. To study the nonlocal process in a spatially
discrete environment, the present authors [26] proposed a two-component discrete diffusion

epidemic model with delay

dSn(t) _ BSn () (t—T
s = GlSan 0+ S (t) - 25,0 - SEIEEE,

) = [ 1 (1) + T () — 20n(8)] + ST — 1, (1), n ez,

and established the existence and nonexistence of traveling wave solutions for this sys-
tem. Let us recall the proof strategy in [26]. Firstly, we constructed a pair of super-
/sub-solutions on the real line and defined an invariant cone of a functional space with
weighted norm by this pair of super-/sub-solutions. Secondly, we applied Schauder’s fixed
point theorem to prove that has a traveling wave solution with super-critical speed.
Thirdly, by analysis method we obtained the asymptotic boundary, positiveness and other
properties of the traveling wave solution. Fourthly, utilizing the similar way as for the
super-critical traveling wave solution, we still derived the critical traveling wave solu-
tion via another pair of super-/sub-solutions. Finally, for the nonexistence theorems, we
mainly used the way of contradictory arguments and the bilateral Laplace transform to
achieve the goal. The results in [26] are summarised as follows. If 8 > 7, then there is
some constant ¢* > 0 such that for each ¢ > ¢*, model admits a nontrivial positive
bounded traveling wave solution. If 8 < = or ¢ < ¢*, then has no nontrivial posi-
tive bounded traveling wave solutions. For other progress of discrete diffusion epidemic
models, see [5|11},24.(30,36,42].
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We should point out that the difference-differential epidemic models in the existing
references [5,11}241261/30,36,/42] are two-component systems, while is indeed a three-
component system and we need to overcome some difficulties. Due to the deficiency of
monotonicity for , it is hard to obtain the exact boundaries of S-component and
R-component at plus infinity. However, by analysis technique, we still derive the exis-
tence of the limits for S-component and R-component at plus infinity under the condition
limsup,_, | o, R(§) < +o0o. Because of the appearance of second order difference operators,
it seems difficult to deduce a priori estimate of R-component, which is a key estimate for
using the method of the bilateral Laplace transform to prove the nonexistence results.
Herein, we construct a nonnegative bounded smooth cut-off function and make full use
the structure of system to obtain this a priori estimate.

Now we sketch our ideas and organization as follows. Section [2] is devoted to stat-
ing some preliminaries. In Section we apply the reduction to absurdity together
with the bilateral Laplace transform to establish the nonexistence of nontrivial positive
bounded traveling wave solutions in . In Section |4l to explore the existence of a
super-critical traveling wave solution in , we first construct a pair of super-/sub-
solutions for ; secondly, we introduce a convex cone {2x of initial functions defined
in a large bounded closed interval [—X, X], whose elements sandwich between super-
solution and sub-solution; thirdly, we define a nonlinear operator O on Qx and present
that O: Qx — Qx is completely continuous with respect to the supremum norm in
C([-X, X],R3); fourthly, we use Schauder’s fixed point theorem on this cone to obtain
the existence of a fixed point for O, which guarantees that the existence of a solution for
on [—X, X]; fifthly, by a limiting method we extend the existence of the solution
on [—X, X] to the unbounded spatial domain R; finally, by delicate analysis we show the
positiveness and asymptotic boundaries of the traveling wave solutions. In Section [5] to
investigate the existence of a critical traveling wave solution in , we construct another
pair of super-/sub-solutions for and utilize the analogous manner as for the super-
critical traveling wave solution to reach our goal. Then we further deduce some properties

concerning the traveling wave solutions.

2. Preliminaries

Let us start with the definition of the super-/sub-solutions for (1.2]). In the sequel,
Dlu)(§) := u(§ +1) +u(§ — 1) — 2u(§).

Definition 2.1. The nonnegative continuous function pairs (Sy, I+, R4 )(§) and (S_,I_,
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R_)(§) are named as a pair of super-/sub-solutions for (1.2)) if they satisfy

B BSL(E1-(§ —cT) <0
Sp(§) +I-(§—cr)+Ry(§) = 7

DU ~ 46 + g 2o e e e ~ (DL <0,
<0,

d; D[R4](§) — eRL(€) +711.(6)
, BS_(©)L (¢ — c7)
LIS = SO ~ g 1, (6 - ey + ()

BS_(§)I_(§ —cT) B
SO+LE-— TR OTI©=20
>

drDIR_](§) — cR_(§) +vI-(§)

;D[S ](€) — S, (&)

>0,

d; D[I_](&) — I’ (§) +

0,
except for finitely many points on the whole real line.

Now we establish a couple of lemmas which will be utilized to prove our main results.

Lemma 2.2. Let Ry :=3/(y+9) > 1 and
F(p,c):=di(e’ +e P —=2) —cp+ e PT —y—4.

Then there exists a pair of positive real numbers (p*,c*) such that

(2.1) F(p*,c") =di(e” +e? —2)—cp* +Be 7T —y—6=0
and
(2.2) F,(p*,c*) =di(e?” —e ) —c* — Bcrre P ¢ = 0.

Moreover, the following statements are valid.
(i) If c € (0,c*), then F(p,c) >0 for p € [0,+00).
(ii) If ¢ € (¢*,40), then the equation F(p,c) = 0 admits two positive roots p1(c) := p1
and pa(c) := pg with p* € (p1, p2) such that F(p,c) > 0 for p € [0,+00) \ [p1, p2] and
F(p,c) <0 for p € (p1, p2).

Proof. Tt follows that F(4o00,c¢) = 400 for each ¢ > 0 and F(p,+00) = —oo for each
p > 0. Since Ry > 1, we compute that

F0,c)=B—-v=6>0, Fep,c)=—p—PBpre " <0, Vp>0,
F(p,0) =di(e’ +e " =2)+B—y—0>B—7—0>0,

F,(0,¢c) = (diep —die™? —c— ﬁCTe*pCT)‘ =—c—fer <0, Ve>0

p=0
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and
Fop(p,c) = die? + die " + BAT2e P > ().

By these calculations, we show the rough graphs of function F(p,c) for each ¢ > 0 in

Figure 2.7}

F(p,c) Fip,c) F(p,c)
0<ec<c* c=c* g
F-y-o By-o B-y-0
p*
0 p 0 p* P 0| pl P2 p
Figure 2.1: F(p,c) when 0 < ¢ < ¢*, ¢ = ¢* and ¢ > c*, respectively.
In view of this figure, we obtain the desired results of this lemma. O

Lemma 2.3. Let
G(p,c) :==cp—dy(e’ +e P —2).

Then for each ¢ > 0, there exists a constant p3 > 0 such that G(p,c) > 0 with p € (0, p3).

Proof. Elementary computations give that G(0,c¢) = 0, G,(0,¢) = ¢ > 0, Gpp(p,c) =
—dy (e’ + e ?) <0 and G(+00,c) = —oo for each ¢ > 0. With the aid of the above com-
putations, we present the rough graph of the function G(p, ¢) for each ¢ > 0 in Figure

| Glp,c)

c=>0

Figure 2.2: G(p,c) when ¢ > 0.

By the virtue of this figure, we end the proof. O



Traveling Waves for a Discrete Diffusion Epidemic Model with Delay 837

Lemma 2.4. Suppose that (S,I,R)(&) € CY(R,R3) is a nontrivial positive solution of
(1.2) with the wave speed ¢ > 0 and satisfies

S(_OO) = 517 SUPS(f) < Sla I(ﬂ:OO) = 07 R<_OO) = 07 Sup R(E) < +o0,
geR £eR

where S1 > 0 is a given constant. Then

—c7)
(23) / S+ I - c7') T RE © =T
and
(2.4) /Rl(f) d¢ < +o0.

