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Carleson Measures and Trace Theorem for β-harmonic Functions

Heping Liu, Haibo Yang and Qixiang Yang*

Abstract. General harmonic extension has no uniqueness and harmonic functions may

have different non-tangential boundary values in different convergence sense. In this

paper, we establish first β-harmonic functions in ultra-distribution frame. Further,

we consider the characterization between Carleson measure space and boundary dis-

tribution space. For β-harmonic functions with boundary distributions, there exists

no maximum value principle. We apply Meyer wavelets to introduce basic harmonic

functions and basic observers. We apply Meyer wavelets and vaguelette knowledge to

prove the uniqueness of β-harmonic extension and prove also that β-harmonic function

converges to boundary distribution in the relative norm sense.

1. Introduction

A classic harmonic function in Rn+1
+ is a function satisfying the following equation:

(1.1)

∂2
t +

∑
i=1,...,n

∂2
xi

 f(t, x) = 0 in Rn+1
+ .

In this paper, we extend the classic harmonic functions to β-harmonic flow functions

with boundary distributions. Denote (−∆)β the β-order Laplace operator defined by the

Fourier transform:
̂(−∆)βu(ξ) = |ξ|2βû(ξ) in Rn.

β-harmonic function in Rn+1
+ is defined as the flow distribution in Rn of parameter t. The

exact sense of the following equation (1.2) will be discussed in Section 2.

Definition 1.1. Given β > 0. A function f(t, x) on Rn+1
+ is called to be a β-harmonic

function, if

(1.2) ∂2
t f(t, x)− (−∆)βf(t, x) = 0 in Rn+1

+ .
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The study of β-harmonic functions plays an important role in the PDE problem. For

example, the following generalized Navier-Stokes equations:

(1.3)


∂t + (−∆)βu+ u · ∇u−∇p = 0 in R1+n

+ ,

∇ · u = 0 in R1+n
+ ,

u|t=0 = u0 in Rn.

Picard’s iterative process is to find out a mild solution near the 2β-harmonic function

u(0) = e−t(−∆)βu0 where u0 is a distribution. Denote

B(u, u)(t, x) ≡
∫ t

0
e(t−s)∆

{∑
l

∂xl(ulu)−
∑
l

∑
l′

(−∆)−1∂xl∂xl′∇(ulul′)

}
ds.

For all j = 0, 1, 2, . . ., denote

u(j+1)(t, x) = u(0)(t, x)−B(u(j), u(j))(t, x).

For small initial value u0, B(u(j), u(j))(t, x) is an error term. Picard’s contraction principle

tells that u(j) converges to a unique solution of the above Navier-Stokes equations (1.3).

See Cannone [2] and Koch-Tataru [8] for β = 2; see Li-Yang [10,11] and Lin-Yang [14] for

β > 1. Hence, it is helpful for the non-linear problem to understand better the properties

of β-harmonic functions generated from distributions.

β-harmonic function f(t, x) satisfying (1.1) is just a ultra-distribution. In this paper,

we study the relation between distributions f(x) on Rn and the β-harmonic functions

f(t, x) on Rn+1
+ . That is to say, we consider the following Cauchy problem of the equa-

tion (1.2):

(1.4)

∂2
t f(t, x)− (−∆)βf(t, x) = 0 in Rn+1

+ ,

f(0, x) = f(x) in Rn.

But we know, even for β = 1, the above problem is an ill-posed problem. A distribution

f(x) on Rn can be extend to different β-harmonic functions f(t, x) on Rn+1
+ . Further,

a β-harmonic function may have different non-tangential boundary value for different

convergence sense. In Section 2, we establish β-harmonic functions in ultra-distribution

frame. We provide a strict sense of boundary distribution and β-harmonic function. See

Theorems 2.8 and 2.10.

Let Cn = Γ((n+ 1)/2)/π(n+1)/2 and let

P (x) =
Cn

(1 + |x|2)(n+1)/2
,

Pt(x) = t−nP
(x
t

)
=

Cnt

(t2 + |x|2)(n+1)/2
,

P̂t(ξ) = e−t|ξ|.
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The Poisson integral of f is defined by

f(t, x) = Ptf(x) =:

∫
Rn
Pt(x− y)f(y) dy.

