
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 24, No. 3, pp. 681–694, June 2020

DOI: 10.11650/tjm/190709

Strict Monotonicity and Unique Continuation for General Non-local

Eigenvalue Problems

Silvia Frassu* and Antonio Iannizzotto

Abstract. We consider the weighted eigenvalue problem for a general non-local pseudo-

differential operator, depending on a bounded weight function. For such problem, we

prove that strict (decreasing) monotonicity of the eigenvalues with respect to the

weight function is equivalent to the unique continuation property of eigenfunctions.

In addition, we discuss some unique continuation results for the special case of the

fractional Laplacian.

1. Introduction

Weighted eigenvalue problems can be studied for any type of linear elliptic (ordinary or

partial) differential operator and even for integro-differential operators, exhibiting some

kind of uniform ellipticity, and under various boundary conditions. In most cases, the

resulting problem can be written asLu = λρ(x)u in Ω,

u ∈ X(Ω),

where L is the chosen operator, Ω is a bounded domain, ρ ∈ L∞(Ω) is the weight function,

and X(Ω) is some function space defined on Ω (which includes the boundary conditions).

The problem above admits a sequence of variational eigenvalues, generally unbounded

both from above and below (the sequence is bounded from below if ρ is non-negative, and

from above if ρ is non-positive), denoted by

· · · ≤ λ−k(ρ) ≤ · · · ≤ λ−1(ρ) < 0 < λ1(ρ) ≤ · · · ≤ λk(ρ) ≤ · · ·

(we refer to [4]). Even non-linear operators, under some homogeneity and monotonicity

properties, admit an analogous sequence of variational eigenvalues, though it is not known

whether they cover the whole spectrum or not (see [12]).
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Clearly, every eigenvalue depends on the weight function, and it is an easy consequence

of the variational characterization of eigenvalues that the mapping ρ 7→ λk(ρ) is monotone

non-increasing for all integer k 6= 0, with respect to the pointwise order in L∞(Ω). A

more delicate question is whether such dependence is strictly decreasing. De Figueiredo

and Gossez [5] have proved that, if L is a second order elliptic operator with bounded

coefficients and Dirichlet boundary conditions, strict monotonicity of the eigenvalues with

respect to the weight is equivalent to the unique continuation property (for short, u.c.p.)

of eigenfunctions, i.e., the fact that eigenfunctions vanish at most in a negligible set. The

result strongly relies on min-max characterizations of the eigenvalues of both signs.

Such equivalence is extremely important in the study of non-linear boundary value

problems of the type Lu = f(x, u) in Ω,

u ∈ X(Ω),

where f : Ω × R → R is a Carathéodory mapping, asymptotically linear in the second

variable either at zero or at infinity. Many existence/multiplicity results for non-linear

boundary value problems are obtained by locating the limits

lim
t→0,∞

f(x, t)

t

in known spectral intervals of the type [λk(ρ), λk+1(ρ)], possibly involving several weight

functions, and then by using strict monotonicity to avoid resonance phenomena. Thus,

it is possible to compute the critical groups of the corresponding energy functional both

at zero and at infinity, and so deduce the existence of non-trivial solutions (one typical

application of this approach for the fractional Laplacian can be found in [9]).

Motivated by the considerations above, we devote this note to proving an analog of

the results of [5] for a very general family of linear non-local operators, introduced by

Servadei and Valdinoci in [18], which includes as a special case the fractional Laplacian

(for a general discussion on fractional boundary value problems, we refer to [11]). We

study the following eigenvalue problem:

(1.1)

LKu = λρ(x)u in Ω,

u = 0 in RN \ Ω.

Here Ω ⊂ RN is a bounded domain with a Lipschitz continuous boundary, the leading

operator is defined by

LKu(x) = P.V.

∫
RN

(u(x)− u(y))K(x− y) dy,

namely a general non-local operator, whose kernel K satisfies the following hypotheses:
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HK K : RN \ {0} → (0,+∞) s.t.

(i) mK ∈ L1(RN ), where m(x) = min{|x|2, 1};

(ii) K(x) ≥ α|x|−(N+2s) in RN \ {0} (α > 0, s ∈ (0, 1) s.t. N > 2s);

(iii) K(−x) = K(x) in RN \ {0}.

