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Condition Numbers for a Linear Function of the Solution to the Constrained

and Weighted Least Squares Problem and Their Statistical Estimation

Mahvish Samar

Abstract. In this paper, we consider the condition number theory for a linear function

of the solution to the constrained and weighted least squares problem. We first present

two explicit expressions without Kronecker product of normwise condition number us-

ing the classical method for condition numbers. Then, we derive the explicit expression

of mixed and componentwise condition numbers by the dual techniques. To estimate

these condition numbers with high reliability, we choose the probabilistic spectral

norm estimator and the small-sample statistical condition estimation method and de-

vise three algorithms. Numerical experiments are provided to illustrate the obtained

results.

1. Introduction

The constrained and weighted linear least squares (CWLS) problem can be stated as

follows:

(1.1) min
x∈Rn

(b2 −A2x)TM−12 (b2 −A2x) such that A1x = b1,

where A1 ∈ Rp×n, A2 ∈ Rq×n, b1 ∈ Rp, b2 ∈ Rq and M2 ∈ Rq×q is symmetric positive

definite. Let

A =

A1

A2

 , b =

b1
b2


with p + q = m, and assume m ≥ n ≥ p. Then, from [5, 22], we have that the problem

(1.1) has a unique solution if and only if rank(A1) = p and rank(A) = n, and the solution

x can be stated as follows [20, Lemma 3.1, Remark 3.1]:
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(1.2) x = (AT
†

M1/2)T b,

where

(1.3) (AT
†

M1/2)T = A†[I −M(PMP )†]

with M = diag(0p,M2) ∈ Rm×m, P = I − AA†, and A† denoting the Moore-Penrose

inverse of A.

The CWLS problem (1.1) arises in many practical applications of equilibrium systems

including optimization, finite elements, structural analysis, and electrical network sand

discretization of Stokes flow (see [27, 36]), and hence has been extensively studied in the

literature. Some authors investigated its numerical algorithms, stability of algorithms,

and perturbation analysis (see e.g., [17–23, 28, 38]). Here, we only introduce some works

on perturbation analysis. Wedin [38] first investigated the perturbation theory for CWLS

problem. The obtained results were extended by Gulliksson et al. [22]. Based on the

perturbation bounds, Gulliksson [17,18] analyzed the convergence behavior of the iterative

refinement procedure and presented the explicit forward error bounds of CWLS problem.

In addition, using the general form of the augmented system, Gulliksson et al. [21] also

presented the perturbation identities of CWLS problem for both the full-rank and rank-

deficient cases. Later, Gulliksson et al. [20] revisited the perturbation theory of CWLS

problem and provided the expression of solution in generalized inverse form, i.e., (1.2).

As we know, condition number plays an important role in perturbation theory and

error analysis for algorithm, and has been extensively studied (see e.g., [6, 7, 15, 33]).

Recently, some scholars [1–3,8–10,14,30,31] considered the condition numbers of a linear

function of the solution to the least squares problem, the total least squares problem,

the weighted least squares problem, the indefinite least squares problem and the equality

constraint least squares problem. However, to our best knowledge, there is no work on

such condition numbers of CWLS problem so far. In this paper, we will consider this

problem.

For normwise condition number, two explicit expressions are given by the classical

method. For mixed and componentwise condition number, we use the dual techniques.

This technique was proposed by Baboulin and Gratton [2] for the mixed and component-

wise condition numbers of least squares problem. Later, Diao et al. applied this technique

to weighted least squares problem [9] and the total least squares problem [10]. In addi-

tion, we consider the statistical estimation of these condition numbers by the probabilistic

spectral norm estimator [25] and the small-sample statistical condition estimation (SSCE)

method [29]. Three related algorithms are presented. The above results comprise Sec-

tions 3, 4, 5, and 6 of this paper, respectively.
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2. Preliminaries

In this section, we will discuss some results on the ‘vec’ operator, Kronecker product, the

dual techniques, and the condition numbers.

2.1. Vec operator and Kronecker product

The operator ‘vec’ is defined as

vec(A) =
[
aT1 , . . . , a

T
n

]T ∈ Rmn,

for A = [a1, . . . , an] ∈ Rm×n with ai ∈ Rm and the Kronecker product between A = (aij) ∈
Rm×n and B ∈ Rp×q is defined as A⊗B = [aijB] ∈ Rmp×nq. Some useful results on these

two tools are introduced as follows [16,26]:

vec(AXB) = (BT ⊗A) vec(X),(2.1)

vec(AT ) = Π vec(A),(2.2)

‖A⊗B‖2 = ‖A‖2‖B‖2,

(A⊗B)T = (AT ⊗BT ),(2.3)

(A⊗B)(C ⊗D) = (AC)⊗ (BD),(2.4)

(yT ⊗ Y )Π = (Y ⊗ yT ),(2.5)

where X, Y , C and D are matrices of suitable orders, y is a vector and Π ∈ Rmn×mn is

the vec-permutation matrix; see [16] for details.

2.2. Dual techniques and condition numbers

For the Euclidean spaces S and Q equipped with the scalar products 〈 · , · 〉S and 〈 · , · 〉Q,

respectively, we denote the corresponding norms as ‖·‖S and ‖·‖Q, and let a linear operator

J : S → Q be well-defined. Thus, the dual norm and the adjoint operator can be defined

as follows.

Definition 2.1. The dual norm ‖ · ‖S∗ of the norm ‖ · ‖S is defined by

‖a‖S∗ = max
w 6=0

〈a,w〉S
‖w‖S

,

where a,w ∈ S.

Definition 2.2. The adjoint operator of J , J∗ : Q→ S is defined by

〈y, Ja〉Q = 〈J∗y, a〉S,

where a ∈ S and y ∈ Q.
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For commonly used vector norms and the Frobenius norm, their dual norms are given

by

‖ · ‖1∗ = ‖ · ‖∞, ‖ · ‖∞∗ = ‖ · ‖1, ‖ · ‖2∗ = ‖ · ‖2, ‖A‖F ∗ = ‖A‖F .

For the linear operator J from S to Q, let ‖ · ‖S,Q be the operator norm induced by the

norms ‖·‖S and ‖·‖Q, and for the linear operator from Q to S, let ‖·‖Q∗,S∗ be the operator

norm induced by the dual norms ‖ · ‖S∗ and ‖ · ‖Q∗ . We have the following result [2] on

these two norms.

Lemma 2.3. For the linear operator J from S to Q, we have

‖J‖S,Q = ‖J∗‖Q∗,S∗ .

As noted in [2], it may additionally be desirable to compute ‖J∗‖Q∗,S∗ in place of

‖J‖S,Q when the dimension of the Euclidean space Q∗ is lower than S.