For f(x) satisfies the following condition∫
Rn

|f(x)|
1 + |x|n+1

dx <∞,

its Poisson integration Ptf(x) corresponding to a classic harmonic function. For β = 1 and

f(t, x) satisfies the maximum value principle, the harmonic extension f(t, x) of function

f(x) becomes Poisson extension. Triebel [19] considered the Poisson characterization of

Besov spaces where Poisson extension has uniqueness. Alvarez-Guzmán-Partida-Pérez-

Esteva [1] extend harmonic extension to distributions.

If we replace harmonic extension to Poisson type extension, the equation (1.4) becomes

the following equation (1.5). For β > 0, we consider the Cauchy problem of the following

heat equations:

(1.5)

{∂t + (−∆)β/2}u(t, x) = 0 in Rn+1
+ ,

u(0, x) = f(x) in Rn.

Poisson type extension is unique. See Proposition 2.5. Harmonic extension has no

uniqueness. See Theorem 2.8. Harmonic functions have different non-tangential boundary

values in different convergence sense. See Proposition 2.9.

But in Section 3, we consider a one-to-one relation between Carleson measure and

the q-mean oscillation functions. β-harmonic functions with boundary distributions have

no maximum value principle. We apply Meyer wavelets to establish theorem about the

uniqueness of the generalized β-harmonic functions extension and to established that the

β-harmonic function converges to boundary distribution in the relative norm sense. See

Theorems 3.6 and 3.7. From Sections 4 to 7, we present some results on Meyer wavelets,

vaguelets and Poisson type extension. In last section, we apply these results to prove these

two theorems.

In fact, in Section 4, we present some preliminaries on Meyer wavelets and wavelet

characterization of q-mean oscillation space Mα,q. Meyer introduced the conception of

vaguelettes in [15]. In Section 5, we use Meyer wavelets to study two kinds of vaguelettes

relative to β-harmonic functions. By applying Meyer wavelets, the Poisson type extension

is changed to the sum of basic β-harmonic functions. The computation about boundary

distribution is changed to the inner product of β-harmonic function and the basic ob-

servers. The basic β-harmonic functions and the basic observers are all vagulettes on the

parameter t. The derivative of basic β-harmonic functions and the integration of basic

observers are all located at t2jβ.
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In Sections 6 and 7, we apply vaguelette knowledge to prove the properties of Poisson

type extension of q-mean oscillation spaces and boundary distribution of Carleson mea-

sures. In Section 8, we prove Theorems 3.6 and 3.7 which are independent to Poisson type

extension.

Some notations:

• U . V represents that there is a constant C > 0 such that U ≤ CV.

• For convenience, the positive constants C may change from one line to another and

usually depend on the dimension n, α, β and other fixed parameters.

• The Schwartz class of rapidly decreasing functions and its dual will be denoted by

S(Rn) and S ′(Rn), respectively. Let

S0(Rn) =

{
f ∈ S(Rn),

∫
xγf(x) dx = 0, ∀ γ ∈ Nn

}
and denote its dual by S ′0(Rn).

• Denote f(x) ∈ Sstrip(Rn), if f(x) ∈ S(Rn) and there exists 0 < C1 < C2 such that

Supp f̂(ξ) ⊂ {ξ ∈ Rn, C1 ≤ |ξ| ≤ C2}.

• For β > 0 and t > 0, denote Stβ,0(Rn) = e−t(−∆)β/2S0(Rn) and

S ′β,t(Rn) =
(
Stβ,0(Rn)

)′
.

• f̂ denotes the Fourier transform of f .

2. β-harmonic functions in ultra-distribution frame

The meaning of the Cauchy problem of the equation (1.2) is not clear. We will give a

clear meaning of the Cauchy problem (1.4) in this section. First, we present two kinds of

harmonic flows relative to harmonic extension. Then we consider harmonic extension. In

the end of this section, we consider the meaning of boundary value.

2.1. Poisson type flow

Poisson integrals are applied to characterize a series of function spaces. See [4, 17, 19].

Denote L1
loc(Rn) the locally integrable function spaces on Rn. When one studies the

harmonic function spaces with Poisson kernel, one assumes often the local integrability

condition

f ∈ L1
loc(Rn).
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See Essen-Janson-Peng-Xiao [4], Fabes-Neri [6] and Wu-Xie [21]. Local integrable property

may cause the incompleteness of function space. In fact, ∀ 1/2 < p < 1, Hardy spaces

Hp(Rn) are completed quasi-norm spaces, but Hp(R)∩L1
loc(R) are not completed spaces.

