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Factors of Sums and Alternating Sums of Products of q-binomial Coefficients

and Powers of q-integers

Victor J. W. Guo* and Su-Dan Wang

Abstract. We prove that, for all positive integers n1, . . . , nm, nm+1 = n1, and non-

negative integers j and r with j ≤ m, the following two expressions

1

[n1 + nm + 1]

[
n1 + nm
n1

]−1 n1∑
k=0

qj(k
2+k)−(2r+1)k[2k + 1]2r+1

m∏
i=1

[
ni + ni+1 + 1

ni − k

]
,

1

[n1 + nm + 1]

[
n1 + nm
n1

]−1 n1∑
k=0

(−1)kq(
k
2)+j(k2+k)−2rk[2k + 1]2r+1

m∏
i=1

[
ni + ni+1 + 1

ni − k

]
are Laurent polynomials in q with integer coefficients, where [n] = 1 + q + · · ·+ qn−1

and
[
n
k

]
=
∏k

i=1(1 − qn−i+1)/(1 − qi). This gives a q-analogue of some divisibility

results of sums and alternating sums involving binomial coefficients and powers of

integers obtained by Guo and Zeng. We also confirm some related conjectures of Guo

and Zeng by establishing their q-analogues. Several conjectural congruences for sums

involving products of q-ballot numbers
([

2n
n−k

]
−
[

2n
n−k−1

])
are proposed in the last

section of this paper.

1. Introduction

In 2011, the first author and Zeng [11] proved that, for all positive integers n1, . . . , nm,

nm+1 = n1, and any non-negative integer r, there holds

(1.1)

n1∑
k=0

εk(2k + 1)2r+1
m∏
i=1

(
ni + ni+1 + 1

ni − k

)
≡ 0 mod (n1 + nm + 1)

(
n1 + nm
n1

)
,

where ε = ±1. The congruence (1.1) is very similar to the following congruences:

n1∑
k=−n1

(−1)k
m∏
i=1

(
ni + ni+1

ni + k

)
≡ 0 mod

(
n1 + nm
n1

)
,(1.2)

2

n1∑
k=1

k2r+1
m∏
i=1

(
ni + ni+1

ni + k

)
≡ 0 mod n1

(
n1 + nm
n1

)
,(1.3)
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where nm+1 = n1, which were obtained by Guo, Jouhet, and Zeng [6], and Guo and

Zeng [10], respectively. Note that (1.2) is a generalization of the following congruence due

to Calkin [2]:
n∑

k=−n
(−1)k

(
2n

n+ k

)m
≡ 0 mod

(
2n

n

)
for m ≥ 1.

It is known that both (1.2) and (1.3) have neat q-analogues (see [6, 7]). It is also worth

mentioning that q-analogues of classical congruences have been widely studied during the

last decade (see, for example, [15–18]).

The first aim of this paper is to give a q-analogue of (1.1). Recall that the q-integers

are defined as [n] = 1 + q + · · ·+ qn−1 and the q-binomial coefficients are defined by

[
n

k

]
=


∏k
i=1

1−qn−i+1

1−qi if k ≥ 0,

0 otherwise.

Let D be a polynomial in q. We say that two Laurent polynomials A and B in q are con-

gruent modulo D, denoted by A ≡ B mod D, if (A−B)/D is still a Laurent polynomial

in q. Let N denote the set of non-negative integers and Z+ the set of positive integers.

Our first result is as follows.

Theorem 1.1. Let n1, . . . , nm ∈ Z+, nm+1 = n1, and j, r ∈ N with j ≤ m. Then modulo

[n1 + nm + 1]
[
n1+nm

n1

]
,

n1∑
k=0

qj(k
2+k)−(2r+1)k[2k + 1]2r+1

m∏
i=1

[
ni + ni+1 + 1

ni − k

]
≡ 0,(1.4)

n1∑
k=0

(−1)kq(
k
2)+j(k2+k)−2rk[2k + 1]2r+1

m∏
i=1

[
ni + ni+1 + 1

ni − k

]
≡ 0.

The first author and Zeng [11] also proved that, for all positive integers n1, . . . , nm,

nm+1 = n1, and any non-negative integer r,

n1∑
k=0

kr(k + 1)r(2k + 1)

m∏
i=1

(
ni + ni+1 + 1

ni − k

)
≡ 0 mod (n1 + nm + 1)

(
n1 + nm
n1

)
n

min{1,r}
1 n

min{1,(r2)}
m ,

(1.5)

n1∑
k=0

(−1)kkr(k + 1)r(2k + 1)

m∏
i=1

(
ni + ni+1 + 1

ni − k

)
≡ 0 mod (n1 + nm + 1)

(
n1 + nm
n1

)
n

min{1,r}
1 nmin{1,r}

m .