Proof. Integrating the first equation in (1.2)) over [z, y] gives

/ G —c;C—TF)R(g) de
:ds/gC D[ —c/ S'(€) de

4, /y/o S'(€ + 0) dode — d, /: /01 S'(€ — 0) dbde — cS(y) + eS(x)

1 1
st/ [5(y+9)—5(9€+9)]d0+ds/ [S(x —60) — S(y — 0)]d0 — cS(y) + cS(x)
0 0

< (2ds +¢)S1, (since sup S(§) < S7 and S(€) > 0 on R),
£eR

which together with the positiveness of S(&), I(£) and R(€) on R implies that (2.3]) holds.
Since I(¢) € C'(R) is nontrivial, positive and I(d00) = 0, there is some constant Cy > 0
such that I(¢) < Cp on R. Then an integration of the second equation in (1.2]) over [n, (]
yields

¢
(v +6) / 1(¢) de

¢ BS(OI(E — er)
d/D / (Odf*/ SO 116 —en) RO ™

<d //I’§+9 dode — d//f’g 0) dode — cI(C) + cI(n) + (2ds + ) S

—d/0[<<+e> (77+9)]d<9+d/0[(n 6) — 1(C — 0)] do

—cl(¢) +cI(n) + (2ds + ¢)S1
< (2d; + ¢)Cp + (2ds + ¢) Sy

This combined with the positiveness of I(£) on R ensures that (2.4 holds. The proof is
finished. o
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3. Nonexistence of traveling waves

This section is to establish the nonexistence of nontrivial positive bounded traveling wave

solutions to (|1.1)).

Theorem 3.1. For a given constant S > 0, if (Ro,c) € (0,1] x RU (1, 400) x (—o0, c*),
then system (1.1)) has no nontrivial positive traveling wave solutions (S, I, R)() satisfying
(3.1) S(—o0) =51, supS(§) <51, I(+oo)=0, R(—o0)=0, supR(&) < +oo.
EER £eR

Proof. By the reduction to absurdity, we assume that (S, I, R)(¢) € CY(R,R3) is a non-
trivial positive traveling wave solution of (|1.1)) satisfying (3.1]). Then we divide the proof
into three cases.

First case: Ry < 1 and ¢ € R. An integration of the second equation in ([1.2)) over R
yields that

<v+®Ag@mg—mAy%m©@>c4fGM¢+AS@ﬁﬁzqi;ig@yﬁ

_ BS(E)I(€ — cT) . o
/RS(§)+I(§—CT)+R(5)CZ§ (by (2-4) and I(%00) = 0)

< B/ I(¢ — cT)d¢  (by the positiveness of S, I, R on R)
R

< (v+94) /R [(€)de (since Ro < 1),

A contradiction appears.
Second case: Ry > 1 and 0 < ¢ < ¢*. It follows from (3.1) that

B5(E)
S(&) +1(§ —cr) + R(E)

By (3.2) and Ry > 1, we have that there is a constant £* < 0 such that

B5(©) LB+
SEO+1E—er) +RE T 2

(3.2)

— [ as & — —oo.

(3.3) for £ < £*.

Then from (3.3]) and the second equation in ([1.2)), we deduce that

B—n—0¢

PP en - 1)+ I 00) rre<e

(34)  el'(€) = diDlI)(E) +

Using ([2.4) we define the improper integral

3
H(&)::/ I(n)dn for £ € R.

—00
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Integrating (3.4]) over (—oo, &] gives

—~ =4 1)
35) 21 70m(e) < er(e) — dila)e) - I (e~ er) - () forg <€
where we have used I(—oo) = 0. By dominated convergence theorem and H(—oo) = 0,
we obtain
3
/ D[H
- 3 3
= dm ) Hm A1) = Hldy+ lm [ [H(n—1) = H(m)]dn
¢ ol
3.6 = 1 ! — '(
(3.6) Jg&LEAJJm+mdwn Jq&/L/]¥n 0) dfdn
1
= lim [H+6)— H(z+6)]dd — lim [ (&—0)—H(z—0)]do
z——00 J z—=—00 Jo
1
- [ ie+0 - mE-o)a
and
3 3
| er)~ Hlan = tim_ [ [Hn~ er) ~ Hn)d
£
= —cr lim / /1 H'(n — c76) dfdn
(3.7) e o
= —cT Em [H(f —c70) — H(z — c10)] db
= —CT/ H({ —c10)d
which guarantee that H({ +1) + H({ — 1) — 2H (&) and H(f —c1) — H(&) are integrable

on R. Thus integrating (3.5 on (—oo,f] and utilizing (3.6)) and ( . ) yield that
B—v=06 [¢ !
S [ HOydnd [+ 0) - H(e - 0)) 0

(3.8)
<dﬂ@+mwt;+®[fH@—m@M for € < &%,

Note that H (&) is strictly increasing on R due to the positiveness of I(£) on R. Then it
follows from (3.8) that

- - € CT
(3.9) ﬁgzé/ mmmg%+wzwwqﬂw for & < £*.

From (3.9) and the monotonicity of H (), we obtain that there is a large enough constant
1o > 0 such that

no(B — v —9)
2

cr(B+ v +9)

H(E - m) < o+ T

}H@) for § <&,
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which implies that

(3.10) H(§ —m) <oH(E) for & <&,

where o € (0,1) is a small enough constant. Denote

(3.11) o = —lnl and  J(£) := H(&)e M8,

We infer from (3.10) and (3.11)) that

(€= mo) = H(E = mo)e &™) < gH(g)e™ &™) = J(§) for £ <&,

which coupled with J(§) > 0 ensures that J(—oo) exists. Also it is easy to see that
J(4+00) = 0. Hence there exists a constant Jy > 0 such that

(3.12) J() < Jy for&eR.

Obviously, one can have from the second equation in that
(3.13) eI'(€) < diDIIN(E) + BI(E — o) — (3 + D)I(E).
Integrating over (—oo, €] leads to

(3.14) cl(§) < d;D[H|(§) + BH(§ —cT) — (v + ) H(E).

Then it follows from ((3.12] - ) that

(3.15) sup {I(€)e ¢} < +oo and  sup {I'(€)e "¢} < +o0.
EER ¢eR

Let v(¢) € C*(R,[0,1]) be a nondecreasing function such that vy(£) = v(§/N) for
N € N and
0 if & e (—o0,—2],
v(§) = |
1 if&e[-1,+00).

Multiplying the third equation in (T.2)) by e *¢vx(£) and integrating the resultant equation

over R, we obtain

(3.16) C/RR'(?E)e_”EvN(i) dézdr/RD[R](ﬁ)e_”st(f) d€+7/ I(&)e " un(€) dE.

R

By direct calculations, we deduce that

(3.17) /R R()e "oy (€) dé = v /R R(€)e oy (€) de — / e el (€) d



Traveling Waves for a Discrete Diffusion Epidemic Model with Delay 841

and

/ [R(E+1) + R(E — D]eEun(€) de

/ R(E 1 1)e Yoy (€) dé + / R(E— 1)e o (€) de
(3.18) R
- /R R(€)e oy (€ — 1) dé + e / R(€)e oy (€ + 1) de

R
< (&4 e ) / R(€)e " de,
R

since vy (6 —1) <1 and vy(§ +1) <1 for £ € R. Plugging (3.17) and (3.18]) into (3.16])
yields

(3.19)
(v +2d,) /R £)de — d<e+e”>/

R

R(€)e e d — ¢ / R(€)e S0y (€) de

R

<~ /R 1(€)e ™ Euy (€) d.