The set of hypotheses HK is standard in the current literature (see [11, 13, 18]). Condi-

tion (i) is required to prove an integration by parts formula. Condition (ii) ensures the

compact embedding of the Sobolev-type space XK(Ω) into L2(Ω) (see Section 2 below).

Finally, the symmetry condition (iii) allows to rephrase equivalently the operator LK as

LKu(x) =
1

2

∫
RN

(2u(x)− u(x+ z)− u(x− z))K(z) dz

for any conveniently regular u. All these play a role in the weak formulation of prob-

lem (1.1). A typical example of a kernel satisfying HK is K(x) = |x|−N−2s, in this case

we have LK = (−∆)s (the Dirichlet fractional Laplacian).

The operator LK is the infinitesimal generator of a (possibly anisotropic) Lévy process,

and thus it arises often in modeling phenomena of anomalous diffusion with long distance

interactions (see [6, 13] and the references therein). Problem (1.1) depends on a weight

function ρ ∈ L∞(Ω), and it admits a sequence of eigenvalues (λk(ρ))k∈Z0 (k ∈ ±N0 if ρ has

constant sign). Here we prove equivalence between the strict monotonicity of the mapping

ρ 7→ λk(ρ) (k ∈ Z0), and u.c.p. of eigenfunctions. Our proof is based on the functional

setting, and the observation that the norm induced by the operator LK is strictly stronger

than the L2 norm (here, we use HK(ii)).

We note that, in general, u.c.p. for solutions of non-local problems is a challenging

open problem, though some partial results have been established, mostly regarding the

case of the fractional Laplacian.

In Section 2 we give problem (1.1) an appropriate functional analytic setting and recall

the general structure of the spectrum; in Section 3 we prove our equivalence result; and

in Section 4 we survey some known results about u.c.p. for non-local operators.

Notations. For all U ⊂ RN we denote by |U | its Lebesgue measure. For any two

measurable functions f , g defined in U , we write f ≤ g for ‘f(x) ≤ g(x) for a.e. x ∈ U ’,

and similarly f ≥ g, f < g, f > g, and f ≡ g. We denote by f+, f− the positive and

negative parts of f , respectively. For all q ∈ [1,∞] we denote by ‖ · ‖q the norm of Lq(Ω).

2. Functional analytic setting and general properties of the eigenvalues

We introduce a functional analytic setting for problem (1.1), following [18] (see also [11]).

For all measurable u : RN → R set
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[u]2K :=

∫∫
RN×RN

(u(x)− u(y))2K(x− y) dxdy,

then define

XK(Ω) = {u ∈ L2(RN ) : [u]K <∞, u = 0 a.e. in RN \ Ω},

endowed with the scalar product

〈u, v〉 =

∫∫
RN×RN

(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

and the corresponding norm ‖u‖ = [u]K . Then, (XK(Ω), ‖ · ‖) is a Hilbert space, con-

tinuously embedded into the fractional Sobolev space Hs(Ω) and hence into Lq(Ω) for all

q ∈ [1, 2∗s] (2∗s := 2N/(N − 2s)), with compact embedding iff q < 2∗s [18, Lemmas 5-8].

We say that u ∈ XK(Ω) is a (weak) solution of (1.1), if for all v ∈ XK(Ω),

〈u, v〉 = λ

∫
Ω
ρ(x)uv dx.

If, for a given λ ∈ R, problem (1.1) has a non-trivial solution u ∈ XK(Ω) \ {0}, then λ

is an eigenvalue with associated eigenfunction u. The spectrum of (1.1) is the set of all

eigenvalues, denoted σ(ρ).

Following the general scheme of [4], we provide a characterization of σ(ρ). In particular,

we provide four min-max formulas for eigenvalues of both signs, that will be a precious

tool in the proof of our main results:

Proposition 2.1. Let ρ ∈ L∞(Ω), ρ 6≡ 0. Set for all integer k > 0

Fk = {F ⊂ XK(Ω) : F linear subspace,dim(F ) = k},

and

λ−1
k (ρ) = sup

F∈Fk

inf
u∈F
‖u‖=1

∫
Ω
ρ(x)u2 dx = inf

F∈Fk−1

sup
u∈F⊥
‖u‖=1

∫
Ω
ρ(x)u2 dx,(2.1)

