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A Desingularization of the Moduli Space of Rank 2 Higgs Bundles over a

Curve

Sang-Bum Yoo

Abstract. Let X be a smooth complex projective curve of genus g ≥ 3. Let M2 be

the moduli space of semistable rank 2 Higgs bundles with trivial determinant over X.

We construct a desingularization S of M2 as a closed subvariety of a moduli space.

We prove that S is a nonsingular variety containing the stable locus of M2 as an

open dense subvariety. On the other hand, there is another desingularization K of

M2 obtained from Kirwan’s algorithm. We show that S can be obtained after two

blow-downs of K.

1. Introduction

Recently the birational geometry of various moduli spaces have become one of the main

interests in algebraic geometry. It can be applied to construct new examples or to compute

various invariants and so forth. On the moduli space of Higgs bundles over an algebraic

curve, there have been a few developments in this direction. We can find some of them

in [4, 7, 15].

Throughout this paper, X denotes a smooth complex projective curve of genus g ≥ 3.

We first review a construction of a desingularization of the moduli space of vector

bundles over an algebraic curve, which was done by C. S. Seshadri. Let N be the moduli

space of semistable rank 2 vector bundles over X with trivial determinant. It is known

that N has singularities along N \ Ns where Ns is the stable locus of N. In [20, 21],

a nonsingular variety Ñ was constructed together with a canonical morphism Ñ → N

which is an isomorphism on Ns. Ñ is indeed a closed subvariety of the moduli space of

stable rank 4, degree 0 parabolic vector bundles over X with respect to a point on X with

sufficiently small weights.

Seshadri’s approach mentioned above can be applied to the moduli space of Higgs

bundles over an algebraic curve. Let M2 be the moduli space of semistable rank 2 Higgs

bundles over X with trivial determinant. It is also known that M2 has singularities

along M2 \Ms
2 where Ms

2 is the stable locus of M2 (see [13, 22] for the details). We

construct a desingularization S of M2. Let Mpar
4,(a1,a2) be the moduli space of semistable
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rank 4, degree 0 parabolic Higgs bundles over X with multiplicities (1, 3) and weights

(a1, a2) with respect to a point on X. We choose sufficiently small weights (a1, a2) so that

Mpar
4,(a1,a2) = Mpar,s

4,(a1,a2) where Mpar,s
4,(a1,a2) is the stable locus of Mpar

4,(a1,a2) (Proposition 3.1).

S is defined as a closed subvariety of Mpar
4,(a1,a2). Precisely, S is the Zariski closure of S′ in

Mpar,s
4,(a1,a2), where

S′ =
{

[(E, φ, s)] ∈Mpar,s
4,(a1,a2)

∣∣ End((E, φ)) ∼= M(2),detE ∼= OX and φ is traceless
}
.

Here M(2) is the C-algebra of 2 × 2 matrices with entries in C. We have the following

result.

Theorem 1.1. (Theorem 5.9) S is nonsingular. Furthermore, there is a canonical mor-

phism πS : S→M2 which is an isomorphism on Ms
2.

For the proof of the first statement, we first show that there exists a bijection be-

tween Ms
2 and S′ (Theorem 3.7). Next, we define a moduli functor par-Higgssp4,(a1,a2) of S,

which is the subfunctor of the moduli functor par-Higgs4,(a1,a2) of Mpar
4,(a1,a2) parametriz-

ing all families of stable parabolic Higgs bundles equipped with specializations of M(2)

on the endomorphism algebras of the underlying Higgs bundles. Roughly speaking, the

specialization of M(2) is a limit structure of C-algebra structures of M(2) (see §2.4 for

the details). Then we show that par-Higgssp4,(a1,a2) is formally smooth (Corollary 5.6). To

see this, we consider the morphism of functors Φ: par-Higgssp4,(a1,a2) → S2 which maps a

family of stable parabolic Higgs bundles to the family of endomorphism algebras of the

underlying Higgs bundles, where S2 is the functor parametrizing all families of special-

izations of M(2). We show that Φ is formally smooth (Proposition 5.5). Finally we see

that S is a closed subvariety of Mpar
4,(a1,a2) and is a fine moduli scheme of par-Higgssp4,(a1,a2)

(Proposition 5.8). Then we conclude that S is nonsingular.

The proof of the second statement is contained in that of Theorem 5.9.

There is an interesting application of Theorem 1.1 (Theorem 5.9). Let K be Kirwan’s

desingularization of M2 (see §4 in this paper, [13,14] for the details). Following O’Grady’s

argument in [18, 19], a nonsingular variety Kε can be obtained after two blow-downs of

K. But there is no known information on the moduli theoretic meaning of Kε. The first

author of [12] asked how we can provide the moduli theoretic meaning of Kε. We prove

the following result.

Theorem 1.2. (Theorem 6.1) Kε
∼= S.

A similar work was already successfully completed on N in [12].

Here is an outline of this paper. In §2, we recall basic facts about Higgs bundles,

parabolic Higgs bundles, specialization of M(r) and upper semicontinuity for the complex
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of flat families of coherent sheaves. In §3, we show that there exists a bijective correspon-

dence between stable Higgs bundles of rank r and stable parabolic Higgs bundles of rank

r2 with an endomorphism algebra of the underlying Higgs bundles as a specialization of

M(r). In §4, we introduce the Kirwan’s desingularization of M2. In §5, we construct

S and then prove Theorem 1.1. In §6, we state Theorem 1.2 precisely. In §7, we prove

Theorem 1.2.

2. Preliminaries

In this section, we recall some basic facts which are useful throughout this paper.

2.1. Higgs bundles

Let r be an integer with r ≥ 2. A Higgs bundle of rank r is a pair of a rank r vector

bundle E with trivial determinant and a section φ of H0(X, End0E ⊗KX), where KX is

the canonical bundle of X and End0E denotes the traceless part of EndE. To construct

the moduli space of Higgs bundles, a stability condition has to be imposed. C. T. Simpson

introduced the following (see [22]).

Definition 2.1. (1) A Higgs bundle (E, φ) is semistable (resp. stable) if for any nonzero

proper subbundle F satisfying φ(F ) ⊂ F ⊗KX , we have

µ(F ) :=
degF

rankF
≤ 0

(
resp. µ(F ) :=

degF

rankF
< 0

)
.

(2) A Higgs bundle (E, φ) is polystable if it is either stable or a direct sum of stable

Higgs bundles.

A morphism of Higgs bundles from (E, φ) to (F,ψ) is a morphism of vector bundles

g : E → F such that ψg = (g ⊗ idKX )φ, denoted by g : (E, φ) → (F,ψ). Throughout

this paper, the space of morphisms of Higgs bundles from (E, φ) to (F,ψ) is denoted by

Hom((E, φ), (F,ψ)). In particular, Hom((E, φ), (E, φ)) is denoted by End((E, φ)). We

call (F,ψ) a Higgs subbundle of (E, φ) if there is an injective morphism of Higgs bundles

(F,ψ) ↪→ (E, φ).

Let S be a scheme of finite type over C. Let p1 : X × S → X and p2 : X × S → S

be the projections onto the first and the second components respectively. A pair (E , ϕ)

of a vector bundle E on X × S and a morphism ϕ : E → E ⊗ p∗1KX of vector bundles is a

family of (semi)stable Higgs bundles of rank r on X × S if the restrictions (Es, ϕs) to the

geometric fibers X × {s} are (semi)stable Higgs bundles of rank r on X.

Let (E , ϕ) be a family of (semi)stable Higgs bundles of rank r on X × S and let

{(Ui, zi)} be a pair of an open cover and local coordinate of X such that E|Ui ∼= O
⊕r
Ui×S
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and ϕ|Ui = Ai dzi where Ai is an r× r matrix with entries in H0(Ui × S,OUi×S). We call

{ϕ|Ui} (or {Ai}) a local Higgs field of (E , ϕ) with respect to {(Ui, zi)}.
The set of isomorphism classes of polystable Higgs bundles of rank r with trivial

determinant admits a structure of irreducible normal quasi-projective variety of dimension

(r2 − 1)(2g − 2) (see [10, 17, 22]) and we denote it by Mr. The locus Ms
r of stable Higgs

bundles in Mr is a smooth open dense subvariety of Mr.

By [22], any Higgs bundle can be identified with a coherent sheaf on the total space

of the canonical bundle |KX | = Spec(S•K∨X). Let Z = Proj(S•(K∨X ⊕ OX)) and let

D = Z − |KX | be the divisor at infinity. The projection |KX | → X extends to a map

π : Z → X. Choose a positive integer k so that OZ(1) := π∗OX(k) ⊗OZ OZ(D) is ample

on Z. In particular, O|KX |(1) = π∗OX(k). Thus for any coherent sheaf E on Z such that

Supp(E) ∩D = ∅, χ(E(m)) = χ((π∗E)(km)) by the projection formula and the fact that

π||KX | is affine. Furthermore, by virtue of [2], we can describe Supp(E) explicitly as a

spectral curve.

Theorem 2.2. (see [2, Proposition 3.6], [8, Proposition 6.1] and [22, Lemma 6.8])

(1) A Higgs bundle (E, φ) on X is the same thing as a coherent sheaf E on Z such that

π∗E = E and Supp(E) ∩D = ∅. This identification gives an equivalence of categories.

(2) The notions of semistability and stability for a Higgs bundle (E, φ) on X are the

same as the corresponding notions for the coherent sheaf E on Z associated to (E, φ)

in (1).

(3) Any coherent sheaf E on Z associated to (E, φ) is of pure dimension 1.

(4) For s = (si) ∈
⊕r

i=2H
0(X,Ki

X), there is a bijective correspondence between iso-

morphism classes of torsion free sheaves E on Xs of rank 1 and isomorphism classes of

Higgs bundles (E, φ) of rank r with coefficients si of the characteristic polynomial of φ

where the correspondence is given by (1) and the spectral curve Xs is defined by

xr + s2x
r−2 + s3x

r−3 + · · ·+ sr = 0

for x the tautological section of π∗KX .

The following fact will be used later in §3.

Lemma 2.3. Let E be the coherent sheaf of pure dimension 1 on Z corresponding to (E, φ)

such that Supp(E) ∩D = ∅. Then

π∗(ιf,∗(E|f )) = ιx0,∗(E|x0)

where x0 is a point of X, ιx0 : {x0} ↪→ X is the inclusion of {x0} into X, f = π−1(x0)\D
and ιf : f ↪→ |KX | is the inclusion of f into |KX |. Furthermore Supp(ιf,∗(E|f )) is a

zero-dimensional subscheme of length rank(E) in |KX |.
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Proof. We may assume that X = Spec(A), |KX | = Spec(B) and π : Spec(B)→ Spec(A).

Let M be A-module and B-module, that is, M̃ is Ã-module and π∗B̃-module. Let p be a

prime ideal of A corresponding to x0. On Spec(A)

ιx0,∗M̃
A|x0 = ˜M ⊗A (Ap/pAp)

A

and on Spec(B)

ιf,∗M̃
B|f = ˜M ⊗B (B ⊗A (Ap/pAp))

B ∼= ˜M ⊗A (Ap/pAp)
B
.

This completes the proof of the first statement.

From Theorem 2.2(4), Supp(E) is the spectral curve Xs given by a polynomial of degree

rank(E) and E is a torsion free sheaf on Supp(E) of rank 1. Since

−c2(ιf,∗(E|f )) = χ(ιf,∗(E|f )(m)) = χ(ιx0,∗(E|x0)(km)) = c1(ιx0,∗(E|x0)) = rank(E),

we see that dim Supp(ιf,∗(E|f )) = 0 and length(Supp(ιf,∗(E|f ))) = rank(E). This com-

pletes the proof of the second statement.

2.2. Extensions of Higgs bundles

For Higgs bundles (E, φ) and (E′, φ′), let Hom((E′, φ′), (E, φ)) be the complex

Hom(E′, E) −→ Hom(E′, E)⊗KX

given by ψ 7→ (ψ ⊗ idKX )φ′ − φψ. Then we have the following.

Theorem 2.4. [9, (3.2)] Hom((E′, φ′), (E, φ)) = H0Hom((E′, φ′), (E, φ)). The space of

extensions of (E′, φ′) by (E, φ) is H1Hom((E′, φ′), (E, φ)).

Here an extension of (E′, φ′) by (E, φ) is a Higgs bundle (E′′, φ′′) which fits into the

following commutative diagram

0 // E //

φ
��

E′′ //

φ′′

��

E′ //

φ′

��

0

0 // E ⊗KX
// E′′ ⊗KX

// E′ ⊗KX
// 0

where each row is a short exact sequence.
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2.3. Parabolic Higgs bundles

Let r, n be integers with r ≥ 2 and n ≥ 2. Let x0 be a point of X. A parabolic bundle of

rank n and degree 0 on X, denoted E∗, with multiplicities (m1,m2, . . . ,ml) and weights

(a1, a2, . . . , al) is a vector bundle E of rank n and degree 0 on X together with a filtration

E|x0 = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1(E) = {0},

weights

0 ≤ a1 < a2 < · · · < al < 1

and multiplicities

mi = dimC(Fi(E)/Fi+1(E)).

Then pardeg(E∗) := deg(E) +
∑l

i=1mi · ai is called the parabolic degree of E∗. Denote

parµ(E∗) := pardeg(E∗)/ rank(E).

Let E∗ and E′∗ be parabolic bundles on X with weights

0 ≤ a1(E) < a2(E) < · · · < al(E) < 1 and 0 ≤ a1(E′) < a2(E′) < · · · < al(E
′) < 1

respectively. A bundle morphism f : E → E′ is called strongly parabolic (resp. parabolic)

if f(Fi(E)) ⊂ Fj+1(E′) whenever ai(E) ≥ aj(E
′) (resp. ai(E) > aj(E

′)). The sheaves of

parabolic morphisms and strongly parabolic morphisms are denoted by ParHom(E∗, E
′
∗)

and SParHom(E∗, E
′
∗) respectively. The spaces of their global sections are denoted by

ParHom(E∗, E
′
∗) and SParHom(E∗, E

′
∗).

If E∗ is a parabolic bundle on X with a filtration

E|x0 = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1(E) = {0}

and weights (a1, a2, . . . , al) and F is a subbundle of E, then a parabolic subbundle F∗ of

E∗ is given by the filtration

F |x0 = F1(F ) ⊃ F2(F ) ⊃ · · · ⊃ Fl(F ) ⊃ Fl+1(F ) = {0}

such that Fi(F ) = F |x0 ∩ Fi(E), and the weights

(b1, b2, . . . , bl)

such that bj = ai for the largest index i satisfying Fj(F ) = F |x0 ∩ Fi(E).