Recall that G(v,c) = cv + 2d, — d,(e” + e7¥) > 0 for each v € (0, p3) (see Lemma [2.3)).
Then passing to the limits in (3.19) as N — oo gives

—u Y —v
| Reede < elox [ 1@ <ds torv e 0,pm)

Hence by (3.15)) we obtain that

(3.20) / R(&)e ™ d¢ < 400 for v € (0, p) with g := min{ug, p3}.
R

It follows from ([3.15)) and (3.20)) that
I(¢ - I(¢—
R S(€) +1(&§ —c7) + R(§)
By (3.15)) and the boundedness of I(£) on R, we define the two-sided Laplace transform
of I(&) by

d§ < +oo  for p € (0, o + p).

L(p) :== / I(€)e P dE  with 0 < Rep < .
R
Note that the second equation in ([1.2]) can be rewritten as

BIE — er)[I(€ — cT) + R(£)]
S +1I(E—cr)+R(E)

By taking the two-sided Laplace transform on (3.22)), we have

e BI(E = em)[I(€ = c7) + R(§)]
S(&) +1(§ —cm) + R(§)

(3.22)  diD[I](§) — cI'(§) + BI(§ —cm) — (v +0)I(§) =

(3.23) L(p)F(p,c) —/Re dg.
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One can see that L(p) on the left-hand side in (3.23)) is well-defined for p € (0, o), while

[ reBle S enlle—en) - Ree)
R S(€) +I(§ —cr) + R(¢)
on the right-hand side is well-defined for p € (0, o + ) (see (3.21))). According to the
property of Laplace transform [29], we obtain that these two integrals are analytical on
the whole right half plane; see the analogously discussions in |12}20,22,23//261/27./40/41,44].
Due to F(p,c) — +00 as p — +oo (see the proof in Lemma [2.2), a contradiction occurs
in .
Third case: Rg > 1 and ¢ < 0. From , we get

dg

N 3 !
Pt [ Hand: [ e+ 0) - e - 0)ao
(3.24) o ’

<cH(£)+W/1H(5—CTe)d9 for € < £*.
0

With aid of the positiveness and monotonicity of H({) on R, we conclude that inequal-
ity (3.24) does not hold under the conditions Ry > 1 and ¢ < 0, since the left-hand side
in (3.24]) is greater than zero, while the right-hand side in (3.24) is less than or equal to

zero. A contradiction appears. Combining the above three cases, we finish the proof. [

4. Existence of super-critical traveling waves

In this section, we shall prove the existence result under the conditions Ry > 1 and
¢ > c*. For this purpose, recalling the definition of p; in Lemma we select a constant
p4 € (0, p1) to be small enough such that

Befplcr

>
ds(2 — ePr — e=P4) + cpy

(4.1) My =51+ S1,

where S7 > 0 is a given constant. Then choose a constant ¢; > 0 such that the following
algebraic equation

8
Sy — ]\4161)4g = 016_zg
admits two negative roots and we denote the bigger one by &;. Set

1 1 1
=1 —1 = —In—
&= l(Ro~ 1)) and &= Iy,

where the constants €; € (0, min{ps — p1, p3,psa}) is chosen to be sufficiently small and
My > 1 such that

(4.2) 53 < fz, 53 < 51 and Sl — M1€p4£3 > S1/2.
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Also we pick the constant

(p1—e1)é2 _ —e1éo
ve Y(Ro —1)Sie
4. My >

(4.3) 3 _max{ G(e1,c) ' G(ey, ) ’

where G( -, ) is defined in Lemma By the choices of above parameters, we construct

the following nonnegative continuous functions on R.

Sl - M16p457 5 < {17

54(6) = 51, se=17
g1€ ¢, 5 > 617
1€ 1€ _ (p1+e1)é
I+(£) — e’ ) §<€27 I_(f) — ef M2€p ) €<£37
(RO - 1)Sla 5 > 527 07 5 > 533
R (€) := Mze“1t, R_(§) :=0.

In order to describe that the parameters are admissible, we show Figures [4.1] [4.2] and [£.3]

\ (Ro-1)S;
5

: AN 0 :
a
‘X ° BEm N

S-()

Figure 4.1: S (§) and S_(§) when Ry > 1Figure 4.2: I,(¢) and I_(§) when Ry > 1

and ¢ > c*. and ¢ > c*.
y
/Ms
4 13
R, 5
R_( EJ

Figure 4.3: R4 (§) and R_(§) when Ry > 1 and ¢ > ¢*.
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Lemma 4.1. The functions S+(§), 1+(§) and R+ (§) satisfy

BS () (¢ — cr)
SO E—en iR - tEF

(45) DL ~ 4O + 5 g r e g ~ O+ IO <0 €A

(4.6) dyD[R1](§) — cR (§) +7I+(§) <0, E€R,

A7 DS - SO - g e g 20 26,
48) DN ~ IO+ 5 g vy ey g~ O+ IO 20 €46

(4.9) 4, DIR_](€) — cR_() +7I_(§) 20, €€R.

(4.4) dsD[S4](§) — ¢S4 (§) —

Proof. From the definitions of S;(§), I-(¢) and R.(£) on R, we obtain that inequali-
ties (4.4)) and (4.9) hold naturally. Subsequently, we give the detailed proofs of inequali-

ties f.

Proof of ([@.5)). If £ < &, then I (€) = e”é [ (6 —1) = e D [, (¢ —cr) = err(E7eT)
and I, (€4 1) < em &Y Tt follows from Lemma that

, B (O (E — e7)
EDINE ~ el O+ g 1 e o)+ B e

< d;D[I](€) — el (&) + BIL (& —cT) — (v + 6)I(€)
< 8 [di(e + e Pt —2) —cpy + Be T — 4 — 4]
= ePEF(py,c) = 0.

— (v +0)1:(8)

If € > €, then I4(€) = [4(€+1) = (Ro — 1)S1, [ (§ — 1) < (R — 1)Sy, [ (€ — er) <
(Rop —1)S1, S1(§) = S1 and R_(§) = 0. A direct computation leads to

B8 (E)14(§ —c)
5+(8) + L (§ —cT) + R_(§)

—(y+9)(Ro—1)S1 =0.

d;iD[I,](§) — eI} () +

BS1(Ry —1)S;
~S1+ (Ry—1)5;

Proof of (4.6)). By the definitions of I, (§) and R (€) on R, we derive from Lemma[2.3]

and (4.3) that

drD[R4](§) — cR. (&) +71+(§)
=d, [M3€61(5+1) + M3€€1(€*1) _ 2M3661£] _ CM361€€1£ + 76/)15

7€(p1 51)5]

— (v +9)1+()

= Mzeté [dr(e61 +e t—2)—ce + A

elp1—€1)é2
Ms

< Mze® [7 — G(eq, c)] <0 for &< &
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and
drD[R4](€) — eR (&) + 7I1.(€)
=d, [Mgeel(E—H) + M3ee1(£—1) — 2M36615] — CM3€1€€1£ + ’7(R0 — 1)51

Y(Ro — 1)516761§
Ms3

= Mse1é [dr(eEl +e 1 —2)—ce +
Y(Ro — 1)516_6152
M3

Proof of (7). If £ < &, then S_(&) = S1 — Myerss, S_(§ — 1) = Sy — Myeri&=b),
S_(E4+1)> 8 — Myerr &) T, (€ —er) < ePr€¢T) and R_(€) = 0. By (#.1)) we compute
that

< Myets [ ~ G, c)} <0 for &> &

BS_(§1+(§ —cT)
S_(§) + L (§ —cT) + R-(§)
> dsD[S_](&) — ¢S"(&) — BL+(§ —cT)
> d [2M16p4€ _ Mlep4(5+1) _ M16p4(€—1)] + cM1p4ep45 _ ﬁepl(ﬁ—CT)
— or4€ [Mlds(Q — Pt — P 4 cMypy — 56(01—p4)§—p1w]
> ep4§{M1 [ds(2 — Pt —e P 4 cp4] _ 66_010’7}
> 0 for § < 617

dsD[S-](§) — eSL(8) -

where we have used the fact that e(P1=P9¢ < 1 for £ < & < 0. If £ > &, then S_(§) =

ale_gf, S_(E+1)= Jle_g(f‘H) and S_(£—1) > 016_5(5_1). We obtain that
BS_(§)L+(§ — cT)

S_(§) + 1 (§ —cT) + R_(£)

> dsD[S-](§) — eS_(§) — BS-(&)

> ds [Ule_g(&’l) + Jle_g(g_l) — 20’16_§£] + Bale_gg — ﬁale_gf

dsD[S_](€) — ¢S (€) —

= dsale_gf(e_ﬁ/c +efle - 2)
>0 for &> &;.