λ−1
−k(ρ) = inf

F∈Fk

sup
u∈F
‖u‖=1

∫
Ω
ρ(x)u2 dx = sup

F∈Fk−1

inf
u∈F⊥
‖u‖=1

∫
Ω
ρ(x)u2 dx.(2.2)

Then,

(i) if ρ+ 6≡ 0, then

0 < λ1(ρ) < λ2(ρ) ≤ · · · ≤ λk(ρ) ≤ · · · → ∞,

and for all k ∈ N0, λk(ρ) is an eigenvalue of (1.1) with associated eigenfunction

ek,ρ ∈ XK(Ω);
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(ii) if ρ− 6≡ 0, then

0 > λ−1(ρ) > λ−2(ρ) ≥ · · · ≥ λ−k(ρ) ≥ · · · → −∞,

and for all k ∈ N0, λ−k(ρ) is an eigenvalue of (1.1) with associated eigenfunction

e−k,ρ ∈ XK(Ω).

Moreover, all sup’s and inf’s in (2.1), (2.2) are attained (at λ±k(ρ)-eigenfunctions). If

ρ ≥ 0 (resp. ρ ≤ 0), then (1.1) admits only positive (resp. negative) eigenvalues. Finally,

for all k, h ∈ Z0,

〈ek,ρ, eh,ρ〉 = δkh.

Proof. Given u ∈ XK(Ω), the linear functional

v 7→
∫

Ω
ρ(x)uv dx

is bounded in XK(Ω). By Riesz’ representation theorem there exists a unique T (u) ∈
XK(Ω) s.t.

〈T (u), v〉 =

∫
Ω
ρ(x)uv dx.

So we define a bounded linear operator T ∈ L(XK(Ω)), indeed for all u ∈ XK(Ω)

‖T (u)‖ = sup
v∈XK(Ω)
‖v‖=1

∣∣∣∣∫
Ω
ρ(x)uv dx

∣∣∣∣ ≤ ‖ρ‖∞‖u‖2 sup
v∈XK(Ω)
‖v‖=1

‖v‖2 ≤ C‖u‖.

Clearly T is symmetric. Moreover, T is compact. Indeed, let (un) be a bounded sequence

in XK(Ω), then (passing to a subsequence) un ⇀ u in XK(Ω), un → u in L2(Ω). So we

have for all v ∈ XK(Ω), ‖v‖ ≤ 1,

|〈T (un)− T (u), v〉| ≤
∫

Ω
|ρ(x)(un − u)v| dx ≤ ‖ρ‖∞‖un − u‖2‖v‖2 ≤ C‖un − u‖2,

and the latter tends to 0 as n → ∞. So T (un) → T (u) in XK(Ω). First assume ρ+ 6≡ 0,

then

µ1 = sup
u∈XK(Ω)
‖u‖=1

〈T (u), u〉 > 0.

By [4, Lemma 1.1], there exists e1,ρ ∈ XK(Ω) s.t. T (e1,ρ) = µ1e1,ρ, ‖e1,ρ‖ = 1. Further,

set for all k > 0,

µk = sup
F∈Fk

inf
u∈F
‖u‖=1

∫
Ω
ρ(x)u2 dx > 0.

Then, by [4, Propositions 1.3, 1.8], there exists ek,ρ ∈ XK(Ω) s.t. T (ek,ρ) = µkek,ρ. Ap-

plying [4, Lemma 1.4], we see that (µk) is a sequence of eigenvalues of T , s.t. µk ≥ µk+1
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and µk → 0+. Besides, for all k > 0, the eigenspace associated to µk has finite dimension

(hence it admits an orthonormal basis). So, by relabeling (ek,ρ) if necessary, we have for

all k, h ∈ Z0,

〈ek,ρ, eh,ρ〉 = δkh,

which in turn implies for all k 6= h,∫
Ω
ρ(x)ek,ρ, eh,ρ dx = 0.

Now set λk(ρ) = µ−1
k . Then, (2.1) follows from the definition of µk and [4, Propositions 1.7,

1.8]. Besides, we have for all v ∈ XK(Ω),

〈ek,ρ, v〉 = λk(ρ)

∫
Ω
ρ(x)ek,ρv dx,

so λk(ρ) ∈ σ(ρ) with associated eigenfunction ek,ρ. Moreover, λk(ρ) → ∞ as k → ∞, all

eigenspaces are finite-dimensional, and eigenfunctions associated to different eigenvalues

are orthogonal. Also, all sup’s and inf’s in (2.1) are attained at (subspaces generated by)

eigenfunctions, as pointed out in [4, Remark, p. 40].