(1.6)



Factors of Sums and Alternating Sums of Products of q-binomial Coefficients and Powers of q-integers 13

Actually in [11] the congruence (1.1) is deduced from (1.5) and (1.6) by noticing that

(2k + 1)2r = (4k2 + 4k + 1)r =
r∑
i=0

(
r

i

)
4iki(k + 1)i.

The second aim of this paper is to give the following q-analogue of (1.5) and (1.6).

Theorem 1.2. Let n1, . . . , nm ∈ Z+, nm+1 = n1, and j, r ∈ N with j ≤ m. Then

n1∑
k=0

qj(k
2+k)−(r+1)k[2k + 1][k]r[k + 1]r

m∏
i=1

[
ni + ni+1 + 1

ni − k

]
≡ 0 mod [n1 + nm + 1]

[
n1 + nm
n1

]
[n1]min{1,r}[nm]min{1,(r2)},

n1∑
k=0

(−1)kq(
k
2)+j(k2+k)−rk[2k + 1][k]r[k + 1]r

m∏
i=1

[
ni + ni+1 + 1

ni − k

]
≡ 0 mod [n1 + nm + 1]

[
n1 + nm
n1

]
[n1]min{1,r}[nm]min{1,r}.

Not like the q = 1 case, it seems that Theorem 1.1 cannot be derived from Theorem 1.2

directly.

The q-ballot numbers An,k(q) (0 ≤ k ≤ n) are defined by

An,k(q) = qn−k
[2k + 1]

[2n+ 1]

[
2n+ 1

n− k

]
=

[
2n

n− k

]
−
[

2n

n− k − 1

]
.

Note that sums involving the ballot numbers An,k := An,k(1) have been considered by

Miana and Romero [14, Theorem 10], Guo and Zeng [11], and Miana, Ohtsuka, and

Romero [13].

The third aim of this paper is to give the following congruences involving q-ballot num-

bers. Note that the q = 1 case confirms a conjecture of Guo and Zeng [11, Conjecture 1.3].

Theorem 1.3. Let n, s ∈ Z+ and r, j ∈ N with r + s ≡ 1 (mod 2) and j ≤ s. Then

n∑
k=0

qj(k
2+k)−rk[2k + 1]rAn,k(q)

s ≡ 0 mod

[
2n

n

]
,(1.7)

n∑
k=0

(−1)kq(
k
2)+j(k2+k)−(r−1)k[2k + 1]rAn,k(q)

s ≡ 0 mod

[
2n

n

]
.(1.8)

Let [n]! = [n][n − 1] · · · [1] be the q-factorial of [n]. It is easy to see that, for all

m,n ∈ N, the expression [2m]![2n]!
[m+n]![m]![n]! is a polynomial in q by writing a q-factorial as a

product of cyclotomic polynomials. The polynomials [2m]![2n]!
[m+n]![m]![n]! are usually called the

q-super Catalan numbers. Warnaar and Zudilin [19, Proposition 2] have shown that the

q-super Catalan numbers are polynomials in q with non-negative integer coefficients.

We shall also prove the following congruences modulo q-super Catalan numbers.
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Theorem 1.4. Let m,n, s, t ∈ Z+ and j, r ∈ N with r+ s+ t ≡ 1 (mod 2) and j ≤ s+ t.

Then

[m+ n+ 1]

m∑
k=0

qj(k
2+k)−rk[2k + 1]rAm,k(q)

sAn,k(q)
t ≡ 0 mod

[2m]![2n]!

[m+ n]![m]![n]!
,

[m+ n+ 1]
m∑
k=0

(−1)kq(
k
2)+j(k2+k)−(r−1)k[2k + 1]rAm,k(q)

sAn,k(q)
t

≡ 0 mod
[2m]![2n]!

[m+ n]![m]![n]!
.

Note that the q = 1 case of Theorem 1.4 confirms another conjecture of Guo and

Zeng [11, Conjecture 6.13]. It should also be mentioned that Theorem 1.4 in the case

where m = n gives the s ≥ 2 case of Theorem 1.3 (by (5.2)).

The paper is organized as follows. We shall prove Theorem 1.1 for m = 1 in Section 2

and prove Theorem 1.2 for m = 1 in Section 3. A proof of Theorems 1.1 and 1.2 for m ≥ 2

will be given in Section 4. The q-Chu-Vandermonde identity and the q-Dixon identity will

play a key role in our proof. We shall prove Theorems 1.3 and 1.4 in Sections 5 and 6,

respectively. We give some consequences of Theorem 1.1 and some related conjectures in

Section 7.

2. Proof of Theorem 1.1 for m = 1

The q-shifted factorials (see [5]) are defined as (a; q)0 = 1 and (a; q)n = (1 − a)(1 −
aq) · · · (1−aqn−1) for n = 1, 2, . . .. In order to prove Theorem 1.1 for m = 1, we shall first

establish the following result.