Example 2.1. Let ϕ ∈ S(R) and
∫
ϕ(x) dx = 1. We have

1

t

{
φ
(x
t

)
− φ

(
x− 1

t

)}
∈ Hp(R) ∩ L1

loc(R).

The limitation of the above Cauchy sequence is not a locally integrable function. In fact,

lim
t→0

1

t

{
φ
(x
t

)
− φ

(
x− 1

t

)}
= δ(x)− δ(x− 1) /∈ L1

loc(R).

Further,

H{δ(x)− δ(x− 1)} =
1

π

{
1

x
− 1

x− 1

}
.

For 1/2 < p < 1, we have

‖δ(x)− δ(x− 1)‖Lp(R) = 0.

0 <

∥∥∥∥ 1

π

{
1

x
− 1

x− 1

}∥∥∥∥
Lp
<∞.

Hence for 1/2 < p < 1,

0 < ‖δ(x)− δ(x− 1)‖Hp <∞.

To avoid the local integrability condition, Stein-Weiss [18] used the Poisson semi-

group operators and bounded distributions to consider harmonic functions in Hardy spaces

Hp(Rn)

(2.1) P̂tf(ξ) =: e−t|ξ|f̂(ξ).

If f(x) is a bounded distribution in S ′(Rn), then Ptf is a distribution in S ′(Rn) and one

can define the non-tangential maximum function.

But e−t|ξ| is not smooth at zero. The above equation (2.1) can not extend a distribution

f(x) in S ′(Rn) to the Poisson flow f(t, x) in S ′(Rn). In fact, we have

Example 2.2. Let f(x) = x2 ∈ S ′(R). Then ∀ t > 0, we have

(i) Ptf(x) can not be defined as a distribution in S ′(R).

(ii) Ptf(x) is the zero element in S ′0(R).
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In fact, we know f(x) = x2 ∈ S ′(R). Note that,

y2

t2 + (x− y)2
=

(x− y)2

t2 + (x− y)2
− 2x

x− y
t2 + (x− y)2

+ x2 1

t2 + (x− y)2
.

For all g(x) ∈ S(R), formally,∫
Ptf(x)g(x) dx =

∫
y2Ptg(y) dy =

∫∫
ty2

t2 + (x− y)2
g(x) dxdy

=

∫
g(x) dx

∫
ty2

π(t2 + y2)
dy − 2

∫
xg(x) dx

∫
ty

π(t2 + y2)
dy

+

∫
x2g(x) dx

∫
t

π(t2 + y2)
dy.

(i) If we take g(x) ∈ S(R) such that
∫
g(x) dx = 1 and

∫
xg(x) dx =

∫
x2g(x) dx = 0.

By a direct calculation, for all t > 0,∫
Ptf(x)g(x) dx =

∫
ty2

π(t2 + y2)
dy =∞.

For all t > 0, we know Ptf(x) /∈ S ′(R).

(ii) If g(x) ∈ S0(R), then
∫
g(x) dx =

∫
xg(x) dx =

∫
x2g(x) dx = 0. Hence ∀ t > 0,∫

Ptf(x)g(x) dx = 0.

That is to say, ∀ t > 0, Ptf(x) is the zero element in S ′0(R).

We clarify first the sense of Poisson type semigroup operator. Denote P βt a Poisson

type semigroup operator defined as follows:

(2.2) f(t, x) = P βt f(x) =: e−t(−∆)β/2f(x) ≡ (2π)−n
∫
e−t|ξ|

β
f̂(ξ)eixξ dξ.

For β ∈ 2N, we have

Theorem 2.3. (i) ∀ f(x) ∈ S ′(Rn) and ∀ t > 0, we have P βt f(x) ∈ S ′(Rn).

(ii) ∀ f(x) ∈ S ′0(Rn) and ∀ t > 0, we have P βt f(x) ∈ S ′0(Rn).

(iii) Further, f(x) ∈ S ′(Rn), ∀ t > 0, x ∈ Rn, ∀ γ1 ∈ N, γ2 ∈ Nn, there exists a positive

real number Cγ1,γ2t,x such that

(2.3) |∂γ1t ∂γ2x f(t, x)| < Cγ1,γ2t,x .