Finally, reasoning as in [9, Proposition 2.8] it is easily seen that λ1(ρ) < λ2(ρ) and

that there are no positive eigenvalues other than λk(ρ), k > 0.

Similarly, if ρ− 6≡ 0, then (2.2) defines a sequence (λ−k(ρ)) of negative eigenvalues of

(1.1) s.t. λ−k(ρ) → −∞, with an orthonormal sequence (e−k,ρ) of associated eigenfunc-

tions.

By [4, Proposition 1.11], if ρ ≥ 0 there are no negative eigenvalues, similarly if ρ ≤ 0

there are no positive eigenvalues.

Now we prove continuous dependence of the eigenvalues on ρ, with respect to the norm

topology of L∞(Ω) (in the forthcoming results, we say that k ∈ Z0 is admissible if the

corresponding eigenvalue does exist):

Proposition 2.2. Let (ρn) be a sequence in L∞(Ω) s.t. ρn → ρ in L∞(Ω). Then, for all

admissible k ∈ Z0 we have λk(ρn)→ λk(ρ).

Proof. For simplicity, assume ρ+
n 6≡ 0 for all n ∈ N, ρ+ 6≡ 0, and k > 0 (other cases are

studied similarly). Set for all u, v ∈ XK(Ω),

〈Tn(u), v〉 =

∫
Ω
ρn(x)uv dx,

then Tn ∈ L(XK(Ω)) is a bounded, symmetric, compact operator. Similarly we define

T ∈ L(XK(Ω)) using ρ. We claim that

(2.3) Tn → T in L(XK(Ω)).



Non-local Monotonicity and U.C.P. 687

Indeed, for any n ∈ N and u ∈ XK(Ω), ‖u‖ = 1, we have by the Cauchy-Schwarz inequality

‖Tn(u)− T (u)‖ = sup
v∈XK(Ω)
‖v‖=1

∣∣∣∣∫
Ω
ρn(x)uv dx−

∫
Ω
ρ(x)uv dx

∣∣∣∣
≤ sup

v∈XK(Ω)
‖v‖=1

‖ρn − ρ‖∞‖u‖2‖v‖2 ≤ C‖ρn − ρ‖∞,

and the latter tends to 0 as n→∞. Now fix k > 0, we have for all n ∈ N,

(2.4) |λ−1
k (ρn)− λ−1

k (ρ)| ≤ ‖Tn − T‖L(XK(Ω)).

We argue as in [8, Theorem 2.3.1]. Recalling (2.1), there exists F ∈ Fk s.t.

λ−1
k (ρ) = inf

u∈F
‖u‖=1

∫
Ω
ρ(x)u2 dx.

By compactness, there exists û ∈ F , ‖û‖ = 1 s.t.∫
Ω
ρn(x)û2 dx = inf

u∈F
‖u‖=1

∫
Ω
ρn(x)u2 dx.

So we have for all n ∈ N,

λ−1
k (ρ)− λ−1

k (ρn) ≤ inf
u∈F
‖u‖=1

∫
Ω
ρ(x)u2 dx− inf

u∈F
‖u‖=1

∫
Ω
ρn(x)u2 dx

≤
∫

Ω
ρ(x)û2 dx−

∫
Ω
ρn(x)û2 dx = 〈T (û)− Tn(û), û〉

≤ ‖T − Tn‖L(XK(Ω)).

An analogous argument leads to

λ−1
k (ρ)− λ−1

k (ρn) ≥ −‖T − Tn‖L(XK(Ω)),

proving (2.4). Now (2.3), (2.4) imply λk(ρn)→ λk(ρ) as n→∞.

Remark 2.3. In fact, continuous dependence can be proved even with respect to weaker

types of convergence, such as weak* convergence of the weights (see [1, Theorem 3.1]).

Anyway, continuity in the norm topology is enough for our purposes.

3. Strict monotonicity and u.c.p.

This section is devoted to proving our main result, i.e., the equivalence between strict

monotonicity of the map ρ 7→ λk(ρ) (k ∈ Z0) and u.c.p. of the eigenfunctions. Our

definition of u.c.p. is the following:
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Definition 3.1. We say that ρ ∈ L∞(Ω) \ {0} satisfies u.c.p., if for any eigenfunction

u ∈ XK(Ω) of (1.1) (with any λ ∈ σ(ρ))

|{u = 0}| = 0.