Lemma 2.1. Let n ∈ Z+ and s ∈ N. Then

n∑
k=0

q−k[2k + 1]

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s = (−1)sq(
s
2)−sn−n[2n+ 1]

[
2n

n

][
n

s

]
(q; q)2

s,

(2.1)

n∑
k=0

qk
2
[2k + 1]

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s = (−1)sq(
s
2)[2n+ 1]

[
2n

n

][
n

s

]
(q; q)2

s,(2.2)

n∑
k=0

(−1)kq(
k
2)[2k + 1]

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s = 0,(2.3)

n∑
k=0

(−1)kq(3k2+k)/2[2k + 1]

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s = qs
2
[2n+ 1]

[
2n

n

][
n

s

]
(q; q)n(q; q)s.

(2.4)
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Proof. We proceed by induction on s. For s = 0, we have

n∑
k=0

q−k[2k + 1]

[
2n+ 1

n− k

]
= q−n[2n+ 1]

n∑
k=0

([
2n

n− k

]
−
[

2n

n− k − 1

])
= q−n[2n+ 1]

[
2n

n

]
,

n∑
k=0

qk
2
[2k + 1]

[
2n+ 1

n− k

]
= [2n+ 1]

n∑
k=0

(
qk

2

[
2n

n− k

]
− q(k+1)2

[
2n

n− k − 1

])
= [2n+ 1]

[
2n

n

]
,

n∑
k=0

(−1)kq(
k
2)[2k + 1]

[
2n+ 1

n− k

]

= q−n[2n+ 1]

n∑
k=0

(−1)kq(
k+1
2 )
([

2n

n− k

]
−
[

2n

n− k − 1

])

= q−n[2n+ 1]

n∑
k=−n

(−1)kq(
k+1
2 )
[

2n

n− k

]
= 0

(2.5)

and

n∑
k=0

(−1)kq(3k2+k)/2[2k + 1]

[
2n+ 1

n− k

]

= [2n+ 1]

n∑
k=0

(−1)kq(
k+1
2 )
(
qk

2

[
2n

n− k

]
− q(k+1)2

[
2n

n− k − 1

])

= [2n+ 1]

n∑
k=−n

(−1)kq(3k2+k)/2

[
2n

n− k

]
= [2n+ 1]

[
2n

n

]
(q; q)n,

(2.6)

where the equality (2.5) follows from the q-binomial theorem (see [1, p. 36, Theorem 3.3]):

(x; q)N =
N∑
k=0

(−1)kq(
k
2)
[
N

k

]
xk

by taking x = q−n and N = 2n, while the equality (2.6) is the l,m → ∞ case of the

q-Dixon identity:

n∑
k=−n

(−1)kq(3k2+k)/2

[
l +m

l + k

][
m+ n

m+ k

][
n+ l

n+ k

]
=

(q; q)l+m+n

(q; q)l(q; q)m(q; q)n
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(see [8] for a short proof).

Suppose that the identities (2.1)–(2.4) are true for s. Noticing the relation[
2n+ 1

n− k

]
(q−k; q)s+1(qk+1; q)s+1

= (1− qs−n)(1− qs+n+1)

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s

+ qs−n(1− q2n)(1− q2n+1)

[
2n− 1

n− k − 1

]
(q−k; q)s(q

k+1; q)s,

we can easily deduce that the identities (2.1)–(2.4) hold for s+ 1.

Remark 2.2. We have the following generalization of (2.3):
n∑
k=0

(−1)kq(
k
2)[2k + 1]

[
2n+ 1

n− k

]
(xq−k; q)s(xq

k+1; q)s

= xnq−n[2n+ 1]

[
2n

n

][
s

n

]
(x; q)s−n(x; q)s+1(q; q)2

n

(x; q)n+1
,

which can be proved in the same way as before.

We shall prove Theorem 1.1 for m = 1 in the following more general form:

Theorem 2.3. Let n ∈ Z+ and r, s ∈ N. Then modulo [2n+ 1]
[
2n
n

]
,

n∑
k=0

q−(2r+1)k[2k + 1]2r+1

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s ≡ 0,(2.7)

n∑
k=0

qk
2−2rk[2k + 1]2r+1

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s ≡ 0,(2.8)

n∑
k=0

(−1)kq(
k
2)−2rk[2k + 1]2r+1

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s ≡ 0,(2.9)

n∑
k=0

(−1)kq(3k2+k)/2−2rk[2k + 1]2r+1

[
2n+ 1

n− k

]
(q−k; q)s(q

k+1; q)s ≡ 0.(2.10)

Proof. We proceed by induction on r. Denote the left-hand side of (2.7) by Ar(n, s). By

(2.1), we know that (2.7) is true for r = 0. For r ≥ 1, suppose that

Ar−1(n, s) ≡ 0 mod [2n+ 1]

[
2n

n

]
holds for all non-negative integers n and s. It is easy to check that[

2n+ 1

n− k

]
[2k + 1]2 = q2k−2n

[
2n+ 1

n− k

]
[2n+ 1]2

− q2k−2n

[
2n− 1

n− k − 1

]
[2n][2n+ 1](1 + qn−s)(1 + qn+s+1)

+ q2k−n−s
[

2n− 1

n− k − 1

]
[2n][2n+ 1](1− qs−k)(1− qs+k+1),
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and therefore,

Ar(n, s) = q−2n[2n+ 1]2Ar−1(n, s)

− q−2n[2n][2n+ 1](1 + qn−s)(1 + qn+s+1)Ar−1(n− 1, s)

+ q−n−s[2n][2n+ 1]Ar−1(n− 1, s+ 1).