From [33], if φ is Fréchet differentiable in the neighborhood of a ∈ S, then the absolute

condition number of φ at a ∈ S is given by

(2.6) κ = ‖dφ(a)‖S,Q = max
‖z‖S=1

‖dφ(a) · z‖Q,

where dφ(a) denotes the Fréchet differential of φ at a. In view of Lemma 2.3, the following

expression of κ can be obtained

(2.7) κ = max
‖da‖S=1

‖dφ(a) · da‖Q = max
‖z‖Q∗=1

‖dφ(a)∗ · z‖S∗ .

If φ is nonzero, we have the relative condition number

(2.8) κn = κ
‖a‖S
‖φ(a)‖Q

.

Now, we consider the componentwise metric on a data space S = Rn. For any input

data a ∈ Rn, we denote by Sa the subset of all elements da ∈ Rn satisfying that dai = 0

whenever ai = 0, 1 ≤ i ≤ n. Thus, we can measure the perturbation da ∈ Sa of a using

the following componentwise norm with respect to a:

‖da‖c = min{w, |dai| ≤ w|ai|, i = 1, . . . , n}.

Equivalently, the componentwise norm has the following property

(2.9) ‖da‖c = max

{
|dai|
|ai|

, ai 6= 0

}
=

∥∥∥∥( |dai||ai|
)∥∥∥∥
∞
.

For this norm, from [10, Equation 2.16], we have the following explicit expression of its

dual norm

(2.10) ‖d(a)‖c∗ = ‖(‖da1‖S∗ , . . . , ‖dan‖S∗)‖∞ = ‖(|da1||a1|, . . . , |dan||an|)‖1.

Using the above componentwise norm, we can rewrite the condition number κ.
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Lemma 2.4. [2, 9] Using the above notations and the componentwise norm defined in

(2.9), the condition number κ can be expressed by

κ = max
‖z‖Q∗=1

‖(dφ(a))∗ · z‖c∗ ,

where ‖ · ‖c∗ is given by (2.10).

Consider the following linear function φ of the CWLS solution:

(2.11) φ : Rm×n × Rm×m × Rm → Rk, (A,M, b)→ φ(A,M, b) = LT (AT
†

M1/2)T b,

where L ∈ Rn×k with k ≤ n. Then, from [20, Equation 3.6], we know that φ is continuously

Fréchet differentiable in a neighborhood of (A,M, b). For dA ∈ Rm×n, dM ∈ Rm×m and

db ∈ Rm, using the chain rules of composition of derivatives, we have

dφ(A,M, b) · (dA,dM, db)

= LT (AT
†

M1/2)TM(AT
†

M1/2)dAT r − LT (AT
†

M1/2)TdAx− LT (AT
†

M1/2)TdMr + LT (AT
†

M1/2)Tdb,

(2.12)

where r = (PMP )†b. Applying the operator vec to (2.12) and using (2.1), we have

dφ(A,M, b) · (dA,dM,db)

= vec(dφ(A,M, b) · (dA,dM,db))

=
[
(rT ⊗ (LT (AT

†

M1/2)TMAT
†

M1/2))Π− xT ⊗ (LT (AT
†

M1/2)T ),−rT ⊗ (LT (AT
†

M1/2)T ), (LT (AT
†

M1/2)T )
]

×


vec(dA)

vec(dM)

db



= W


vec(dA)

vec(dM)

db

 ,

(2.13)

where

W =
[
rT ⊗ (LT (AT

†

M1/2)TMAT
†

M1/2)Π− xT ⊗ (LT (AT
†

M1/2)T ),−rT ⊗ (LT (AT
†

M1/2)T ), (LT (AT
†

M1/2)T )
]
.

Combining (2.13) with (2.6), (2.8), and Lemma 2.4, we can get the normwise or mixed

and componentwise condition numbers. Their explicit expressions will be discussed in

Sections 3 and 4, respectively.



722 Mahvish Samar

3. Normwise condition number

In the following theorem, we present two explicit expressions of normwise condition num-

ber, which doesn’t contain the Kronecker product.

Theorem 3.1. The normwise condition number for a linear function φ of CWLS solution

defined in (2.11) has the following two explicit expressions:

(3.1)

κφ1 =

∥∥LT (AT
†

M1/2)T
(
MAT

†

M1/2(AT
†

M1/2)TM‖r‖22 + (‖r‖22 + ‖x‖22 + 1)
)
AT

†

M1/2L
∥∥1/2
2
‖[A,M, b]‖F

‖LTx‖2
and

(3.2)

κφ2 =

∥∥LT (AT
†

M1/2)T
[
MAT

†

M1/2‖r‖2, ‖x‖2
(
Im − 1

‖r‖22
rrT

)
, ‖r‖2

(
Im − 1

‖r‖22
rrT

)
, Im

]∥∥
2
‖[A,M, b]‖F

‖LTx‖2
.

Proof. By (2.8) and (2.13), it is easy to see that the common normwise condition number

of φ has the following expression

(3.3) κn =
‖W‖2‖[A,M, b]‖F

‖LTx‖2
.

Note that

(3.4) ‖W‖2 = ‖WW T ‖1/22 = ‖W1W
T
1 +W2W

T
2 +W3W

T
3 ‖

1/2
2 ,

where

W1 = (rT ⊗ (LT (AT
†

M1/2)TMAT
†

M1/2))Π− xT ⊗ (LT (AT
†

M1/2)T ),

W2 = −rT ⊗ (LT (AT
†

M1/2)T ) and W3 = LT (AT
†

M1/2)T .

In the following, we compute W1W
T
1 , W2W

T
2 and W3W

T
3 , respectively, to remove the

Kronecker product from (3.3).

Firstly, let

W11 = (rT ⊗ (LT (AT
†

M1/2)TMAT
†

M1/2))Π = LT (AT
†

M1/2)T ((MAT
†

M1/2)⊗ rT ),

W12 = −(xT ⊗ (LT (AT
†

M1/2)T )) = −LT (AT
†

M1/2)T (xT ⊗ Im),

where we have used the result (2.5). Then

(3.5) W1W
T
1 = W11W

T
11 +W12W

T
12 +W11W

T
12 +W12W

T
11.

