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Condition Numbers for a Linear Function of the Solution to the Constrained

and Weighted Least Squares Problem and Their Statistical Estimation

Mahvish Samar

Abstract. In this paper, we consider the condition number theory for a linear function
of the solution to the constrained and weighted least squares problem. We first present
two explicit expressions without Kronecker product of normwise condition number us-
ing the classical method for condition numbers. Then, we derive the explicit expression
of mixed and componentwise condition numbers by the dual techniques. To estimate
these condition numbers with high reliability, we choose the probabilistic spectral
norm estimator and the small-sample statistical condition estimation method and de-
vise three algorithms. Numerical experiments are provided to illustrate the obtained

results.

1. Introduction

The constrained and weighted linear least squares (CWLS) problem can be stated as
follows:

(1.1) mﬂi@n (by — Asx)T My (by — Asz) such that Ajx = by,
zeR?

where A1 € RPX" Ay € R?*™ by € RP, by € RY and My € R?*? is symmetric positive
definite. Let
A b
A=|"1, e= T
As by
with p + ¢ = m, and assume m > n > p. Then, from [5,22|, we have that the problem
(1.1) has a unique solution if and only if rank(A;) = p and rank(A) = n, and the solution

x can be stated as follows [20, Lemma 3.1, Remark 3.1]:
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(1.2) T = (Aﬂuz)Tba
where
(1.3) (AT}, )" = AVT — M(PMP))

with M = diag(0,, M2) € R™"™, P =1 — AAt, and A" denoting the Moore-Penrose
inverse of A.

The CWLS problem arises in many practical applications of equilibrium systems
including optimization, finite elements, structural analysis, and electrical network sand
discretization of Stokes flow (see [27,136]), and hence has been extensively studied in the
literature. Some authors investigated its numerical algorithms, stability of algorithms,
and perturbation analysis (see e.g., [17-23.|28,38]). Here, we only introduce some works
on perturbation analysis. Wedin [38] first investigated the perturbation theory for CWLS
problem. The obtained results were extended by Gulliksson et al. [22]. Based on the
perturbation bounds, Gulliksson [17,/18] analyzed the convergence behavior of the iterative
refinement procedure and presented the explicit forward error bounds of CWLS problem.
In addition, using the general form of the augmented system, Gulliksson et al. [21] also
presented the perturbation identities of CWLS problem for both the full-rank and rank-
deficient cases. Later, Gulliksson et al. [20] revisited the perturbation theory of CWLS
problem and provided the expression of solution in generalized inverse form, i.e., .

As we know, condition number plays an important role in perturbation theory and
error analysis for algorithm, and has been extensively studied (see e.g., [6,7,[15}33]).
Recently, some scholars |1-3}8-10},14,30,31] considered the condition numbers of a linear
function of the solution to the least squares problem, the total least squares problem,
the weighted least squares problem, the indefinite least squares problem and the equality
constraint least squares problem. However, to our best knowledge, there is no work on
such condition numbers of CWLS problem so far. In this paper, we will consider this
problem.

For normwise condition number, two explicit expressions are given by the classical
method. For mixed and componentwise condition number, we use the dual techniques.
This technique was proposed by Baboulin and Gratton [2] for the mixed and component-
wise condition numbers of least squares problem. Later, Diao et al. applied this technique
to weighted least squares problem [9] and the total least squares problem [10]. In addi-
tion, we consider the statistical estimation of these condition numbers by the probabilistic
spectral norm estimator [25] and the small-sample statistical condition estimation (SSCE)
method [29]. Three related algorithms are presented. The above results comprise Sec-
tions [3] [4} 5} and [6] of this paper, respectively.
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2. Preliminaries

In this section, we will discuss some results on the ‘vec’ operator, Kronecker product, the

dual techniques, and the condition numbers.

2.1. Vec operator and Kronecker product

The operator ‘vec’ is defined as

vec(A) = [af ,... aT]T e R™,

r'n

for A =laq,...,a,] € R™*™ with a; € R™ and the Kronecker product between A = (a;;) €
R™ ™ and B € RP*? is defined as A ® B = [a;;B] € R"P*™. Some useful results on these

two tools are introduced as follows |16}26]:

(2.1) vec(AXB) = (BT ® A) vec(X),
(2.2) vec(AT) = T vec(A),

[A® Bll2 = || All2[| B2,
(2.3) (Ao B) = (4T @ BT),
(2.4) (A® B)(C ® D) = (AC) ® (BD),
(2.5) (y"eY)l= (Y oy"),

where X, Y, C and D are matrices of suitable orders, y is a vector and II € R™"*™" ig

the vec-permutation matrix; see [16] for details.

2.2. Dual techniques and condition numbers

For the Euclidean spaces S and Q equipped with the scalar products (-,-)s and (-,-)q,
respectively, we denote the corresponding norms as |- ||s and |||/, and let a linear operator
J: S — Q be well-defined. Thus, the dual norm and the adjoint operator can be defined

as follows.

Definition 2.1. The dual norm || - ||s+ of the norm || - ||s is defined by

HGHS* — max <a7w>S’
w0 |wl|s

where a,w € S.

Definition 2.2. The adjoint operator of J, J*: Q — S is defined by
<ya Ja>@ = <J*y7 (1>§,

where a € S and y € Q.
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For commonly used vector norms and the Frobenius norm, their dual norms are given
by
Il =1 lloos - lloes =Ml - ll2e =102, ([ Al = [ AllF-
For the linear operator J from S to Q, let || - ||s,o be the operator norm induced by the

norms || ||s and ||-||@, and for the linear operator from Q to S, let || - |

©*s* be the operator
norm induced by the dual norms || - ||s+ and || - [[g. We have the following result [2] on

these two norms.

