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Inverses and Determinants of Toeplitz-Hessenberg Matrices

Roksana S lowik

Abstract. The inverses of Toeplitz-Hessenberg matrices are investigated. It is known

that each inverse of such a matrix is a sum of a lower triangular matrix L and a matrix

R of rank 1. The formulas of L and x, y such that xyT = R are derived. Using this

result we propose an algorithm for inverting Toeplitz-Hessenberg matrices. Moreover,

from the expression of the inverse a formula for the determinant is deduced.

1. Introduction

The Hessenberg (or lower Hessenberg) matrices are the matrices H = [hij ] satisfying

condition hij = 0 for j− i > 1. More general, the matrix is said to be k-Hessenberg if and

only if Hij = 0 for j − i > k.

Asplund [3] was probably the first who discovered that a nonsingular matrix is strictly

1-Hessenberg if and only if its inverse is a sum of a matrix of rank one and a lower

triangular matrix with zeros in the main diagonal. Analogous theorem is true for k-

Hessenberg matrices. It is interesting that even more can be said: the right upper block

of the inverse of k-Hessenberg matrix can be written as a product of n × k and k × n
matrices [10]. Moreover, it turned out that also inverses of N × N Hessenberg matrices

(on the condition they exist) can also be written as such sums [2]. This property of

inverses was discussed most intensively for the tridiagonal matrices [4–6]. Clearly, such

representation of inverses can result in proposing algorithms for finding its entries [12].

In this paper we would like to continue the discussion on this subject and assuming

that H−1 = L − 1
γxy

T (where L is lower triangular and x, y are vectors) present the

formulas for L, x and y. Clearly, when the entries of H are arbitrarily chosen it is very

complicated. Therefore, we limit ourselves to the class of Toeplitz-Hessenberg matrices,
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i.e., matrices of the form

(1.1) H = Hn =



a0 a−1

a1 a0 a−1

a2 a1 a0 a−1

...
. . .

an−2 an−3 . . . . . . . . . a0 a−1

an−1 an−2 . . . . . . . . . a1 a0


n×n

.

We will assume that H is strictly Hessenberg, i.e., a−1 6= 0. The first result we are

going to prove in this paper is the following.

Theorem 1.1. Let H be an invertible matrix of form (1.1), where a−1 6= 0. Then H is

invertible if and only if

γ = an−2 − an−1 −
n−1∑
i=2

an−i−1

 i−1∑
j=1

aj−1bi−j−1

 6= 0

and in this case

H−1 =

0 0

Ã 0

− 1

γ
xHy

T
H ,

where

Ãij =

bi−j if i ≥ j,

0 otherwise,
with b0 = 1, bk = − 1

a−1

k−1∑
r=0

arbk−r−1 for k ≥ 1,

(xH)i =


1 if i = 1,

−
i−1∑
j=1

aj−1bi−j−1 if 1 < i ≤ n,

(yH)i = (xH)n+1−i =


−
n−1∑
j=i

an−j−1bj−1 if 1 ≤ i < n,

1 if i = n.

Based on this theorem we propose an algorithm for inverting Toeplitz-Hessenberg

matrices. Moreover, we will present one more conclusion following from Theorem 1.1. It

is natural that in some formulas and algorithms for finding inverses one may sometimes

use submatrices and subminors. For instance in [1,7] there are formulas for the entries of

H−1 that involve the minors of H. In Section 3 we will present some other formula for

the inverse of a Toeplitz-Hessenberg matrix and comparing it with Theorem 1.1 we will

obtain some formula for det(Hn).
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2. Inverses

Before we start, let’s introduce some notation. By Hn or H we will mean a matrix of form

(1.1). The symbolMn×m(F ) will stand for the set of n×m matrices over a (commutative)

field F , and we will abbreviate Mn×n(F ) to Mn(F ). In will denote the n × n identity

matrix, whereas 0n×m the n ×m zero matrix. Moreover, let Ekm be a matrix with 1 in

the position (k,m) and 0 in every other position (in the case of using this symbol the

dimension of Ekm will follow from the context). We will also abbreviate (xH)i ((yH)i

respectively) to xH,i.

To prove Theorem 1.1 we are going to use the result from [11] where more precise

expressions for L, x and y are presented. Namely, we need the following theorem.

Theorem 2.1. [11, Theorem 3.1] Let H be a strict k-Hessenberg matrix with the block

decomposition

H =

B A

D C

 , A ∈Mn−k(F ), B ∈M(n−k)×k(F ), C ∈Mk×(n−k)(F ), D ∈Mk(F ).