By (2.3) and (2.4), we get

W11W
T
11 = LT (AT

†

M1/2)T
(
(MAT

†

M1/2)⊗ rT
)(

((AT
†

M1/2)TM)⊗ r
)
(AT

†

M1/2L)

= LT (AT
†

M1/2)T
(
MAT

†

M1/2(AT
†

M1/2)TM
)
‖r‖22AT

†

M1/2L,
(3.6)

W12W
T
12 = LT (AT

†

M1/2)T (xT ⊗ Im)(x⊗ Im)(AT
†

M1/2)L = LT (AT
†

M1/2)T ‖x‖22AT
†

M1/2L.(3.7)
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Considering (1.3) and the fact

(3.8) (PMP )† = (PMP )†M(PMP )†,

which is from [20], we have

rTAT
†

M1/2L =
(
bT (PMP )†

T
AT
†

M1/2L
)

=
(
LT (AT

†

M1/2)T (PMP )†b
)T

=
(
LTA†(I −M(PMP )†)(PMP )†b

)T
(by (1.3))

=
(
LTA†(PMP )†b− LTA†(PMP )†M(PMP )†b

)T
=
(
LTA†(PMP )†b− LTA†(PMP )†b

)T
= 0 (by (3.8)).

(3.9)

Thus, by (2.3), (2.4) and (3.9), we have

W11W
T
12 = −LT (AT

†

M1/2)T
(
(MAT

†

M1/2)⊗ rT
)
(x⊗ Im)(AT

†

M1/2)L (by (2.3))

= −
(
LT (AT

†

M1/2)TMAT
†

M1/2x
)
⊗ (rTAT

†

M1/2L) (by (2.4))

= 0 = (W12W
T
11)

T (by (3.9)).

(3.10)

Substituting (3.6), (3.7), (3.10) into (3.5) implies

(3.11)

W1W
T
1 = LT (AT

†

M1/2)T
(
MAT

†

M1/2(AT
†

M1/2)TM
)
‖r‖22AT

†

M1/2L+ LT (AT
†

M1/2)T ‖x‖22AT
†

M1/2L.

Furthermore, using (2.3) and (2.4), we obtain

(3.12) W2W
T
2 = LT (AT

†

M1/2)T (rT ⊗ Im)(r ⊗ Im)AT
†

M1/2L = LT (AT
†

M1/2)T ‖r‖22AT
†

M1/2L

and

(3.13) W3W
T
3 = LT (AT

†

M1/2)TAT
†

M1/2L.

Thus, putting (3.11), (3.12) and (3.13) together give

(3.14) WW T = LT (AT
†

M1/2)T
(
MAT

†

M1/2(AT
†

M1/2)TM‖r‖22 + (‖r‖22 + ‖x‖22 + 1)
)
AT
†

M1/2L,

which combining (3.3) and (3.4) leads to the expression (3.1).

Note that (3.14) can be rewritten as

(3.15) WW T = LT (AT
†

M1/2)T

MAT
†

M1/2(AT
†

M1/2)TM‖r‖22 0n×m

0m×n (‖x‖22 + ‖r‖22 + 1)Im

AT †
M1/2L.



724 Mahvish Samar

Further, note that

MAT
†

M1/2(AT
†

M1/2)TM‖r‖22 0n×m

0m×n (‖x‖22 + ‖r‖22 + 1)Im


=

MAT
†

M1/2 0n×m

0m×n Im

 ‖r‖22 0n×m

0m×n ‖x‖22
(
Im − 1

‖r‖22
rrT
)

+ ‖r‖22
(
Im − 1

‖r‖22
rrT
)

+ Im


×

(AT
†

M1/2)TM 0n×m

0m×n Im



(3.16)

and

‖x‖22
(
Im −

1

‖r‖22
rrT
)

+ ‖r‖22
(
Im −

1

‖r‖22
rrT
)

+ Im

=
[
‖x‖2

(
Im − 1

‖r‖22
rrT
)
‖r‖2

(
Im − 1

‖r‖22
rrT
)

Im

]
‖x‖2

(
Im − 1

‖r‖22
rrT
)

‖r‖2
(
Im − 1

‖r‖22
rrT
)

Im

 .
(3.17)

Thus, substituting (3.16) and (3.17) into (3.15), we get

(3.18) WW T = LT (AT
†

M1/2)TKKTAT
†

M1/2L,

where

K =

[
MAT

†

M1/2‖r‖2, ‖x‖2
(
Im −

1

‖r‖22
rrT
)
, ‖r‖2

(
Im −

1

‖r‖22
rrT
)
, Im

]
.

Combining (3.3), (3.4), and (3.18), we have the expression (3.2).

Remark 3.2. Note that the orders of matrices in (3.1), (3.2) and (3.3) are k×k, k×(3m+n)

and k×m(n+m+1) respectively. So, comparing with the expression (3.3), the expressions

of κn in Theorem 3.1, i.e., (3.1) and (3.2), require little storage space. Meanwhile, they

can be efficiently computed due to the elimination of Kronecker product.

Remark 3.3. Using the weighted QR decomposition [17, Theorem 2.1, Equation 2.2], we

can rewrite the expressions of κφ1 and κφ2 given in Theorem 3.1. Specifically, given

M = diag(Mn,Mm−n) and a matrix A ∈ Rm×n partitioned as

A =

A11 A12

A21 A22


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with A11 ∈ Rp×p, A12 ∈ Rp×(n−p), A21 ∈ R(m−p)×p, A22 ∈ R(m−p)×(n−p), then a factoriza-

tion

A = Q

R
0

ΠT , M = QMQT

with Π being a permutation matrix, R ∈ Rn×n being upper triangular and nonsingular

and Q ∈ Rm×m being nonsingular exists if and only if rank(A) = n and rank(A11) = p.

By this decomposition, we have

x = Π
[
R−1 0

]
Q−1b, r = Q−T

0

M−1m−n

Q−1b, (AT
†

M1/2)T = Π
[
R−1 0

]
Q−1,

AT
†

M1/2 = Q−T

R−T
0

ΠT , MAT
†

M1/2(AT
†

M1/2)TM = QMR−TR−1MQT .

Thus, putting the above terms into (3.1) and (3.2) lead to

κφ1 =
∥∥LTΠR−1Q−1

(
(QMR−TR−1MQT )‖r‖22 + (‖r‖22 + ‖x‖22 + 1)

)
Q−TR−TΠTL

∥∥1/2
2

× ‖[A,M, b]‖F
‖LTx‖2

and

κφ2 =

∥∥∥∥LT (ΠR−1Q−1)

[
(QMR−TΠT )‖r‖2, ‖x‖2

(
Im −

1

‖r‖22
rrT

)
, ‖r‖2

(
Im −

1

‖r‖22
rrT

)
, Im

]∥∥∥∥
2

× ‖[A,M, b]‖F
‖LTx‖2

.

4. Mixed and componentwise condition numbers

We first present an explicit expression of the adjoint operator of the Fréchet derivative

dφ(A,M, b), which is necessary for deriving the explicit expression of mixed and compo-

nentwise condition numbers.