Proof of (4.8). By (4.2) we get for £ < &3 that
(4.10)

I_(&) = € — MyelPteE G (&) = 8; — MyeP*€ > $1/2 and Ry (€) = Mse'S.

For € < &3, we deduce from (4.10]) that
BS_(I1-(§ —c7)

TALE e+ S_(§)+1-(§—cr)+ Ry(§)
(a11) o BEE—en) +BI(E—enR Q) BIE(E —cr) + BI(€ = cT)R4(§)
S_()+I1-(E—cr)+Re(6) S_(6)
28

> _ 27 [62915 + MSQ(P1+61)§] 7
S



846 Jingdong Wei, Zaili Zhen, Jiangbo Zhou and Lixin Tian

since I_ (¢ —e7) < I, (€) = e”€ for £ < &3. Recalling that e; € (0, min{ps — p1, p3, pa}),
we have for £ < &3 < 0 that

(4.12) P18 <1 F(p,e)=0 and F(p1+e1,¢) <O0.

Noting that My > 1 and using (4.11)) and (4.12]), we derive for £ < &3 that

ADUJO ~ eI (O + 5 3 1y e~ (7 O-6)
= d,DUL)() — I (&) + BI_( — e7) — (3 + O)L(€) — AI_(¢ — )
5S_(OI_(E —c7)
SO (€ e+ R(©

2
> eplgF(pl, ) — M26(01+61)€F(p1 +€1,¢) — 575 [62/)15 + Mge(pl+€1)§]
1
28elP1—e)E 4 28\,
—S1F(p1 +€1,0)

Qﬁ(l + 2M3) ] >0
—S1F(p1 +€1,0) '

+

_ _e(p1+61)§F(p1 + 61,6) [M2 _

> _e(P1+61)§F(p1 +€1,¢) [Mz _

If € > &3, then I_(£) = 0 and inequality (4.8)) holds immediately. The proof of this lemma
is finished. O

Now we introduce a non-empty, bounded, closed and convex subset of C'([—X, X], R3)

Ox = {(6,0.0(6) € C(=X, XL, BY) | $(=X) = S_(=X), p(~X) = [_(~X),
X(=X) = R_(=X), 5-(§) < 6(&) < 5+(&),
1-(€) < (&) < L+(§). B-(§) < X(§) < R+ (&)

for any £ € [-X, X]}

which is endowed with the usual supremum norm, where X > [ := max{|&s|,c7,1}. On a

closed interval [—X —1I, X 4], we construct the following nonnegative continuous functions

S—(é-)v Eella I—(§)7 5611, R_ (5) gEIb
€)= ¢E), €eb, € =_¢€), cch, XE:={x), ¢cb,
#(X), Eel;, o(X), ¢els, x(X), §els,

where I = [-X — [, -X]|, [ = (X, X), Is = [X, X + ] and (¢, ¢, x)(§) € Qx. For any
€€ [-X —1,X +1], one can check that

(413)  S() <A(€) <S1(€), (O <PE) <L (§) and R(€) <R(E) < Ry(9).
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Consider an initial value problem

(4.14)
cS'(€) = ds[H(E +1) + b(& — ) —25(8)] — aS(&) + ag(¢) — e
oI'(§) = di[B(E + 1) + B(§ — 1) — 21(8)] + et — (v + 0)1(9),
CR'(€) = d[R(E+1) + R(E - )—2R<f)]+w<§>,
S(=X)=S-(=X), I(-X)=1I1(-X), R(-X)=R_(-X),

\
where ¢ € [-X, X] and the constant « > . The general theory of ordinary differential

equations guarantees that initial problem (4.14) has a unique solution (Sx,Ix,Rx)(§) €
CH[—X, X],R3). Also the solution of (4.14]) can be written by the following integral form

sX@):e%%(mS_(—XH%fE SO 1y (6, 0,0) () dn,
2d;+y+6

(4.15) Ix(€) = e‘M(§+X)I (—X)+ L[S e T O Hy (¢, 0, x) (n) d,
(f _1f£ n§H3(¢7()07 )( )dna

where

Bo(n)p(n — cr)

o(n) + @ —cr) +x(n)’
Bo(n)p(n — cr)

o(n) + @ —cr) +x(n)’

H3(¢,0,x)(n) = dpX(n+ 1) + drX(n — 1) + v(n).

Hi(6,0,X)(n) = dsd(n + 1) + dsp(n — 1) + ad() —

Hy (¢, 0, x)(n) = dip(n + 1) + dip(n — 1) +

Note that since a > S, Hi(¢, p, x) is decreasing with respect to ¢ and is increasing in
both ¢ and x; Ha(¢, ¢, ) is decreasing with respect to x and increasing in both ¢ and ;
Hs (¢, ¢, x) is increasing in both ¢ and .

By we define a nonlinear operator O = (Oy, 0a,03): Qx — CH([-X, X],R3) as

follows.

Ol(¢> 807X)(§) = SX(g)a O2(¢7 @)X)(g) = IX(&) and O3(¢a @, X)(é.) = Rx(f)

In the next two lemmas, we will prove that the operator O is completely continuous

which maps Qx into itself.
Lemma 4.2. The operator O satisfies O(Q2x) C Qx.

Proof. For any (¢, ¢, x)(§) € Qx, we only need to show that

5-(8) < 010,90, x)(€) < 54(8),  1-(&) < Oa(¢, 9, x)(&) < 1+(8)

and

R_(£) < O3(¢,9,x)(§) < R (§) for £ € [-X, X].
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By the monotonicity of Hi(¢, ¢, x), we obtain from (4.4), (4.7) and (4.13]) that

d[p(E +1) + H(€ — 1) — 254(6)] — S, (€) — aS4(€) + ag(E)
Bo(€)P(E — er)
$(€) + B(€ — er) + x(€)

4.1
D0 e84 - a5, a0 - e e
<0 for €€ [-X,X]
and
ds[(6+ 1) + B(€ — 1) = 28_(&)] — eS(&) — aS_ (&) + ag(€)
BB —er)
(417 (&) + B(€ — c1) + x(©)

> d,D[S_](€) — eS" (&) — aS_(€) + aS_(£) — BS_(§)1+(§ —cT)

S_(&) + L (€ —eT) + R-(§)
>0 for{€[-X, &)U (&, X).