Proof. (i) For β ∈ 2N and g ∈ S(Rn), we know e−t|ξ|
β
ĝ(ξ) ∈ S(Rn). For all f(x) ∈ S ′(Rn)

and any parameter t,

|〈P βt f(x), g(x)〉| < Ct.
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Hence we have P βt f(x) ∈ S ′(Rn).

(ii) is similar obtained as (i).

(iii) ∀ t > 0, x ∈ Rn, ∀ γ1 ∈ N, γ2 ∈ Nn, we have

∂γ1t ∂
γ2
x f(t, x) = (2π)−n

∫
e−t|ξ|

β
(−|ξ|β)γ1(iξ)γ2 f̂(ξ)eixξ dξ.

Further, for f̂ ∈ S ′(Rn), there exists N,M ∈ N and γ ∈ Nn, there exist aγ,N and fγ(ξ) ∈
L∞(Rn) such that

f̂(ξ) = (1 + |ξ|2)N
∑
|γ|≤M

aγ,N∂
γ
ξ fγ(ξ).

Hence there exist polynomial functions aγ,N (t, x) and Pγ,N (ξ) such that

∂γ1t ∂
γ2
x f(t, x) =

∑
|γ|≤M

∫
e−t|ξ|

β
aγ,N (t, x)Pγ,N (ξ)fγ(ξ)eixξ dξ.

So we get the estimate (2.3).

For β > 0 and β /∈ 2N, the equation (2.2) can not extend a distribution in S ′(Rn) to

a distribution in S ′(Rn). But we have

Theorem 2.4. Given f(x) ∈ S ′(Rn) or f(x) ∈ S ′0(Rn). For all t > 0, we have P βt f(x) ∈
S ′0(Rn).

Proof. Since S ′(Rn) ⊂ S ′0(Rn), it is sufficient to consider the case where f(x) ∈ S ′0(Rn).

For β > 0, g ∈ S0(Rn), we know e−t|ξ|
β
ĝ(ξ) ∈ S0(Rn). That is to say, ∀ f(x) ∈ S ′0(Rn) and

for any parameter t,

|〈P βt f(x), g(x)〉| = |〈f(x), P βt g(x)〉| < Ct.

Hence we have P βt f(x) ∈ S ′0(Rn).

For β > 0, we know

Proposition 2.5. For f(x) ∈ S ′0(Rn), P βt f(x) is the unique solution of (1.5) and it is a

β-harmonic function.

Proof. Applying Fourier transform to the first equation of (1.5),

(∂t + |ξ|β)û(t, ξ) = 0.

We get formally the equation (2.2). Hence P βt f(x) is the unique solution of the equa-

tion (1.5).
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2.2. Ultra-distribution flow Hβ
t and Harmonic extension

For β > 0, denote Hβ
t the operator defined as follows:

Hβ
t f(x) =: et(−∆)β/2f(x) ≡ (2π)−n

∫
et|ξ|

β
f̂(ξ)eixξ dξ.

Hβ
t can map good function to good function. It is easy to see

Theorem 2.6. For all β > 0, t > 0 and f ∈ Sstrip(Rn), we have Hβ
t f(x) ∈ Sstrip(Rn).

But Hβ
t maps only distribution to ultra-distribution:

Theorem 2.7. For β > 0, ∀ f(x) ∈ S ′0(Rn) and ∀ t > 0, we have

Hβ
t f(x) ∈ S ′β,t(Rn).

Now we consider the harmonic extension. The Cauchy problem of the equation (1.4)

is an ill-posed problem. For all C1 ∈ C and C2 = 1− C1, denote

P β,C1
t f(x) = C1H

β
t f(x) + C2P

β
t f(x).

For all C1 ∈ C, P β,C1
t f(x) is a β-harmonic function with initial value f(x).

Theorem 2.8. For f(x) ∈ S ′0(Rn), we have

(i) The distribution f(t, x) = P β,C1
t f(x) ∈ S ′β,t(Rn), ∀ t > 0.

(ii) For all C1 ∈ C, P β,C1
t f(x) satisfies the equation (1.4).

(iii) All the β-harmonic extension functions must be the form P β,C1
t f(x).

Proof. The conclusion of f(t, x) = P β,C1
t f(x) ∈ S ′β,t(Rn) is the direct corollary of the

theorems at the begin of this subsection.

Further, applying Fourier transform to the equation (1.2), we have

∂2
t f̂(t, ξ)− |ξ|2β f̂(t, ξ) = 0.