Theorem 4.1. The adjoint operator of dφ(A,M, b), using the scalar products 〈(A1,M1, b1),

(A2,M2, b2)〉 = trace(AT1A2) + trace(MT
1 M2) + bT1 b2 and 〈y1, y2〉 = yT1 y2 defined on

Rm×n × Rm×m × Rm and Rk respectively, is

dφ∗(y) =
(
ryTLT (AT

†

M1/2)TMAT
†

M1/2 −AT
†

M1/2Lyx
T ,−AT †

M1/2Lyr
T , AT

†

M1/2Ly
)

for any y ∈ Rk.
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Proof. Using the scalar product and (2.13), for any y ∈ Rk, we have

〈y,dφ(A,M, b) · (dA,dM, db)〉 = yT (dφ(A,M, b) · (dA,dM, db))

= yTW


vec(dA)

vec(dM)

db

 = (W T y)T


vec(dA)

vec(dM)

db

 .(4.1)

Considering the fact Π−1 = ΠT , and by (2.1), (2.2), and (2.3), we can obtain

W T y =


ΠT
(
r ⊗ ((AT

†

M1/2)TMAT
†

M1/2L)
)
−
(
x⊗ (AT

†

M1/2L)
)

−r ⊗ (AT
†

M1/2L)

AT
†

M1/2L

 y (by (2.3))

=


ΠT
(
r ⊗ ((AT

†

M1/2)TMAT
†

M1/2L)
)

vec(y)−
(
x⊗ (AT

†

M1/2L)
)

vec(y)

−
(
r ⊗ (AT

†

M1/2L)
)

vec(y)

AT
†

M1/2Ly



=


Π−1

(
vec((AT

†

M1/2)TMAT
†

M1/2Lyr
T )−Π vec(AT

†

M1/2Lyx
T )
)

vec(−AT †
M1/2Lyr

T )

AT
†

M1/2Ly

 (by (2.1))

=


Π−1

(
vec((AT

†

M1/2)TMAT
†

M1/2Lyr
T )− vec((AT

†

M1/2Lyx
T )T )

)
− vec(AT

†

M1/2Lyr
T )

AT
†

M1/2Ly

 (by (2.2))

=


Π−1 vec

(
((AT

†

M1/2)TMAT
†

M1/2Lyr
T )− (xyTLT (AT

†

M1/2)T )
)

− vec(AT
†

M1/2Lyr
T )

AT
†

M1/2Ly



=


vec
(
(ryTLT (AT

†

M1/2)TMAT
†

M1/2)− (AT
†

M1/2Lyx
T )
)

− vec(AT
†

M1/2Lyr
T )

AT
†

M1/2Ly

 (by (2.2) and Π−1 = ΠT ).

(4.2)

Putting (4.2) into (4.1) implies

〈y,dφ(A,M, b) · (dA,dM, db)〉

= vec((ryTLT (AT
†

M1/2)TMAT
†

M1/2)− (AT
†

M1/2Lyx
T ))T vec(dA)

− vec(AT
†

M1/2Lyr
T )T vec(dM) + (AT

†

M1/2Ly)Tdb,
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which together with the fact that, for the matrices A1 and A2 of the same orders,

vec(AT1 ) vec(A2) = trace(AT1A2), gives

〈y,dφ(A,M, b) · (dA,dM, db)〉

= trace(((ryTLT (AT
†

M1/2)TMAT
†

M1/2)− (AT
†

M1/2Lyx
T ))TdA− (AT

†

M1/2Lyr
T )TdM)

+ (AT
†

M1/2Ly)Tdb

= 〈(ryTLT (AT
†

M1/2)TMAT
†

M1/2 −AT
†

M1/2Lyx
T ,−AT †

M1/2Lyr
T , AT

†

M1/2Ly), (dA,dM,db)〉

= 〈dφ∗(A,M, b) · y, (dA,dM,db)〉,

from which, we have the desired result.

Now, we give an explicit expression of the condition number κ (2.7) for the linear

function φ of the CWLS solution.

Theorem 4.2. The condition number (2.7) for the linear function φ of the CWLS solution

is expressed by

κ = max
‖y‖Q∗=1

∥∥[V DA, HDM , BDb]
TLy

∥∥
1

=
∥∥[V DA, HDM , BDb]

TL
∥∥
Q∗,1,

where

V = (AT
†

M1/2)T (MAT
†

M1/2 ⊗ rT )− (AT
†

M1/2)T (xT ⊗ Im),

H = (AT
†

M1/2)T (rT ⊗ Im), B = (AT
†

M1/2)T ,
(4.3)

and DX denotes the diagonal matrix diag(vec(X)) for any matrix X.

Proof. Let daij , dmij and dbi be the entries of dA, dM and db, respectively. Thus, using

(2.10), we have

‖(dA,dM, db)‖c∗ =
∑
i,j

|daij ||aij |+
∑
i,j

|dmij ||mij |+
∑
i

|dbi||bi|.

By Theorem 4.1, we derive that

‖dφ∗(y)‖c∗ =

m,n∑
i,j=1

|aij |
∣∣(ryTLT (AT

†

M1/2)TMAT
†

M1/2 −AT
†

M1/2Lyx
T
)
ij

∣∣
+

m,m∑
i,j=1

|mij |
∣∣(AT †

M1/2Lyr
T )ij

∣∣+

m∑
i=1

|bi|
∣∣(AT †

M1/2Ly)i
∣∣

=

m,n∑
i,j=1

|aij |
∣∣ri((AT †M1/2)TMAT

†

M1/2ej
)T − xj((AT †M1/2)T ei

)T
Ly
∣∣

+

m,m∑
i,j=1

|mij |
∣∣rj((AT †M1/2)T ei

)T
Ly
∣∣+

m∑
i=1

|bi|
∣∣((AT †

M1/2)T ei
)T
Ly
∣∣,
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where ri is the ith component of r. Noting (4.3), it can be verified that
(
ri((A

T †

M1/2)TM

AT
†

M1/2)ej − xj(AT
†

M1/2)T ei
)

is the (m(j − 1) + i)th column of the n× (mn) matrix V and

rj(A
T †

M1/2)T ei is the (m(j− 1) + i)th column of the m× (mm) matrix H. Thus, the above

expression equals ∥∥∥∥∥∥∥∥∥


DAV

TLy

DMH
TLy

DbB
TLy


∥∥∥∥∥∥∥∥∥
1

=
∥∥[V DA, HDM , BDb]

TLy
∥∥
1
.

Then, by Lemma 2.4, we obtain the desired result.

By Theorem 4.2, we can find the explicit expression of the mixed condition number

for the linear function φ of the CWLS solution easily.

Corollary 4.3. Using the above notations, when the infinity norm is chosen as the norm

in the solution space Q, we obtain

κ∞ =
∥∥|LTV | vec(|A|) + |LTH| vec(|M |) + |LTB||b|

∥∥
∞.