Inequalities (4.16)) and are equivalent to
cS4 () + (2ds + ) S (€) > Hi(¢, 0, X)(§) for € € [-X, X]

and
cSL(€) + (2ds + a)S—(€) < Hi(¢, 0, x)(§) for £ € [-X, &) U (&1, X,

which imply that

_2ds+a 1 [ 2detag,
§4(6) > M0 (x) 4 2 / O (6,6, x) (n) d

_ 2ds+a 1 f 2dsta,
26 c (£+X)S(X)+C/X6 ¢ (o £)H1(¢7807X)(77)d77

= 01(¢, 0, X)(§)  for § € [-X, X]

and

1 § 2ds+a

S—(é) < 6_%%(£+X)S—(_X) + C/ e ¢ (n_g)Hl(qsv ®, X)(ﬁ) dﬁ
-X

:Ol<¢7§07X)<€) fOI'fe [_val)u(glaX]'

In analogous manners, one can have that

L (§) > O2(¢, 0, x)(§)  for € € [-X, &) U (&2, X],
I_(§) < O, 0, x)(§) for § € [-X,&3) U (&3, X]
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and

R_(£) < O3(¢,9,x)(§) < Ry (§) for £ € [-X, X].

By the continuity of (S4, I+, R+)(£) and the operator O on [—X, X], we complete the
proof. O

Lemma 4.3. The operator O is completely continuous with respect to the supremum norm
in C([-X, X],R3).

Proof. Since (Sx, Ix, Rx)(§) € CH([—X, X],R?) satisfies (4.15)), for (¢, ¢, x)(€) € Qx, we
get that S%(§), I () and R’y (§) are bounded on [—X, X]. Then applying Arzela-Ascoli
theorem gives that the operator O is compact.

For any ®;(§) := (¢, vi, xi)(§) € Qx, i = 1,2, we deduce that

|H1(¢1, 01, x1)(§) — Hi(d2, 02, x2)(§)]
S d|1(§+1) = a6+ 1) + G1(§ — 1) = (€ — D] + al$1 (£) — p2(€)|

Be1(§)@1(§ — ) B Bp2(§)Pa(§ — cT)
$1(§) + @1(§ —cr) +x1(§)  P2(§) + P2(§ — 1) + x2(§)

<2ds sup ]|¢1(§)—¢2(§)\+a Supx]\qﬁl({)—¢2(€)!+25)5 SupX]!¢1(€)—¢2(€)|

) )

+2B8 sup [p1(§) —w2(8)|+ B sup  |x1(§) — x2(8)|
¢e[-X,X] §el-X,X]

<(2ds+a+58) sup |®1(€) — Po()].
£e[—X,X]

Then we derive that

|O1(1, 01, x1)(§) — O1(92, P2, x2)(§)]

1

5 2ds+a _
C/Xe o O Hy (¢1, 01, x1) () — Hi(da, 92, x2) (1) dny

IN

2ds + a+ 5 § odeta,
< 2statss |¢>1(£)—<I>2(£)|/ M09 g
¢ EG[—X,X} —-X

< (145000 ) 1910 - ma(6)

&E[_XvX]

Similarly, one can obtain that

|OJ(¢179017X1)(§) - O](¢27@2’X2)(£)| < C sup |(I>1(£) - (1)2(5)’ fOI’j = 273>
ge[-X,X]

where the positive constant C depends on d;, d,, 3, v and §. This ends the proof. O
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Applying Lemmas [£.2] 1.3 and Schauder’s fixed point theorem yields that the operator

O has a fixed point, which is a solution of the system

_ BSx(&)Ix(E—cT
¢Sk (€) = d:DISK)() — s e e i

(4.18) eI (&) = d; D[IX](g) + g — (7 + 8)Ix(6),
cRx (§) = drD[Rx](§) +vIx(€),
such that

S_(€) < Sx(&) < 54(8), I-(§ < Ix(§ < I+ (9)
and

R_(§) < Rx(§) < Ry (€) for{e[-X+1,X 1]

Lemma 4.4. If Ry > 1 and ¢ > ¢, then system (1.2) admits a solution (S,I, R)(§) on R
such that

(419)  5-(§) <S(&) <51(8), 1-(§) <I(§) <1(§) and R_(§) < R(§) < Ry (§).

Proof. Select an increasing sequence { X, }nen satisfying X,, > [ for each n and X,, — 400
as n — oo. Let (Sx,,Ix,,Rx,)(&), n € N, be the solution of (4.18) with X = X,,. For
any fixed N € N, since R+ (€) is bounded on [—Xy, X ], we have that the sequences

Sx,(€)Ix, (€ —cT) }
Sx,(§) +Ix,(§ —cm) + Rx,(§) ) >N

are uniformly bounded on [— Xy, Xn]. By (4.18) with X = X,,, we get that the sequences

{8x, (O }nzn, {Ix,(§)}nxn, {Rx, (§)}n>n and {

{Sg(n (é)}nZNa {I_/Xn (g)}nZN and {R/Xn (5)}n2N

are uniformly bounded on [-Xx + [, Xx — []. Differentiating (4.18) with X = X,,, we

obtain that the sequences

{5%, (O)}nzon, {Ix,(E)}n>y and {R% (§)}n>n

are uniformly bounded on [—Xy + 2I, Xy — 2[]. Utilizing Arzela-Ascoli theorem and a
standard diagonal extraction argument, we deduce that there is a subsequence which is
still denoted by (Sx,,, Ix,, Rx, ) (&) such that

Sx,(€) = S(€), Ix, (&) = 1), Rx, (&) — R(E) inCL.(R)asn — occ.

Moreover, there holds

5-(8) < 5(§) <54(8), I-(§) <I(§) <14(§) and R_(§) < R(§) < Ry (§) for § € R.

The proof of this lemma is finished. O
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Based on Lemma [4.4] we will proving the following result.

Theorem 4.5. For a given constant S1 > 0, if Ry > 1 and ¢ > ¢*, then system (1.1 has

a nontrivial positive traveling wave solution (S, I, R)(€) satisfying
(i) 0<S() <81, 0<I(§) < (Rp—1)S1 and R(§) > 0 for & € R.
(i) (S,1, R)(—o0) = (51,0,0). If € — —o0, then I(€) = O(e5).

(iii) I(+00) =0, S(400) := Sy exists and Sy < Si.
(iv) (v +6) Jo () d€ = B [ serirteery e % = (51— Sa).

(v) Iflimsupg_, o R(§) < +oo, then R(+00) = (51 —52)/(v+6) and §'(£),I'(S), R'(€)
— 0 as & - £o0.

Proof. (i) By (4.19)), we have that S(£) > 0 on R. Suppose that I(El) = 0 for some {1 € R,
then I’ (21) = 0. It follows from the second equation in ([1.2]) that

(& +1)=1(& —1)=0.
By induction we obtain that
I(&—n)=0 forneZ,

which contradicts that I(£) > I_(§) > 0 for £ € (—o0,&3). Hence I(§) > 0 on R. Assume
that R(&) = 0 for some & € R, then R'(&) = 0. From the third equation in (L2,
we deduce that I (82) = 0, a contradiction appears. Thus R(£) > 0 on R. Suppose that
S(E?,) = S for some & € R. Then S’(gg) = 0. By the first equation in (1.2]), we have that

_ 55(532](53 —c7) _
S(&3) + 1(&3 —cr) + R(&3)

0= d,D[S](&) — cS' (&) —

__ BSI(E—er)
S+ I(& —er) + R(&3)

which yields a contradiction. So S(¢) < S; on R. Assume that I(&4) = (Ro — 1)S; for
some & € R. Then I’ (5~4) = 0. Using the second equation in (|1.2)), we get that

_BSE)I(E—cr)
S(€a) + I(€a — ) + R(&)

—(v+6)(Ro - 1)S1 =0,

0= d;D[I)(&) — eI'(&4) + — (v +O)I(&)

BS1(Ro —1)51
S1+ (R() — 1)51

which leads to a contradiction. Therefore, I(£) < (Ryp — 1)S7 on R.
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(ii) Applying squeeze rule in (4.19) yields that
(S,I,R)(—o0) = (S1,0,0) and I(€)=0(e”®) as & — —oo.