The formal solution of the above equation is

f̂(t, ξ) =
{
C1e

t|ξ|β + C2e
−t|ξ|β

}
f̂(ξ),

where C1, C2 ∈ C.

Considering the initial value condition, we must take C2 = 1−C1. Then the function

f(t, x) = P β,C1
t f(x) satisfies the equation (1.4).

We can not use maximum value principle to get the uniqueness of the β-harmonic

extension for β-harmonic function with boundary distribution. We will present how to

use Meyer wavelets to get the uniqueness of the β-harmonic extension after Section 3.
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2.3. Integral boundary value

For harmonic function, different convergence sense may produce different non-tangential

boundary value. In fact, Stein-Weiss [18] considered Hardy spaces Hp. We know that

Pt(x) − Pt(x − 1) ∈ Hp(R2
+), ∀ 1/2 < p < 1. We consider the almost everywhere conver-

gence, Lp norm convergence, Hp norm convergence and convergence in distribution sense

of this flow function. We have

Proposition 2.9. (i) limt→0{Pt(x)− Pt(x− 1)} = 0, ∀x 6= 0, 1.

(ii) limt→0 ‖Pt(x)− Pt(x− 1)‖Lp(R) = 0, ∀ 0 < p < 1.

(iii) limt→0〈Pt(x)− Pt(x− 1), φ(x)〉 = φ(0)− φ(1), ∀φ(x) ∈ S(R).

(iv) limt→0 ‖Pt(x)− Pt(x− 1)− {δ(x)− δ(x− 1)}‖Hp(R) = 0, ∀ 1/2 < p < 1.

Proof. The proof of (i), (ii) and (iii) is direct. To prove (iv), we use the following charac-

terization of Hp(R) (0 < p ≤ 1):

f ∈ Hp(R) ⇐⇒ f ∈ Lp(R) and Hf ∈ Lp(R).

It is easy to see that the following equation is true:

(2.4) lim
t→0
‖Pt(x)− Pt(x− 1)− {δ(x)− δ(x− 1)}‖Lp(R) = 0, ∀ 0 < p < 1.

Further

H{Pt(x)− Pt(x− 1)} =
1

π

{
x

x2 + t2
− x− 1

(x− 1)2 + t2

}
and

H{δ(x)− δ(x− 1)} =
1

π

{
1

x
− 1

x− 1

}
.

Hence ∀ 1/2 < p < 1, we have

(2.5) lim
t→0
‖H{Pt(x)− Pt(x− 1)} −H{δ(x)− δ(x− 1)}‖Lp(R) = 0.

By (2.4) and (2.5), we get the conclusion of (iv).

The classic harmonic functions may have different non-tangential boundary distribu-

tion in different convergence sense. Hence we introduce integral boundary value

of the β-harmonic functions. See also [7, 24]. Let φ̃ ∈ S(Rn) be a radial real valued

function such that

Supp
̂̃
φ ⊂

{
ξ :

1

2
≤ |ξ| ≤ 2

}
and

∫ ∞
0

̂̃
φ(t1/β)e−t

dt

t
6= 0.
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Denote

φ =

{∫ ∞
0

̂̃
φ(t1/β)e−t

dt

t

}−1

φ̃.

Write φt(x) = t−n/βφ(t−1/βx) with φ̂t(ξ) = φ̂(t1/βξ). For a β-harmonic function f(t, x),

its boundary distribution is denoted as follows

bf (x) =

∫
Rn+1
+

f(t, y)φt(x− y)
dt

t
dy.

The following boundary distribution theorem shows that the integral boundary value bf (x)

plays the same role as the classic trace:

Theorem 2.10. For β-harmonic function f(t, x), if the boundary distribution bf belong

to S ′(Rn), then the boundary distribution of β-harmonic function P βt bf (x) is still bf .

Proof. By Fourier transformation, we have

ĝ(ξ) =

∫ ∞
0

φ̂(t1/β)e−t
dt

t
ĝ(ξ) =

∫ ∞
0

φ̂(t1/βξ)e−t|ξ|
β
ĝ(ξ)

dt

t
.

If g ∈ S (Rn), then

(2.6) g(x) =

∫
Rn+1
+

P βt g(y)φt(x− y)
dt

t
dy.

Further,〈∫
Rn+1
+

P βt bf (x− y)φt(y)
dt

t
dy, g(x)

〉
=

〈
bf ,

∫
Rn+1
+

P βt g(x− y)φt(y)
dt

t
dy

〉
.