Then H is invertible if and only if CA−1B−D is invertible and if H is invertible we have

(2.1) H−1 =

 0 0

A−1 0

−
 Ik

−A−1B

 (CA−1B −D)−1
[
−CA−1 Ik

]
.

For k = 1 the blocks A, B, C, D are

A = An =



a−1

a0 a−1

a1 a0 a−1

...
. . .

. . .

an−4 an−5 · · · a0 a−1

an−3 an−4 · · · a1 a0 a−1


(n−1)×(n−1)

,(2.2)

B = Bn = [a0a1 . . . an−2]T , C = Cn = [an−2an−3 . . . a0], D = Dn = [an−1].

Note that (BT )i = Cn−i−1. This fact is going to be useful later on. Formula (2.1) can

be simplified to

H−1 =

 0 0

A−1 0

− 1

CA−1B −D

 1

−A−1B

[−CA−1 1
]

=

 0 0

A−1 0

− 1

CA−1B −D

 −CA−1 1

−A−1BCA−1 −A−1B

 .
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First let’s focus on determining A−1. For any 1 ≤ k ≤ n− 1, let C
(k)
n−1(A) denote the

matrix In−1 +
∑n−1

i=k+1
ai−k−1

a−1
Eik. Additionally, let C

(0)
n−1(A) denote In−1. We can observe

the following.

Remark 2.2. Let A be given as in (2.2). Then A = a−1
∏n−2
k=1 C

(k)
n−1(A).

The decomposition from Remark 2.2 can be used to find the inverse of A. First we

find the inverses of C
(k)
n−1(A). Namely, one can check that they are given in

Remark 2.3. Let n, k ∈ N, n ≥ 3, α ∈ F \ {0}, and let A be given as in (2.2). Then

[C
(k)
n−1(A)]−1 = In−1 −

n−1∑
r=k+1

ai−k−1Eik.

From Remarks 2.2 and 2.3 we get now the form of A−1.

Lemma 2.4. Let A be given as in (2.2) with n > 3. Then

(2.3) A−1 =
1

a−1

n−2∑
k=0

n−1−k∑
r=1

bkEr+k,r,

where b0 = 1 and bk = − 1
a−1

∑k−1
r=0 arbk−r−1 for k ≥ 1.

Proof. Since A is a triangular Toeplitz matrix, so is A−1. We prove (2.3) inductively on

n. We have 
1

0 1

0 − a0
a−1

1




1

− a0
a−1

1

− a1
a−1

0 1

 =


1

−b1 1

b2 b1 1


with

b1 = − a0

a−1
, b2 =

(
a0

a−1

)2

− a1

a−1
= − 1

a−1
(a0b1 + a1b0).

The first step of induction holds.

Consider now n > 4. We have

1

0 1

0 b1 1
...

...
. . .

0 bn−3 · · · b1 1





1

− a0
a−1

1

− a1
a−1

1
...

. . .

−an−3

a−1
1


=



1

b1 1

b2 b1 1
...

...
. . .

bn−2 bn−3 · · · b1 1


,

bn−2 = − a0

a−1
bn−3 −

a1

a−1
bn−4 − · · · −

an−4

a−1
b1 −

an−3

a−1
b0.
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As it was mentioned before, from Theorem 1.1 it follows from the fact that H−1 can

be represented as L− 1
γxy

T . Clearly, by Theorem 2.1, in our case x, y are of the forms:

xH =

 1

−A−1B

 , yH =
[
−CA−1 1

]
.

Thus, we can give the following proof.

Proof of Theorem 1.1. Let 2 ≤ i ≤ n. Then

xH,i = (−A−1B)i−1 = −
i−1∑
j=1

(A−1)i−1,j ·Bj = −
i−1∑
j=1

bi−1−jaj−1.

To find (CA−1)i for 1 ≤ i ≤ n− 1 we can either perform the same calculations for A−1B

or make use of the following two facts:

(1) BT
i = Cn+1−i,

(2) the i-th entry of the k-th column of A−1 is equal to the (n − 1 − i)-th entry of

(n− 1− i)-th row of A−1.

From the first of these two ways we get the formula for yi that appears in Theorem 1.1.

From the second one we obtain the equality yi = xn+1−i.

We finish the proof by determining CA−1B −D:

CA−1B −D =
n∑
i=2

Ci(A
−1B)i −D

= an−2 −
n−1∑
i=1

an−i−1 ·

 i−1∑
j=1

aj−1bi−j−1

− an−1.