(2.11)

By the induction hypothesis, we have

[2n][2n+ 1]Ar−1(n− 1, s) ≡ [2n][2n+ 1]Ar−1(n− 1, s+ 1)

≡ 0 mod [2n][2n+ 1][2n− 1]

[
2n− 2

n− 1

]
.

Noticing that [2n][2n+1][2n−1]
[
2n−2
n−1

]
= [2n+1]

[
2n
n

]
[n]2, the recurrence (2.11) immediately

implies that (2.7) holds for r. Similarly, we can prove (2.8)–(2.10).

3. Proof of Theorem 1.2 for m = 1

For convenience, let

Pr(n, j) :=

n∑
k=0

qj(k
2+k)−(r+1)k[2k + 1][k]r[k + 1]r

[
2n+ 1

n− k

]
,

Qr(n, j) :=

n∑
k=0

(−1)kq(
k
2)+j(k2+k)−rk[2k + 1][k]r[k + 1]r

[
2n+ 1

n− k

]
.

Then the m = 1 case of Theorem 1.2 can be restated as follows.

Theorem 3.1. Let n ∈ Z+ and r ∈ N. Then for j = 0, 1, there hold

Pr(n, j) ≡ 0 mod [2n+ 1]

[
2n

n

]
[n]min{2,r},(3.1)

Qr(n, j) ≡ 0 mod [2n+ 1]

[
2n

n

]
[n]min{2,2r}.(3.2)

Proof. We proceed by induction on r. For r = 0, by (2.1)–(2.4), we have

P0(n, 0) = q−n[2n+ 1]

[
2n

n

]
, P0(n, 1) = [2n+ 1]

[
2n

n

]
,

Q0(n, 0) = 0 (n ≥ 1), Q0(n, 1) = [2n+ 1]

[
2n

n

]
(q; q)n.

For r ≥ 1, observing that

qn−k[k][k + 1]

[
2n+ 1

n− k

]
= [n][n+ 1]

[
2n+ 1

n− k

]
− [2n][2n+ 1]

[
2n− 1

n− k − 1

]
,
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we have the following recurrences:

Pr(n, j) = q−n[n][n+ 1]Pr−1(n, j)− q−n[2n][2n+ 1]Pr−1(n− 1, j),(3.3)

Qr(n, j) = q−n[n][n+ 1]Qr−1(n, j)− q−n[2n][2n+ 1]Qr−1(n− 1, j)(3.4)

for n ≥ 1. From (3.3)–(3.4) we immediately get

P1(n, 0) = q−2n[n][2n+ 1]

[
2n

n

]
, P2(n, 0) = q−3n[2][n]2[2n+ 1]

[
2n

n

]
,

P1(n, 1) = [n][2n+ 1]

[
2n

n

]
, P2(n, 1) = q−1[2][n]2[2n+ 1]

[
2n

n

]
,

Q1(1, 0) = −q−1[2][3], Q1(n, 0) = 0 (n ≥ 2),

Q1(n, 1) = −q[2n+ 1]

[
2n

n

]
[n]2(q; q)n−1.

Therefore, the congruence (3.1) is true for r = 0, 1, 2, while the congruence (3.2) is true

for r = 0, 1. We now assume that r ≥ 3 and (3.1) holds for r − 1 and j = 0, 1. Namely,

Pr−1(n, j) ≡ 0 mod [2n+ 1]

[
2n

n

]
[n]2.

It follows that

[2n][2n+ 1]Pr−1(n− 1, j) ≡ 0 mod [2n][2n+ 1][2n− 1]

[
2n− 2

n− 1

]
[n− 1]2.

Since the above modulus can be written as [2n+ 1]
[
2n
n

]
[n]2, from (3.3) we deduce that

Pr(n, j) ≡ 0 mod [2n+ 1]

[
2n

n

]
[n]2.

This completes the inductive step of (3.1). The proof of (3.2) is exactly the same.