Applying the equation (2.6), we get the conclusion.

3. Carleson measures and q-mean oscillation functions

Carleson measures play an important role in the classic harmonic function theory. We

extend here these meaures to the β-harmonic functions. For β > 0, the relative Carleson

box based on a cube I is defined by

Sβ(I) = I × (0, `(I)β] = {(t, x) ∈ Rn+1
+ : x ∈ I, t ∈ (0, `(I)β]}.

Definition 3.1. (i) A positive measure µ is called to be a Carleson measure in Rn+1
+ if

sup
I

µ(Sβ(I))

|I|
<∞,

where supI indicates the supremum take over all cubes in Rn.
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(ii) A Carleson measure µ is called to be a local compact Carleson measure in Rn+1
+ if

lim
|I|→0

µ(Sβ(I))

|I|
= 0.

For m ∈ N, denote ∇m = (∂mx1 , . . . , ∂
m
xn).

Definition 3.2. Given m ∈ N, |α| < m.

(i) If 1 ≤ q <∞, we define Carleson spaces Cα,qm (Rn+1
+ ) as the space of all β-harmonic

functions such that

‖f‖Cα,qm
= sup

I
{(f, Cα,qm )(I)}1/q < +∞,

where

(f, Cα,qm )(I) = |I|−1

∫
Sβ(I)

|∇mf(t, x)|qtq(m−α)/β−1 dxdt.

Further, f ∈ Cα,qm,0(Rn+1
+ ), if f ∈ Cα,qm (Rn+1

+ ) satisfying that

lim
|I|→0

{(f, Cα,qm )(I)}1/q = 0.

(ii) We define β-harmonic function f(t, x) ∈ Cα,∞m , if

sup
t>0

sup
x∈Rn

t(m−α)/β
n∑
i=1

|∂mxif(t, x)| <∞.

Remark 3.3. For β = 1, α = 0 and q = 2, C0,2
m (Rn+1

+ ) becomes the space HMO(Rn+1
+ )

introduced by Fabes-Johnson-Neri [5].

The above generalized harmonic functions spaces correspond to the following bounded

q-mean oscillation space Mα,q(Rn) whose functions need not to be locally integrable. The

space Mα,q(Rn) is the dual space of the end point Triebel-Lizorkin spaces Ḟ
−α,q/(q−1)
1 (Rn).

See Lin-Lin-Yang [13] and Triebel [19]. Let ϕ ∈ C∞0 (B(0, 2n)) and ϕ(x) = 1 for x ∈
B(0,

√
n). Let Q(x0, r) be the cube centered at x0 with edge parallel to the coordinate

axis and with side length r. For simplicity, sometimes, we denote Q = Q(r) the cube

Q(x0, r) and let ϕQ(x) = ϕ((x−xQ)/r). Given m ∈ N, |α| < m, 1 ≤ q ≤ ∞. For arbitrary

function f , let Sm,q,f be the class of the polynomial functions PQ,f =
∑
|γ|≤m aγx

γ with

degree less than m.

Definition 3.4. Given m ∈ N, |α| < m.
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(i) If 1 ≤ q < ∞, we say that f belongs to the fractional q-mean oscillation space

Mα,q(Rn), provided

sup
Q
|Q|−1/q inf

PQ,f∈Sm,q,f
‖ϕQ(f − PQ,f )‖Ḃα,qq

<∞,

where the superum is taken over all cubes Q. f belongs to the local compact frac-

tional q-mean oscillation space Mα,q
0 (Rn), if f ∈Mα,q(Rn) and

lim
|Q|→0

|Q|−1/q inf
PQ,f∈Sm,q,f

‖ϕQ(f − PQ,f )‖Ḃα,qq
= 0.

(ii) Mα,∞(Rn) is the fractional Bloch space Ḃα,∞
∞ (Rn).

Remark 3.5. (i) The definition Mα,q(Rn) (m ∈ N, |α| < m, 1 ≤ q ≤ ∞) has no relation

with ϕQ and PQ,f . Because their wavelet characterization spaces have no relation

with these quantities. See Theorem 4.2.

(ii) M−1,2 = BMO−1 is the famous space in Koch-Tataru [8].