From Theorem 1.1 we derive the following algorithm for calculating H−1.

Algorithm 2.5. (1) let H = [0]n×n;

(2) for k = 2, 3, . . . , n put H ′kk = 1
a−1

;

(3) put b0 = 1,

for k = 1, 2, . . . , n− 2

bk = 0,

for r = 0, 1, . . . , k − 1

bk = bk + arbk−r−1,

bk = − 1
a−1

bk,

for r = 0, 1, . . . , k − 1

H ′k+r+2,k+1 = br+1,

(4) x1 = 1,

for i = 2, 3, . . . , n− 1

xi = 0,
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for j = 1, 2, . . . , i− 1

xi = xi − aj−1bi−j−1,

(5) γ = 0,

for i = 2, 3, . . . , n− 1

γ = γ + an−i−1xi,

γ = an−2 − an−1 − γ,

(6) for i = 1, 2, . . . , n

for j = 1, 2, . . . , n

H ′ij = H ′ij − 1
γxixn+1−j.

3. Determinants of Toeplitz-Hessenberg matrices

It is known that the determinant ofHn can be evaluated using the Trudi formula (see [8,9]).

Namely,

(3.1) detHn =
∑

k1+2k2+···+nkn=n

(
k1 + k2 + · · ·+ kn
k1, k2, . . . , kn

)
(−a−1)n−k1−···−knak10 a

k2
1 · · · a

kn
n−1.

In the present section we will obtain some other formula for det(Hn). As it contains

some multiple sums, in comparison to (3.1) it may seem more complicated. However, its

advantage is that it does not involve the partitions of n. Let’s copy from [1] a formula for

the entries of (H−1)ij that the authors have concluded from the Cayley formula and the

Sylvester theorem on determinants:

(3.2) (H−1)ij = (−1)i+j

(
i−j−1∏
k=0

hi−k,i−k+1

)
·

detH1,2,...,j−1
1,2,...,j−1 · detH i+1,i+2,...,n

i+1,i+2,...,n

detH
,

where Hk1,...,km
l1,...,lm

denotes the submatrix of H consisting of the entries standing in the

intersections of the rows k1, . . . , km and columns l1, . . . , lm.

Using (3.2) we will prove the following theorem.

Theorem 3.1. Let Hn be defined as in (1.1) with a−1 6= 0. Then

det(Hn) = (−a−1)n−1 ·

bn−1 −

(∑n−2
j=1 aj−1bn−j−2

)2

an−2 − an−1 −
∑n−1

i=2 an−i−1

(∑i−1
j=1 aj−1bi−j−1

)

−1

.

Proof. Since we are dealing with Toeplitz-Hessenberg matrices, the submatrices of Hn

consisting of some k consecutive rows and columns are simply the matrices Hk. More-

over, since all the entries hi−k,i−k+1 lie in the first superdiagonal, in this case we have

hi−k,i−k+1 = a−1 for all i, k. Thus (3.2) can be transformed into

(3.3) (H−1
n )ij =

(−1)i+jai−j−1 det(Hj−1) det(Hn−i)

det(Hn)
.
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Substituting i = n, j = 1 we obtain the equality: det(Hn) = (−a−1)n−1

(H−1
n )n1

. Now it is a natural

idea to use Theorem 1.1. This leads to

det(Hn) =
(−a−1)n−1

(H−1
n )n1

=
(−a−1)n−1

bn−2 − 1
γxny1

=
(−a−1)n−1

bn−2 − x2n
γ

= (−a−1)n−1 ·

bn−2 −

(∑n−2
j=1 aj−1bn−j−2

)2

an−2 − an−1 −
∑n−1

i=2 an−i−1

(∑i−1
j=1 aj−1bi−j−1

)

−1

.

Obviously, (3.3) used for various i, j can lead to some combinatorial identities. One

example is presented below.

Corollary 3.2. If a0, a1, . . . , an−1 are arbitrary numbers, then∑
k1+2k2+···+nkn=n

(
k1 + · · ·+ kn
k1, . . . , kn

)
(−1)n−k1−···−knak10 a

k2
1 · · · a

kn
n−1

= (−a−1)n−1 ·

bn−2 −

(∑n−2
j=1 aj−1bn−j−2

)2

an−2 − an−1 −
∑n−1

i=2 an−i−1

(∑i−1
j=1 aj−1bi−j−1

)

−1

.
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