Lemma 2.3. For the linear operator J from S to Q, we have

I lls.@ = 17" llg~ s~

As noted in [2], it may additionally be desirable to compute |.J*||g+ s+ in place of
| /|ls,0 when the dimension of the Euclidean space Q* is lower than S.
From [33], if ¢ is Fréchet differentiable in the neighborhood of a € S, then the absolute

condition number of ¢ at a € S is given by

(2.6) k= [|d¢(a)

 1dé(a) - 2llg,

|| lls=
where d¢(a) denotes the Fréchet differential of ¢ at a. In view of Lemma the following

expression of x can be obtained

(27) w= e [dg(a) - dallg = max [ldo(a) -

If ¢ is nonzero, we have the relative condition number

_lalls
"Te@lie’
Now, we consider the componentwise metric on a data space S = R”. For any input
data a € R™, we denote by S, the subset of all elements da € R™ satisfying that da; = 0

(2.8) Ky =

whenever a; = 0, 1 < i < n. Thus, we can measure the perturbation da € S, of a using

the following componentwise norm with respect to a:
|da|| = min{w, |da;| < w|a;|,i =1,...,n}.

Equivalently, the componentwise norm has the following property

_ [da| |dai|
(29) HdG‘HC - max{ ‘GZ’ y A 7& O} H< ’az’ )

For this norm, from [10, Equation 2.16], we have the following explicit expression of its

.

dual norm

(2.10) [d(a)lle = lI(ldarlls~, - -, [ dan gl = [[([dar|lar], ..., [dan[lan])l1-

Using the above componentwise norm, we can rewrite the condition number k.
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Lemma 2.4. [2,9] Using the above notations and the componentwise norm defined in

(2.9), the condition number k can be expressed by

k= max [[(dp(a))” - z||cx,

2llgx=1

e 1s given by (2.10).

Consider the following linear function ¢ of the CWLS solution:

where || -

(2.11) ¢: R™T 5 R R™ 5 RF (A, M,b) — ¢(A, M,b) = LT (AT, ,)Tb,

where L € R™** with k < n. Then, from [20, Equation 3.6], we know that ¢ is continuously
Fréchet differentiable in a neighborhood of (A4, M,b). For dA € R™*" dM € R™*™ and

db € R™, using the chain rules of composition of derivatives, we have

(2.12)
dg(A, M,b) - (dA,dM, db)
= LT(AT, )T M(AT], )dATr — LT (AT

) dAz — L7 (AT, ) TaMr + L7 (AT], )T db,

M1/2 M1/2 M1/2 M1/2

where 7 = (PMP)'b. Applying the operator vec to (2.12) and using (2.1)), we have
(2.13)
dp(A, M, b) - (dA, dM, db)
— vec(dp(A, M, b) - (dA, dM, db))
= [T @ (LT (AL}, ) " MALL )T = 27 @ (LT (A%)T), =17 © (LT (AT)T), (L7 (Ad72)T)]

vec(dA)
X |vec(dM)
db
vec(dA)
=W |vec(dM)]| ,
db
where

W= [T @ (LT (AL} 2) T MAT), )T — 2T @ (LT (AT} 2)T), =T @ (LT (AT} 2)T), (LT (AT ) T)].

Combining (2.13]) with (2.6)), , and Lemma we can get the normwise or mixed

and componentwise condition numbers. Their explicit expressions will be discussed in

Sections [3] and [, respectively.
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3. Normwise condition number

In the following theorem, we present two explicit expressions of normwise condition num-

ber, which doesn’t contain the Kronecker product.

Theorem 3.1. The normuwise condition number for a linear function ¢ of CWLS solution
defined in (2.11) has the following two explicit expressions:

(3.1)
oy = NETCAT) (VAL o (A5 2T M + (Il + ol + 1)) A o L1l 1A M. Bl
L7,
and
(3.2)
|L7 (AT} )T [MAT el 2z (T = ™) e le (T = e ™)y ] [, 11A, M8l
e T

Proof. By (2.8) and (2.13)), it is easy to see that the common normwise condition number

of ¢ has the following expression

[Wl2[|[A, M, b]l|

3.3 Rp =

(8:3) |LTal,

Note that

(3.4) W2 = [WWT (13> = ([WaW] + WaWg + WaWi |15,
where

Wi = (r" (LT(AM1/2)TMAM1/2)) - ®(LT(AM1/2) ),
Wy =—r ®(LT(AM1/2)) and W; = LT<AM1/2).

In the following, we compute WlWlT , W2W2T and W3W3T , respectively, to remove the
Kronecker product from (3.3]).
Firstly, let

Wi = (" @ (LT (A%}0) "M AL )T = LT(A]),0) (M A ) @07,
Wiy = —(a" ® (L7(A}},2)")) = =L (A3}1,0)" (27 @ L),

where we have used the result . Then

(3.5) WIWE = Wy W + WiaWih + Wi Wi + WiaWi.

By (2.3) and @, we get
W11W11 LT(AMl/z)T(( AM1/2> )(((AM1/2)TM)®T)(AM1/2 )

= LT(AT )T (MAL, 2 (AT )T M) |3 AT
(3.7) WpWi = LT(AM1/2)T(95 ® Ip)(x ® I,)(A

(3.6)
M1/2

t
)L = LT(AMW) 134312 L.
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Considering (|1.3)) and the fact
(3.8) (PMP)" = (PMP)'M(PMP)T,
which is from , we have

rTAT L= (07 (PMP)T" AT, L)
= (LT(AT], )" (PMP)th)T
(3.9) — (L7 AN — M(PMP))(PMP)D)T  (by (T3))
— (L7 At (PMP)'b — LT AN (PMP) M(PMP)1b)T
= (

LTAY(PMP)Tb— LT AN (PMP)TB) =0 (by BF)).