Definition 2.5. A parabolic Higgs bundle (E∗, φ) of rank n and degree 0 is a pair of a

parabolic bundle E∗ of rank n and degree 0, and φ ∈ ParHom(E∗, (E ⊗KX)∗) satisfying

that (E⊗KX)∗ is a parabolic bundle of rank n and degree 0 such that Fi(E⊗KX) = Fi(E)

with the same weights as E∗.
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Definition 2.6. A parabolic Higgs bundle (E∗, φ) is said to be semistable (resp. stable)

if for every proper parabolic subbundle F∗ of E∗ satisfying φ(F∗) ⊂ (F ⊗KX)∗, we have

parµ(F∗) ≤ parµ(E∗) (resp. parµ(F∗) < parµ(E∗)).

Let S be a scheme of finite type over C. From now on, assume that l = 2 and

(m1,m2) = (1, n−1). We write (E∗, φ) as (E, φ, s) where F2(E) is the hyperplane defined

by s ∈ P(E|∨x0). If F∗ is a parabolic subbundle of E∗, then we write F∗ as (F, sF ) where

sF = s for F |x0 6⊂ F2(E) and sF = 0 for F |x0 ⊂ F2(E). A triple (E , ϕ, σ) of a vector bundle

E on X×S, a morphism ϕ : E → E⊗p∗1KX of vector bundles and a section σ ∈ P(E|∨{x0}×S)

is a family of (semi)stable parabolic Higgs bundles of rank n and degree 0 on X × S if E
is flat over S, E|{x0}×S has a filtration

E|{x0}×S = F1(E) ⊃ F2(E) ⊃ F3(E) = 0

in which F2(E) is a vanishing locus of σ and ker(E → E|{x0}×S/F2(E)) is flat over S, and

if the restrictions (Et, ϕt, σt) to the geometric fibers X × {t} are (semi)stable parabolic

Higgs bundles of rank n and degree 0 on X.

Definition 2.7. For each scheme S of finite type over C, set

par-Higgsn,(a1,a2)(S) = {(E , ϕ, σ) | (E , ϕ, σ) is a family of semistable parabolic

Higgs bundles of rank n and degree 0 on X × S

with the following properties}/∼

such that

(i) for every geometric point t ∈ S, the restriction (Et, ϕt, σt) is a semistable parabolic

Higgs bundle of rank n and degree 0 on X with weights 0 ≤ a1 < a2 < 1 and

multiplicities (1, n− 1),

(ii) (E , ϕ, σ) ∼ (E ′, ϕ′, σ′) if and only if (E , ϕ, σ) ∼= (E ′, ϕ′, σ′) ⊗ p∗2L for some invertible

sheaf L on S.

Here par-Higgsn,(a1,a2) is a contravariant functor from the category of schemes of fi-

nite type over C to the category of sets. par-Higgssn,(a1,a2) denotes the subfunctor of

par-Higgsn,(a1,a2) consisting of all families of stable parabolic Higgs bundles.

Theorem 2.8. (see [23, Theorem 4.6 and Corollary 4.7] and [24, Theorem 5.2]) There

exists an irreducible normal quasi-projective variety Mpar
n,(a1,a2) over C such that Mpar

n,(a1,a2)

is a coarse moduli scheme of par-Higgsn,(a1,a2).
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For parabolic Higgs bundles (E, φ, s) and (E′, φ′, s′), let Hom((E, φ, s), (E′, φ′, s′)) be

the complex

ParHom((E, s), (E′, s′)) −→ SParHom((E, s), (E′, s′))⊗KX

given by ψ 7→ (ψ ⊗ idKX )φ− φ′ψ. Then we have the following result.

Theorem 2.9. [3] There is a long exact sequence

0→ H0(Hom((E, φ, s), (E′, φ′, s′)))→ H0(ParHom((E, s), (E′, s′)))

→ H0(SParHom((E, s), (E′, s′))⊗K)→ H1(Hom((E, φ, s), (E′, φ′, s′)))

→ H1(ParHom((E, s), (E′, s′)))→ H1(SParHom((E, s), (E′, s′))⊗K)

→ H2(Hom((E, φ, s), (E′, φ′, s′)))→ 0.

2.4. The set of specialization of M(r)

This subsection will be useful in §4 and §5. Let M(r) be the C-algebra of r × r matrices

with entries in C. Fix a nonzero element e0 ∈ Cr
2
. Let A(r) be the set of elements in

Hom(Cr2 ⊗Cr2 ,Cr2) which gives us an algebra structure on Cr2 with the identity element

e0. There is a subset of A(r) which consists of algebra structures on Cr2 , isomorphic to

the matrix algebra M(r). Let Ar be the Zariski closure of this subset. An element in

Ar is called a specialization of M(r). Note that there exists a locally free sheaf W of

OAr -algebras on Ar such that for each z ∈ Ar, W |z ⊗ C is the specialization of M(r)

represented by z.

A family of specializations of M(r) parametrized by a noetherian C-scheme T is an

OT -algebra B such that for all t ∈ T there is a neighborhood T1 of t and a morphism

f : T1 → Ar satisfying f∗(W ) ∼= B|T1 .

Let Sr be the functor from the category of schemes of finite type over C to the category

of sets which to each C-scheme T associates the set of isomorphism classes of families of

specializations of M(r) parametrized by T . It is known that Sr is represented by Ar and

A2 is smooth (see [21, Chapter 5-I]).

3. Higgs bundles and parabolic Higgs bundles

In this section, we show that there exists a bijection set-theoretically between Ms
r and a

subset of Mpar,s
r2,(a1,a2)

.

Proposition 3.1. There exist a1 and a2 such that whenever n ≤ r2,

(i) par-Higgsn,(a1,a2)(SpecC) = par-Higgssn,(a1,a2)(SpecC),
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(ii) for any (E, φ, s) ∈ par-Higgsn,(a1,a2)(SpecC), (E, φ) is a semistable Higgs bundle,

(iii) for any (E, φ, s) ∈ par-Higgsn,(a1,a2)(SpecC) and any φ-invariant subbundle F of E,

we have

µ(F ) < 0 =⇒ parµ((F, sF )) < parµ((E, s)).

Proof. Take a2 such that a2 <
1
r2

.

(iii) Let (E, φ, s) be an element of par-Higgsn,(a1,a2)(SpecC). Assume that µ(F ) < 0

for any φ-invariant subbundle F of E.

If F |x0 6⊂ F2(E), then

parµ((E, s))− parµ((F, sF )) = −µ(F ) +
(a2 − a1)(n− rank(F ))

n · rank(F )
> 0.

If F |x0 ⊂ F2(E), then

parµ((E, s))− parµ((F, sF )) = −µ(F ) +
a1 − a2

n
.

If −µ(F ) + a1−a2
n ≤ 0, then

0 < −deg(F )n ≤ (a2 − a1) rank(F ) <
rank(F )

r2
≤ rank(F )

n
< 1,

which is a contradiction. Thus −µ(F ) + a1−a2
n > 0.

(i) Let (E, φ, s) be an element of par-Higgsn,(a1,a2)(SpecC) and let F be a φ-invariant

subbundle of E. Then we have parµ((E, s)) − parµ((F, sF )) ≥ 0. By (iii), we have only

to consider the case deg(F ) ≥ 0.

If F |x0 6⊂ F2(E) and parµ((E, s)) − parµ((F, sF )) = 0 for some φ-invariant proper

subbundle F of E, then 0 = −µ(F ) + (a2−a1)(n−rank(F ))
n·rank(F ) . Thus since a2 <

1
r2
≤ 1

n ,

0 = −deg(F )n+ (a2 − a1)(n− rank(F )) < −deg(F )n+
n− rank(F )

n
.

Since deg(F ) ≥ 0, we have 0 ≤ deg(F )n < n−rank(F )
n < 1, which implies deg(F ) = 0. This

means that (a2 − a1)(n− rank(F )) = 0, which is impossible.

If F |x0 ⊂ F2(E) and parµ((E, s)) − parµ((F, sF )) = 0 for some φ-invariant proper

subbundle F of E, then 0 = −µ(F ) + a1−a2
n . So −deg(F )n = (a2 − a1) rank(F ) > 0. But

deg(F ) ≥ 0, which is a contradiction.

(ii) Let (E, φ, s) be an element of par-Higgsn,(a1,a2)(SpecC) and let F be a φ-invariant

subbundle of E. Then we have parµ((E, s))− parµ((F, sF )) ≥ 0. Assume that µ(F ) > 0.

If F |x0 6⊂ F2(E) for some φ-invariant proper subbundle F of E, then

−µ(F ) +
(a2 − a1)(n− rank(F ))

n · rank(F )
≥ 0.
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Since a2 <
1
r2
≤ 1

n , 0 < deg(F )n ≤ (a2 − a1)(n − rank(F )) < n−rank(F )
n < 1, which is a

contradiction.

If F |x0 ⊂ F2(E) for some φ-invariant proper subbundle F of E, then−µ(F )+a1−a2
n ≥ 0.

So 0 < µ(F ) ≤ a1−a2
n < 0, which is a contradiction.

Under the choice of weights of Proposition 3.1, Mpar
n,(a1,a2) = Mpar,s

n,(a1,a2).

Let (E, φ) be a semistable Higgs bundle of rank n on X. It is well known that (E, φ)

has a Jordan-Hölder filtration

E = E0 ⊃ E1 ⊃ · · · ⊃ Ek+1 = 0

such that for all i, Ei is φ-invariant and (Ei/Ei+1, φ) are stable Higgs bundles with

µ(Ei/Ei+1) = µ(E).

Lemma 3.2. Every semistable Higgs bundle (E, φ) contains a unique nontrivial maximal

φ-invariant subbundle PS(E) of E such that (PS(E), φ|PS(E)) is a polystable Higgs bundle

and µ(PS(E)) = µ(E).

Proof. In a Jordan-Hölder filtration of (E, φ), there always exists a φ-invariant proper

subbundle E1 such that (E1, φ|E1) is stable and µ(E1) = µ(E). By Zorn’s Lemma,

there is at least one nontrivial maximal φ-invariant subbundle PS(E) of E such that

(PS(E), φ|PS(E)) is a polystable Higgs bundle and µ(PS(E)) = µ(E). Assume that there

are two maximal polystable Higgs bundle (PS1(E), φ|PS1(E)) and (PS2(E), φ|PS2(E)).

And assume that the uniqueness has been proved for all semistable pair (E′, φ′) with

rank(E′) < rank(E). Both of (PS1(E), φ|PS1(E)) and (PS2(E), φ|PS2(E)) contain the

stable Higgs bundle (E1, φ|E1). Note that the induced Higgs bundle (E/E1, φE/E1
) is

semistable with µ(E/E1) = µ(E). Then by induction hypothesis,

(PS(E/E1), φE/E1
|PS(E/E1)) ∼= (PS1(E)/E1, φ|PS1(E)/E1

)

∼= (PS2(E)/E1, φ|PS2(E)/E1
).

Therefore (PS1(E), φ|PS1(E)) ∼= (PS2(E), φ|PS2(E)).

Remark 3.3. [11, Lemma 1.5.5] Let PF be the reduced Hilbert polynomial of a coherent

sheaf F on Z. Let E be the coherent sheaf on Z corresponding to (E, φ) such that

Supp(E)∩D = ∅ mentioned in Theorem 2.2. By the same idea of the proof of Lemma 3.2,

we can show that E contains a unique nontrivial maximal subsheaf PS(E) of E such that

PS(E) is a polystable sheaf and PPS(E) = PE .

Then we have the following series of consequences.
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Proposition 3.4. Let (E, φ) be a semistable Higgs bundle of rank n on X. Then there

exists a section s such that (E, φ, s) ∈ par-Higgssn,(a1,a2)(SpecC) if and only if for all

stable Higgs bundles (F,ψ) such that µ(F ) = µ(E) and all integers t > rank(F ) there is

no injective morphism of Higgs bundles i : (F⊕t, ψ⊕t) ↪→ (E, φ).

Proof. We follow the idea of the proof of [21, Proposition 7, Chapter 5]. The proof of the if

part is nontrivial. Suppose that for all stable Higgs bundles (F,ψ) such that µ(F ) = µ(E),

all integers t > 0 and all injective morphism of Higgs bundles i : (F⊕t, ψ⊕t) ↪→ (E, φ), we

have t ≤ rank(F ).

It suffices to show that for all φ-invariant subbundle F of E such that (F, φ|F ) is a

stable Higgs bundle and µ(F ) = µ(E), there exists a hyperplane F2(E) of E|x0 satisfying

that F |x0 6⊂ F2(E) and φ is parabolic.

Assume that the previous statement is true. If F is a φ-invariant proper subbundle of

E such that µ(F ) < µ(E), then

parµ((E, s))− parµ((F, sF )) = −µ(F ) +
(a2 − a1)(n− rank(F ))

n · rank(F )
> 0.

If F is a φ-invariant proper subbundle of E such that µ(F ) = µ(E) and (F, φ|F ) is a

semistable Higgs bundle, then there exists a hyperplane F2(E) of E|x0 such that F |x0 6⊂
F2(E) and φ is parabolic, because (F, φ|F ) has a stable Higgs subbundle (F ′, φ|F ′) such

that µ(F ′) = µ(E). In this case, we have also

parµ((E, s))− parµ((F, sF )) =
(a2 − a1)(n− rank(F ))

n · rank(F )
> 0.

It remains to find the hyperplane F2(E) of E|x0 satisfying that F |x0 * F2(E) and

φ is parabolic, which is equivalent to find the φ-invariant subsheaf ιx0,∗(F2(E)) of the

skyscraper sheaf ιx0,∗(E|x0) such that ιx0,∗(F |x0) * ιx0,∗(F2(E)) where ιx0,∗ : {x0} ↪→ X

is the inclusion and F2(E) is a hyperplane of E|x0 . Note that ιx0,∗(E|x0) is of pure

dimension 0.

Let E be the coherent sheaf of pure dimension 1 on Z corresponding to (E, φ) such that

Supp(E)∩D = ∅ mentioned in Theorem 2.2. Write (PS(E), φ|PS(E)) =
⊕m

i=1(F⊕sii , ψ⊕sii )

where (Fi, ψi) is a stable pair satisfying µ(Fi) = µ(E) and (Fi, ψi) 6= (Fj , ψj) for i 6= j.