When the infinity norm is chosen as the norm in the solution space Rn, the corresponding

mixed condition number is given by

(4.4) κm =

∥∥|LTV | vec(|A|) + |LTH| vec(|M |) + |LTB||b|
∥∥
∞

‖LTx‖∞
.

Now, we give an alternative expression of κm, which doesn’t contain the Kronecker

product.

Corollary 4.4. Using the above notations, we get

κm =

∥∥∑n
j=1 |LT ((AT

†

M1/2)TMAT
†

M1/2ejr
T − xj(AT

†

M1/2)T )||A( : , j)|
‖LTx‖∞

+

∑m
j=1 |LT rj(AT

†

M1/2)T ||M( : , j)|+ |LT (AT
†

M1/2)T ||b|
∥∥
∞

‖LTx‖∞
,

(4.5)

where A( : , j) is the jth column of A.

Proof. Partitioning V = [V1, . . . , Vn] and H = [H1, . . . ,Hm], where each Vj , 1 ≤ j ≤ n, is

an n×m matrix and each Hj , 1 ≤ j ≤ m, is an m×m matrix, we get

κm =

∥∥|LTV | vec(|A|) + |LTH| vec(|M |) + |LTB||b|
∥∥
∞

‖LTx‖∞

=

∥∥|LTVj ||A( : , j)|+ |LTHj ||M( : , j)|+ |LTB||b|
∥∥
∞

‖LTx‖∞
.

(4.6)
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Recall that
(
ri((A

T †

M1/2)TMAT
†

M1/2)ej −xj(AT
†

M1/2)T ei
)

is the (m(j− 1) + i)th column of V .

Then, we have

Vj = ((AT
†

M1/2)TMAT
†

M1/2ejr
T − xj(AT

†

M1/2)T )ei.

Similarly, by the fact that rj(A
T †

M1/2)T ei is the (m(j − 1) + i)th column of H, we get

Hj = rj(A
T †

M1/2)T ei.

Putting Vj and Hj into (4.6) leads to (4.5).

By Theorem 4.2, we can also get the expression of the componentwise condition number

for the linear function φ of the CWLS solution easily.

Corollary 4.5. Considering the componentwise norm defined by

‖y‖c = min{w, |yi| ≤ w|(Lx)i|, i = 1, . . . , k} = max{|yi|/|(Lx)i|, i = 1, . . . , k}

in the solution space, we have the following three expressions for the componentwise con-

dition number for the linear function φ of the CWLS solution

κc =
∥∥D−1

LT x
LT [V DA, HDM , BDb]

∥∥
∞

=
∥∥|D−1

LT x
|(|LTV | vec(|A|) + |LTH| vec(|M |) + |LTB||b|)

∥∥
∞

=

∥∥∥∥∥∥
n∑
j=1

|D−1
LT x

LTVj ||A( : , j)|+
m∑
j=1

|D−1
LT x

LTHj ||M( : , j)|+ |D−1
LT x

LTB||b|

∥∥∥∥∥∥
∞

.

(4.7)

In the following, we give upper bounds for κm and κc.

Corollary 4.6. The mixed and componentwise condition numbers for the linear function

φ of the CWLS solution can be bounded as

κm ≤ κuppm =

∥∥LT (AT
†

M1/2)TMAT
†

M1/2D|AT ||r|
∥∥
∞

‖LTx‖∞
+

∥∥LT (AT
†

M1/2)TD|A||x|
∥∥
∞

‖LTx‖∞

+

∥∥LT (AT
†

M1/2)TD|M ||r|
∥∥
∞

‖LTx‖∞
+

∥∥LT (AT
†

M1/2)TD|b|
∥∥
∞

‖LTx‖∞
,

κc ≤ κuppc =
∥∥D−1

LT x
LT (AT

†

M1/2)TMAT
†

M1/2D|AT ||r|
∥∥
∞ +

∥∥D−1
LT x

LT (AT
†

M1/2)TD|A||x|
∥∥
∞

+
∥∥D−1

LT x
LT (AT

†

M1/2)TD|M ||r|
∥∥
∞ +

∥∥D−1
LT x

LT (AT
†

M1/2)TD|b|
∥∥
∞.

Proof. Firstly, note that for any matrix N ∈ Rp×q and diagonal matrix Dv ∈ Rq×q,

(4.8) ‖NDv‖∞ = ‖|NDv|‖∞ = ‖|N ||Dv|‖∞ = ‖|N ||Dv|e‖∞ = ‖|N ||Dv|‖∞ = ‖|N ||v|‖∞,
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where e = [1, . . . , 1] ∈ Rq. Using (2.1), (2.2), (2.5), (4.3), (4.8), and the triangle inequality,

we have

κm ≤
‖|LTV | vec(|A|)‖∞

‖LTx‖∞
+
‖|LTH| vec(|M |)‖∞

‖LTx‖∞
+
‖|LTB||b|‖∞
‖LTx‖∞

≤
∥∥|LT (AT

†

M1/2)T (MAT
†

M1/2 ⊗ rT )| vec(|A|)
∥∥
∞

‖LTx‖∞
+

∥∥|LT (AT
†

M1/2)T (xT ⊗ Im)| vec(|A|)
∥∥
∞

‖LTx‖∞

+

∥∥|LT (AT
†

M1/2)T (rT ⊗ Im)| vec(|M |)
∥∥
∞

‖LTx‖∞
+

∥∥|LT (AT
†

M1/2)T ||b|
∥∥
∞

‖LTx‖∞
(by (4.3))

≤
∥∥|LT (AT

†

M1/2)TMAT
†

M1/2 |(|rT | ⊗ In)Π vec(|A|)
∥∥
∞

‖LTx‖∞

+

∥∥|LT (AT
†

M1/2)T (|xT | ⊗ Im)| vec(|A|)
∥∥
∞

‖LTx‖∞
+

∥∥|LT (AT
†

M1/2)T |(|rT | ⊗ Im) vec(|M |)
∥∥
∞

‖LTx‖∞

+

∥∥|LT (AT
†

M1/2)T ||b|
∥∥
∞

‖LTx‖∞
(by (2.5))

=

∥∥|LT (AT
†

M1/2)TMAT
†

M1/2 ||AT ||r|
∥∥
∞

‖LTx‖∞
+

∥∥|LT (AT
†

M1/2)T ||A||x|
∥∥
∞

‖LTx‖∞

+

∥∥|LT (AT
†

M1/2)T ||M ||r|
∥∥
∞

‖LTx‖∞
+

∥∥|LT (AT
†

M1/2)T ||b|
∥∥
∞

‖LTx‖∞
(by (2.1) and (2.2))

=

∥∥LT (AT
†

M1/2)TMAT
†

M1/2D|AT ||r|
∥∥
∞

‖LTx‖∞
+

∥∥LT (AT
†

M1/2)TD|A||x|
∥∥
∞

‖LTx‖∞

+

∥∥LT (AT
†

M1/2)TD|M ||r|
∥∥
∞

‖LTx‖∞
+

∥∥LT (AT
†

M1/2)TD|b|
∥∥
∞

‖LTx‖∞
= κuppm (by (4.8)).