Thus, by ([£3). (£4) and (33), we have

Wllle; = LT(AM1/2) (( AM1/2) T)( )(AM1/2 )L (by )
(310) (LT(AMl/Q)TMAT 1/2.17) (TTAﬂl/QL) by )

== O == (W12W11 by .

Substituting (3.6}, (3.7)), (3.10]) into (3.5)) implies
(3.11)

Wiy _LT(AM1/2) (MAMl/z(AM1/2>TM)H7"H M1/2L+LT<AM1/2) ”ﬂngAMW

Furthermore, using (2.3 and (2.4)), we obtain
(312)  WoWy = LT (A} )" (77 @ L) (r @ L) AL o L = LT (AT} 0) T |3 AT 0 L
and

(3.13) WaW _LT(AMUZ) AMW

Thus, putting (3.11)), (3.12)) and (3.13) together give

(3.14)  WWT = LT(A}p )" (MALL o (AT7 )" M3 + (73 + 1203 + 1) AT p . L,

which combining (3.3) and (3.4]) leads to the expression (3.1]).
Note that (3.14)) can be rewritten as

T T
>T Af/p/z(Ag/p/z)TMHTH% Onxm

Omxn (l13 + (1] + 1) Lm

AT L

(3.15) WwT = LT (AT i

M1/2
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Further, note that

(3.16)
T T
MA%;N/Q (AL1/2)TMHTH§ Onxm
O (Nl + {713 + 1) I
. MA,Z]\;I/Q 0n><m Hng Onxm
Omcn— Im | O Nol3 (T = e ™) + I3 (B = ™) + I
T
> (ATM1/2)TM On><m
Om><n Im
and
2 1 T 2 1 T
x|z { Im — st )+ Il { Im — |+ Iy
17113 17113
1 T
(3.17) Il (£n ~ ")
= [l (= 277 ™) Wllz (T = ™) ] |11l (T = ™)
2 2 15
I
Thus, substituting (3.16]) and (3.17)) into (3.15)), we get
(3.18) wwT = L7(AT), ) TKKT AT, L,
where
= ATl el (= e ) el (= e ) 1.

Combining (3.3)), (3.4)), and (3.18)), we have the expression (3.2). O

Remark 3.2. Note that the orders of matrices in (3.1)), (3.2) and (3.3]) are kxk, kx (3m-+n)
and k xm(n+m+1) respectively. So, comparing with the expression (3.3)), the expressions
of K, in Theorem i.e., (3.1) and (3.2)), require little storage space. Meanwhile, they

can be efficiently computed due to the elimination of Kronecker product.

Remark 3.3. Using the weighted QR decomposition [17, Theorem 2.1, Equation 2.2], we
can rewrite the expressions of kg and kg given in Theorem Specifically, given
M = diag(M,,, M;,—,) and a matrix A € R™*" partitioned as

A App
Az Ago
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with Aqp € RPXP, Ajy € RPX(P) - Ay € RMPIXP Ayy € RMP)X(=P) then a factoriza-

tion
Rl r T
A=Q I, M=QMQ
0
with II being a permutation matrix, R € R™*" being upper triangular and nonsingular

and @@ € R"™* ™ being nonsingular exists if and only if rank(A) = n and rank(A4;1) = p.

By this decomposition, we have

0

_ -1 -T -1 _ —1
e e I L e L2
t RT
AIA;[1/2 = Q_T 0 HTv MAM1/2(AM1/2)TM = QMR_TR_lMQT.

Thus, putting the above terms into (3.1)) and (3.2)) lead to

_ _ _ _ 1/2
ko1 = |[LTHRT Q™ (QMRTR™MQT)|lrl)% + (Irll3 + |13 + 1))@~ TR-TUT L]}/
(A, M, ]
1272
and
o = LT @R Q) (@RI e ol (£ = e )bl (= e ) 1]
2
1[4, M, ]
12725

4. Mixed and componentwise condition numbers

We first present an explicit expression of the adjoint operator of the Fréchet derivative
do(A, M,b), which is necessary for deriving the explicit expression of mixed and compo-

nentwise condition numbers.

Theorem 4.1. The adjoint operator of dp(A, M,b), using the scalar products (A1, M1,b1),
(Ag, Mo, bo)) = trace(AT Ay) + trace(M{ Ms) + bTby and (y1,y2) = ylya defined on
R™X™ 5 R™X™M 5 R™ gnd R* respectively, is

do*(y) = (ryTLT(A )TMA Aﬂl/QLwa, —Aﬂl/QLer,Aﬂl/gLy)

M1/2 M1/2

for any y € R*.
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Proof. Using the scalar product and (2.13)), for any y € R¥, we have

(y, do(A, M, b) - (dA,dM, db)) = yT(dp(A, M,b) - (dA,dM, db))

1) : vec(dA) o vec(dA)
=y W |vec(dM)| = (W y)" |vec(dM)
db db

Considering the fact II™' = II”, and by (2.1)), (2.2)), and (2.3]), we can obtain
(4.2)