Then, by Lemma 3.2 and Remark 3.3, every stable Higgs subbundle (F, φ|F ) of (E, φ)

such that µ(F ) = µ(E) is isomorphic to (Fk, ψk) for some k and that the correspond-

ing stable subsheaf F of E on Z such that PF = PE is isomorphic to Fk. We may

assume that (F, φ|F ) = (Fk, ψk) and F = Fk. Let f = π−1(x0) \ D. By Lemma 2.3,

π∗(ιf,∗(E|f )) = ιx0,∗(E|x0) where ιf : f ↪→ |KX | is the inclusion of f and ιx0 : {x0} ↪→ X

is the inclusion of {x0}. This means that ιf,∗(E|f ) is the coherent sheaf of pure dimension

0 on Z corresponding to (ιx0,∗(E|x0), ιx0,∗(φ|x0)). Let

Sk := {(H,F) ∈ P(E|∨f )× P(Csk) | F|Supp(ιf,∗(E|f )) ⊂ H}.
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Let Zk := pr1(Sk). Then codimP(E|∨f ) Zk = codimP(E|∨f ) pr1(pr−1
2 (F)∩Sk) = rank(Fk) ≥ sk.

So we can take a hyperplane H in
⋂m
k=1(P(E|∨f ) \ Zk). Let F̃2(E) = π∗ιf,∗(H). Let

λ : E → E ⊗ π∗KX be the morphism given by the tautological section λ of π∗KX . By [2,

Proposition 3.6], φ = π∗(λ) : E → E ⊗ KX . Since ιf,∗(H) is a coherent sheaf of OZ-

module such that Supp(ιf,∗(H))∩D = ∅, π∗ιf,∗(H) is S•(K∨X)-module and then it induces

π∗(λ) : π∗ιf,∗(H)→ π∗ιf,∗(H)⊗KX (see [22, Lemma 2.13]). So

φ(F̃2(E)) = π∗(λ)(π∗ιf,∗(H)) ⊂ π∗ιf,∗(H)⊗KX = F̃2(E)⊗KX .

Hence F̃2(E) is a φ-invariant subsheaf of ιx0,∗(E|x0) such that ιx0,∗(F |x0) * F̃2(E), which

completes the proof.

Proposition 3.5. Let (E, φ, s) be an element of par-Higgssn,(a1,a2)(SpecC) and let M(r)

be the C-algebra of r × r complex matrices. Then dimC End((E, φ)) ≤ n. Moreover when

n = r2, End((E, φ)) ∼= M(r) of C-algebras if and only if there exists a stable Higgs bundle

(F,ψ) such that

(E, φ) ∼= (F⊕ rank(F ), ψ⊕ rank(F )).

Proof. We follow the idea of the proof of [21, Proposition 8, Chapter 5].

Proposition 3.6. Let (E1, φ1, s1), (E2, φ2, s2) be elements of

par-Higgssn,(a1,a2)(SpecC)

such that

dim End((E1, φ1)) = dim End((E2, φ2)) = n.

Then (E1, φ1, s1) ∼= (E2, φ2, s2) if and only if (E1, φ1) ∼= (E2, φ2).

Proof. We follow the idea of the proof of [21, Proposition 9, Chapter 5]. The only if

part is obvious. For the proof of the if part, suppose that (E, φ) is a semistable Higgs

bundle of rank n on X which corresponds to a semistable coherent sheaf E such that

Supp(E) ∩ D = ∅. Choose two φ-invariant hyperplanes H1 and H2 of E|f that make

(E, φ) stable parabolic Higgs bundles (E1, φ1, s1) and (E2, φ2, s2) respectively. The group

AutOZ (E) = AutOX ((E, φ)) acts on

m⋂
i=1

(P(E|∨f ) \ Zi).

Since every stable parabolic Higgs bundle is simple, the stabilizer of a point in
⋂m
i=1(P(E|∨f )

\ Zi) is isomorphic to C×. Since dim AutOZ (E) = n, all orbits in
⋂m
i=1(P(E|∨f ) \ Zi)

have dimension n − 1. Thus AutOZ (E) acts on
⋂m
i=1(P(E|∨f ) \ Zi) transitively. Therefore

H1 = g∗H2 for some g ∈ AutOZ (E), that is, H1 and H2 give an isomorphism of parabolic

Higgs bundles (E1, φ1, s1) and (E2, φ2, s2).
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As a result, we have the following result.

Theorem 3.7. Assume that a2 <
1
r2

as Proposition 3.1. Let

S′ :=
{

[(E, φ, s)] ∈Mpar
r2,(a1,a2)

= Mpar,s
r2,(a1,a2)

∣∣ End((E, φ)) ∼= M(r),detE ∼= OX

and φ is traceless
}
.

Then there exists a bijection

Ms
r → S′, (F,ψ) 7→ (F⊕r, ψ⊕r, scan)

set-theoretically where scan is a canonical section so that (F⊕r, ψ⊕r, scan) ∈ Mpar,s
r2,(a1,a2)

from Proposition 3.4.

Proof. The definition and well-definedness is obtained from Propositions 3.4, 3.5 and 3.6.

The surjectivity follows from Proposition 3.5. The injectivity follows from Proposition 3.6.

4. Kirwan’s desingularization of M2

In this section, we briefly show that M2 is desingularized by three blow-ups by Kirwan’s

algorithm in the sense of [14]. For more details, see [13, Section 4].

In [22, Theorems 3.8 and 4.10], C. T. Simpson showed that a good quotient R// SL(2)

is M2 where R is an irreducible normal quasi-projective variety which represents the

moduli functor which parameterizes triples (V, φ, β) where (V, φ) is a semistable Higgs

bundle with detV ∼= OX , trφ = 0 and β is an isomorphism

β : V |x → C2

and he also showed that every point in R is semistable with respect to the action of SL(2),

that the closed orbits in R correspond to polystable Higgs bundles (V, φ), that is, stable

or (V, φ) = (L,ψ) ⊕ (L−1,−ψ) for L ∈ Pic0(X) and ψ ∈ H0(KX) and that the set Rs

of stable points with respect to the action of SL(2) is exactly the locus of stable Higgs

bundles.

We need to review a deformation theory for Higgs bundles discussed in [22, Section 10]

and [13, Section 4]. Ai denotes the sheaf of smooth i-forms on X. For a polystable Higgs

bundle (V, φ), we have the following complex

(4.1) 0 // End0 V ⊗A0 ∂+φ // End0 V ⊗A1 ∂+φ // End0 V ⊗A2 // 0.
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This complex induces a long exact sequence

0 // T 0 // H0(End0 V )
[φ,−] // H0(End0 V ⊗KX)

// T 1 // H1(End0 V )
[φ,−] // H1(End0 V ⊗KX) // T 2 // 0

(4.2)

where T i is the i-th cohomology of (4.1). Here the Zariski tangent space of M2 at a

polystable Higgs bundle (V, φ) is isomorphic to T 1. To investigate the singularities of M2,

we must recall the following theorem proved by C. T. Simpson.

Theorem 4.1. [22, Theorems 10.4 and 10.5] Let C be the quadratic cone in T 1 defined by

the map T 1 → T 2 which sends an End0 V -valued 1-form η to [η, η]. Let y = (V, φ, β) ∈ R be

a point with closed orbit and y ∈M2 the point coming from y. Then the formal completion

(R, y)∧ is isomorphic to the formal completion (C×h⊥, 0)∧ where h⊥ is the perpendicular

space to the image of the evaluation at x composed with β, T 0 → H0(End0 V ) → sl(2).

Furthermore, if Y is the étale slice at y of the SL(2)-orbit in R, then (Y, y)∧ ∼= (C, 0)∧

and (M2, y)∧ = (Y// Stab(y), y)∧ ∼= (C// Stab(y), v)∧ where Stab(y) is the stabilizer of y

and v is the cone point of C.

Let ΩR (resp. ΩM2) be the locus of (L, 0) ⊕ (L, 0) for L ∼= L−1 in R \ Rs (resp. in

M2\Ms
2). Both ΩR and ΩM2 are isomorphic to the Z2-fixed point set Z2g

2 in J := Pic0(X)

by the involution L 7→ L−1. By (4.2), we have isomorphisms

T 0 ∼= H0(End0 V ) ∼= sl(2),

T 1 ∼= H0(End0 V ⊗KX)⊕H1(End0 V ) ∼= H0(KX)⊗ sl(2)⊕H1(OX)⊗ sl(2)

and

T 2 ∼= H1(End0 V ⊗KX) ∼= H1(KX)⊗ sl(2) ∼= sl(2).

Then by Theorem 4.1, the normal cone of ΩM2 in M2 is a locally trivial fibration over

ΩM2 with fiber

Υ
−1

(0)// SL(2)

where Υ: H0(KX) ⊗ sl(2) ⊕ H1(OX) ⊗ sl(2) → H1(KX) ⊗ sl(2) ∼= sl(2) is the quadratic

map given by (α ⊗ a, β ⊗ b) 7→ (α ∪ β) ⊗ [a, b], the Lie bracket of sl(2) coupled with the

perfect pairing H0(KX)⊕H1(OX)→ H1(KX).

Let ΣR (resp. ΣM2) be the locus of (L,ψ)⊕(L−1,−ψ) for (L,ψ) � (L−1,−ψ) in R\Rs

(resp. in M2 \Ms
2). ΣM2 is isomorphic to

J ×Z2 H
0(KX)− Z2g

2
∼= T ∗J/Z2 − Z2g

2
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where Z2 acts on T ∗J by (L,ψ) 7→ (L−1,−ψ). Since ΣR is a P SL(2)/C×-bundle over

T ∗J/Z2 − Z2g
2 , it is smooth. Since L � L−1, H0(End0 V ) ∼= H0(OX) and then [φ,−] :

H0(End0 V )→ H0(End0 V ⊗KX) is zero. Then by (4.2), we have isomorphisms

T 0 ∼= ker([φ,−] : H0(End0 V )→ H0(End0 V ⊗KX)) ∼= H0(OX) ∼= C,

T 1 ∼= coker([φ,−] : H0(End0 V )→ H0(End0 V ⊗KX))

⊕ ker([φ,−] : H1(End0 V )→ H1(End0 V ⊗KX))

∼= H0(End0 V ⊗KX)⊕H1(End0 V )

∼= [H1(OX)⊕H0(KX)]⊕ [H0(L−2KX)⊕H0(L2KX)⊕H1(L2)⊕H1(L−2)]

and

T 2 ∼= coker([φ,−] : H1(End0 V )→ H1(End0 V ⊗KX)) ∼= H1(End0 V ⊗KX) ∼= H1(KX).

Note that H1(OX)⊕H0(KX) is the Zariski tangent space of T ∗J/Z2 − Z2g
2 at any point.

Then by Theorem 4.1, the normal cone of ΣM2 in M2 is a locally trivial fibration over

ΣM2 with fiber

Ψ
−1

(0)//C×,

where Ψ: H0(L−2KX)⊕H0(L2KX)⊕H1(L2)⊕H1(L−2)→ H1(KX) is the quadratic map

given by (a, b, c, d) 7→ a ∪ c+ b ∪ d for (L,ψ)⊕ (L−1,−ψ) ∈ T ∗J/Z2 − Z2g
2 and for perfect

pairings ∪ : H0(L−2KX)⊕H1(L2)→ H1(KX) and ∪ : H0(L2KX)⊕H1(L−2)→ H1(KX).

Here the definition of Ψ comes from the diagonal entry in
[ ( ∗ b

a −∗
)
,
(
∗′ c
d −∗′

) ]
.

On the other hand, we have a stratification of M2:

M2 = Ms
2 t (T ∗J/Z2 − Z2g

2 ) t Z2g
2 .

Since we have identical singularities and stratification as in O’Grady’s case in [19], we

can adapt his arguments to construct the Kirwan’s desingularization K of M2 and its

blow-downs.

Let R̃ be the variety obtained by blowing up R first along ΩR and then along the

strict transform of ΣR. Let R̃ss (resp. R̃s) be the locus of semistable (resp. stable) points

of R̃. Then we have (a) R̃ss = R̃s, (b) R̃s is smooth. By blowing up R̃s one more time

along the locus ∆̃ of points with stabilizers larger than the center Z2 of SL(2), we obtain

a variety R̂ with a smooth orbit space

K := R̂/SL(2)

obtained by blowing up M2 first along Z2g
2 , second along the strict transform of T ∗J/Z2

and third along the nonsingular subvariety ∆̃// SL(2) contained in the strict transform of

the exceptional divisor of the first blow-up. Let

πK : K→M2
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be the composition of these three blow-ups. K is called the Kirwan’s desingularization of

M2.

5. The construction of a desingularization of M2

In this section, we construct a desingularization of M2. Assume that r = 2 and fix a2 <
1
4

as Proposition 3.1. Then Mpar
4,(a1,a2) = Mpar,s

4,(a1,a2). Let par-Higgssp4,(a1,a2) be the subfunctor

of par-Higgs4,(a1,a2) consisting of all families of stable parabolic Higgs bundles such that

for each C-scheme T and each (E , ϕ, σ) ∈ par-Higgs4,(a1,a2)(T ), pT∗End((E , ϕ)) ∈ S2(T ),

where pT : X × T → T is the projection.

5.1. Formally smoothness of par-Higgssp4,(a1,a2)

In this subsection, we prove that par-Higgssp4,(a1,a2) is formally smooth. Let A be the

category of local artinian commutative C-algebras with residue field C. Let F and G be

covariant functors from A to the category of sets.

Definition 5.1. (1) A morphism of functors f : F → G is called formally smooth if given

any surjective homomorphism p : A′ → A in A with the kernel I such that mA′I = 0 and

any elements α ∈ F(A) and β ∈ G(A′) such that

fA(α) = G(p)(β) ∈ G(A),

there exists an element γ ∈ F(A′) such that

fA′(γ) = β ∈ G(A′) and F(p)(γ) = α ∈ F(A).

(2) A functor F is called formally smooth if F(p) : F(A′)→ F(A) is surjective for any

small surjection p : A′ → A in A.

From the definition of par-Higgssp4,(a1,a2), we have the morphism of functors

Φ: par-Higgssp4,(a1,a2) → S2

given by ΦT : par-Higgssp4,(a1,a2)(T ) → S2(T ), (E , ϕ, σ) 7→ pT∗End((E , ϕ)) for each C-

scheme T .

We claim that Φ is formally smooth, which implies that par-Higgssp4,(a1,a2) is formally

smooth as a corollary.