4. Proofs of Theorems 1.1 and 1.2 for m ≥ 2

For all non-negative integers a1, . . . , al, and k, let

C(a1, . . . , al; k) =

l∏
i=1

[
ai + ai+1 + 1

ai − k

]
,

where al+1 = a1, and let

Sr(n1, . . . , nm; j, q)

=
(q; q)n1(q; q)nm

(q; q)n1+nm+1

n1∑
k=0

qj(k
2+k)−(r+1)k[2k + 1][k]r[k + 1]rC(n1, . . . , nm; k),

(4.1)

Tr(n1, . . . , nm; j, q)

=
(q; q)n1(q; q)nm

(q; q)n1+nm+1

n1∑
k=0

(−1)kq(
k
2)+j(k2+k)−rk[2k + 1][k]r[k + 1]rC(n1, . . . , nm; k).

(4.2)
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It is easy to see that, for m ≥ 3,

C(n1, . . . , nm; k)

=
(q; q)n2+n3+1(q; q)nm+n1+1

(q; q)n1+k+1(q; q)n2−k(q; q)nm+n3+1

[
n1 + n2 + 1

n1 − k

]
C(n3, . . . , nm; k).

(4.3)

Applying (4.3) and the q-Chu-Vandermonde identity (see, for example, [1, p. 37, (3.3.10)])

(4.4)

[
n1 + n2 + 1

n1 − k

]
=

n1−k∑
s=0

qs(s+2k+1)(q; q)n1+k+1(q; q)n2−k
(q; q)s(q; q)s+2k+1(q; q)n1−k−s(q; q)n2−k−s

,

we may write (4.1) as

Sr(n1, . . . , nm; j, q) =
(q; q)n2+n3+1(q; q)n1(q; q)nm

(q; q)nm+n3+1

×
n1∑
k=0

n1−k∑
s=0

qj(k
2+k)−(r+1)k[2k + 1][k]r[k + 1]rC(n3, . . . , nm; k)

(q; q)s(q; q)s+2k+1(q; q)n1−k−s(q; q)n2−k−s

=
(q; q)n2+n3+1(q; q)n1(q; q)nm

(q; q)nm+n3+1

n1∑
l=0

ql
2+l

×
l∑

k=0

q(j−1)(k2+k)−(r+1)k[2k + 1][k]r[k + 1]rC(n3, . . . , nm; k)

(q; q)l−k(q; q)l+k+1(q; q)n1−l(q; q)n2−l
,

where l = s+ k. Noticing that

C(n3, . . . , nm; k)

(q; q)l−k(q; q)l+k+1
=

(q; q)nm+n3+1

(q; q)n3+l+1(q; q)nm+l+1
C(l, n3, . . . , nm; k),

we obtain

(4.5) Sr(n1, . . . , nm; j, q) =

n1∑
l=0

ql
2+l

[
n1

l

][
n2 + n3 + 1

n2 − l

]
Sr(l, n3, . . . , nm; j − 1, q), m ≥ 3.

Moreover, for m = 2, applying (4.4) we conclude

(4.6) Sr(n1, n2; j, q) =

n1∑
l=0

ql
2+l

[
n1

l

][
n2

l

]
Sr(l; j − 1, q).

Similarly, we have the following recurrence for (4.2):

Tr(n1, . . . , nm; j, q) =

n1∑
l=0

ql
2+l

[
n1

l

][
n2 + n3 + 1

n2 − l

]
Tr(l, n3, . . . , nm; j − 1, q), m ≥ 3,(4.7)

Tr(n1, n2; j, q) =

n1∑
l=0

ql
2+l

[
n1

l

][
n2

l

]
Tr(l; j − 1, q).(4.8)
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We now proceed by induction on m. In Section 4, we have proved that Theorem 1.2

holds for m = 1. Suppose that Theorem 1.2 is true for m− 1 (m ≥ 2) and 0 ≤ j ≤ m− 1.

By the induction hypothesis and the relation [l]
[
n1

l

]
= [n1]

[
n1−1
l−1

]
, it is easy to check that[

n1

l

]
Sr(l, n3, . . . , nm; j, q) ≡ 0 mod [n1]min{1,r}[nm]min{1,(r2)},[

n1

l

]
Tr(l, n3, . . . , nm; j, q) ≡ 0 mod [n1]min{1,r}[nm]min{1,r}

for any non-negative integer l. It follows from (4.5)–(4.8) that Theorem 1.2 holds for m

and 1 ≤ j ≤ m. Applying the identity
[
α
k

]
q−1 =

[
α
k

]
q
qk

2−αk, we have

Sr(n1, . . . , nm; 0, q) = Sr(n1, . . . , nm;m, q−1)qn2+···+nm−1+n1n2+···+nm−1nm−r,

Tr(n1, . . . , nm; 0, q) = Tr(n1, . . . , nm;m− 1, q−1)qn2+···+nm−1+n1n2+···+nm−1nm−r.

Therefore, Theorem 1.2 also holds for m and j = 0. This completes the proof of Theo-

rem 1.2. Similarly, we can prove Theorem 1.1 for m ≥ 2.