HT(T ® ((Aﬂ1/2)TMAﬂl/2L)) - (w ® (Aﬂl/zL))
WTy = - ® (ATMTUQL) Yy (by "
t
i AT L
n”(re ((Aﬂl/z)TMAﬂmL)) vec(y) — (z ® (AEWL)) vec(y)
= — (r ® (AEML)) vec(y)
t
L Aﬂl/zLy
H_l(Vec((Aﬂl/z)TMAﬂl/zLer) — Hvec(AﬂwLyxT))
= Vec(—Aﬂl/QLer) (by )
t
I Ajj\ljlmLy
=" (vee((AT), )T MATT, |, LyrT) — vee((AT], ,, LyzT)T))
= — vec(Aj]\;;l/2 LyrT) (by )
L Aﬂl/QLy
=" vee (((A7),2)T M AL LyrT) = (wy" LT (AT}, 0)T))
= — vec(Aiﬁl/2 Lyr™)
L AﬂlﬂLy
vec ((TyTLT(AEuz)TMAﬂuz) - (AﬂuzLyxT))
= —Vec(ATMTl/QLer) (by and 1171 = 117).
L Aﬂl/zLy

Putting (4.2) into (4.1]) implies
= Vec((ryTLT(Aﬂl/z)TMAIA;UQ) - (A:ﬂl/QLyxT))T vec(dA)

- vec(Aq];l/2 LyrT)T vec(dM) + (Aﬂl/g Ly)Tdb,
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which together with the fact that, for the matrices A; and As of the same orders,
vec(AT) vec(Az) = trace(AT Ay), gives
(y,dp(A, M,b) - (dA,dM,dbd))
= trace(((ryT LT (AT}, ) TM AT, ) — (AT, LyaT))TdA — (AT, , LyrT)TdM)
+ (AT, Ly)Tdb
<(7"ZJTLT(AM1/2)TMAM1/2 AM1/2
= (d¢* (A, M,b) -y, (dA,dM, db)),

LyaT, - AT, LyrT, AT!, . Ly), (dA, dM, db))

from which, we have the desired result. O

Now, we give an explicit expression of the condition number x (2.7) for the linear
function ¢ of the CWLS solution.

Theorem 4.2. The condition number (2.7|) for the linear function ¢ of the CWLS solution

1 expressed by

k= max |[VDa,HDy, BDy]" Ly||, = ||[VDa, HDy, BDy] " L|
i Q*=

Q*71’

where

V= (AT, )T (MAT, , @rT) — (AT, )T (2T @ Iy,

H = (AMl/z) (r"®ln), B= (AMl/z)v

(4.3)

and Dx denotes the diagonal matriz diag(vec(X)) for any matriz X .

Proof. Let da;;, dm;; and db; be the entries of dA, dM and db, respectively. Thus, using

(2.10)), we have

1(dA, dM, db) e+ =Y |dagj|as] +Z |drmij|mij| + Z |dbi[bi.

i.j i,
By Theorem [{.1], we derive that
m,n
!
ldo™ @lle = Y laisl| (ry" LT (AT ps/2) "M AT — AT o Lya”) |
i,5=1
< t
+ Z Imas [ (AT LyrT)ig + D [bil | (AT o Ly
i,j=1 i=1

- Z Jagj||ri AM1/2 TMAEI/zej)T - xj((Aﬂm)T@i)TLy‘
4,j=1

+ Z ‘mszT] M1/2 61) Ly‘ +Z|b H AM1/2) ei)TLy}a
4,j=1 i=1
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where 7; is the ith component of r. Noting (4.3)), it can be verified that (ri((A:ﬂl /Q)TM
Aﬂm)ej — xj(Aﬂw)Tei) is the (m(j — 1) + ¢)th column of the n x (mn) matrix V and
T (Aﬂl/z)Tei is the (m(j — 1) +4)th column of the m x (mm) matrix H. Thus, the above

expression equals

DAVTLy
DyHTLy| || =|[VDa, HDy, BDy)" Ly,
DyBT Ly
Then, by Lemma [2.4] we obtain the desired result. O

By Theorem we can find the explicit expression of the mixed condition number
for the linear function ¢ of the CWLS solution easily.

Corollary 4.3. Using the above notations, when the infinity norm is chosen as the norm

in the solution space Q, we obtain
T T T
Koo = H]L V|vec(|A|) + |L* H| vec(|M|) + |L BHb[HOO.
When the infinity norm is chosen as the norm in the solution space R™, the corresponding
mized condition number is given by

_ 12TV vec(|A]) + [LT H| vee(|M]) + |7 BBl

4.4 K
44) " el

Now, we give an alternative expression of k,,, which doesn’t contain the Kronecker

product.
Corollary 4.4. Using the above notations, we get

I BT (AT ) TMAT pejrT — i (AT ) T)|A(: )]

M
m
: T . T
N S L 7 (A )T IIM (e )] 4 (LT (AT ) T o
L7 | oo ’

where A(:,7) is the jth column of A.

Proof. Partitioning V' = [V4,...,V,] and H = [Hy, ..., Hy,), where each V}, 1 < j <mn, is

an n x m matrix and each Hj;, 1 < j < m, is an m x m matrix, we get

B H]LTV\ vec(|A|) + |LT H| vec(|M|) + |LTBHb]HOO
- 127 2| oo

~IETVIACG )]+ ILTH Mz )| + (L7 B[l
a LT |00 '

m

(4.6)
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Recall that (r ((AEI/Q)TMAEW) (Aﬂm) e;) is the (m(j — 1) +i)th column of V.

Then, we have
V= ((AM1/2)TMAM1/26J - (AMI/Q) )éi.