Lemma 5.2. Let par-Higgsend lf
4,(a1,a2) be the subfunctor of par-Higgs4,(a1,a2) consisting of

all families of stable parabolic Higgs bundles such that for each C-scheme T and each

(E , ϕ, σ) ∈ par-Higgs4,(a1,a2)(T ), pT∗End((E , ϕ)) is locally free, where pT : X × T → T is

the projection. Then par-Higgsend lf
4,(a1,a2) is an open subfunctor of par-Higgs4,(a1,a2).
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Proof. For any (E , ϕ, σ) ∈ par-Higgs4,(a1,a2)(T ), let U = {t ∈ T | (pT∗End((E , ϕ)))t is

locally free} which is an open subscheme of T . Then we can see that for any f : T ′ → T ,

we have

f∗(E , ϕ, σ) ∈ par-Higgsend lf
4,(a1,a2)(T

′) ⇐⇒ f factors through U ⊂ T.

Lemma 5.3. The open subfunctor par-Higgsend lf
4,(a1,a2) of par-Higgs4,(a1,a2) defined as in

Lemma 5.2 is represented by an open subscheme of Mpar
4,(a1,a2).

Proof. By Proposition 5.7, par-Higgs4,(a1,a2) is represented by Mpar
4,(a1,a2). Let (Euniv, ϕuniv,

σuniv) be the universal family. Consider Uuniv =
{
t ∈Mpar

4,(a1,a2) | (pMpar
4,(a1,a2)

∗End((Euniv,

ϕuniv)))t is locally free
}

which is an open subscheme of Mpar
4,(a1,a2). We can see that

par-Higgsend lf
4,(a1,a2) is represented by Uuniv.

Lemma 5.4. The open subfunctor par-Higgsend lf
4,(a1,a2) of par-Higgs4,(a1,a2) defined as in

Lemma 5.2 is formally smooth.

Proof. Since the open immersion i : Uuniv ↪→Mpar
4,(a1,a2) is smooth, the morphism of func-

tors par-Higgsend lf
4,(a1,a2) → par-Higgs4,(a1,a2) induced from i is formally smooth by Lemma 5.3

and the relative version of the infinitesimal lifting property (see [6, Exercise 4.7]).

Since we have chosen a1 and a2 such that Mpar
4,(a1,a2) = Mpar,s

4,(a1,a2) in Proposition 3.1

and Mpar,s
4,(a1,a2) is smooth,

par-Higgs4,(a1,a2)(p) : par-Higgs4,(a1,a2)(Spec(A′))→ par-Higgs4,(a1,a2)(Spec(A))

is surjective for any surjective homomorphism p : A′ → A in A with the kernel I such that

mA′I = 0 by [24, Proposition 2.2, Theorems 2.4 and 5.2]. Hence we get the conclusion.

Proposition 5.5. The morphism of functors

Φ: par-Higgssp4,(a1,a2) → S2

is formally smooth.

Proof. Let (E, φ, s) ∈ par-Higgssp4,(a1,a2)(Spec(A)) and B′ ∈ S2(Spec(A′)) such that

pA∗End((E, φ)) ∼= ι∗B′ where p : A′ → A is a surjective homomorphism in A with the

kernel I such that mA′I = 0, ι : Spec(A) ↪→ Spec(A′) is the inclusion and pA : X ×
Spec(A) → Spec(A) is the projection. Note that (E, φ, s) ∈ par-Higgsend lf

4,(a1,a2)(Spec(A)).

It suffices to show that there exists a family of parabolic Higgs bundles (E′, φ′, s′) ∈
par-Higgssp4,(a1,a2)(Spec(A′)) such that pA′∗End((E′, φ′)) ∼= B′ and ι∗(E′, φ′, s′) ∼= (E, φ, s),

where pA′ : X × Spec(A′)→ Spec(A′) is the projection.

We first claim that if there exists (E′, φ′, s′) ∈ par-Higgsend lf
4,(a1,a2)(Spec(A′)) such that

ι∗(E′, φ′, s′) ∼= (E, φ, s), then pA′∗End((E′, φ′)) ∼= B′. Since B′ = f∗W for some morphism
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f : Spec(A′) → A2, B′ is locally free, that is, projective. Since we have the following

commutative diagram

B′ // B′ ⊗A′ A //

∼=
��

0

pA′∗End((E′, φ′)) // pA′∗End((E′, φ′))⊗A′ A // 0,

we get a surjective morphism s : B′ → pA′∗End((E′, φ′)). Since pA′∗End((E′, φ′)) is locally

free by the hypothesis and the rank of B′ is equal to the rank of pA′∗End((E′, φ′)), s : B′ →
pA′∗End((E′, φ′)) must be an isomorphism.

Next we show that there exists (E′, φ′, s′) ∈ par-Higgsend lf
4,(a1,a2)(Spec(A′)) such that

ι∗(E′, φ′, s′) ∼= (E, φ, s). This is an immediate consequence of Lemma 5.4.

Corollary 5.6. par-Higgssp4,(a1,a2) is formally smooth.

Proof. For any surjective homomorphism p : A′ → A in A with the kernel I such that

mAI = 0, we have the following commutative diagram

par-Higgssp4,(a1,a2)(Spec(A′))
par-Higgssp

4,(a1,a2)
(p)
//

Φ(Spec(A′))

��

par-Higgssp4,(a1,a2)(Spec(A))

Φ(Spec(A))

��
S2(Spec(A′))

S2(p) // S2(Spec(A)).

Since A2 is smooth, S2(p) is surjective. Combining this with Proposition 5.5,

par-Higgssp4,(a1,a2)(p) is surjective.

5.2. Fine moduli scheme of par-Higgssp4,(a1,a2)

In this subsection, we construct a fine moduli scheme S of par-Higgssp4,(a1,a2) as a closed

subvariety of Mpar
4,(a1,a2). Then we conclude that S is indeed a desingularization of M2.

Proposition 5.7. Mpar
4,(a1,a2) is a fine moduli scheme of par-Higgs4,(a1,a2).

Proof. Step 1. We first claim that Mpar
4,(a1,a2) = Mpar,s

4,(a1,a2) = Rs/ SLν(m) = Rs/PGLν(m)

for some quasi-projective variety R with SLν(m)-action and m� 0, where ν(m) = nm+

n(1− g) and Rs/ SLν(m) is the moduli space of 1-stable parabolic Higgs bundles of degree

0 and rank 4 on X with multiplicities (1, 3) and weights (a1, a2) constructed in [23, §2].

It suffices to show that every stable parabolic Higgs bundle (E, φ, s) is 1-stable (see [23,

Definition 1.7]), that is, every nonzero subbundle F of E has deg(F ) ≤ rank(F ).

Let F2(E) be the hyperplane given by s. Let F be a subbundle of E. If F |x0 6⊂ F2(E),

then

parµ((E, s))− parµ((F, sF )) = −µ(F ) +
(a2 − a1)(4− rank(F ))

4 · rank(F )
> 0,
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which implies that

deg(F ) < rank(F )
(a2 − a1)(4− rank(F ))

4 · rank(F )
< rank(F )

4− rank(F )

4
< rank(F ).

If F |x0 ⊂ F2(E), then

parµ((E, s))− parµ((F, sF )) = −µ(F ) +
a1 − a2

4
> 0,

which implies that deg(F ) < rank(F )a1−a24 < rank(F ).

Step 2. Let U be the universal family on X×R, Us = U|X×Rs and let πX : X×Rs → X

and πRs : X×Rs → Rs be the projections onto the first and the second factor respectively.

Note that GLν(m)-action on Rs lifts to an action on Us and λ(id) acts on U by scalar

multiplication by λ in fibers. If we are given a line bundle L on Rs such that GLν(m)-

action on Rs lifts to an action on L and λ(id) acts on L by scalar multiplication by λ, then

Us ⊗ π∗RsL−1 descends to the desired universal family on X ×Mpar,s
4,(a1,a2) by the descent

lemma due to Kempf.

We have only to construct L mentioned above. Define χ(k) = −4(2g − 2) + mk.

Let (E, φ, sE) be a parabolic Higgs bundle in par-Higgss4,(a1,a2) and let (Hk, ψk, sHk) be a

parabolic line Higgs bundle with weights ak for k = 1, 2. Then

dim H0(Hom((Hk, ψk, sHk), (E, φ, sE)))− dim H1(Hom((Hk, ψk, sHk), (E, φ, sE)))

+ dim H2(Hom((Hk, ψk, sHk), (E, φ, sE))) = χ(k)

by Theorem 2.9. Let

L(k) = det R0πRs,∗Hom(π∗X(Hk, ψk, sHk),Us)

⊗ det R1πRs,∗Hom(π∗X(Hk, ψk, sHk),Us)−1

⊗ det R2πRs,∗Hom(π∗X(Hk, ψk, sHk),Us).

GLν(m)-action on U induces a GLν(m)-action on L(k) and λ(id) acts on L(k) by scalar

multiplication by λχ(k). Since χ(1) and χ(2) are consecutive odd numbers, they are

relatively prime. Thus there exist c1, c2 ∈ Z such that c1χ(1) + c2χ(2) = 1. Hence

L := L(1)c1 ⊗ L(2)c2 is the desired line bundle on Rs.

The following is the construction of S.

Proposition 5.8. Let S be the subset of Mpar
4,(a1,a2) consisting of stable parabolic Higgs

bundles (E, φ, s) such that End((E, φ)) is a specialization of M(2), detE ∼= OX and φ is

traceless. Then

(1) S is a closed subvariety of Mpar
4,(a1,a2).
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(2) S is a fine moduli scheme of par-Higgssp4,(a1,a2).

Proof. (1) The proof is identical as that of [21, Theorem 15-(i), Chapter 5]. Let S′ be the

subset of S consisting of stable parabolic Higgs bundles (E, φ, s) such that End((E, φ)) ∼=
M(2) and detE ∼= OX . It suffices to show that S = S′.

Let (E, φ, s) be an element of S. Let E be the coherent sheaf of pure dimension 1 on

Z corresponding to (E, φ) such that Supp(E) ∩D = ∅ mentioned in Theorem 2.2.

Since A2 = A′2, there exists a OSpec(C[[T ]])-algebra B as an element of S2(Spec(C[[T ]]))

such that

B ⊗C[[T ]] C ∼= End((E, φ)) and B ⊗C[[T ]] C((T )) ∼= M(2,C((T )))

where C((T )) is the field of fractions of C[[T ]] and C((T )) is the algebraic closure of C((T )).

If we are given a flat family (F , ψ, σ) as an element of

par-Higgssp4,(a1,a2)(Spec(C[[T ]]))

such that B ∼= p0∗End((F , ψ)) and i∗(F , ψ, σ) ∼= (E, φ, s), where p0 : X × Spec(C[[T ]])→
Spec(C[[T ]]) is the projection, i : Spec(C) ↪→ Spec(C[[T ]]) is the inclusion, it gives us

S ⊂ S′ by [5, Theorem of 3.1]. It is obvious that S′ ⊂ S.

It remains to prove the existence of (F , ψ, σ). Let Dn := C[[T ]]/(Tn) for all integer

n ≥ 1. This is an element of A. By Proposition 5.5, there exists a sequence (Fn, ψn, σn)n≥1

such that for each integer n ≥ 1,

(a) (Fn, ψn, σn) is an element of par-Higgssp4,(a1,a2)(Spec(Dn)),

(b) there exists an isomorphism gn : i∗n(Fn+1, ψn+1, σn+1)→ (Fn, ψn, σn) where

in : Spec(Dn) ↪→ Spec(Dn+1) is the inclusion,

(c) there exists an isomorphism fn : pn∗End((Fn, ψn))→ j∗nB such that fn+1 induces fn

via gn where pn : X × Spec(Dn)→ Spec(Dn) is the projection and jn : Spec(Dn) ↪→
Spec(C[[T ]]) is the inclusion.

Then there exists a family of Higgs bundles (F , ψ) uniquely on X × Spec(C[[T ]]) such

that, for each integer n ≥ 1, we get an isomorphism hn : j∗n(F , ψ) → (Fn, ψn) such that

hn+1 induces hn via gn. Precisely, let U = Spec(A) be an affine open subset of X.

(Fn|U×Spec(Dn), ψn)n≥1 on X corresponds to (F̃n|π−1(U)×Spec(Dn))n≥1 on Z in the sense of

Theorem 2.2. This sequence is equivalent to the datum of a sequence (Mn)n≥1 such that

for each integer n ≥ 1,

(a) Mn is a finitely generated A⊗C Dn-module,

(b) there exists an isomorphism Mn+1 ⊗A⊗CDn+1 (A⊗C Dn)→Mn.
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Put M = lim←−nMn which is a finitely generated A ⊗C C[[T ]]-module. Then we get a

coherent sheaf F̃ on Z × Spec(C[[T ]]) which corresponds to a pair (F , ψ) as desired.

Sections of F̃∨n |f×Spec(Dn) induced from σn can be extended to a section σ of

F̃∨|Spec(f×C[[T ]]) such that (F , ψ, σ) ∈ par-Higgs4,(a1,a2)(Spec(C[[T ]])), and isomorphisms

fn : pn∗End((Fn, ψn)) → j∗nB gives an isomorphism f : p0∗End((F , ψ)) → B by taking

inverse limits.

(2) By Proposition 5.7, Mpar
4,(a1,a2) is fine. Then we can adapt the proof of [21, Theo-

rem 15-(ii), Chapter 5].

Then we get the first main result.

Theorem 5.9. (Theorem 1.1) S is nonsingular. Furthermore, there is a canonical mor-

phism πS : S→M2 which extends the isomorphism S′
∼=−→Ms

2 given by (E, φ, s) 7→ (F,ψ)

where (F,ψ) is the uniquely determined stable Higgs bundle such that (E, φ) ∼= (F,ψ) ⊕
(F,ψ).

Proof. The first statement is an immediate consequence from Corollary 5.6 and Proposi-

tion 5.8.

Let’s prove the second statement. Let g : M2 →M4 be a morphism given by gr((F,ψ))

7→ gr((F,ψ)⊕(F,ψ)), where gr((F,ψ)) and gr((F,ψ)⊕(F,ψ)) are graded objects associated

to Jordan-Hölder filtrations of (F,ψ) and (F,ψ)⊕ (F,ψ) respectively. It is obvious that g

is injective. Since g induces an isomorphism between Ms
2 and g(Ms

2), g : M2 → g(M2) is

birational. Indeed, g is a homeomorphism onto g(M2) because M2 \Ms
2 = T ∗J/Z2 (see

§4) is separated (i.e., the diagonal morphism ∆: T ∗J/Z2 → T ∗J/Z2 × T ∗J/Z2 is a closed

immersion) and g(M2) \ g(Ms
2) is homeomorphic to ∆(T ∗J/Z2).