We follow the approach of [5]. First we note that, by (2.1) and (2.2), given ρ, ρ̃ ∈
L∞(Ω) \ {0},

(3.1) ρ ≤ ρ̃ =⇒ λk(ρ) ≥ λk(ρ̃) for all admissible k ∈ Z0.

First we prove that u.c.p. implies strict monotonicity:

Theorem 3.2. Let ρ, ρ̃ ∈ L∞(Ω) \ {0} be s.t. ρ ≤ ρ̃, ρ 6≡ ρ̃, and either ρ or ρ̃ satisfies

u.c.p. Then, λk(ρ) > λk(ρ̃) for all admissible k ∈ Z0.

Proof. Assume ρ has u.c.p., ρ+, ρ̃+ 6≡ 0, k > 0. By (2.1), there exists F ∈ Fk s.t.

(3.2) λ−1
k (ρ) = inf

u∈F
‖u‖=1

∫
Ω
ρ(x)u2 dx.

Fix u ∈ F , ‖u‖ = 1. Two cases may occur:

(a) If u is a minimizer in (3.2), then u is a λk(ρ)-eigenfunction, hence |{u = 0}| = 0.

So we have ρu2 ≤ ρ̃u2, with strict inequality on a subset of Ω with positive measure, hence

λ−1
k (ρ) =

∫
Ω
ρ(x)u2 dx <

∫
Ω
ρ̃(x)u2 dx.

(b) If u is not a minimizer in (3.2), then

λ−1
k (ρ) <

∫
Ω
ρ(x)u2 dx ≤

∫
Ω
ρ̃(x)u2 dx.

In both cases, we have

λ−1
k (ρ) <

∫
Ω
ρ̃(x)u2 dx.

Since F has finite dimension, the set of u’s above is compact. Recalling also (2.1) with

weight ρ̃, we have

λ−1
k (ρ) < inf

u∈F
‖u‖=1

∫
Ω
ρ̃(x)u2 dx ≤ λ−1

k (ρ̃).

Now we assume ρ−, ρ̃− 6≡ 0 and consider negative eigenvalues, i.e., k < 0. Set j = −k for

simplicity. By (2.2), there exists F ∈ Fj−1 s.t.

λ−1
−j (ρ) = inf

u∈F⊥
‖u‖=1

∫
Ω
ρ(x)u2 dx.
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Arguing as above, we see that for all u ∈ F⊥, ‖u‖ = 1,

λ−1
−j (ρ) <

∫
Ω
ρ̃(x)u2 dx.

By (2.2), we have

λ−1
−j (ρ̃) ≥ inf

u∈F⊥
‖u‖=1

∫
Ω
ρ̃(x)u2 dx.

From Proposition 2.1 we know that there exists ũ ∈ F⊥, ‖ũ‖ = 1 such that

λ−1
−j (ρ̃) =

∫
Ω
ρ̃(x)ũ2 dx > λ−1

−j (ρ).

Hence, λ−j(ρ) > λ−j(ρ̃). The case when ρ does not satisfy u.c.p. is treated similarly.

The next result establishes the reverse implication.

Theorem 3.3. Let ρ ∈ L∞(Ω)\{0} do not satisfy u.c.p. Then, there exist ρ̃ ∈ L∞(Ω)\{0}
s.t. either ρ ≤ ρ̃ or ρ ≥ ρ̃, ρ 6≡ ρ̃, and k ∈ Z0 s.t. λk(ρ) = λk(ρ̃).

Proof. By Definition 3.1, we can find k ∈ Z0 and a λk(ρ)-eigenfunction u ∈ XK(Ω)

s.t. |A| > 0, where A := {u = 0}. First assume ρ+ 6≡ 0, k > 0, and without loss of

generality λk(ρ) < λk+1(ρ). For all ε ∈ R set

ρε(x) =

ρ(x) if x ∈ Ω \A,

ρ(x) + ε if x ∈ A,

so ρε ∈ L∞(Ω) and ρε → ρ in L∞(Ω) as ε→ 0. By Proposition 2.2,

lim
ε→0

λk+1(ρε) = λk+1(ρ) > λk(ρ),

so we can find ε ∈ (0, 1) s.t. λk+1(ρε) > λk(ρ). Set ρ̃ = ρε ∈ L∞(Ω) \ {0}, so ρ ≤ ρ̃, ρ 6≡ ρ̃.