Similarly, we can prove κc ≤ κuppc .

5. Statistical condition estimates

In this part, we focus on estimating the normwise, mixed and componentwise condition

numbers for the linear function φ of the CWLS solution.

5.1. Estimating normwise condition number

We use two algorithms to estimate the normwise condition number. The first one, outlined

in Algorithm 5.1, is from [25] and has been applied to estimate the normwise condition

number for matrix equations [32,37], equality constrained linear least squares problem [30],

indefinite least squares problem [31] and K-weighted pseudoinverse L†K [35]. The second

one, outlined in Algorithm 5.2, is based on the SSCE method [29] and has been used for

some least squares problems [4, 30,31].
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Algorithm 5.1 Probabilistic condition estimator
Input: ε, d (d is the dimension of Krylov space and usually determined by the algorithm itself) and the

matrix

K̂ = LT (AT
†

M1/2)
T

[
MAT

†

M1/2‖r‖2, ‖x‖2
(
Im −

1

‖r‖22
rrT

)
, ‖r‖2

(
Im −

1

‖r‖22
rrT

)
, Im

]
.

Output: Probabilistic spectral norm estimator of the normwise condition number (3.2): κpn.

1. Choose a starting vector v0 uniformly and randomly from the unit t-sphere St−1 with t = 3m+ n.

2. Compute ‖K̂‖2 ∈ [α1, α2] by probabilistic spectral norm estimator.

(a) Find δ ∈ [0, π/2] by t, ε and∫ arcsin(δ)

0

cost−2(q) dq =
ε

2

∫ 1

0

q(t−3)/2(1− q)−1/2 dq

(
ε

∫ π/2

0

cost−2(q) dq

)
.

(b) for j = 1, . . . , d

(c) u = K̂vj

(d) if j > 1

(e) u = u− βj−1uj−1

(f) u = u− [u1, . . . , uj−1](u
T [u1, . . . , uj−1])

T

(g) end

(h) τj = ‖u‖2
(i) uj = u/τj

(j) v = K̂Tu

(k) v = v − τjvj
(l) v = v − [v1, . . . , vj−1](v

T [v1, . . . , vj−1])
T

(m) βj = ‖v‖2
(n) vj+1 = v/βj

(o) end

(p) Find the largest singular value α1 of Bd and an upper bidiagonal matrix with τi on the diagonal

and βi on upper subdiagonal.

(q) Find the probabilistic upper bound α2 for ‖K̂‖2 with probability ≥ 1−ε by a Lanczos polynomial

(see [25]).

3. Estimate the normwise condition number (3.2) by

κpn =
κp‖[A,M, b]‖F
‖LTx‖2

with κp =

√
α1 + α2

2
.

5.2. Estimating mixed and componentwise condition numbers

To estimate mixed and componentwise condition numbers, we need the following SSCE

method, which is from [29] and has been applied to many problems (see e.g., [11–13, 31,

32,34,37]).
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Algorithm 5.2 SSCE method for the normwise condition number of the CWLS solution
Input: Sample size k, L = In and the matrix

Ŵ = (AT
†

M1/2)
T (MAT

†

M1/2(A
T†

M1/2)
TM‖r‖22 + (‖r‖22 + ‖x‖22 + 1)

)
AT

†

M1/2 .

Output: SSCE estimates of the normwise condition number of CWLS solution (3.1): κsn.

1. Generate k vectors z1, . . . , zk uniformly and randomly from the unit n-sphere Sn−1 and set Z =

[z1, . . . , zk].

2. Orthonormalize these vectors using the QR factorization [Z,∼] = QR(Z).

3. For i = 1, . . . , k, compute κi by

κi =
σi‖[A,M, b]‖F
‖LTx‖2

,

where

σi =
√
zTi (A

T†

M1/2)
T
(
MAT

†

M1/2(A
T†

M1/2)
TM‖r‖22 + (‖r‖22 + ‖x‖22 + 1)

)
AT

†

M1/2zi.

4. Approximate ωk and ωn by

ωk ≈

√
2

π(k − 1/2)
.

5. Estimate the normwise condition number (3.1) by

κsn =
ωk
ωn

√√√√ k∑
i=1

κ2
i .

6. Numerical experiments

In this section, we provide some numerical experiments for comparing different condition

numbers for the linear function φ of the CWLS solution and testing the above algorithms.

All the numerical experiments are performed in Matlab 2016a and on a PC with Intel

i3-4005U CPU 1.70 GHz and 4.00 GB RAM.

Example 6.1. Similar to [17], we generate the following matrices and vectors to compare

the condition numbers for the linear function φ of the CWLS solution

A =



1 1 5 4

1 2 4 2

1 3 3 η

1 1 6 1

1 6 10 2


, M =



µ 0 0 0 0

0 µ 0 0 0

0 0 µ 0 0

0 0 0 1 0

0 0 0 0 1


,

x = (−12, 1, 3, 3)T , d1 = [−1,−1, 1, 1, 0]T , d2 = [1,−2, 1, 0, 0]T , r = d1 + (5/η − 1)d2 and
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Algorithm 5.3 SSCE method for the mixed and componentwise condition numbers of

the CWLS solution: κm and κc
Input: Sample size k and matrix W in (2.13).

Output: SSCE estimates of mixed and componentwise condition numbers of CWLS solution: κsm, κsc.

1. Let t = m(n+m+ 1). Generate k random vectors [z1, . . . , zk] → Z uniformly and randomly from

the unit t-sphere St−1 and set Z = [z1, . . . , zk].

2. Orthonormalize these vectors using the QR factorization [Z,∼] = QR(Z).

3. Compute ui = Czi, and estimate the mixed and componentwise condition numbers in (4.4) and

(4.7) by

κsm =
‖κsce‖∞
‖LTx‖∞

, κsc =
∥∥∥ κsce
LTx

∥∥∥
∞
,

where κsce = ωk
ωt

∣∣∑k
i=1 |ui|

2
∣∣1/2, and the power and square root operation are performed on each

entry of ui, i = 1, . . . , k.

b = Mr +Ax. For the matrix L, we choose

L0 = I4, L1 =


1 0

0 1

0 0

0 0

 ∈ R4×2, L2 = (0, 0, 0, 1)T ∈ R4×1.