Since g(M2) and p(S) contain the common dense subset g(Ms
2) from Theorem 3.7, we

have g(M2) = p(S), where p denotes the canonical forgetful morphism Mpar
4,(a1,a2) →M4.

Let p′ = p|S.

Since S is nonsingular, the continuous function g−1 ◦ p′ : S
p′−→ g(M2)

g−1

−−→ M2 is

a morphism πS : S → M2 by GAGA theorem and Riemann’s extension theorem (see

[16, 4.10]). It is an immediate consequence from the construction that πS induces an

isomorphism between π−1
S (Ms

2) and Ms
2.

6. A comparison between S and the Kirwan’s desingularization of M2

In this section we solve a comparison problem, naturally raised from Theorem 5.9, between

S and the Kirwan’s desingularization of M2.
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6.1. A comparison between S and K

By Proposition 7.5, K have consecutive contractions

f : K
fσ // Kσ

fε // Kε

which are blow-downs. The following is the second main result which is a solution of this

comparison problem.

Theorem 6.1. (Theorem 1.2) Kε
∼= S.

7. A proof of Theorem 6.1

In this section we first construct the morphism ρ : K → S, show that ρ factors through

Kε, that is,

K
ρ //

f   

S

Kε

ρε

>>

and then we finally conclude that Kε
∼= S.

7.1. A morphism from K to S

We begin with the following proposition, which will be useful later.

Proposition 7.1. Let x0 ∈ X.

(1) Let (E, φ)→ T ×X be a family of semistable Higgs bundles of rank 4 and degree 0

on X parametrized by a complex manifold T . Assume the following:

(a) for any t ∈ T , any line bundle L of degree 0 on X and any ψ ∈ H0(KX),

(L,ψ)⊕ (L,ψ) is not isomorphic to a Higgs subbundle of (E|t×X , φ|t×X).

(b) there is an open dense subset T ′ of T such that

End((E|t×X , φ|t×X)) ∼= M(2)

for any t ∈ T ′.

Then we have a holomorphic map τ : T → S.

(2) Suppose a holomorphic map τ : T → S is given. Suppose that T is an open subset

of a nonsingular quasi-projective variety W on which a reductive group G acts such

that every point in W is stable and the (smooth) geometric quotient q : W → W/G

exists. Furthermore, assume that there is an open dense subset W ′ of W such that
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whenever t1, t2 ∈ T ∩ W ′ are in the same orbit, we have τ(t1) = τ(t2). Then τ

factors through the image T of T in W/G, that is, there is a continuous map T → S

such that the following diagram

T
τ //

��

S

T

??

commutes.

Proof. (1) Let (Et, φt) = (E|t×X , φ|t×X). By (a) and Proposition 3.4, there exists a

section 0 6= st such that (Et, φt, st) is a stable parabolic Higgs bundle for each t ∈ T .

Since Mpar
4,(a1,a2) is a coarse moduli scheme of par-Higgs4,(a1,a2) by Theorem 2.8, we obtain

a holomorphic map τ : T →Mpar
4,(a1,a2). By (b), τ(T ′) ⊂ S′ and then τ is a map into S.

(2) This is an immediate consequence of the étale slice theorem. In particular, T is an

open subset of W/G in the usual complex topology.

Since both K and S contain Zariski open dense subsets which are isomorphic to Ms
2,

there is a rational map

ρ′ : K 99K S.

Proposition 7.2. There is a birational morphism ρ : K→ S that extends ρ′.

Proof. The strategy of the proof is similar to that of [12]. By GAGA theorem and Rie-

mann’s extension theorem (see [16, 4.10]), it is enough to prove that ρ′ is extended to a

continuous map with respect to the usual complex topology. Note that M2 = R// SL(2)

for some irreducible normal quasi-projective variety R mentioned in §4. Here R is a fine

moduli scheme of a moduli functor (see §4 or [22] for more details). Luna’s slice theorem

tells us that for each point x ∈M2\Ms
2, there is an analytic submanifold W of R such that

W/H is analytically equivalent to a neighborhood of x in M2, where H is the stabilizer of

a point in the intersection of W and the closed orbit represented by x. Further, we can see

that Kirwan’s desingularization W̃//H of W//H is a neighborhood of the preimage of x in

K. By Proposition 7.1, it is sufficient to construct a nice family of semistable Higgs bun-

dles of rank 4 parametrized by W̃ by successive applications of elementary modifications

of Higgs bundles, beginning with a family of rank 2 Higgs bundles parametrized by W ,

which comes from the universal family over X ×R. Then we get a classifying morphism

W̃ → S because S is the fine moduli scheme. Since this is invariant under the H-action,

we have an induced morphism W̃//H → S. Therefore, ρ′ is extended to a neighborhood

of the preimage of x in K. The detail of the construction of the morphism W̃ → S can be

found in §7.1.1–§7.1.5.
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7.1.1. Points over the middle stratum

We first extend ρ′ to points over the middle stratum of M2. Let l = [(L,ψ)⊕(L−1,−ψ)] ∈
T ∗J/Z2 − Z2g

2 ⊂ M2 and let Nl = H0(KX) ⊕ H1(OX) ⊕ Ψ
−1

(0). By Theorem 4.1, the

universal object over X × R induces a holomorphic family (F , ϕF ) of semistable Higgs

bundles over X parametrized by a neighborhood Ul of 0 in Nl. The restriction of (F , ϕF )

to X × (Ul ∩ (H0(KX) ⊕ H1(OX))) is of the form (L, ψL) ⊕ (L−1,−ψL) where R(C×)

is a quasi-projective variety parametrizing degree 0 Higgs line bundles (L,ψ) with an

isomorphism β : L|x → C (see [22]) and (L, ψL) is a family of Higgs bundles of rank 1

and degree 0 that comes from an étale map between H0(KX)⊕H1(OX) and the slice in

R(C×).

Let πl : Ñl → Nl be the blow-up ofNl alongH0(KX)⊕H1(OX). Let Ũl = π−1
l (Ul)∩Ñ ss

l

and Dl be the exceptional locus in Ũl. Let (F̃ , ϕF̃ ) and (L̃, ψL̃) be the pull-backs of (F , ϕF )

and (L, ψL) to Ũl and Dl respectively. Then there are surjective morphisms

(F̃ |Dl , ϕF̃|Dl )→ (L̃, ψL) and (F̃ |Dl , ϕF̃|Dl )→ (L̃−1,−ψL).

Let F̃ ′ and F̃ ′′ be the kernels of F̃ → F̃|Dl → L̃, F̃ → F̃|Dl → L̃−1 respectively. Then

ϕF̃ ′ : F̃
′ → F̃ ′⊗ p∗1KX and ϕF̃ ′′ : F̃

′′ → F̃ ′′⊗ p∗1KX can be determined uniquely such that

0 // F̃ ′ //

ϕF̃′
��

F̃ //

ϕF̃
��

L̃ //

ψL
��

0

0 // F̃ ′ ⊗ p∗1KX
// F̃ ⊗ p∗1KX

// L̃ ⊗ p∗1KX
// 0

and

0 // F̃ ′′ //

ϕF̃′′
��

F̃ //

ϕF̃
��

L̃−1 //

−ψL
��

0

0 // F̃ ′′ ⊗ p∗1KX
// F̃ ⊗ p∗1KX

// L̃−1 ⊗ p∗1KX
// 0

commute. Consider (E , ϕE) = (F̃ ′, ϕF̃ ′) ⊕ (F̃ ′′, ϕF̃ ′′) over X × Ũl. The following lemma

tells us that (E , ϕE) satisfies the assumptions of Proposition 7.1.

Lemma 7.3. (E , ϕE) is a family of semistable Higgs bundles of rank 4, degree 0 over X

parametrized by Ũl such that

(1) for each t ∈ Ũl, L′ ∈ Pic0(X) and ψ′ ∈ H0(KX), (L′, ψ′)⊕ (L′, ψ′) is not isomorphic

to any Higgs subbundle of (E , ϕE)|X×t.

(2) (E , ϕE)|X×(Ũl−Dl)
∼= ((F̃ , ϕF̃ )⊕(F̃ , ϕF̃ ))|

X×(Ũl−Dl) and there is an open dense subset

of Ũl where End((E , ϕE)|X×t) is a specialization of M(2).
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(3) with respect to the action of C× on Ñl −Dl, if t1, t2 ∈ Ũl −Dl lie in the same orbit,

then (E , ϕE)|X×t1 ∼= (E , ϕE)|X×t2.

Proof. E is locally free of rank 4 because Dl is a smooth divisor in Ũl. Let (a, b, c, d, e, f) ∈
Nl = H0(KX)⊕H1(OX)⊕Ψ

−1
(0) ⊂ H0(KX)⊕H1(OX)⊕ [H0(L−2KX)⊕H0(L2KX)]⊕

[H1(L2)⊕H1(L−2)]. Since the weights of the C×-action are 0, 0,−2, 2, 2,−2 respectively,

we can see that (F , ϕF )|X×(a,b,c,d,e,f) is stable if and only if (d, e) 6= (0, 0) and (c, f) 6=
(0, 0).

For the proofs of (2) and (3), we can follow the proofs of [12, Lemma 4.2-(2),(3)]. We

have only to prove (1). For t ∈ Ũl−Dl, it is obvious. Let t be the point in Dl represented

by a line C = (a, b, zc, zd, ze, zf) parametrized by z ∈ C for (a, b) ∈ H0(KX)⊕H1(OX),

(0, 0) 6= (d, e) ∈ H0(L2KX) ⊕H1(L2) and (0, 0) 6= (c, f) ∈ H0(L−2KX) ⊕H1(L−2). Let

C0 = C ∩Ul. Restricting Ul sufficiently, we can take an open covering {Vi} of X such that

F|Vi×C0 are trivial. We fix a trivialization for each i. Let (Lab, ψab) = (L, ψ)|X×(a,b,0,0,0,0).

Since (F , ϕF )|X×0
∼= (Lab, ψab)⊕ (L−1

ab ,−ψab), the transition matrices are of the form

(7.1)

 λij zαij

zβij λ−1
ij


where λij |z=0 is the transition for Lab. ϕF |Vi×C0 are of the form

(7.2)

 pi zqi

zri −pi


which satisfies

(7.3) pj |Vij×C0 zqj |Vij×C0

zrj |Vij×C0 −pj |Vij×C0

 λij zαij

zβij λ−1
ij

 =

 λij zαij

zβij λ−1
ij

 pi|Vij×C0 zqi|Vij×C0

zri|Vij×C0 −pi|Vij×C0


where pi|z=0 = ψab|Vi and Vij = Vi ∩ Vj . The cocycle condition of (7.1) implies that

{λijαij |z=0} and {λ−1
ij βij |z=0} are cocycles in H1(L2

ab) and H1(L−2
ab ) respectively. Since

(7.2) are cocycles, {qi|z=0} and {ri|z=0} are cocycles in H0(L2
abKX) and H0(L−2

ab KX)

respectively. Since (F , ϕF )|X×(a,b,zc,zd,ze,zf) is stable for z 6= 0, {(λijαij |z=0, qi|z=0)} and

{(λ−1
ij βij |z=0, ri|z=0)} are all nonzero.

Let (F ′, ϕF ′) be the kernel of (F , ϕF )|X×C0 → (F , ϕF )|X×0
∼= (Lab, ψab)⊕ (L−1

ab ,−ψab)
→ (Lab, ψab) and let (F ′′, ϕF ′′) be the kernel of (F , ϕF )|X×C0 → (F , ϕF )|X×0

∼= (Lab, ψab)

⊕ (L−1
ab ,−ψab)→ (L−1

ab ,−ψab). Let (F ′, φF ′) = (F ′, ϕF ′)|X×0 and (F ′′, φF ′′) = (F ′′,
ϕF ′′)|X×0. Then

(F̃ ′, ϕF̃ ′)|X×t ∼= (F ′, φF ′) and (F̃ ′′, ϕF̃ ′′)|X×t ∼= (F ′′, φF ′′).
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Note that any section of F ′ over Vi × C0 is of the form (zs1, s2). Sinces1

s2

↔
zs1

s2

 7→
 λij zαij

zβij λ−1
ij

zs1

s2

 =

z(λijs1 + αijs2)

z2βijs1 + λ−1
ij s2

↔
 λijs1 + αijs2

z2βijs1 + λ−1
ij s2

 ,

the transition for F ′ is  λij αij

z2βij λ−1
ij

 .

Sinces1

s2

↔
zs1

s2

 7→
 pi zqi

zri −pi

zs1

s2

 =

z(pis1 + qis2)

z2ris1 − pis2

↔
 pis1 + qis2

z2ris1 − pis2

 ,

ϕF ′ |Vi×C0 is  pi qi

z2ri −pi

 .

By (7.3), pj |Vij×C0 qj |Vij×C0

z2rj |Vij×C0 −pj |Vij×C0

 λij αij

z2βij λ−1
ij

 =

 λij αij

z2βij λ−1
ij

 pi|Vij×C0 qi|Vij×C0

z2ri|Vij×C0 −pi|Vij×C0

 .

Thus (F ′, φF ′) fits into a commutative diagram

0 // Lab //

ψab

��

F ′ //

φF ′

��

L−1
ab

//

−ψab
��

0

0 // Lab ⊗KX
// F ′ ⊗KX

// L−1
ab ⊗KX

// 0

where each row is a short exact sequence and the extension class is {(λijαij |z=0, qi|z=0)},
that is, (F ′, φF ′) is a nonsplit extension of (L−1

ab ,−ψab) by (Lab, ψab). Similarly (F ′′, φF ′′) is

also a nonsplit extension of (Lab, ψab) by (L−1
ab ,−ψab) whose extension class is {(λ−1

ij βij |z=0,

ri|z=0)}. Hence we conclude that (E , φE)|X×t = (F ′, φF ′) ⊕ (F ′′, φF ′′) does not contain a

Higgs subbundle isomorphic to (L′, ψ′)⊕ (L′, ψ′) for any L′ ∈ Pic0(X) and ψ′ ∈ H0(KX).