For all v ∈ XK(Ω) we have

〈u, v〉 = λk(ρ)

∫
Ω
ρ(x)uv dx = λk(ρ)

∫
Ω
ρ̃(x)uv dx,

so λk(ρ) ∈ σ(ρ̃) with associated eigenfunction u. We can find h ∈ N0 s.t.

λk(ρ) = λh(ρ̃) < λh+1(ρ̃),

in particular λh(ρ̃) < λk+1(ρ̃), which implies h ≤ k. Besides, by (3.1) we have

λk(ρ̃) ≤ λk(ρ) = λh(ρ̃),

hence k ≤ h. Summarizing, h = k, thus λk(ρ) = λk(ρ̃).
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Now assume ρ− 6≡ 0 and k < 0. Set j = −k, for simplicity of notation, and without loss

of generality λ−j−1(ρ) < λ−j(ρ). Arguing as above (with ε < 0), we find ρ̃ ∈ L∞(Ω) \ {0}
s.t. ρ̃ ≤ ρ, ρ̃ 6≡ ρ, and λ−j−1(ρ̃) < λ−j(ρ). For all v ∈ XK(Ω) we have

〈u, v〉 = λ−j(ρ)

∫
Ω
ρ(x)uv dx = λ−j(ρ)

∫
Ω
ρ̃(x)uv dx,

so there exists i ∈ N0 s.t. λ−j(ρ) = λ−i(ρ̃), with u as an associated eigenfunction. By

λ−i(ρ̃) > λ−j−1(ρ̃) we have −i ≥ −j, while by (3.1) we have

λ−j(ρ̃) ≥ λ−j(ρ) = λ−i(ρ̃),

hence −j ≥ −i. Thus −i = −j and λ−j(ρ) = λ−j(ρ̃). Clearly, if ρ has constant sign only

one of the previous argument applies.

Remark 3.4. A partial result for Theorem 3.2 was given in [9, Proposition 2.10] for the

fractional Laplacian, with two positive weights one of which is in C1(Ω).

4. Unique continuation for non-local operators

This final section is devoted to a brief survey on recent results on u.c.p. for non-local oper-

ators. Note that, even in the local case, there are counterexamples of solutions to elliptic

equations vanishing in non-negligible sets, see [10, 20], not to mention that the question

of u.c.p. of eigenfunctions is still open for the p-Laplacian. Browsing the literature, many

results of this type are encountered, dealing in most cases with the fractional Laplacian

(−∆)s (which, as seen before, corresponds to our LK with the kernel K(x) = |x|−N−2s).

First we recall the main notions of u.c.p. considered in the literature:

Definition 4.1. Let Ω ⊆ RN be a domain and S a family of measurable functions on Ω:

(i) S satisfies the strong unique continuation property (s.u.c.p.), if no function u ∈
S \ {0} has a zero of infinite order in Ω;

(ii) S satisfies the unique continuation property (u.c.p.), if no function u ∈ S \ {0}
vanishes on a subset of Ω with positive measure;

(iii) S satisfies the weak unique continuation property (w.u.c.p.), if no function u ∈ S\{0}
vanishes on an open subset of Ω.

Definition 3.1 corresponds to the case (ii). We recall that a function u ∈ L2(Ω) has a

zero of infinite order at x0 ∈ Ω if for all n ∈ N,∫
Br(x0)

u2 dx = O(rn) as r → 0+.
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The relations between the properties depicted in Definition 4.1 are the following:

s.u.c.p. or u.c.p. =⇒ w.u.c.p.

We recall now some recent results on non-local unique continuation.