(iii) We claim that I(&) is integrable on R. Integrating the first equation in ((1.2]) over
[x,y] yields

(& —ecr)
/ S(¢ §—c1)+ R(§) d

:ds/x DIS] —c/ (&) de

= d, /:/0 S'(€ + 6) dod¢ — ds/z /01 S'(& — 0) dOde — cS(y) + cS(x)

1 1

:ds/ [S(y+0)S(1:+9)]d9+ds/ [S(x—0) — S(y—0)]df — cS(y) + cS(x)
0 0

< (2ds+¢)S1 (since 0 < S(§) < S7 on R),

which together with the positiveness of S(§), I(£) and R(§) on R implies

cT)
/S +I —cr)+R(§)d5<+°°‘

Note that 0 < I(§) < (Ryp — 1)Sy for £ € R. Then an integration of the second equation

in over [n, (] gives
¢
(40 [ 16 de

¢ BSEI(E — er)
‘d/D / W“/ SO I —en) RO ™

<d//I’£+9 dode — d//[’g 0) dode — cI(C) + cI(n) + (2ds + ¢)S,

—d/o[<<+e> (77+9)]d9+d/0[(77 6) — I(C — 6)] d6

—cl(C) +cl(n) + (2ds + ¢) 51
< (Qdi + C)(Ro — 1)50 + (st + C)Sl.

This together with the positiveness of I(£) on R ensures that
o
/ I1(¢) d§ < 4o0.
—0o0

Recall that 0 < S(§) < S1, 0 < I(§) < (Rp — 1)S; and R(&) > 0 for ¢ € R. Then it
follows from the second equation in (1.2) that I’(§) is uniformly bounded on R. Hence
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I(+00) = 0. Now we investigate the existence of S(+o0c). Assume for the contrary
that limsupe_, . S(§) > liminfe ;o S(§). Then applying Fluctuation Lemma [31}
Lemma 2.2] yields that there are two sequences {&, }nen and {n, }nen satistying &,, n, —
400 as n — oo such that

(4.20) lim S(&,) =limsup S(§) :=m; and lim S(n,) = liminf S(£) := ma < my.

i
n—00 E—too n—»00 E—+o0

Denote

Sn(y) == S +y), In(y):=I(m+y) and Ry(y):= R0 +y), yeR

We infer from I(4+o00) = 0 that I,(y) — 0 in Clpe(R) as n — oco. By and the
first equation in (1.2)), we deduce that S(¢), S'(€) and S”(£) are uniformly bounded on
R. Then there exists a subsequence {ny} by a diagonal extraction process, which is still
denoted by {n}, such that S,(y) — Seo(y) in CL (R) as n — co. Note that S (0) = ma.

loc

From (4.20)) and the first equation in ((1.2), we have that

BSn(y)In(y — c1)
Sn(y) + In(y — c7) + Ru(y)’

Passing to the limits in (4.21)) as n — oo gives that

(4.21) cSy,(y) = dsD[S](y) —

y eR.

(4.22) €S (y) = dsD[Sx](y), yER.
With the aid of [4, Theorem 3.1 and Remark 3.1], we get from (4.22)) that
(4.23) Seo(y) = a1 +a2e”™, yeR,

where a1, ay are constants and v is the unique positive root of ds(e” + e —2) — cv = 0.
Then by the boundedness of Sy(y) on R and (4.23)), we derive that aa = 0. Thus
Soo(y) = a1 = So(0) = mg, which ensures that

(4.24) 1i_>m S(n +y) =ma in CL.(R).
Analogously,
(4.25) lim S(&n +y) =m1 in Cipe(R).

By the similar arguments as that in Lemma one can deduce that

SE)I(E — er)
AS@HJQ—cﬂ+R@V%<+m’

which leads to

e S(©IE - en)
(4.26) nh_{{,lo / S(€)+I(&—eT)+ R(E)

d¢ = 0.
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Integrating the first equation in ([1.2)) over [n,,,] and using (4.24)—(4.26) and dominated
convergence theorem, we obtain that

0 < ¢(my —mg)
— ¢ lim [S(,) — S(n)]
én én
=ds lim S 1)- S d ds lim SE-1)- S8 d
oo/n[ (€+1) - S(©)]de + Mo/nn[ (6= 1) = S(¢)] de

o BSEI(E —er)
n—00 " S() +1(§ —cr) + R(E)

En
=d, lim /S’§+9 ) dode — d, hm/ /S’§ 0) dod¢

dg

n—oo
1 1
=d, lim [S(&n +6) — S(nn +6)]df — ds lim [S(&n —0) — S(n, — 0)] do

A contradiction appears. Hence S(+00) exists and we denote it by S3. Then we present
Sy < Sp. Since S(§) < S on R, we have Sy < S7. Assume that S; = S;. An integration
of the first equation in (|1.2)) over R yields

cT) B
/S +I —CT)+R(§)d§_O’

which contradicts that fact that

—cT)
/S —CT)—i-R({) de > 0.

Therefore, Sy < 5.
(iv) Integrating the first two equations in (1.2) over R, respectively, and using the
asymptotic boundaries of S(§) and I(£), we have

(&)I(& —cT) B B
(4.27) (wré)/]R )d§ = B/S 11 - m)+R(5)d§*c(Sl Sy).

Suppose that limsupg_, , o R(§) > liminfe , o R(£). Then there exist two sequences
{¢n} and {9, } satisfying (,, ¥, — +00 as n — oo such that

lim R((,) =limsup R(§) :=m3 and lim R(Y,) = liminf R(&) := m4 < ma.

By the analogous arguments as that in (iii), one can obtain that

li_>m R(¢, +y) =m3 and li_>m R(¥, +y) =my in CL.(R).
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Hence integrating the third equation in (1.2]) over [9,, (,] and taking n — oo, we get

0 < ¢(mg —my)

=c lim [R((,) — R(Y,)]

n—oo

Cn Cn

= d Jim [T [AE+ ) = RO+, T [ RE=1) - R(©)ag
Cn

+ lim ~I(§)dE

Cn 1 <n 1

—d, lim / R'(¢ + ) dode — d, lim / R(¢ — ) dode
1 1

—d, lim | [R(Ca+ ) — R(0n+0)]d8 —d, lim | [R(Cy— ) — R(0p — 0)] d6

This contradiction guarantees that the existence of R(+00). Integrating the third equation

in (1.2) and utilizing (4.27), we obtain that

(51— %)

R(+o0) = o

Passing to the limits in ((1.2) as & — 400, respectively, and employing the asymptotic
boundary of (S, I, R)(&), we get

S'(6), I'(€), R'(€§) = 0 as £ — *oo.
The proof is completed. O

Remark 4.6. In Theorem (V), we make use of a condition limsupg_, ., R(§) < 400
to prove the existence of R(+0o0). From the view of mathematical biology, this condition
may fit reality. However, we do not obtain it by rigorous analysis. We leave it for future

investigation.

5. Existence of critical traveling waves

In this section, we will prove the existence result under the conditions Ry > 1 and ¢ = ¢*.

For this, we set

_ *op"+1 1
My = (Fo —1)Sip"e and &= —— —
pr+1 p*

where p* > 0 is defined in Lemma and S7 > 0 is a given constant. Choose a sufficient

1

Y

small constant ps € (0, p*) and a suitable constant oo > 0 such that pgl > 5] and

_ _B
Sl — 105 1€p5£ = 09e C*E
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has two negative roots and we select the bigger one as £. By the choice of ps, one can
deduce that

(5.1)

&4 <& and pgld5(2 —efP —e ) "+ BMy (€ — C*T)e(p*_%)g_p*c*T >0 for & < &y.