It follows from Proposition 7.1 and Luna’s slice theorem that ρ′ extends continuously

to a neighborhood of the points in K lying over l. Since there is at most one continuous

extension, the extensions for various points l in the middle stratum T ∗J/Z2 − Z2g
2 are

compatible. Thus ρ′ is extended to all the points in K except those over the deepest

strata Z2g
2 .
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7.1.2. Points over the deepest strata

We next extend ρ′ to the points over the deepest strata Z2g
2 . We may consider only the

points in K over 0 = [(O, 0) ⊕ (O, 0)] ∈ Z2g
2 . Let N = Υ

−1
(0). Since it follows from

Theorem 4.1 that a neighborhood of [(O, 0) ⊕ (O, 0)] in M2 is analytically equivalent to

a neighborhood of the vertex 0 in the cone N// SL(2), a neighborhood of the preimage of

[(O, 0)⊕(O, 0)] in K is bihomolorphic to an open subset of the desingularization Ñ// SL(2),

obtained by three blow-ups from N// SL(2), which will be constructed below. Then it is

enough to construct a holomorphic map from a neighborhood Ṽ of the preimage of 0 in

Ñ// SL(2) to S.

Let Σ = SL(2)
{

[H0(KX) ⊕H1(OX)] ⊗
(

1 0
0 −1

) }
. Let π1 : N1 → N be the blow-up of

N at 0 with the exceptional divisor D(1)
1 . Let

∆ = SL(2)P


0 b

c 0

 ∣∣∣ b, c ∈ H0(KX)⊕H1(OX), 〈b, c〉 = 0


as a subset of D(1)

1 , where 〈 · , · 〉 is the perfect pairing on H0(KX) ⊕H1(OX). Let Σ̃ be

the strict transform of Σ in N1. Then the singular locus of N1// SL(2) is the quotient

∆ ∩ Σ̃// SL(2). Note that

(7.4) ∆ ∩ Σ̃ = SL(2)P

(H0(KX)⊕H1(OX))⊗

1 0

0 −1

 = D(1)
1 ∩ Σ̃.

Let π2 : N2 → N1 be the blow-up of N1 along Σ̃ with the exceptional divisor D(2)
2 .

Let D(1)
2 be the strict transform of D(1)

1 . The singular locus of N2// SL(2) is the quotient

∆̃// SL(2), where ∆̃ is the strict transform of ∆.

Let π3 : Ñ = N3 → N2 be the blow-up of N2 along ∆̃ with the exceptional divisor

D̃(3) = D(3)
3 and let D̃(1) = D(1)

3 , D̃(2) = D(2)
3 be the strict transforms of D(1)

2 and D(2)
2

respectively. Let π : Ñ → N be the composition π1 ◦ π2 ◦ π3. Let D
(j)
i be the quotient of

D(j)
i in Ni// SL(2) for 1 ≤ i ≤ 3 and 1 ≤ j ≤ i.

It follows from a similar argument as in the case of the middle stratum that the

universal family over X ×R induces a holomorphic family (F , ϕF ) of rank 2 semistable

Higgs bundles over X parametrized by an open neighborhood U of 0 in N ss. Let V

be the image of U in N// SL(2). Then V is an open neighborhood of 0 in N// SL(2).

Let U1 = π−1
1 (U) ∩ N ss

1 and V1 be the image of U1 in N1// SL(2). It follows from the

commutative diagram

N ss
1

//

π1

��

N1// SL(2)

π1

��
N ss // N// SL(2)
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that we have V1 = π−1
1 (V ).

Let U2 = π−1
2 (U1)∩N ss

2 and V2 be the image of U2 in N2// SL(2). Then V2 = π−1
2 (V1)

where π2 : N2// SL(2)→ N1// SL(2). Let Ũ = π−1
3 (U2)∩ Ñ ss and Ṽ be the image of Ũ in

Ñ// SL(2). Then Ṽ is smooth with simple normal crossing divisors D̃(1), D̃(2), D̃(3) where

D̃(j) = D̃
(j)
3 and D̃(2) ∩ Ṽ is denoted again by D̃(2).

ρ′ was already extended to the points over the middle stratum, so we have a holomor-

phic map ρ′ : Ṽ − (D̃(1) ∩ D̃(3))→ S. Now ρ′ must be extended to ρ : Ṽ → S.

7.1.3. Points over D̃(1) − (D̃(2) ∪ D̃(3))

In this subsection, we will extend ρ′ to points in Ṽ lying over the quotient of D(1)
1 −∆.

We want to modify the pull-back of (F , ϕF ) ⊕ (F , ϕF ) to U1 − ∆ ∪ Σ̃ so that ρ′ is

extended to a holomorphic map near the quotient of D(1)
1 −∆ by Proposition 7.1.

Let (F1, ϕF1) be the pull-back of (F , ϕF ) to X × U1 via 1X × π1. Since (F , ϕF )|X×0

is trivial, we have (F1, ϕF1)|
X×D(1)

1

∼= (O, 0) ⊕ (O, 0). Let (F ′1, ϕF ′1) (resp. (F ′′1 , ϕF ′′1 )) be

the kernel of

(F1, ϕF1)→ (F1, ϕF1)|
X×D(1)

1

∼= (O
X×D(1)

1

, 0)⊕ (O
X×D(1)

1

, 0)→ (O
X×D(1)

1

, 0)

where the second arrow is the projection onto the first component (resp. the second

component). A computation of transition matrices as in the proof of Lemma 7.3 tells

us that (F ′1, ϕF ′1)|X×t1 and (F ′′1 , ϕF ′′1 )|X×t1 are nonsplit extensions of (O, 0) by (O, 0)

for t1 =
( (

a b
c −a

)
,
(
d e
f −d

) )
∈ PN = D(1)

1 with (b, e) 6= (0, 0) and (c, f) 6= (0, 0) in

H1Hom((O, 0), (O, 0)) = H0(KX)⊕H1(OX).

Assume that t1 ∈ D(1)
1 − ∆. Then (a, d), (b, e), (c, f) are linearly independent. In

particular, (a, d), (b, e), (c, f) are all nonzero, which implies that (F ′1, ϕF ′1)|X×t1 and

(F ′′1 , ϕF ′′1 )|X×t1 are nonsplit extensions of (O, 0) by (O, 0) with extension classes (b, e)

and (c, f) respectively.

The inclusion (F ′1, ϕF ′1) ↪→ (F1, ϕF1) induces a homomorphism (F ′1, ϕF ′1)|
X×D(1)

1

→
(F1, ϕF1)|

X×D(1)
1

∼= (O, 0)⊕ (O, 0) whose image is the second factor (O, 0) and the kernel

of this homomorphism is (O, 0). Similarly, (O
X×D(1)

1

, 0) is a Higgs subbundle of (F ′′1 , ϕF ′′1 ).

Then we have a diagonal embedding of (O
X×D(1)

1

, 0) into (F ′1, ϕF ′1) ⊕ (F ′′1 , ϕF ′′1 )|
X×D(1)

1

.

Let (E1, ϕE1) be the kernel of

(F ′1 ⊕F ′′1 , ϕF ′1⊕F ′′1 )→ (F ′1 ⊕F ′′1 |X×D(1)
1

, ϕF ′1⊕F ′′1 |X×D(1)
1

)

→ (F ′1 ⊕F ′′1 |X×D(1)
1

/O
X×D(1)

1

, ϕ(F ′1⊕F ′′1 |X×D(1)
1

/O
X×D(1)

1

)).

Adapting the argument of [12, Section 4.3], we can see that the transition for E1|X×t1
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is

(7.5)


1 0 0 0

0 1 0 0

0 0 1 0

−2αij |z=0 −βij |z=0 γij |z=0 1


and ϕE1 |X×t1 is locally

(7.6)


0 0 0 0

0 0 0 0

0 0 0 0

−2pi|z=0 −qi|z=0 ri|z=0 0


where the cocycles {(αij |z=0, pi|z=0)}, {(βij |z=0, qi|z=0)}, {(γij |z=0, ri|z=0)} represent the

classes (a, d), (b, e), (c, f) ∈ H1(OX)⊕H0(KX) respectively.

It is easy to check that
0 0 0 0

0 0 0 0

0 0 0 0

−2pj |z=0 −qj |z=0 rj |z=0 0




1 0 0 0

0 1 0 0

0 0 1 0

−2αij |z=0 −βij |z=0 γij |z=0 1



=


1 0 0 0

0 1 0 0

0 0 1 0

−2αij |z=0 −βij |z=0 γij |z=0 1




0 0 0 0

0 0 0 0

0 0 0 0

−2pi|z=0 −qi|z=0 ri|z=0 0

 .

Hence we have a filtration by Higgs subbundles

(7.7) (E1, ϕE1)|X×t1 = (E4, φE4) ⊃ (E3, φE3) ⊃ (E2, φE2) ⊃ (E1, φE1) ⊃ (E0, φE0) = 0

such that (Ei+1/Ei, φEi+1/Ei)
∼= (OX , 0). Since (c, f) 6= (0, 0), the extension (E2, φE2) of

(O, 0) by (E1, φE1) ∼= (O, 0) is nontrivial. Since (b, e), (c, f) are linearly independent, an

extension of (O, 0) by (E2, φE2) is parametrized by H1Hom((O, 0), (E2, φE2)) which fits

in the exact sequence

H0Hom((O, 0), (O, 0))
(c,f) // H1Hom((O, 0), (O, 0))

// H1Hom((O, 0), (E2, φE2)) // H1Hom((O, 0), (O, 0))
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and (E3, φE3) is the image of

(b, e) ∈ H1(Hom((O, 0), (O, 0))) ∼= H1(OX)⊕H0(KX)

which is nonzero. Thus (E3, φE3) is a nonsplit extension. Similarly (E4, φE4) is a nonsplit

extension since (a, d), (b, e), (c, f) are linearly independent. Thus the condition (a) of

Proposition 7.1(1) holds for points in Ũ over D(1)
1 − ∆. The other conditions of Propo-

sition 7.1 obviously hold. Therefore ρ′ is extended to the points over the quotient of the

points over D(1)
1 −∆.

7.1.4. Points over D̃(3) − D̃(2)

Let t1 =
( (

a b
c −a

)
,
(
d e
f −d

) )
∈ ∆−Σ̃. Then (a, d), (b, e), (c, f) span 2-dimensional subspace

of H1(OX)⊕H0(KX). The Higgs bundle (E1, ϕE1)|X×t1 has transition matrices and local

Higgs fields of the form (7.5) and (7.6). A Higgs bundle of rank 1 over ∆− Σ̃ is obtained

from the family of linear relations of (a, d), (b, e), (c, f). (L1, 0) denotes the pull-back of

this Higgs bundle of rank 1 to X × (∆ − Σ̃). Then there is an embedding of (L1, 0) ↪→
(E1, ϕE1)|

X×(∆−Σ̃)
. Let (E3, ϕE3) (resp. (L3, 0)) be the pull-back of (E1, ϕE1) (resp. (L1, 0))

to Ũ = U3 (resp. D̃(3) − D̃(2)).

Let (Ẽ , ϕẼ) be the kernel of

(E3, ϕE3)→ (E3|X×(D̃(3)−D̃(2))
, ϕE3|X×(D̃(3)−D̃(2))

)→ (E3|X×(D̃(3)−D̃(2))
/L3, ϕE3|X×(D̃(3)−D̃(2))

/L3).

Let t1 =
( (

0 b
c 0

)
,
(

0 e
f 0

) )
∈ ∆− Σ̃ with (b, e), (c, f) linearly independent for simplicity.

(The general case is obtained by conjugation.) Let t3 ∈ D̃(3)−D̃(2) be a (semi)stable point

lying over t1. A point t3 ∈ D̃(3) represents a normal direction to ∆ at t1. Choose a local

parameter z to the direction such that z = 0 represents t1. We make local computations

as in the previous subsection §7.1.3.

If t3 represents a normal direction of ∆ tangent to D̃(1), then the transition and local

Higgs field of (Ẽ , ϕẼ)|X×t3 are of the form

(7.8)


1 0 0 0

0 1 0 0

0 0 1 0

−2δij |z=0 −βij |z=0 γij |z=0 1


and

(7.9)


0 0 0 0

0 0 0 0

0 0 0 0

−2si|z=0 −qi|z=0 ri|z=0 0


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where {(δij , si)} are some cocycles which give us a nonzero class (g, h) ∈ H0(KX)⊕H1(OX)

at z = 0 such that (g, h), (b, e), (c, f) are linearly independent. The condition (1) of

Proposition 7.1 holds because the Higgs bundle has a filtration by Higgs subbundles as in

(7.7).

If t3 represents the direction normal to D̃(1), then the transition and local Higgs field

for (Ẽ , ϕẼ)|X×t3 are of the form

(7.10)


1 0 0 0

γij |z=0 1 0 0

βij |z=0 0 1 0

−2δij |z=0 −βij |z=0 γij |z=0 1


and

(7.11)


0 0 0 0

ri|z=0 0 0 0

qi|z=0 0 0 0

−2si|z=0 −qi|z=0 ri|z=0 0

 .

Since the Higgs bundle has a filtration by Higgs subbundles as in (7.7), (Ẽ , ϕẼ)|X×t3
satisfies the condition (1) of Proposition 7.1.

Since the other conditions of Proposition 7.1 automatically hold on the stable part of

U , ρ′ extends to the quotient of Ũ − D̃(2).

7.1.5. Points over D̃(2) ∩ (D̃(1) ∪ D̃(3))

In this subsection ρ′ will be finally extended to K and then we complete the proof of

Proposition 7.2. The slice theorem gives us a map Ṽ → K which is biholomorphic onto

a neighborhood of the preimage of [(O, 0) ⊕ (O, 0)]. So it is sufficient to construct a

holomorphic map Ṽ → S.

There is a commutative diagram

Ṽ �
� /

α

��

K

β

��
V1
� � /M1

where M1 is the first blow-up in the Kirwan’s process and the vertical maps are blow-ups.

A holomorphic map

ν : Ṽ − α−1(∆ ∩ Σ̃// SL(2))→ S
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was already constructed.

Let x be any point in ∆∩ Σ̃// SL(2). It follows from (7.4) that x is represented by the

orbit of
[
a0+p0 0

0 −a0−p0

]
for some a0 ∈ H1(OX) and p0 ∈ H0(KX). The normal space Y

to this orbit is isomorphic to C2g ×Ψ
−1

(0) where C2g is the tangent space of the blow-up
˜H1(OX)⊕H0(KX) = bl0(H1(OX)⊕H0(KX)).