µ η L κn κm κum κc κuc

L0 7.3665e+01 7.6557e+00 1.0253e+02 2.7004e+01 4.4736e+01

10−2 10−2 L1 6.9928e+01 7.6557e+00 1.0253e+02 2.7004e+01 4.4736e+01

L2 8.7455e+01 1.0318e+01 3.9297e+01 1.0318e+01 1.4998e+01

L0 8.1647e+01 8.5187e+00 1.1625e+02 4.1044e+01 6.3822e+01

10−6 10−5 L1 7.8353e+01 8.5187e+00 1.1625e+02 4.1044e+01 6.3822e+01

L2 1.1475e+02 1.2753e+01 1.1625e+02 1.2753e+01 1.7902e+01

L0 3.0092e+02 2.4906e+01 3.1442e+02 1.3049e+02 1.6137e+02

10−8 100 L1 3.1275e+02 2.4906e+01 3.1442e+02 1.3049e+02 1.6137e+02

L2 5.0293e+02 4.4666e+01 1.4266e+02 4.4666e+01 5.5333e+01

L0 1.4772e+05 7.0741e+02 2.7120e+03 2.7402e+02 2.0695e+03

103 102 L1 1.6936e+06 7.0741e+02 2.7120e+03 2.7402e+02 2.0695e+03

L2 6.0398e+04 1.4430e+02 2.8094e+02 1.4430e+02 1.9042e+02

Table 6.1: Comparisons of condition numbers and their upper bounds.

The numerical results are shown in Table 6.1 for various values of µ and η. We also

do experiments based on the above matrices except that the original diagonal matrix

M is replaced by a non-diagonal matrix QTMQ, where Q is a random orthogonal matrix
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obtained from the QR decomposition of a random matrix. The numerical results are shown

in Table 6.2. From Tables 6.1 and 6.2, we can find that the mixed and componentwise

condition numbers are smaller than the normwise ones.

µ η L κn κm κum κc κuc

L0 8.6830e+01 1.6773e+01 3.4759e+01 2.5478e+01 3.7475e+01

10−3 100 L1 9.0468e+01 1.6773e+01 3.4759e+01 2.5478e+01 3.7475e+01

L2 7.1700e+01 1.4028e+01 4.3596e+01 1.4028e+01 4.7282e+01

L0 1.4752e+02 1.8521e+01 4.7302e+01 4.4140e+01 5.5838e+01

10−4 101 L1 1.5330e+02 1.8521e+01 4.7302e+01 4.4140e+01 5.5838e+01

L2 6.0053e+01 8.9989e+00 2.2840e+01 8.9989e+00 4.7607e+01

L0 1.2672e+03 8.5359e+01 5.9791e+02 9.0859e+01 9.5931e+01

10−1 10−2 L1 1.3239e+03 8.5359e+01 5.9791e+02 9.0859e+01 9.5931e+01

L2 1.1700e+03 5.6547e+01 1.2414e+02 5.6547e+01 4.7282e+02

L0 1.0408e+04 3.4238e+01 5.1495e+02 4.1085e+02 6.1495e+02

102 103 L1 1.0867e+04 3.4238e+01 5.1495e+02 4.1085e+02 6.1495e+02

L2 7.0671e+01 2.2765e+00 4.6186e+00 2.2765e+00 8.6085e+00

Table 6.2: Comparisons of condition numbers and their upper bounds.

Example 6.2. In this example, we choose L = In, and generate the matrices A and M

as follows:

A = QDU, M = Q

Mn 0

0 Im−n

QT ,
where Q ∈ Rm×m, U ∈ Rn×n are the random orthogonal matrix, D ∈ Rm×n is a diagonal

matrix with diagonal elements distributed exponentially from κ−1 to 1 and Mn = diag(µ).

In addition, we set the solution x to be x = (1, 22, . . . , n2) and b = Mr+Ax with r being

random vector of 2-norm ρ, i.e., ρ = ‖r‖2.
In the specific experiments, we set m = 50, n = 30, and p = 20. For each pair of κ, µ

and ρ, 1000 CWLS problems are generated to test the performance.

For Algorithm 5.1, we choose the parameters: δ = 0.01 and ε = 0.001. For Algo-

rithms 5.2 and 5.3, we set k = 2. By varying the κ, µ and ρ, we have the numerical results

on the ratios defined as follows:

rp := κpn/κn, rs := κsn/κn, rm := κsm/κm, rc := κsc/κc.

The mean and variance of these ratios are reported in Tables 6.3 and 6.4, respectively. We

also plot these numerical results and CPU time in Figures 6.1 and 6.2. The time ratios

are defined by

tp :=
t1
t
, ts :=

t2
t
, tm :=

t3
t
, tc :=

t4
t
,
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κ 101 102 103

ρ = 101 Mean Variance Mean Variance Mean Variance

µ = 10−4
rp 1.0001e+00 3.8382e-12 1.0000e+00 3.9226e-12 1.0001e+00 3.6789e-12

rs 2.9550e+00 9.3512e-02 2.9546e+00 9.0331e-02 2.9744e+00 9.8811e-02

µ = 10−5
rp 1.0000e+00 1.7705e-06 1.0000e+00 2.1614e-11 1.0000e+00 2.4665e-08

rs 2.1751e+00 1.3160e-01 2.1524e+00 1.2955e-01 2.1796e+00 1.3633e-01

µ = 10−6
rp 1.0000e+00 3.0639e-08 10000e+00 3.3239e-08 1.0000e+00 1.4221e-08

rs 1.8324e+00 1.3171e-01 1.8338e+00 1.5551e-01 1.8297e+00 1.5833e-01

ρ = 102 Mean Variance Mean Variance Mean Variance

µ = 10−4
rp 1.0000e+00 3.8878e-12 1.0002e+00 3.8482e-12 1.0002e+00 3.9344e-12

rs 2.9536e+00 9.4841e-02 2.9637e+00 9.4633e-02 2.9712e+00 9.4020e-02

µ = 10−5
rp 1.0000e+00 2.0674e-11 1.0000e+00 2.1240e-11 1.0002e+00 9.6383e-07

rs 2.1757e+00 1.3311e-01 2.1495e+00 1.3233e-01 2.1716e+00 1.2692e-01

µ = 10−6
rp 1.0000e+00 8.9658e-09 1.0000e+00 1.6412e-08 1.0002e+00 1.4220e-08

rs 1.8237e+00 1.5151e-01 1.8188e+00 1.5864e-01 1.8337e+00 1.5080e-01

ρ = 103 Mean Variance Mean Variance Mean Variance

µ = 10−4
rp 1.0000e+00 4.4062e-12 1.0000e+00 4.1030e-12 1.0001e+00 4.0542e-12

rs 2.9913e+00 8.6931e-02 3.0217e+00 9.0505e-02 3.0081e+00 9.0301e-02

µ = 10−5
rp 1.0000e+00 2.1453e-11 1.0000e+00 2.1129e-11 1.0000e+00 2.0967e-11

rs 2.1821e+00 1.2442e-01 2.1629e+00 1.2383e-01 2.1621e+00 1.1901e-01

µ = 10−6
rp 1.0000e+00 3.1310e-08 1.0000e+00 1.7005e-08 1.0000e+00 2.5774e-08

rs 1.8255e+00 1.4654e-01 1.8453e+00 1.4585e-01 1.8322e+00 1.4621e-01

Table 6.3: The efficiency of statistical condition estimates by Algorithms 5.1 and 5.2.
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Figure 6.1: Efficiency of condition estimators and CPU time of Algorithms 5.1 and 5.2.
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κ 101 102 103