In [2], Fall and Felli consider fractional Laplacian equations involving regular, lower

order perturbations of a Hardy-type potential, of the following type:

(−∆)su− λ

|x|2s
u = h(x)u+ f(x, u) in Ω,

where Ω ⊂ RN is a bounded domain such that 0 ∈ Ω, 0 < s < min{1, N/2}, λ <

22sΓ2(N+2s
4 )/Γ2(N−2s

4 ), and h ∈ C1(Ω \ {0}), f ∈ C1(Ω× R) satisfy the estimates

|h(x)|+ |x · ∇h(x)| . |x|−2s+ε, ε > 0,

|f(x, t)t|+ |∂tf(x, t)t2|+ |∇xF (x, t) · x| . |t|p, 2 < p <
2N

N − 2s
,

where F (x, · ) is the primitive of f(x, · ). The main results asserts that, if u is a solution

of the equation above and u vanishes of infinite order at 0, then u ≡ 0 (s.u.c.p.). The

proof relies on the Caffarelli-Silvestre extension operator, exploited in order to define an

adapted notion of frequency function, admitting a limit as r → 0+.

Another result of Fall and Felli [3] deals with a relativistic Schrödinger equation in-

volving a fractional perturbation of (−∆)s and an anisotropic potential:

(−∆ +m2)su− a
(
x

|x|

)
u

|x|2s
− h(x)u = 0 in RN ,

where Ω, s are as above, m ≥ 0, a ∈ C1(SN−1) and h ∈ C1(Ω) satisfies a similar estimate

as above. The authors give a precise description of the asymptotic behavior of solutions

near the origin, and deduce again s.u.c.p. These results do not apply in our framework,

even restricting ourselves to the fractional Laplacian, since they involve smooth weight

functions, differentiability being required in order to derive Pohozaev-type identities.

Instead, Seo [16] considers possibly non-smooth weights in the fractional inequality

|(−∆)su| ≤ |V (x)u| in RN ,

where N ≥ 2, N − 1 ≤ 2s < N , and the measurable weight function V satisfies

lim
r→0+

sup
x∈RN

∫
Br(x)

|V (y)|
|x− y|N−2s

dy = 0.

By means of strong Carleman estimates, the author proves w.u.c.p. for solutions of the

above inequality with u, (−∆)su ∈ L1(RN ). Moreover, Seo [17] obtained a special u.c.p. re-

sult for potentials V in Morrey spaces.
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The problem of non-smooth weights is also the focus of the work of Rüland [15], dealing

with the fractional Schrödinger-type equation

(−∆)su = V (x)u in RN ,

with a measurable function V = V1 + V2 satisfying

V1(x) = |x|−2sh

(
x

|x|

)
, h ∈ L∞(SN−1),

|V2(x)| ≤ c|x|−2s+ε, c, ε > 0.

For s < 1/2, the following additional conditions are assumed: either V2 ∈ C1(RN \ {0})
satisfies |x · ∇V2(x)| . |x|−2s+ε, or s ≥ 1/4 and V1 ≡ 0. Under such assumptions, any

solution u ∈ Hs(RN ) vanishing of infinite order at 0 is in fact u ≡ 0 (s.u.c.p.). Rüland’s

approach, based on Carleman estimates, allows for non-smooth weights and generalization

to anisotropic operators. A w.u.c.p. result for (−∆)s (s ∈ (0, 1)), as well as s.u.c.p. for the

square root of the Laplacian (−∆)1/2, with a weight in LN+ε(RN ), appear in Rüland [14].

The result of Ghosh, Rüland, Salo, and Uhlmann [7, Theorem 3] is the closest to our

framework. For any V ∈ L∞(Ω) and any s ∈ [1/4, 1), if u ∈ Hs(RN ) solves

(−∆)su = V (x)u in Ω

and vanishes on a subset of Ω with positive measure, then u ≡ 0 (u.c.p.). Here the approach

is based on Carleman estimates again, along with a boundary u.c.p. for solutions of the

(local) degenerate elliptic equation

∇ ·
(
x1−2s
N+1∇u

)
= 0 in RN+1

+ ,

with homogeneous Robin conditions. By combining the results of [7] with our Theorem 3.2,

then, we have

Corollary 4.2. Let LK be defined by s ∈ [1/4, 1) and K(x) = |x|−N−2s, ρ, ρ̃ ∈ L∞(Ω) be

s.t. ρ ≤ ρ̃, ρ 6≡ ρ̃. Then, λk(ρ) > λk(ρ̃) for all admissible k ∈ Z0.

For completeness we also mention the work of Yu [21], where s.u.c.p. is proved for

fractional powers of linear elliptic operators with Lipschitz continuous coefficients (the

power being meant in the spectral sense). We note that the Dirichlet fractional Laplacian

(−∆)s in a bounded domain Ω ⊂ RN does not fall in this class, as observed in [19].
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