Similarly, by the fact that rj(Aﬂl/Q)Tei is the (m(j — 1) + ¢)th column of H, we get

;
Hj = Tj(Aﬂ1/2)T@i‘
Putting V; and H; into (4.6]) leads to (4.5). O

By Theorem[4.2] we can also get the expression of the componentwise condition number

for the linear function ¢ of the CWLS solution easily.

Corollary 4.5. Considering the componentwise norm defined by
lylle = min{w, |y;| < w|(Lx);|,i =1,...,k} = max{|y;|/|(Lz)i|,i =1,...,k}

in the solution space, we have the following three expressions for the componentwise con-
dition number for the linear function ¢ of the CWLS solution

ke = ||Dpt LT VDA, HDy, BDy)||

= |ID 2 J(ILT V| vec(|A]) + |L" H| vec(|M|) + | LT B]|b])||
(4.7)

= Z D+ LTViI|A(:, 5)| + Z D7 LY H;|[M(:,5)| + |D ¢ LT Bl|b|

Jj=1 oo

In the following, we give upper bounds for x,, and k..

Corollary 4.6. The mized and componentwise condition numbers for the linear function
¢ of the CWLS solution can be bounded as

B < KUPP — HLT Aﬂuz)TMAMlﬂDIATMHoo n HLT A:IJ\;I/2)TD\A|‘$|HOO
m = m [ 11" 2lloo
12" AL ) Dinaellog 127 (A3712) " Do
LT 2|00 1L 2 oo ’
Ke < KPP = HD LT(AM1/2)TMAM1/2D|ATHT|H + HD ! LT(AM1/2) D\A|\x|Hoo
+ 1D LT (AR 2) Diatye | o + 1D L7 (A2 Dyl

Proof. Firstly, note that for any matrix N € RP*? and diagonal matrix D, € R7*9

(4.8) [[NDylloo = [INDolllcc = [[IN|[Do]llcc = [[[N[[Dvlelloc = [[IN[|Dollloc = [[[V[|v]]loo,
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where e = [1,...,1] € R9. Using (2.1)), (2.2)), (2.5)), (4.3)), (4.8)), and the triangle inequality,

we have

LTV vee(|ADlloe | [IILTH]| vee(|M])lloo  [IIL"BI[Bllloo

" |1 LT x| 0o LT 2| oo LT 2|00
T T t
- |[L7 (AT )T (MALL , @ D) vee(JAD|| . [IE7 (AL 2) T (27 @ L) | vec(JA]) ||
= 172l " .
H!LT(AEW)T(TT®Im)\VeC(\M\)HOO H’LT(AEI/2>THI)W
+ x  (by ({@3)
172 172 (by {3))
T T
_ |[L7 (AL )T MATL (1P| @ I)Tvec(JA]) ||
- LT 2] o
T T
[1LT (AL} )T (|l @ L) | vee(JAD | 1E7 (AT ) P17 © L) vee(IM)||
| LT x| oo | LT x| oo
H|LT(AE1/2)TH5H|OO
by (2.5
el Ve
T T t
_ |[LE (AL )T MAT LAT ]| 2 (AL )T Al ||
| LTz || oo | LT x| oo
“|LT(A7];1/2)T|‘M||r“‘OO H‘LT(AEUQ)THMH
+ = (by (2.1) and (2.2
LT % s 272 (by )
T ATt T Tt T ATT T
AR ) T MAY o Dyl [IET (AR pe) Dy o
| LT 2|0 | LT || oo
1L (AT} )T Dl 1T (AT )T Dyy|
n M o MY o _ urr  (by (18)).
|72 LT oy @)
Similarly, we can prove k. < Ke'*. O

5. Statistical condition estimates

In this part, we focus on estimating the normwise, mixed and componentwise condition

numbers for the linear function ¢ of the CWLS solution.

5.1. Estimating normwise condition number

We use two algorithms to estimate the normwise condition number. The first one, outlined
in Algorithm is from [25| and has been applied to estimate the normwise condition
number for matrix equations [32,37], equality constrained linear least squares problem [30],
indefinite least squares problem [31] and K-weighted pseudoinverse L}( [35]. The second
one, outlined in Algorithm is based on the SSCE method [29] and has been used for

some least squares problems [4,30,31].
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Algorithm 5.1 Probabilistic condition estimator

Input: €, d (d is the dimension of Krylov space and usually determined by the algorithm itself) and the
matrix

-~

K

T T 1 1
LY (Ay2)" [MAY s |Irllas lzlle ( Tm — —=rr” ) S lielle (Tm = 7=rr ) o T | -
(Il (il
2 2

Output: Probabilistic spectral norm estimator of the normwise condition number (3.2): Kpn.
1. Choose a starting vector vo uniformly and randomly from the unit ¢-sphere S;—1 with ¢ = 3m + n.

2. Compute ||K||2 € [o1, az] by probabilistic spectral norm estimator.
(a) Find ¢ € [0,7/2] by ¢, € and

arcsin(4) 1 /2
/ cos'%(q) dg = %/ VP -q) 7V dg <6/ cos' % (q) dq> :
0 0 0

b) for j=1,...,d

(

(¢) u= Kuvj

(d)ifj>1

(e) u=1u~— Bj—1u;j-1
Hu=u—[ut,...,uj—1](u" [u,...,uj—1])
(g) end

(h) 75 = [lullz

(1) u; :AU/TJ

()v=K"u

(k) v =v — Tjv;

Mov=v—[v1,...,05-1]w [v1,...,v;_1])7
(m) Bj = [lvll2

() vj41 =v/B;

(o) end

(

p) Find the largest singular value a; of Bgq and an upper bidiagonal matrix with 7; on the diagonal
and §; on upper subdiagonal.