We choose suitable constants Mg > 0 and €3 € (0, min{ps, p*}) such that
(5.2)

— —€285
—G(ez,c*)—i—fY(Ro DEIC <0 and —G(GQ,C*)—LM

(p"—e2)§ f )
e Mﬁ{e <0 foré& <&

Notice the fact that
2Mf(—§)3/2(£ — C*T)2ep*(5_c*7) — 2M4M6(—£)3/2(§ — 6*7)6625 —0 as&— —oo,

then there exists a sufficiently large constant || with &, < 0 such that
>k >k

(5.3)
2
2MZ(‘§)3/2(§—C*T)zep*(‘ﬁ_c*ﬂ—2M4M6(—$)3/2(§—C*7')e€25 < (617(;)31 and 1—{—657_

for £ < &,. Define & := —M52/Mf and take the constant M5 > 1 such that

>0

(5.4) €o <&, & <& and Sy —pgle” > 5/2.

With the choices of above parameters, we introduce the following nonnegative contin-

uous functions on R.

Sl - P5_1€p5£7 { < 64)

S =51, S* (&) =
A Do, eza
() m | METS <t Mg Ms(=€)!?]e”"¢, & < &,
(RO - ]-)Sla 5 Z §5) 07 5 Z 567
RY(€) := Mge®®, R* (§) :=0.

To illustrate that the parameters are admissible, we give Figures and

(Ro — DSy

& 0 ¢ EM 3
5:(0) [HE]

—S0Q) 12(3)

Figure 5.1: S%(§) and S* () when Ry > 1Figure 5.2: I7(§) and I*(§) when Ry > 1

and ¢ = ¢*. and ¢ = c¢*.
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¥
—/W

Figure 5.3: R’ (£) and R* ({) when Ry > 1 and ¢ = c*.

Lemma 5.1. The functions S%(§), 15 (§) and R (§) satisfy

BSLEIZ(E —c'7)

- R
Sj—(f) +Ii(§— c*7—) +Rj—(€) <0, ¢€R,

(55)  dsD[STI() — c"(S1)'(€)

(5.6)
dDITLI(E) — (1) (€) + oo HOLE = CT)

S*(E) + (€ — c*1) + RE(€)
<

—(v+0)I1(6) <0, &#E&,

5.7 4DIRLI(E) — ¢ (RL)(€) + 1116 <0, €€,
55 dDISTIO ~ 5O~ G e 20 A
(5.9)

BSE(EIZ(§ — ')
S*(&) +I5(§ — 1) + RL(€)
(5.10) dyDIRZ](E) — " (RL)'(€) +~IZ(§) >

d;DII7](&) — c"(1)'(§) + —(v+OIZ() 20, &# &,

0, ¢eR

Proof. Tt is easy to verify that and hold under the definitions of S% (), 1* ()
and R% (§) on R. The rest of the proof is devoted to proving inequalities f.
Proof of . When ¢ < &, we get that 17 (§) = — M et I —c'1) = =My (€ —
crr)el T (e — 1) = —My(& — 1) ED e+ 1) < —My(€ + 1)e”" ¢+ and
(I2)/(€) = —MyeP (1 + p*€). Then by and (2.2), we compute that
" - BSLEIL(E —c'T)
d;iDIIT](E) — ¢ (I1)" (&) + CAG) ++Ij(£+—c*7') RO
< d;D[IT](§) — " (I1)'(§) + BIL(E — ") — (v + ) I1(8)
< d; [ — My(£+ 1)€p*(£+1) — My(€ - 1)6,0*(671) + 2M4§ep*€]
+ ¢ Mye? (14 p*€) — BMu(E — c*r)e?” 79 4 (v + 6) Myge?™
= —My&eP S F(p*,c*) — Mye? CF,(p*, c*) = 0.

— (v +0)I5(8)

When £ > &5, we have that 175 () = I7 (£ +1) = (Ro — 1)51, I5(§ — c¢*1) < (Ro — 1)51,
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It (6 —1) < (Ro—1)S1, S5(§) = 51 and R* () = 0. Then we infer that

BSLOLL(E — ')
SE(E) + I1L(€ — c*1) + RE(€)

— (7 +0)(Ro — 1)S1 =0.

d; D[I](&) — " (11)' (&) +

< BSi(Ro—1)S
— S1+ (Ry—1)5;

Proof of (5.7). By the expression of I} (&) and R (£) on R, we obtain from Lemma
and (5.2 that
d D[R3](€) — " (R3)'(€) + I3 (8)
=d, [M6662(£+1) + M6€62(£—1) _ 2M6€e2£] _ C*M662€E2£ _ 7M4£ep*£
7M4€e(p*_62)§]

— (Y +)IE()

= M6662§ [dr((BeQ +e 2 — 2) - 0*62 — Mﬁ

7M4§€(p*_62)£

= Mge®¢
6 My

—G(e2, ")

] <0 foré&<&s
and
d-D[R]() — ¢ (R3)' (&) +~IL(8)

= dr [M6662(§+1) + M6€62(§_1) — 2M6€62§] — 6*]\4662662§ + ’}/(Ro — 1)51

Y(Ro — 1)516_62E
Mg

= Mge®t [d,ﬁ(e62 +e 2 —-2)—c'ea+

Ry — 1)Sye—c26
Mg

= Mge* [—G(Q, c*) + il ] <0 for & >&s.

Proof of (5.8). When & < &, S* (&) = S1 — p5 e, S* (€ —1) = 1 — pgtem &b,
S*(E+1) > Sy —pgtersEH) T (€ —c*r) = —My(€ — c*1)e? €7 and R* (€) = 0. Then
it follows from that
. (o QE BST(IL(E—c'T)
4DISIE) ~ (S () ~ G T I (e - o) D
> d;D[S*](£) — " (82)'(§) — BIT(E —c™7)
> ds [2P516p5£ - P5_I€p5(€+l) - pgle”5<5‘1)] + c*efst 4 BMy(E — c*'r)ep*(f_c*ﬂ
= ePs¢ [pglds(Z —efs —e ) 4 " 4 BMy(§ — c*r)e(p**%)f*p*c*f]
>0 for & <&

When € > &, 5%(€) = o2e™ €, §7(€ +1) = ape” @D and 5% (6 — 1) > ope™ =D,
Then we have that
B BSE(EIL(§ — ')

S* (&) +I1(§ —c*1) + RE (&)

d D[S*](€) — ¢*(S*)'(€)
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> ds D[S](€) — ¢"(52)' () — BS(€)
> d, |:0'2€ (6 4 0'267?(5 D _ 209e” & ] + 50’267C£*£ - 50267%5

= dSO'QC_Cﬁ*g(e_’B/C + el — 2)
>0 for & >¢&.
Proof of (5.9). By (5.4) we have for £ < & that

SE(€) = 51— p5 et > 81/2,

I (&) = [ — Mu& — M5(—€)Y?]e’"s,
Guy O |TMat lMs(—f)*“ €€ 4 [ = Mup™€ — Myp*(—€)V/2]er",
= [~ Ma(€ - Ms(—€ +1)/?]er" (7D,
I'(—c'r)=[—My(—c 7') 5(—5—1-0*7)1/2}6”*(5_6*7),
I (E+1) > [ = Ma(€ +1) — Ms(—€ — 1)V/2]er D),

Applying Taylor’s formula, we deduce for £ < & that
1

(=+ D)V < (=924 (=07
(12) (6D < (02— (-7
c'T c*r)? crr)?
(=E+en)! 2 < (=92 + (=972 - (8)<—§>3/2 + (16)<—5>5/2.

Noting that I*(§ — c*7) < I7(§ — ¢*1) = =My (€ — 1)l €=¢T) for £ < &, we get from

(B-11) that

(5.13)
e BSEI_(€ -~ c'r)
TSI S e e T B )
BUE — e'7) + I (E — e n)RL(E) | BULE ~ ) 4 A1 (€~ )R (E)

ST+ I(E—en)+ RS 52(¢)
28

> -5 [M7(¢ - )2 6T My Mg (€ — c*T)e(”*JFE?)g_”*C*T] for € < &.