Remark 4.1. If we apply the following form of the q-Chu-Vandermonde identity[
n1 + n2 + 1

n1 − k

]
=

n1−k∑
s=0

q(n1−k−s)(n2−k−s)(q; q)n1+k+1(q; q)n2−k
(q; q)s(q; q)s+2k+1(q; q)n1−k−s(q; q)n2−k−s

,

then we have

Sr(n1, . . . , nm; j, q) =

n1∑
l=0

q(n1−l)(n2−l)
[
n1

l

][
n2 + n3 + 1

n2 − l

]
Sr(l, n3, . . . , nm; j, q), m ≥ 3,

and so on.

5. Proof of Theorem 1.3

Let Φn(q) be the n-th cyclotomic polynomial in q, i.e.,

Φn(q) :=
∏

1≤k≤n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity. Let bxc denote the greatest integer not exceeding

x. We will need the following result (see, for example, [12, (10)] or [3, 9]).

Proposition 5.1. The q-binomial coefficient
[
m
k

]
can be written as[

m

k

]
=
∏
d

Φd(q),

where d ranges over all positive integers such that bk/dc+ b(m− k)/dc < bm/dc.
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We now suppose that r+ s ≡ 1 (mod 2) and 0 ≤ j ≤ s. Letting m = s and n1 = · · · =
ns = n in (1.4), one sees that

n∑
k=0

qj(k
2+k)−(r+s)k[2k + 1]r+s

[
2n+ 1

n− k

]s
≡ 0 mod [2n+ 1]

[
2n

n

]
.

Noticing that

(5.1) [2k + 1]

[
2n+ 1

n− k

]
qn−k = [2n+ 1]

([
2n

n− k

]
−
[

2n

n− k − 1

])
≡ 0 mod [2n+ 1],

we immediately get

n∑
k=0

qj(k
2+k)−rk[2k + 1]r

([
2n

n− k

]
−
[

2n

n− k − 1

])s
≡ 0 mod

[
2n
n

]
gcd

([
2n
n

]
, [2n+ 1]s−1

) .
But, by Proposition 5.1 we have

(5.2) gcd

([
2n

n

]
, [2n+ 1]

)
= 1.

This completes the proof of (1.7). Similarly, we can prove (1.8).

Remark 5.2. In general, for any positive integer n, we cannot expect gcd(
(

2n
n

)
, 2n+1) = 1.

This means that sometimes the q-analogue of a mathematical problem will be easier than

the original one, although in most cases the former will be much more difficult.

6. Proof of Theorem 1.4

We first give the following result, which is a generalization of (5.2).

Lemma 6.1. For all m,n ∈ Z+, there holds

(6.1) gcd

(
[2m]![2n]!

[m+ n]![m]![n]!
, [2m+ 1]

)
= 1.

Proof. It is well known that

qn − 1 =
∏
d|n

Φd(q),

and so

[n]! = (q − 1)−n
n∏
k=1

(qk − 1) = (q − 1)−n
n∏
d=1

Φd(q)
bn/dc.

Therefore,

[2m]![2n]!

[m+ n]![m]![n]!
=

max{2m,2n}∏
d=1

Φd(q)
b2m/dc+b2n/dc−b(m+n)/dc−bm/dc−bn/dc.



22 Victor J. W. Guo and Su-Dan Wang

For any irreducible factor Φd(q) of [2m+ 1], we have 2m+ 1 ≡ 0 (mod d). It follows

that d is odd and m ≡ (d−1)/2 (mod d). Suppose that n ≡ a (mod d) with 0 ≤ a ≤ d−1.

We consider the following two cases. If a ≤ (d− 1)/2, then⌊
2m

d

⌋
+

⌊
2n

d

⌋
−
⌊
m+ n

d

⌋
−
⌊m
d

⌋
−
⌊n
d

⌋
=

2m− d+ 1

d
+

2n− 2a

d
− m+ n− (d− 1)/2− a

d
− m− (d− 1)/2

d
− n− a

d

= 0.

(6.2)

If a ≥ (d+ 1)/2, then the left-hand side of (6.2) is equal to

2m− d+ 1

d
+

2n− 2a+ d

d
− m+ n+ (d+ 1)/2− a

d
− m− (d− 1)/2

d
− n− a

d
= 0.

This means that Φd(q) is not a factor of [2m]![2n]!
[m+n]![m]![n]! , and so the formula (6.1) holds.

It is clear that Theorem 1.1 can be restated as follows.

Theorem 6.2. Let n1, . . . , nm ∈ Z+ and j, r ∈ N with j ≤ m. Then the expressions

[n1]!
m∏
i=1

[ni + ni+1 + 1]!

[2ni + 1]!

n1∑
k=0

qj(k
2+k)−(2r+1)k[2k + 1]2r+1

m∏
i=1

[
2ni + 1

ni − k

]
,

[n1]!
m∏
i=1

[ni + ni+1 + 1]!