For a neighborhood Y1 of 0 in Y which is holomorphically embedded into U1, (F1,

ϕF1)|X×Y1 has transition matrices of the form1 + z1(a0
ij + aij) z1bij

z1cij 1− z1(a0
ij + aij)


and local Higgs fields of the formz1(p0

i + pi) z1qi

z1ri −z1(p0
i + pi)


where (a, p) = ({aij}, {pi}), (b, q) = ({bij}, {qi}), (c, r) = ({cij}, {ri}) are classes in

H1(OX) ⊕ H0(KX), not parallel to (a0, p0) if they are nonzero and z1 is the coordinate

for the normal direction of P(H1(OX)⊕H0(KX)) in ˜H1(OX)⊕H0(KX).

Since Luna’s étale slice theorem tells us that a neighborhood of the vertex of the cone

Y//C× is analytically equivalent to a neighborhood of x in V1, the image of Ỹ in Ṽ is

biholomorphic to a neighborhood of α−1(x) where Ỹ is the strict transform of Y1 in Ũ .

Following the same argument as in [12, 4.5], we can construct a family of rank 4 Higgs

bundles on X parametrized by Ỹ satisfying the conditions of Proposition 7.1. Then ν can

extends to α−1(x).

7.2. Contractions

Let (C2g, ω) be a symplectic vector space and let Grω(k, 2g) be the Grassmannian of

k-dimensional subspaces of C2g such that the restriction of ω to the subspace is zero.

Let A (resp. B) be the tautological rank 2 (resp. rank 3) bundle over the Grassmannian

Grω(2, 2g) (resp. Grω(3, 2g)). For B ∈ Grω(3, 2g), let

CC(B) := the closure of {(C,D) ∈ P(S2B)× P(S2B∨) |

C and D are smooth conics dual to each other},

which is called the variety of complete conics. Then we have two projections

P(S2B) CC(B)
ΦBoo

Φ∨B // P(S2B∨)
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where each of ΦB, ΦB̆ is the blow-up of each of P(S2B), P(S2B∨) along the locus of rank 1

conics. Let CC(B) be the tautological family of complete conics over Grω(3, 2g). Then

the restrictions of the exceptional divisors and their intersections over a point in Z2g
2 can

be described as follows (see also [13, Proposition 4.2]).

Proposition 7.4. (1) D̃(1) ∼= CC(B), that is, D̃(1) is the blow-up of P(S2B) along the

locus of rank 1 conics. Hence D̃(1), that is, D̃(1) is a P̂5-bundle over Grω(3, 2g) where

P̂5 is the blow-up of P5 (projectivization of the space of 3 × 3 symmetric matrices)

along P2 (the locus of rank 1 matrices).

(2) D̃(3) is a P2g−4-bundle over P(S2A). Hence D̃(3) is a P2g−4-bundle over a P2-bundle

over Grω(2, 2g).

(3) D̃(1)∩D̃(3) is the proper transform of P(S2B)2 (the locus of rank ≤ 2 matrices) in the

blow-up CC(B)→ P(S2B), that is, the exceptional divisor of the blow-up CC(B)→
P(S2B∨). Hence D̃(1) ∩ D̃(3) is a P2-bundle over a P2-bundle over Grω(3, 2g).

(4) D̃(1) ∩ D̃(2) ∩ D̃(3) is a P1-bundle over a P2-bundle over Grω(3, 2g).

(5) D̃(1) ∩ D̃(2) is the exceptional divisor of the blow-up CC(B) → P(S2B). Hence

D̃(1) ∩ D̃(2) is a P2-bundle over a P2-bundle over Grω(3, 2g).

We next investigate some rational curves that will be contracted. Define

σ := class of a line in a P2-fiber of Φ∨B,

ε := class of a line in a P2-fiber of ΦB,

γ := class of {Φ−1
Bt

([qt])}t∈Λ

in N1(D̃(1)) (the group of numerical equivalence classes of 1-cycles) where [A] ∈ Grω(2, 2g),

q ∈ S2A, A⊥ is the orthogonal complement of A with respect to ω, a line Λ ⊂ P(A⊥/A)

are fixed, Bt ⊂ C2g is the 3-dimensional subspaces containing A for t ∈ Λ (that is,

[Bt] ∈ Grω(3, 2g)) and qt ∈ S2Bt is the image of q under the inclusion S2A ↪→ S2Bt.

Let σ̂ = ι∗σ, ε̂ = ι∗ε and γ̂ = ι∗γ where ι is the inclusion D̃(1) ↪→ K. The following

proposition tells us that K can be blown-down twice.

Proposition 7.5. (1) R+σ̂ is a ωK-negative extremal ray. The contraction Kσ of the

ray R+σ̂ is a smooth quasi-projective desingularization of M2. In fact, this is the

contraction of the fiber direction of P(S2A) → Grω(2, 2g) in D̃(3) and is also a

blow-down map.

(2) For the image ε of ε̂ in N1(Kσ), R+ε is ωKσ -negative extremal ray and its contraction

Kε is a smooth quasi-projective desingularization of M2. This is the contraction of

the fiber direction of P(S2B∨)→ Grω(3, 2g) and is also a blow-down map.
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Proof. The proofs are identical to those of (3.0.2)–(3.0.4) in [18].

7.3. A stratification of S

In this subsection, we provide a geometric description for the canonical subschemes of S,

which is useful for the proof of Theorem 6.1. The arguments are almost same as those

of [1] except for the necessary modifications. Since S is a fine moduli scheme, we have the

universal family (Euniv, φuniv, suniv) of rank 4 and degree 0 on X×S. Consider the canonical

family of specializations B = pS∗End((Euniv, φuniv)) of M(2) parametrized by S and the

universal family of specializations W of M(2) parametrized by A2, where pS : X×S→ S is

the projection onto the second component. Then B and W give generalized conic bundles

P on S and Q on A2 respectively (see [1, Remark 3] for more details).

Proposition 7.6. [1, Proposition 2] P = π∗spQ for the morphism πsp : S → A2 given by

(E, φ, s) 7→ End((E, φ)).

Proof. This is an immediate consequence of the definitions of πsp, B and W .

To define the canonical subschemes of A2, we need the concept of generalized conic

bundle in the sense of [1] as follows.

Definition 7.7. [1, Definition 1] Let Y be a variety. A generalized conic bundle C on Y

is defined by

(a) a vector bundle V on Y of rank 3 and

(b) a closed subscheme C of P(V ) over Y , such that, given y ∈ Y , there exists a neigh-

borhood U of y, where C ∩p−1(U) is defined by q = 0, q ∈ H0(p−1(U), H2), H being

the tautological line bundle for p : P(V )→ Y , that is, p∗H ∼= V ∨.

Since C is an effective Cartier divisor by Definition 7.7, it corresponds to a section of

a line bundle LC on P(V ). Since LC and H2 coincide locally over Y , it follows from the

“see-saw” theorem (cf. Mumford’s Abelian varieties) that there exists a line bundle L on Y

such that LC = H2⊗p∗(L). Since p∗LC = p∗(H
2)⊗L = S2(V ∗)⊗L, q of the condition (b)

in Definition 7.7 can be replaced by an element qL ∈ H0(S2(V ∗)⊗L), that is, a quadratic

form qL : V → L. The discriminant ∆ of qL is defined as a section of L3 ⊗ (∧3(V ∨))2.

The degeneracy locus of C is given by ∆ = 0.

For i = 1, 2, 3, set

Yi = {y ∈ Y | qL|V |y has rank ≤ 3− i}.

Then we have Y ⊃ Y1 ⊃ Y2 ⊃ Y3. We call Yi the canonical subschemes associated to the

degenerate loci of the conic bundle C on Y .
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We have the canonical subschemes

S ⊃ S1 ⊃ S2 ⊃ S3 and A2 ⊃ (A2)1 ⊃ (A2)2 ⊃ (A2)3

associated to the degeneracy locus of P and Q respectively. Then, by Proposition 7.6, πsp

maps S−S2 into A2− (A2)2 such that S1−S2 → (A2)1− (A2)2 and S−S1 → A2− (A2)1.

By Theorem 1 in [20], we have A2 ' Φ×Λ, where Λ is the 3-dimensional affine space

and Φ is the 6-dimensional affine space whose points are identified with the set of quadratic

forms on a fixed 3-dimensional vector space or the set of algebras of the form C+
q , the even

degree elements of the Clifford algebra associated to the quadratic form q. Hence we have

(A2)i = {q ∈ Φ | rank q ≤ 3− i} × C3 for i = 1, 2, 3,

and

A2 − (A2)1 = {q ∈ Φ | C+
q 'M(2)} × C3 = {y ∈ A2 |Wy 'M(2)}.

Proposition 7.8. The subsets S − S2 and S1 − S2 of S are precisely S − π−1
S (Z2g

2 ) and

π−1
S (T ∗J/Z2 − Z2g

2 ) respectively. In particular, S− S1 = π−1
S (Ms

2).

Proof. The proof is similar to that of Proposition 3 in [1]. By the arguments before this

proposition, it suffices to show that the subsets π−1
S (Ms

2) and π−1
S (T ∗J/Z2 − Z2g

2 ) of S

are mapped by πsp into the subsets A2 − (A2)1 and (A2)1 − (A2)2 of A2 respectively. We

already know that (E, φ, s) ∈ π−1
S (Ms

2) if and only if End((E, φ)) = M(2), which proves

that π−1
S (Ms

2) maps to A2 − (A2)1.

Next, we claim that for (E, φ, s) ∈ π−1
S (T ∗J/Z2 − Z2g

2 ), End((E, φ)) has the same

defining relations as that of C+
q for a quadratic form q of rank 2 on a 3-dimensional

vector space. It follows from the definition of πS that the endomorphism algebras of any

two points in a fibre π−1
S ((L,ψ) ⊕ (L−1,−ψ)) are isomorphic. So we can choose a point

(E, φ, s) ∈ π−1
S ((L,ψ)⊕ (L−1,−ψ)), where

(E, φ) = (V, φV )⊕ (W,φW ),

(V, φV ) ∈ H1(L2)⊕H0(L2KX), (W,φW ) ∈ H1(L−2)⊕H0(L−2KX)

and

(L,ψ) ∈ T ∗J − Z2g
2 ,

that is,

(7.12) 0→ (L,ψ)→ (V, φV )→ (L−1,−ψ)→ 0

and

(7.13) 0→ (L−1,−ψ)→ (W,φW )→ (L,ψ)→ 0.
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It is obvious that this kinds of points belongs to π−1
S (T ∗J/Z2−Z2g

2 ). By (7.12) and (7.13),

we can see that End((V, φV )⊕ (W,φW )) has four generators, which can be written as the

following block matrices

x =

 0 0

γ2 0

 , w =

0 γ1

0 0

 , u =

I 0

0 0

 and v =

0 0

0 I


where I is the 2 × 2 identity matrix and γ1, γ2 are the 2 × 2 matrices that come from

identification of the rank 1 Higgs bundles in (7.12) and (7.13).

Here we need to show that End((V, φV )) = C · idV precisely. First of all we show that

End(V ) = C · idV . Consider an arbitrary nontrivial morphism φ : V → V in End(V ). Let

0 // L
i // V

j // L−1 // 0

be the nonsplit extension to define V . Then the composition

L
i // V

φ // V
j // L−1

should be zero. If not, then this composition is an isomorphism, which is a contradiction.

Then φ(L) ⊂ L. Let ψ := φ− λ · idV . Since φ|L = λ · idL for some λ ∈ C×, ψ|L = 0, that

is, ψ ◦ i = 0, which implies that ψ : V → V factors through V
j−→ L−1 and there exists a

unique morphism ψ′ : L−1 → V such that ψ′ ◦ j = ψ. If the composition L−1 ψ′−→ V jL−1

is nonzero, then j ◦ ψ′ = η · idL−1 for some η ∈ C×. Then 1
ηψ
′ : L−1 → V is a splitting of

the following nonplit extension

0 // L
i // V

j // L−1 // 0,

which is a contradiction. So the composition L−1 ψ′−→ V
j−→ L−1 is zero and then there

exists a unique morphism h : L−1 → L such that i ◦ h = ψ′. Since L � L−1, h = 0, that

is, ψ′ = 0. Hence ψ = 0, that is, ψ = λ · idV .

By Theorem 2.4, End((V, ψV )) = H0Hom((V, φV ), (V, φV )). We know that

H0Hom((V, φV ), (V, φV )) = ker( End(V )
[ · ,φV ] // Hom(V, V ⊗KX) ).

Since End(V ) = C · idV , we have [ · , φV ] = 0, that is, End((V, ψV )) = End(V ) = C · idV .

Similarly, we can show that End((W,φW )) = C · idW .

Coming back to the main proof, the defining relations of End((V, φV )⊕ (W,φW )) can

be written as

u2 = u, v2 = v, uv = 0, u+ v = I, w2 = x2 = wx = 0, uw = w,

wu = 0, ux = 0, xu = x, vw = 0, wv = w, vx = x, xv = 0.
(7.14)



A Desingularization of Moduli of Higgs Bundles 293

For a quadratic form q of rank 2 on a 3-dimensional vector space over C, we can see that

C+
q is a 4-dimensional C-algebra with

C+
q = C+ Cα+ Cβ + Cγ such that α2 = −1, αβ = −γ, αγ = β, βα = γ, γα = −β.

When we set a = 1
2(1 + iα), b = 1

2(1− iα), c = iβ + γ and d = iβ − γ for i =
√
−1 ∈ C, a,

b, c, d are new generators of C+
q with the following defining relations

a2 = a, b2 = b, ab = 0, a+ b = 1, c2 = d2 = cd = 0, ac = c,

ca = 0, ad = 0, da = d, bc = 0, cb = c, bd = d, db = 0.
(7.15)

Both (7.14) and (7.15) are the same.

Corollary 7.9. S1−S2
∼= D̃(2)− (D̃(1)∪ D̃(3)), that is, it is a free Z2-quotient of a I2g−3-

bundle on T ∗J − Z2g
2 , where I2g−3 is the incidence variety given by I2g−3 = {(p,H) ∈

P2g−3 × (P2g−3)∗ | p ∈ H}.

Proof. The proof is similar to that of [1, Corollary 1] except for using (7.14) and Propo-

sition 3.4.

We claim that if (E, φ, s) ∈ S1−S2 = π−1
S (T ∗J/Z2−Z2g

2 ) and πS((E, φ, s)) = (L,ψ)⊕
(L−1,−ψ) ∈ T ∗J/Z2 − Z2g

2 then (E, φ) = (V, φV )⊕ (W,φW ) for some extension classes

[(V, φV )] ∈ PH1Hom((L,ψ), (L−1,−ψ)) = P(H1(L−2)⊕H0(L−2KX)) = P2g−3

and

[(W,φW )] ∈ PH1Hom((L−1,−ψ), (L,ψ)) = P(H1(L2)⊕H0(L2KX)) = P2g−3.