(q) Find the probabilistic upper bound «s for ||I?H2 with probability > 1—e¢ by a Lanczos polynomial
(see [25)]).

3. Estimate the normwise condition number (3.2) by

K/PH[ 7“47b]” : Qg Q2
o = flA Ml oy =/—
Hp HL 3,’”2 ! Hp 2

5.2. Estimating mixed and componentwise condition numbers

To estimate mixed and componentwise condition numbers, we need the following SSCE
method, which is from [29] and has been applied to many problems (see e.g., [11-13}31}
32.,34,137]).



732 Mahvish Samar

Algorithm 5.2 SSCE method for the normwise condition number of the CWLS solution
Input: Sample size k, L = I,, and the matrix

o~

1 T
W = (A7) T (MAT 2 (A2 M3 + (I3 + 1213 + 1) AT e

Output: SSCE estimates of the normwise condition number of CWLS solution : Ksn-
1. Generate k vectors zi,..., 2z, uniformly and randomly from the unit n-sphere S,_1 and set Z =
[21, ..., 2k].
2. Orthonormalize these vectors using the QR factorization [Z, ~] = QR(Z).

3. Fori=1,...,k, compute x; by
_ oilllA, M
ILT=]l2 7

where

o1 = \JZT (AT, )T (MAT], , (AT!

]Ml/Q Ml/2 Ml/2

)T M 713+ (lrl3 + |3 + 1) AT,

wl/2®
4. Approximate wr and w, by

2z

m(k—1/2)

5. Estimate the normwise condition number (3.1) by

~

WwE ~

k

_ Wk 2
Ksn = K2.
w

m o\ i=1

6. Numerical experiments

In this section, we provide some numerical experiments for comparing different condition
numbers for the linear function ¢ of the CWLS solution and testing the above algorithms.
All the numerical experiments are performed in Matlab 2016a and on a PC with Intel
i3-4005U CPU 1.70 GHz and 4.00 GB RAM.

Example 6.1. Similar to [17], we generate the following matrices and vectors to compare

the condition numbers for the linear function ¢ of the CWLS solution

(11 5 4] (L 0 0 0 0
12 4 2 0 p 000
A=113 3 n|, M=|0 0 u 0 0f,
11 6 1 00010
1 6 10 2 00001

= (-12,1,3,3)T, dy = [-1,-1,1,1,0]7, dy = [1,-2,1,0,0]", » = dy + (5/n — 1)d2 and
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Algorithm 5.3 SSCE method for the mixed and componentwise condition numbers of

the CWLS solution: k., and k.
Input: Sample size k and matrix W in (2.13).

Output: SSCE estimates of mixed and componentwise condition numbers of CWLS solution: &sm, Ksc-

1. Let t = m(n +m + 1). Generate k random vectors [z1,. .., zx] — Z uniformly and randomly from
the unit ¢-sphere S;—1 and set Z = [z1,..., 2k].

2. Orthonormalize these vectors using the QR factorization [Z, ~] = QR(Z).

3. Compute u; = Cz;, and estimate the mixed and componentwise condition numbers in (4.4) and

@1 by

Ksce
LTg

_ ||"CSCE||<>0 _
Ksm = my Rse =

k]
o'}

| ok 1/2 i
where Ksce = :—H >t |u1|2| / , and the power and square root operation are performed on each

entry of u;, 1 =1,...,k.

b= Mr + Ax. For the matrix L, we choose

Lo=1,, L= eR¥2 Ly =1(0,0,0,1)T € R™L

o o O =
o o = O

o n L Kn Km ey Ke ke

Lo 7.3665¢+01  7.6557e4+00  1.0253e+02  2.7004e+01  4.4736e-+01
1072 1072 L; 6.9928e+01  7.6557e+00 1.0253e+02  2.7004e+01  4.4736e+01
Ly  8.7455e+01  1.0318e+01  3.9297e+01  1.0318e401  1.4998e-+01
Lo 8.1647e+01 8.5187e+00 1.1625e+02  4.1044e4+01  6.3822e+01
1076 1075 Ly 7.8353e4+01 8.5187e+00 1.1625e+02  4.1044e4+01  6.3822e+01
Lo  1.1475e4+02  1.2753e4+01  1.1625e+02  1.2753e+01  1.7902e+01
Lo  3.0092e+02  2.4906e+01  3.1442e4+02  1.3049e4+02  1.6137e+02
1078 109 Ly 3.1275e+02  2.4906e+01  3.1442e+02 1.3049¢+02  1.6137e+02
Ly 5.0293¢4+02  4.4666e+01  1.4266e+02  4.4666e+01  5.5333e+01
Lo 1.4772e+05 7.0741e+02 2.7120e+03  2.7402e4+02  2.0695e+03
103 102 Lp  1.6936e+06 7.0741e4+-02  2.7120e+03  2.7402e4+02  2.0695¢+-03
Ly  6.0398¢+04  1.4430e+02  2.8094e+02  1.4430e+02  1.9042e+02

Table 6.1: Comparisons of condition numbers and their upper bounds.