[2ni + 1]!

n1∑
k=0

(−1)kq(
k
2)+j(k2+k)−2rk[2k + 1]2r+1

m∏
i=1

[
2ni + 1

ni − k

]
where nm+1 = −1, are Laurent polynomials in q with integer coefficients.

Proof of Theorem 1.4. Letting n1 = · · · = ns = m and ns+1 = · · · = ns+t = n in Theo-

rem 1.1, we obtain

[m+ n+ 1]

m∑
k=0

qj(k
2+k)−(r+s+t)k[2k + 1]r+s+t

[
2m+ 1

m− k

]s[2n+ 1

n− k

]t
≡ 0 mod

[2m+ 1]![2n+ 1]!

[m+ n]![m]![n]!
.

(6.3)

By (5.1) and the definition of q-ballot numbers An,k(q), we deduce from (6.3) that

[m+ n+ 1]

m∑
k=0

qj(k
2+k)−rk[2k + 1]rAm,k(q)

sAn,k(q)
t

≡ 0 mod

[2m]![2n]!
[m+n]![m]![n]!

gcd( [2m]![2n]!
[m+n]![m]![n]! , [2m+ 1]s−1[2n+ 1]t−1)

.

By Lemma 6.1, we have

gcd

(
[2m]![2n]!

[m+ n]![m]![n]!
, [2m+ 1]s−1[2n+ 1]t−1

)
= 1.

This completes the proof.
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Letting m = n + 1 or m = 2n in Theorem 1.4, we get the following result, which in

the q = 1 case confirms a conjecture of Guo and Zeng [11, Conjecture 6.10]. Note that
1

[n+1]

[
2n
n

]
is the famous q-Catalan number (see [4]).

Corollary 6.3. Let n, s, t ∈ Z+ and j, r ∈ N with r + s + t ≡ 1 (mod 2) and j ≤ s + t.

Then

n∑
k=0

τk[2k + 1]rAn+1,k(q)
sAn,k(q)

t ≡ 0 mod
1

[n+ 1]

[
2n

n

]
,

n∑
k=0

τk[2k + 1]rA2n,k(q)
sAn,k(q)

t ≡ 0 mod
1

[3n+ 1]

[
4n

n

]
,

where τk = qj(k
2+k)−rk or τk = (−1)kq(

k
2)+j(k2+k)−(r−1)k.

7. Some consequences and conjectures

In this section, we will give some consequences of Theorem 1.1. Most of these results

are q-analogues of the corresponding results listed in [11, Section 6]. Note that there are

exactly similar consequences of Theorem 1.2. For convenience, we let εk = qj(k
2+k)−(2r+1)k

or εk = (−1)kq(
k
2)+j(k2+k)−2rk throughout this section.

Letting n2i−1 = m and n2i = n for i = 1, . . . , a in Theorem 1.1 and observing the

symmetry of m and n, we obtain

Corollary 7.1. Let a,m, n ∈ Z+ and j, r ∈ N with j ≤ 2a. Then

m∑
k=0

εk[2k + 1]2r+1

[
m+ n+ 1

m− k

]a[m+ n+ 1

n− k

]a
≡ 0 mod [m+ n+ 1]

[
m+ n

m

]
.

Letting n3i−2 = l, n3i−1 = m and n3i = n for i = 1, . . . , a in Theorem 1.1, we get

Corollary 7.2. Let a, l,m, n ∈ Z+ and j, r ∈ N with j ≤ 3a. Then

m∑
k=0

εk[2k + 1]2r+1

[
l +m+ 1

l − k

]a[m+ n+ 1

m− k

]a[n+ l + 1

n− k

]a
≡ 0 mod [m+ n+ 1]

[
m+ n

m

]
.

Taking m = 2a+ b and letting ni = n if i = 1, 3, . . . , 2a− 1 and ni = n− 1 otherwise

in Theorem 1.1, we get

Corollary 7.3. Let a, n ∈ Z+ and b, j, r ∈ N with j ≤ 2a+ b. Then

n−1∑
k=0

εk[2k + 1]2r+1

[
2n

n− k

]a[ 2n

n− k − 1

]a[ 2n− 1

n− k − 1

]b
≡ 0 mod [n]

[
2n

n

]
.
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By Theorem 6.2 it is easily seen that, for all a1, . . . , am ∈ Z+,

(7.1) [n1]!
m∏
i=1

[ni + ni+1 + 1]!

[2ni + 1]!

n1∑
k=0

εk[2k + 1]2r+1
m∏
i=1

[
2ni + 1

ni − k

]ai
(nm+1 = −1)

is a Laurent polynomial in q with integer coefficients. For m = 3, letting (n1, n2, n3) be

(n, n + 2, n + 1), (n, 3n, 2n), (2n, n, 3n), (2n, n, 4n), or (3n, 2n, 4n), we immediately get

the following three conclusions.