Using (5.3] . - - and , we obtain for £ < & that

&DI)(E) - e (12)(©) + o (g)ﬁiff()g_ (i;)cﬁ% TABLARIES

=d;D[I*](§) — " (12)(§) + BIZ(§ = ¢"T) — (v + )2 (§) — BIZ(§ — c'7)
BSE(I(§ —c'7)

SE(E) +12(§ — ') + RL(€)

+
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> di{ [— Ma(€+1) — Ms(—€ — 1)/2]er D 1 [ - My(€ — 1) — Ms(—¢ + 1)1/2]er D)
— 2] - Mug — My(—)/2)er"¢}
— c*{ { My + ;M5(§)1/2] e’ ¢+ [ — Myp*¢ — M5P*(§)1/2]ep*5}

+ B[ = Ma(€ — &) = Ms(—€ + )2 7D — (4 6) [ = Ma€ — M5 (€)' /?] e

- %B [Mf(f — )2 (6= My Mg (€ — c*T)e(p*+€2)5_P*C*T]
1
> a{ | -2+ 1) - 3 (92 - o972 |erien)
+ |: M4(§ — 1) — M5 ((5)1/2 + ;(5)1/2>:| 6’0*(571) . 2[ . M4£ . Ms(*f)l/Q] ep*g}

1 . . e
—c* [— My + 2M5(—§)1/2} e’ S — ¢ p*[ = M€ — Ms(—€)"/?]eP" — BMy(€ — c*r)er =<7

*r

= B (=€) + (-2 -

— (v 4 0) [ — Mu& — M5(—¢)"/?]er™

(c*7)?

8

(c*7)3

e+ S oo

2 . . « -
_ ?ﬁ [Mf(f _ c*T)2e2” (§—c*7) _ M Mg (€ — c*T)e(p +e2)§—pc T]
1
* * % 1 — * * ok
= [ — Ma& — M5(=§)"/?]e? *F(p*,c*) + { My + 5 M(~¢) 1/2] e” S Fy(p*, ")
c*r)? _ c*r)3 _ 6oy
B e i SR
2 . . . .
_ £ [Mf(ﬁ _ C*T)2€2p (—c"7) _ MMy (€ — C*T)e(p te2)é—p"c T]
_ _\—3/2 p"(&—c"T) (C*T)2 c'r
= BM5(=¢) e 6 T £

B (o) -3/2p0" (=c'T)
+ L g
ey
16

M5y — 2M7(=€)*/2(€ — )% 7T 4 2My Mg (—€)*/2 (€ — *r)e ™

> 0.

When & > &, I* () = 0 and inequality (5.9)) follows trivially. The claim of this lemma is

shown. O

Now we state the existence result of critical traveling wave solution for (1.1]).

Theorem 5.2. For a given constant S1 > 0, if Rg > 1 and ¢ = ¢*, then system (1.1)) has

a traveling wave solution (S, 1, R)(&) satisfying the following assertions.
(i) 0<S() <S1,0<I(§) <(Rp—1)S1 and R(§) > 0 for & € R.

(ii) (S, I, R)(—o0) = (51,0,0). If ¢ — —oo0, then I(£) = O(—£eP"%).
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(iii) I(+o00) =0, S(+00) := Sy exists and So < Sj.

(v) Iflimsupe_, o R(§) < 400, then R(+00) = v(51—52)/(v+06) and §'(£), I'(€), R'(£)
— 0 as & - £o0.

(vi) g—i>0,%—g>0and%<0.

Proof. Applying the functions S7%(€), I1(¢) and R% (§) defined at the beginning of this
section and the analogous discussions in Section (4, we can obtain system admits a
critical traveling wave solution (S, I, R)(&) satisfying (i)—(v). In the following, we shall
prove (vi) of this theorem. From Lemma we can compute that

Fe(p*,c*) = —p* = Bp*re T <0, Fy(p*,c*) =" +e? —2>0,
Fﬂ(p*,c*) — e*p*c*T >0 and Ff(p*,c*) _ _BP*C*eip*c*T < 0’

which together with derivative rule for implicit functions implies that

oc* oc* oc*
0, — >0 d 0.
ad; ~ 0 ap 0 M ar <
The proof of this theorem is completed. O

Remark 5.3. Theorems and [5.2] mainly reveal the sufficient conditions of existence
and nonexistence of traveling wave solutions for , and the characterization of their
minimal speed. One can observe that the obtained traveling waves include the pulse-type
(I-component) and front-type (S-component and R-component) traveling waves. Notice
that I(—o0) = 0 for both ¢ > ¢* and ¢ = ¢*, while the exact decay rates of I(—o0) = 0 are
distinct for these cases. The limit value I(400) = 0 implies that the infected individuals

will disappear after a long time.

Remark 5.4. Inequalities in Theorem (Vi) reflect that the geographical movement of
the infected individuals and the interaction between infected individuals and susceptible
individuals can accelerate the speed of propagation of the epidemic, while the time delay

can slow down the speed of transmission of the epidemic.

By Theorems [4.5] and we can further obtain some properties concerning the func-
tions S(§), I1(§) and R(&).

Proposition 5.5. Let (S, I, R)(&) be a nontrivial positive traveling wave solutions of
for each ¢ > c¢*. Then for j = 1,2,3, the functions ekngj(f) are strictly increasing and
U;(§£1)/U;() are uniformly bounded on R, where ki = (2ds+ 3)/c, ko = (2d; +v+ ) /¢,
ks = 2d,/c, Ur(§) = S(€), U2(§) = 1(§) and Us(§) = R(€).
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Proof. Here we only prove the corresponding results for R(&) since one can use the similar

arguments to deduce the remainder results. By the third equation in ((1.2)), we have

2d, 2dr
T 6276

2dy

[e*€R(€)) = “CER(€) + R(¢)
dy 24,

= e SR(E+1) + R(E—1)] + %62?51(5) >0

(5.14)

for £ € R, which implies that the function e R(&) is strictly increasing on R. Thus we
obtain that
CEER(E) > S EDR(E 1) for £ € R,

which is equivalent to
R(é - 1) 2d,/c

<e for £ € R.
R ‘
Observing ((b.14]) gives
T dr T
(5.15) [e*CR()]) > ?e”i SR(€+1) for € €R.

Integrating (5.15) over [, & + 1] and using the monotonicity of e%fR(f), we obtain

T T d?“ £+l T
CEENRE 1) - RO = T [T IR+ 1) dn
3

dy 2dr

> ?eTER(f +1) for £ €R,

that is,

(5.16) R(E+1) > [R(f) + %R(ﬁ + 1)} e /e for ¢ € R.

Inserting ([5.16]) into (5.15) yields

[e*EeR() > drettee [R(&) + TRt 1)] ¢ 2dr/e
(5.17) ¢ ¢

d? 24,
> c—;e_4d"/CeT(f+1)R(§ +1) for £ eR.

Integrating (5.17) over [ — 1/2,£] gives

“9r ’I‘ d2 é’ T
CEER(E) 2 EECIRE 12+ Gl [T FEOIRG 1) ay
(5.18) §-1/2

2
> %6—4%/0 FEERDRE £ 1/2) for € €R,
C

where we have used the monotonicity of e%gR(ﬁ). Then it follows from ([5.18]) that

R(§+1/2) < 26 e3d /c

R e for £ € R,
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which implies that

RE+1) _ RE+1D  RE+1/2) _A4¢! g4

R(€)  R(+1/2)  R(¢) dy

The proof is completed. O

for £ € R.
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