The numerical results are shown in Table for various values of ;1 and 7. We also
do experiments based on the above matrices except that the original diagonal matrix

M is replaced by a non-diagonal matrix Q7 M@, where @ is a random orthogonal matrix
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obtained from the QR decomposition of a random matrix. The numerical results are shown
in Table From Tables and we can find that the mixed and componentwise

condition numbers are smaller than the normwise ones.

u

o n L Kn Km K Ke KY

c
Lo 8.6830e4+01  1.6773e4+01  3.4759e+01  2.5478e4-01  3.7475e+01
1073 100 L1 9.0468e4-01  1.6773e+01  3.4759e+01  2.5478e+4-01  3.7475e+01
Lo 7.1700e+01  1.4028e401  4.3596e+01  1.4028e+4-01  4.7282e+01
Lo 1.4752e4+02 1.8521e4+01  4.7302e+01  4.4140e401  5.5838e+01
104 10t L1 1.5330e4+02  1.8521e4+01 4.7302e+01  4.4140e4-01  5.5838e+01
Lz 6.0053e+01  8.9989e4+00  2.2840e+01  8.9989e+4-00  4.7607e+01
Lo 1.2672e403  8.5359e+401  5.9791e+02  9.0859e+401  9.5931e+01
1071 1072 Ly 1.3239e+03  8.5359e+01  5.9791e+02  9.0859e+01  9.5931e+01
Lo 1.1700e+03  5.6547e4+01  1.2414e402 5.6547e401  4.7282e+02
Lo 1.0408e+404  3.4238e+01  5.1495e402  4.1085e+402  6.1495e+02
102 103 L1 1.0867e4+04  3.4238e+01  5.1495e402  4.1085e+402  6.1495e+02
Lo 7.0671e+01  2.2765e4+00 4.6186e4+00  2.2765e4-00  8.6085e+00

Table 6.2: Comparisons of condition numbers and their upper bounds.

Example 6.2. In this example, we choose L = I,,, and generate the matrices A and M

as follows:
M, 0

0 Imfn

A=QDU, M=Q Q7,
where Q € R™*™ [J € R™™™ are the random orthogonal matrix, D € R™*" is a diagonal
matrix with diagonal elements distributed exponentially from x~! to 1 and M,, = diag(p).
In addition, we set the solution = to be x = (1,22,...,n%) and b = Mr + Az with r being
random vector of 2-norm p, i.e., p = ||r||2.

In the specific experiments, we set m = 50, n = 30, and p = 20. For each pair of x,
and p, 1000 CWLS problems are generated to test the performance.

For Algorithm we choose the parameters: § = 0.01 and ¢ = 0.001. For Algo-
rithms and we set k = 2. By varying the x, i and p, we have the numerical results

on the ratios defined as follows:
Tp i= Kpn/Kn, Ts:=Ksp/En, Tm = Ksm/Em, T¢ = Ksc/Ke-

The mean and variance of these ratios are reported in Tables [6.3] and respectively. We
also plot these numerical results and CPU time in Figures and The time ratios
are defined by
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K 10t 102 103
p=10! Mean Variance Mean Variance Mean Variance
=10 rp  1.0001e+00  3.8382e-12  1.0000e+00  3.9226e-12  1.0001e+00  3.6789%e-12
rs  2.9550e4+00  9.3512e-02  2.9546e+00 9.0331e-02  2.9744e+00  9.8811e-02
= 10-5 rp  1.0000e+00  1.7705e-06  1.0000e+00  2.1614e-11  1.0000e+00  2.4665e-08
rs  2.1751e4+00  1.3160e-01  2.1524e400  1.2955e-01  2.1796e4+00  1.3633e-01
L= 10-6 rp  1.0000e+00  3.0639e-08  10000e+-00  3.3239e-08  1.0000e+00  1.4221e-08
rs  1.8324e+00 1.3171e-01  1.8338e+00  1.5551e-01  1.8297e+00  1.5833e-01
p =102 Mean Variance Mean Variance Mean Variance
=10 rp  1.0000e4+00 3.8878e-12  1.0002e+00  3.8482e-12  1.0002e4-00  3.9344e-12
rs  2.9536e4+00 9.4841e-02  2.9637e¢400  9.4633e-02  2.9712e+00  9.4020e-02
4= 10-5 rp  1.0000e+00 2.0674e-11  1.0000e+00  2.1240e-11  1.0002e+00  9.6383e-07
rs  2.1757e+00  1.3311e-01  2.1495e+00  1.3233e-01  2.1716e+00  1.2692e-01
=106 rp  1.0000e+00  8.9658e-09  1.0000e+00 1.6412e-08  1.0002e+00  1.4220e-08
rs  1.8237e4+00 1.5151e-01  1.8188e+00  1.5864e-01  1.8337e+00  1.5080e-01
p =103 Mean Variance Mean Variance Mean Variance
=10 rp  1.0000e+00  4.4062e-12  1.0000e+00  4.1030e-12  1.0001e+00  4.0542e-12
rs  2.9913e4+00 8.6931e-02  3.0217e400 9.0505e-02  3.0081e+00  9.0301e-02
J=10-5 rp  1.0000e+00  2.1453e-11  1.0000e+00  2.1129e-11  1.0000e+00  2.0967e-11
rs  2.1821e+00  1.2442e-01  2.1629e+00  1.2383e-01  2.1621e+00  1.1901e-01
=106 rp  1.0000e+00 3.1310e-08  1.0000e+00  1.7005e-08  1.0000e+00  2.5774e-08
rs  1.8255e4+00 1.4654e-01  1.8453e4-00  1.4585e-01  1.8322e4+00 1.4621e-01
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Table 6.3: The efficiency of statistical condition estimates by Algorithms and