Corollary 7.4. Let a, b, c, n ∈ Z+ and j, r ∈ N with j ≤ a+ b+ c. Then

(7.2)
n∑
k=0

εk[2k + 1]2r+1

[
2n+ 1

n− k

]a[ 2n+ 3

n− k + 1

]b[ 2n+ 5

n− k + 2

]c
≡ 0 mod [2n+ 5]

[
2n+ 1

n

]
.

Corollary 7.5. Let a, b, c, n ∈ Z+ and j, r ∈ N with j ≤ a+ b+ c. Then

n∑
k=0

εk[2k + 1]2r+1

[
6n+ 1

3n− k

]a[4n+ 1

2n− k

]b[2n+ 1

n− k

]c
≡ 0 mod [2n+ 1]

[
6n+ 1

n

]
,

n∑
k=0

εk[2k + 1]2r+1

[
6n+ 1

3n− k

]a[4n+ 1

2n− k

]b[2n+ 1

n− k

]c
≡ 0 mod [2n+ 1]

[
6n+ 1

3n

]
.

Corollary 7.6. Let a, b, c, n ∈ Z+ and j, r ∈ N with j ≤ a+ b+ c. Then

[3n+ 1]
n∑
k=0

εk[2k + 1]2r+1

[
8n+ 1

4n− k

]a[4n+ 1

2n− k

]b[2n+ 1

n− k

]c
≡ 0 mod [2n+ 1][4n+ 1]

[
8n+ 1

3n

]
,

n∑
k=0

εk[2k + 1]2r+1

[
8n+ 1

4n− k

]a[6n+ 1

3n− k

]b[4n+ 1

2n− k

]c
≡ 0 mod [4n+ 1]

[
8n+ 1

3n

]
.

We have the following conjectural generalization of Corollaries 7.5 and 7.6.

Conjecture 7.7. Let n, r, s, t ∈ Z+ with r + s+ t ≡ 1 (mod 2) and j ∈ N. Then

[4n+ 1]
n∑
k=0

ηkA3n,k(q)
rA2n,k(q)

sAn,k(q)
t ≡ 0 mod

1

[6n+ 1]

[
6n+ 1

n

]
,

[4n+ 1]
n∑
k=0

ηkA3n,k(q)
rA2n,k(q)

sAn,k(q)
t ≡ 0 mod

1

[6n+ 1]

[
6n+ 1

3n

]
,

[8n+ 1]

n∑
k=0

ηkA4n,k(q)
rA2n,k(q)

sAn,k(q)
t ≡ 0 mod

[
8n+ 1

3n

]
,

[6n+ 1][8n+ 1]

n∑
k=0

ηkA4n,k(q)
rA3n,k(q)

sA2n,k(q)
t ≡ 0 mod

[
8n+ 1

3n

]
,

where ηk = qj(k
2+k) or ηk = (−1)kq(

k+1
2 )+j(k2+k).
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For general m ≥ 2, in (7.1) taking (n1, . . . , nm) to be(n, n+ 2, . . . , n+m− 1, n+m− 2, n+m− 4, . . . , n+ 1) if m is odd,

(n+ 1, n+ 3, . . . , n+m− 1, n+m− 2, n+m− 4, . . . , n) if m is even,

we are led to the following generalization of (7.2).

Corollary 7.8. Let m ≥ 2, and let n, a1, . . . , am ∈ Z+ and j, r ∈ N with j ≤ a1 + · · ·+am.

Then

n∑
k=0

εk[2k + 1]2r+1
m∏
i=1

[
2n+ 2i− 1

n+ i− k − 1

]ai
≡ 0 mod [2n+ 2m− 1]

[
2n+ 1

n

]
.

We have the following challenging conjecture related to Corollary 7.8.

Conjecture 7.9. Let n, r1, . . . , rm ∈ Z+ with r1 + · · ·+ rm ≡ 1 (mod 2) and j ∈ N, there

holds
n∑
k=0

ηk

m∏
i=1

An+i−1,k(q)
ri ≡ 0 mod

1

[n+ 1]

[
2n

n

]
,

where ηk = qj(k
2+k) or ηk = (−1)kq(

k+1
2 )+j(k2+k).

Note that, for m = 1 and 0 ≤ j ≤ r1, Conjecture 7.9 is true by Theorem 1.3. For m = 2

and 0 ≤ j ≤ r1 + r2, Conjecture 7.9 is also true by the first congruence in Corollary 6.3.

Note that the q = 1 case of Conjecture 7.9 has been checked by Guo and Zeng [11] for

n = 2, or m ≤ 6 and n = 4, 9, 10, 11, 3280, 7651, 7652.

We end the paper with the following conjecture.

Conjecture 7.10. Theorems 1.1 and 1.2 hold for all j ∈ N.
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