ρ = 101 Mean Variance Mean Variance Mean Variance

µ = 10−4
rm 1.3807e+00 7.7220e-02 1.3782e+00 8.0501e-02 1.3835e+00 8.1402e-02

rc 0.8322e+00 1.9441e-01 0.8370e+00 1.7952e-01 0.8615e+00 1.8543e-01

µ = 10−5
rm 1.6976e+00 2.0242e-01 1.7073e+00 1.9431e-01 1.7035e+00 1.9312e-01

rc 1.1760e+00 3.6573e-01 1.1450e+00 3.5104e-01 1.1554e+00 3.4043e-01

µ = 10−6
rm 1.8818e+00 2.9632e-01 1.9308e+00 3.5793e-01 1.8706e+00 3.2762e-01

rc 1.4282e+00 5.0721e-01 1.3615e+00 5.0001e-01 1.3465e+00 4.5590e-01

ρ = 102 Mean Variance Mean Variance Mean Variance

µ = 10−4
rm 1.3251e+00 7.3202e-02 1.3079e+00 7.4221e-02 1.3362e+00 8.0021e-02

rc 0.8071e+00 1.7441e-01 0.7872e+00 1.6101e-01 0.8185e+00 1.6173e-01

µ = 10−5
rm 1.5878e+00 1.6023e-01 1.6128e+00 1.9144e-01 1.6067e+00 1.8671e-01

rc 1.0771e+00 2.9923e-01 1.0986e+00 3.3625e-01 1.0676e+00 2.9664e-01

µ = 10−6
rm 1.7930e+00 3.2042e-01 1.7706e+00 2.7282e-01 1.7888e+00 2.8513e-01

rc 1.2866e+00 4.1963e-01 1.2776e+00 4.1824e-01 1.2987e+00 4.5624e-01

ρ = 103 Mean Variance Mean Variance Mean Variance

µ = 10−4
rm 1.0986e+00 4.2912e-02 1.0981e+00 3.8142e-02 1.0983e+00 3.9241e-02

rc 1.0574e+00 8.5532e-02 1.0081e+00 9.1812e-02 1.0058e+00 9.6831e-02

µ = 10−5
rm 1.0657e+00 7.9813e-02 1.0823e+00 8.0414e-02 1.0730e+00 7.3033e-02

rc 1.0073e+00 1.4053e-01 1.0043e+00 1.4354e-01 1.0721e+00 1.3933e-01

µ = 10−6
rm 1.1000e+00 1.0652e-01 1.1132e+00 1.1690e-01 1.1244e+00 1.2063e-01

rc 1.0795e+00 1.6881e-01 1.0080e+00 1.8233e-01 1.0156e+00 1.7393e-01

Table 6.4: The efficiency of statistical condition estimates by Algorithm 5.3.
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Figure 6.2: Efficiency of condition estimators and CPU time of Algorithm 5.3.
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where t is the CPU time of computing the CWLS solution x by the weighted QR decom-

position [17] and t1, t2, t3 and t4 are the CPU time of Algorithms 5.1, 5.2 and 5.3. These

results suggest that these three algorithms are very effective and reliable in estimating

condition numbers.

In the rest of this section, we test the effectiveness of over-estimation ratios of Algo-

rithms 5.1, 5.2 and 5.3. For the perturbations, we generate them as

∆A = ε1 × (E �A), ∆M = ε1 × (F �M), ∆b = ε1 × (g � b),

where ε1 = 10−8 and E, F and g are random matrices whose entries are uniformly dis-

tributed in the open interval (−1, 1) and � denotes componentwise product for two matri-

ces. When the perturbations are small enough, we denote the unique solution by x+ ∆x

of the following perturbed CWLS problem:

min
x∈Rn

((b2 + ∆b2)− (A2 + ∆A2)(x+ ∆x))T (M2 + ∆M2)
−1

×((b2 + ∆b2)− (A2 + ∆A2)(x+ ∆x))

such that (A1 + ∆A1)(x+ ∆x) = (b1 + ∆b1),

where ∆A1 ∈ Rp×n, ∆A2 ∈ Rq×n, ∆b1 ∈ Rp, ∆b2 ∈ Rq, ∆M2 ∈ Rq×q and

∆A =

∆A1

∆A2

 , ∆b =

∆b1

∆b2

 .
To measure the effectiveness of the estimators, we define the over-estimation ratios

roverp :=
κpn · ε1

‖∆x‖2/‖x‖2
, rovers :=

κsn · ε1
‖∆x‖2/‖x‖2

,

roverm :=
κsm · ε1

‖∆x‖∞/‖x‖∞
, roverc :=

κsc · ε1
‖∆x/x‖∞

.

As κpn, κsn, κsm and κsc are the outputs from Algorithms 5.1, 5.2 and 5.3. Typically, the

ratios in (0.1, 10) are acceptable [24, Chapter 19]. Recall the CPU time of over-estimation

ratios are defined by

toverp :=
t5
t
, tovers :=

t6
t
, toverm :=

t7
t
, toverc :=

t8
t
,

where t is the CPU time of computing the CWLS solution x by the weighted QR de-

composition [17] and t5, t6, t7 and t8 are the CPU time of over-estimation ratios for

Algorithms 5.1, 5.2 and 5.3. From Figures 6.3 and 6.4, we can see that roverp and rovers

may seriously overestimate the true relative normwise error and the mixed and compo-

nentwise condition estimations roverm and roverc are effective. However, the CPU time of

Algorithms 5.1 and 5.2 are smaller than Algorithm 5.3.
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Figure 6.3: Efficiency of over-estimation ratios and CPU time of Algorithms 5.1 and 5.2.
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Figure 6.4: Efficiency of over-estimation ratios and CPU time of Algorithm 5.3.
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