Let (E, φ, s) ∈ π−1
S (T ∗J/Z2 − Z2g

2 ) such that πS((E, φ, s)) = (L,ψ) ⊕ (L−1,−ψ) ∈
T ∗J/Z2 − Z2g

2 . Then End((E, φ)) has four generators x, w, u, v with defining relations

(7.14) as in the proof of Proposition 7.8. Let (V, φV ) = keru. Then (V, φV ) is a Higgs

subbundle of (E, φ) and we have an exact sequence

0→ (V, φV )→ (E, φ)→ (W,φW )→ 0

such that (W,φW ) = ker v. Thus this exact sequence splits and then (E, φ) = (V, φV ) ⊕
(W,φW ).

By Proposition 3.4, (V, φV ) and (W,φW ) cannot be (L,ψ) ⊕ (L,ψ) or (L−1,−ψ) ⊕
(L−1,−ψ) and we also rule out (V, φV ) = (L,ψ)⊕ (L−1,−ψ) and (W,φW ) = (L−1,−ψ)⊕
(L,ψ). Hence

[(V, φV )] ∈ PH1Hom((L,ψ), (L−1,−ψ)) and [(W,φW )] ∈ PH1Hom((L−1,−ψ), (L,ψ)).
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We next claim that if we choose (c, d, e, f) ∈ [H0(L−2KX)⊕H0(L2KX)]⊕ [H1(L2)⊕
H1(L−2)] such that [(V, φV )] = [(f, c)] and [(W,φW )] = [(e, d)] then (c, d, e, f) ∈ Ψ

−1
(0).

Assume that (c, d, e, f) /∈ Ψ
−1

(0). Let (a, b) ∈ H0(KX)⊕H1(OX) be classes obtained

from transition of L and local Higgs field of ψ. Following the arguments of the proof

of Lemma 7.3, (V, φV ) and (W,φW ) are obtained by an elementary modification starting

with a family (F , ϕF ) of semistable Higgs bundles over X parametrized by

C = {(a, b, zc, zd, ze, zf) ∈ H0(KX)⊕H1(OX)⊕ [H0(L−2KX)⊕H0(L2KX)]

⊕ [H1(L2)⊕H1(L−2)] | z ∈ C}.

Precisely, (V, φV ) = (F ′, ϕF ′)|z=0 and (W,φW ) = (F ′′, ϕF ′′)|z=0, where (F ′, ϕF ′) is the

kernel of (F , ϕF )→ (F , ϕF )|z=0
∼= (L−1,−ψ)⊕ (L−1,−ψ)→ (L,ψ) and (F ′′, ϕF ′′) is the

kernel of (F , ϕF )→ (F , ϕF )|z=0
∼= (L−1,−ψ)⊕ (L−1,−ψ)→ (L−1,−ψ).

But since (c, d, e, f) /∈ Ψ
−1

(0), (zc, zd, ze, zf) /∈ Ψ
−1

(0) for all z ∈ C and then

(F , ϕF )|X×(a,b,zc,zd,ze,zf) is not a Higgs bundle for all z ∈ C. Then (V, φV ) and (W,φW )

are not Higgs bundles. Indeed, if (V, φV ) and (W,φW ) are Higgs bundles and if we consider

the following elementary modifications

0→ (G′, ϕG′)→ (F ′, ϕF ′)→ (L−1,−ψ)→ 0

and

0→ (G′′, ϕG′′)→ (F ′′, ϕF ′′)→ (L,ψ)→ 0,

then (G′, ϕG′) ∼= (G′′, ϕG′′) ∼= (F⊗OX×C(−D), ϕF⊗OX×C(−D)), whereD = {(x, (a, b, zc, zd,
ze, zf)) ∈ X × C | z = 0}. Since (F ⊗ OX×C(−D), ϕF⊗OX×C(−D))|z=0 is a Higgs bundle

and OX×C(−D) is a line bundle, (V, φV ) and (W,φW ) are Higgs bundles. Thus we get a

contradiction. Hence (c, d, e, f) ∈ Ψ
−1

(0).

7.4. Factorization of ρ

In this subsection, we show that ρ factors through Kε. Let D1, D2 and D3 be three

exceptional divisors on K coming from the three blow-ups. Consider the point 0 =

[(OX , 0) ⊕ (OX , 0)] ∈ Z2g
2 . Let D̃(1), D̃(2) and D̃(3) be the restrictions of D1, D2 and

D3 to a neighborhood of the preimage of 0 in K respectively. We need the following two

lemmas for the proof.

Lemma 7.10. (1) The isomorphism classes of Higgs bundles given by (7.5) and (7.6)

are independent of the choice of (a, d), (b, e).

(2) The isomorphism classes of Higgs bundles given by (7.8) and (7.9) are independent

of the choice of (g, h), (b, e), (c, f).
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Proof. The proofs of (1) and (2) are identical. We prove only (1). Let {Vi}i be an open

cover of X and let (E, φ) and (E′, φ′) be Higgs bundles given by (7.5) on Vi ∩Vj and (7.6)

on Vi. Assume that an isomorphism between (E, φ) and (E′, φ′) is given by invertible

matrices 
ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44


on Vi. Then 

ηj,11 ηj,12 ηj,13 ηj,14

ηj,21 ηj,22 ηj,23 ηj,24

ηj,31 ηj,32 ηj,33 ηj,34

ηj,41 ηj,42 ηj,43 ηj,44




1 0 0 0

0 1 0 0

0 0 1 0

−2αij |z=0 −βij |z=0 γij |z=0 1



=


1 0 0 0

0 1 0 0

0 0 1 0

−2α′ij |z=0 −β′ij |z=0 γ′ij |z=0 1




ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44


and 

ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44




0 0 0 0

0 0 0 0

0 0 0 0

−2pi|z=0 −qi|z=0 ri|z=0 0



=


0 0 0 0

0 0 0 0

0 0 0 0

−2p′i|z=0 −q′i|z=0 r′i|z=0 0




ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44

 .

Equating each rows, we have

ηi,11 = ηj,11 = constant, ηi,12 = ηj,12 = constant, ηi,13 = ηj,13 = constant, ηi,14 = ηj,14 = 0,

ηi,21 = ηj,21 = constant, ηi,22 = ηj,22 = constant, ηi,23 = ηj,23 = constant, ηi,24 = ηj,24 = 0,

ηi,31 = ηj,31 = constant, ηi,32 = ηj,32 = constant, ηi,33 = ηj,33 = constant, ηi,34 = ηj,34 = 0,

ηi,44 = ηj,44 = constant 6= 0,
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and

−2ηi,44(a, d) = −2ηi,11(a′, d′)− ηi,21(b′, e′) + ηi,31(c′, f ′),

−ηi,44(b, e) = −2ηi,12(a′, d′)− ηi,22(b′, e′) + ηi,32(c′, f ′),

ηi,44(c, f) = −2ηi,13(a′, d′)− ηi,23(b′, e′) + ηi,33(c′, f ′),

where

({αij |z=0}, {pi|z=0}), ({α′ij |z=0}, {p′i|z=0}), ({βij |z=0}, {qi|z=0}),

({β′ij |z=0}, {q′i|z=0}), ({γij |z=0}, {ri|z=0}) and ({γ′ij |z=0}, {r′i|z=0})

represent classes (a, d), (a′, d′), (b, e), (b′, e′), (c, f) and (c′, f ′) in H1(OX) ⊕ H0(KX)

respectively.

Since 
−2ηi,11 −ηi,21 ηi,31

−2ηi,12 −ηi,22 ηi,32

−2ηi,13 −ηi,23 ηi,33

 =


ηi,11 ηi,21 ηi,31

ηi,12 ηi,22 ηi,32

ηi,13 ηi,23 ηi,33



−2 0 0

0 −1 0

0 0 1


is invertible, Span{(a, d), (b, e), (c, f)} = Span{(a′, d′), (b′, e′), (c′, f ′)}.

Lemma 7.11. The isomorphism classes of Higgs bundles given by (7.10) and (7.11) are

independent of the choice of (b, e), (c, f).

Proof. Let {Vi}i be an open cover of X and let (E, φ) and (E′, φ′) be Higgs bundles given

by (7.10) on Vi ∩ Vj and (7.11) on Vi. Assume that an isomorphism between (E, φ) and

(E′, φ′) is given by invertible matrices
ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44


on Vi. Then 

ηj,11 ηj,12 ηj,13 ηj,14

ηj,21 ηj,22 ηj,23 ηj,24

ηj,31 ηj,32 ηj,33 ηj,34

ηj,41 ηj,42 ηj,43 ηj,44




1 0 0 0

γij |z=0 1 0 0

βij |z=0 0 1 0

−2δij |z=0 −βij |z=0 γij |z=0 1


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=


1 0 0 0

γ′ij |z=0 1 0 0

β′ij |z=0 0 1 0

−2δ′ij |z=0 −β′ij |z=0 γ′ij |z=0 1




ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44


and 

ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44




0 0 0 0

ri|z=0 0 0 0

qi|z=0 0 0 0

−2si|z=0 −qi|z=0 ri|z=0 0



=


0 0 0 0

r′i|z=0 0 0 0

q′i|z=0 0 0 0

−2s′i|z=0 −q′i|z=0 r′i|z=0 0




ηi,11 ηi,12 ηi,13 ηi,14

ηi,21 ηi,22 ηi,23 ηi,24

ηi,31 ηi,32 ηi,33 ηi,34

ηi,41 ηi,42 ηi,43 ηi,44

 .

Equating each rows, we have

ηi,11 = ηj,11 = constant, ηi,12 = ηj,12 = 0, ηi,13 = ηj,13 = 0, ηi,14 = ηj,14 = 0,

ηi,22 = ηj,22 = constant, ηi,23 = ηj,23 = constant, ηi,24 = ηj,24 = 0,

ηi,32 = ηj,32 = constant, ηi,33 = ηj,33 = constant, ηi,34 = ηj,34 = 0,

ηi,44 = ηj,44 = constant,

and

−ηi,22(c, f)− ηi,23(b, e) + ηi,11(c′, f ′) = 0,

−ηi,32(c, f)− ηi,33(b, e) + ηi,11(b′, e′) = 0,

−ηi,22(b′, e′) + ηi,32(c′, f ′) + ηi,44(b, e) = 0,

−ηi,23(b′, e′) + ηi,33(c′, f ′)− ηi,44(c, f) = 0,

where

({δij |z=0}, {si|z=0}), ({δ′ij |z=0}, {s′i|z=0}), ({βij |z=0}, {qi|z=0}),

({β′ij |z=0}, {q′i|z=0}), ({γij |z=0}, {ri|z=0}) and ({γ′ij |z=0}, {r′i|z=0})

represent classes (g, h), (g′, h′), (b, e), (b′, e′), (c, f) and (c′, f ′) in H1(OX) ⊕ H0(KX)

respectively. Hence

Span{(b, e), (c, f)} = Span{(b′, e′), (c′, f ′)}.
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Proposition 7.12. ρ factors through Kε.

Proof. Consider the first contraction fσ : K → Kσ. We show that there is a continuous

map ρσ : Kσ → S such that ρσ ◦ fσ = ρ. It is enough to show that ρ is constant on the

fibers of fσ by Riemann’s extension theorem. By Propositions 7.4 and 7.5, fσ is indeed

the contraction of the fibers P2 of P(S2A)→ Grω(2, 2g) in D̃(3) which forgets the choice of

(b, e), (c, f) in the 2-dimensional subspace of H1(OX)⊕H0(KX) spanned by (b, e), (c, f).

We have only to check that the isomorphism classes of the Higgs bundles given by (7.8),

(7.9), (7.10) and (7.11) depend not on the particular choice of (b, e), (c, f) but only on

the points in P2g−4-bundle over Grω(2, 2g). By Lemma 7.11, the isomorphism classes of

Higgs bundles given by (7.10) and (7.11) are independent of the choice of (b, e), (c, f). On

the other hand, it follows from Lemma 7.10(2) that the isomorphism classes of the Higgs

bundles given by (7.8) and (7.9) are independent of the choice of (g, h), (b, e), (c, f). Thus,

there exists a morphism ρσ : Kσ → S such that ρσ ◦ fσ = ρ.

We next show that ρσ factors through Kε. By Proposition 7.5, the morphism fε : Kσ →
Kε is the contraction of the fiber P5 of a P5-bundle over Grω(3, 2g) and general points of

a fiber give rise to a rank 4 Higgs bundle given by (7.5) and (7.6). By Lemma 7.10(1), the

isomorphism classes of the Higgs bundles given by (7.5) and (7.6) depend only on the 3-

dimensional subspace spanned by (a, d), (b, e), (c, f). Thus ρσ is constant along the fibers

of fε. Applying Riemann’s extension theorem again, we obtain a morphism ρε : Kε → S

such that ρε ◦ f = ρ.

7.5. A proof of Theorem 6.1

We precisely refer to the original version of Zariski’s main theorem.

Proposition 7.13. (Main theorem of [25]) If W is an irreducible fundamental variety

on V of a birational correspondence T between V and V ′ and if T has no fundamental

elements on V ′, then-under the assumption that V is locally normal at W -each irreducible

component of the transform T [W ] is of higher dimension than W .

By Proposition 7.8 and Corollary 7.9, ρ(D̃(2) − D̃(1) ∪ D̃(3)) = S1 − S2 is a smooth

divisor of S−ρ(D̃(1)∪ D̃(3)) = S−S2 lying over T ∗J/Z2−Z2g
2 . Then we have a morphism

g from S − ρ(D̃(1) ∪ D̃(3)) to the blow-up of M2 − Z2g
2 along T ∗J/Z2 − Z2g

2 which is

isomorphic to K − D̃(1) ∪ D̃(3) = Kε − f(D̃(1) ∪ D̃(3)). Thus, ρε mentioned in the proof

of Proposition 7.12 and g are isomorphisms in codimension one. Note that f(D̃(1) ∪ D̃(3))

has codimension 3 in Kε.

Assume that Kε is not isomorphic to S. Since S is smooth and S2 is the fundamental

variety on S of ρε, it follows from Proposition 7.13 that S2 has codimension greater than 3.

Further, since Kε is smooth, f(D̃(1)∪D̃(3)) is the fundamental variety on Kε of g, it follows
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from Proposition 7.13 that S2 has codimension less than 3. Hence to avoid a contradiction,

Kε should be isomorphic to S.
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