1.003

1.0025

1.002

ratio

1.0015

1.001

1.0005

CPU time ratios

The efficiency of ,

35

The efficiency of r,

2,

ratio
~ o

.
o

i “f; i

200 300 400 500

600 700 800

index of the samples

The efficiency of ¢,

0.5
900 1000 0 100

| PR TR Y ARTE AN

200 300 400

500 600 700 800

index of the samples

The efficiency of t,

900 1000

01p

CPU time ratios
°
5
8

°
o
8

0.02

0o 100

200 300 400 500

600 700 800 900 1000

index of the samples

W\MWWM bt

300 400

500 600 70 0

index of the samples

Wi

900

1000

Figure 6.1: Efficiency of condition estimators and CPU time of Algorithms and
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K 10! 102 102
p =10t Mean Variance Mean Variance Mean Variance
4= 104 rm  1.3807e4+00  7.7220e-02  1.3782e400 8.0501e-02  1.3835e4+00  8.1402e-02
re  0.8322e+00  1.9441e-01  0.8370e400  1.7952e-01  0.8615e+00  1.8543e-01
4= 105 rm  1.6976e+00  2.0242e-01  1.7073e+00  1.9431e-01  1.7035e+00  1.9312e-01
re  1.1760e+00  3.6573e-01  1.1450e4+-00  3.5104e-01  1.1554e+00  3.4043e-01
1= 10-6 rm  1.8818e+00  2.9632e-01  1.9308e+00  3.5793e-01  1.8706e+00  3.2762e-01
re  1.4282e+00  5.0721e-01  1.3615e+00  5.0001e-01  1.3465e+00  4.5590e-01
p =102 Mean Variance Mean Variance Mean Variance
4= 104 rm  1.3251e+00  7.3202e-02  1.3079e+00  7.4221e-02  1.3362e+00  8.0021e-02
re  0.8071e4+00 1.7441e-01  0.7872e4+00 1.6101e-01  0.8185e4-00 1.6173e-01
4= 105 rm  1.5878e+00  1.6023e-01  1.6128e+00 1.9144e-01  1.6067e+00 1.8671e-01
re  1.0771e+00  2.9923e-01  1.0986e+00  3.3625e-01  1.0676e+00  2.9664e-01
j=10-6 rm  1.7930e+00  3.2042e-01  1.7706e+00  2.7282e-01  1.7888e+00  2.8513e-01
re  1.2866e+00  4.1963e-01  1.2776e+00  4.1824e-01  1.2987e+400  4.5624e-01
p =103 Mean Variance Mean Variance Mean Variance
=104 rm  1.0986e+00  4.2912e-02  1.0981e+00  3.8142e-02  1.0983e+00  3.9241e-02
re  1.0574e+00  8.5532e-02  1.0081e+00  9.1812e-02  1.0058e+00  9.6831e-02
=105 rm  1.0657e4+00  7.9813e-02  1.0823e+00  8.0414e-02  1.0730e+00  7.3033e-02
re  1.0073e+00  1.4053e-01  1.0043e+00  1.4354e-01  1.0721e+00  1.3933e-01
= 10-6 rm  1.1000e4+00  1.0652e-01  1.1132e4+00 1.1690e-01  1.1244e+00  1.2063e-01

Te 1.0795e+00  1.6881e-01  1.0080e+00  1.8233e-01  1.0156e+00  1.7393e-01

Table 6.4: The efficiency of statistical condition estimates by Algorithm [5.3
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Figure 6.2: Efficiency of condition estimators and CPU time of Algorithm [5.3
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where t is the CPU time of computing the CWLS solution « by the weighted QR decom-
position [17] and t1, to, t3 and ¢4 are the CPU time of Algorithms and These
results suggest that these three algorithms are very effective and reliable in estimating
condition numbers.

In the rest of this section, we test the effectiveness of over-estimation ratios of Algo-
rithms and For the perturbations, we generate them as

AA=e1 x (E®A), AM=g x(FOM), Ab=¢e x(gOb),

where ¢; = 107® and E, F and g are random matrices whose entries are uniformly dis-
tributed in the open interval (—1,1) and ® denotes componentwise product for two matri-
ces. When the perturbations are small enough, we denote the unique solution by = + Ax
of the following perturbed CWLS problem:

min ((by + Ab) — (A2 + Adg)(w + Az)T(My + AM) ™

€T n

% ((by + Aby) — (As + Ady)(z + Ax))
such that (A; + AAp)(z + Az) = (by + Aby),

where AA; € RP*"™ AAy € RIX™ Aby € RP, Aby € R, AM;y € R9%9 and

AA Aby
AA — 5 Ab =
AAs Aby

To measure the effectiveness of the estimators, we define the over-estimation ratios

rover . Fpn - €1 rover . — Ksn ~ €1

P 1Az(2/|z]l2” ’ 1Az]2/ |2
rover . Ksm * €1 7 yover . Ksc * €1 )
" [AZ]loo /[l ‘ 1Az /2

AS Kpn, Ksny Ksm and kg are the outputs from Algorithms and Typically, the
ratios in (0.1, 10) are acceptable [24, Chapter 19]. Recall the CPU time of over-estimation

ratios are defined by

ts

tg

)

over ,__
[ ,

over ,__ over ,__
tS tm

where t is the CPU time of computing the CWLS solution = by the weighted QR de-

composition [17] and t5, tg, t7 and tg are the CPU time of over-estimation ratios for

Algorithms and From Figures @ and @ we can see that 79" and rg"e"

may seriously overestimate the true relative normwise error and the mixed and compo-

nentwise condition estimations rov¢" and r2v¢"

Algorithms and are smaller than Algorithm

are effective. However, the CPU time of
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Figure 6.3:
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