(iii) Local compact property is equivalent to that the norm of the high frequency party

of a function is small. Hence the local compact property is satisfied for all the

Besov spaces Ḃα,q
p and Triebel-Lizorkin spaces Ḟα,qp where α ∈ R, 0 < p < ∞ and

0 < q ≤ ∞.

For classic harmonic function, one consider often the locally integrable function spaces.

For example: Fefferman-Stein consider the Hardy space H1 = Ḟ 0,2
1 . Fabes-Johnson-Neri

[5] characterized the spaces HMO(Rn+1
+ ) with trace in BMO(Rn). Essen-Janson-Peng-Xiao

[4] considered Q spaces. Further, Sjögren [17] considered the symmetric spaces by Poisson

integrals. Triebel [19] considered the Poisson characterization of Besov spaces. Alvarez-

Guzmán-Partida-Pérez-Esteva [1] extend harmonic extension to distributions. Here, we

establish the trace theorem on the basis of β-harmonic extension. We prove the uniqueness

of the generalized β-harmonic functions extension and the convergence sense on basis of

the function norm for boundary distributions.

By Theorem 2.8, harmonic extension has no uniqueness. In classic harmonic analysis,

we apply maximum value principle to get the uniqueness of harmonic extension. But β-

harmonic functions with boundary distributions do not have maximum value principle. In

this paper, we apply Meyer wavelets to get still the uniqueness of harmonic extension and

establish a one-to-one relation between β-harmonic function in Careleson measure space

Cα,qm and integral boundary value in q-mean oscillation space Mα,q. More precisely, we

have

Theorem 3.6. m ∈ N, |α| < m, 1 ≤ q ≤ ∞.



β-harmonic Function Spaces and Carleson Measures 1119

(i) If f ∈Mα,q, then f can extend uniquely to a β-harmonic function in Cα,qm .

(ii) If f(t, x) ∈ Cα,qm , then the relative boundary distribution bf must belong to Mα,q.

Further, for local compact spaces, we have, the integral boundary value is just the

non-tangential boundary value. That is to say, f(t, x) converges to f(x) in the relative

norm sense:

Theorem 3.7. m ∈ N, |α| < m, 1 ≤ q <∞.

(i) If f ∈Mα,q
0 , then f can extend to a unique β-harmonic function in Cα,qm,0.

(ii) If f(t, x) ∈ Cα,qm,0, then the relative boundary distribution bf belongs to Mα,q
0 . Further,

(3.1) lim
t→0
‖f(t, x)− bf‖Mα,q = 0.

We will prove Theorems 3.6 and 3.7 in the last section. We use Meyer wavelets

and relative vaguelette knowledge to consider the β-harmonic extension and trace theorem

in precise meaning. In Section 4, we present some preliminaries on Meyer wavelets and

characterization of certain function spaces. In Section 5, we consider some properties on

basic harmonic functions and basic observers. In Sections 6 and 7, we consider Carleson

measures. To simplify the notations, we consider only the case m = 1. For m > 1, it is

sufficient consider more derivatives for basic harmonic functions and more integration for

basic observers.

Remark 3.8. Given m,m′ ∈ N, m > |α|, m′ > |α| and 1 ≤ q ≤ ∞. From the above

theorem, we know that Cα,qm = Cα,qm′ . That is to say, different derivatives produce the same

space. If α = 0, q = 2 and m > 0, then Cα,qm = BMO. That is to say, BMO space has

different characterization.

Remark 3.9. (i) For β = 1, Triebel [19] considered the Poisson characterization of Besov

spaces. Essen-Janson-Peng-Xiao [4] considered the Poisson characterization of Q spaces.

It is known that the Poisson extension has uniqueness. We consider β-harmonic extension

for arbitrary positive β. It is known that the β-harmonic extension has no uniqueness. So

even for β = 1 and Besov spaces or Q spaces, we need new skills.

(ii) For a distribution f , normally, it can extend to many β-harmonic functions. The

uniqueness in the above two theorems is obtained by using wavelets and the restriction of

the norm of β-harmonic functions in Cα,qm . See the proof of the main theorems in Section 8.

(iii) In the above section, we have seen that a classic harmonic function may have

different boundary value for different convergence sense. See Proposition 2.9. But in

Theorems 3.6 and 3.7, we have proved the existence of boundary distributions in the

equation (3.1) under the relative given function norm sense.
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Remark 3.10. (i) Mα,q(Rn) can be seen as the generalizations of the following function

spaces:

M0,2(Rn) = BMO(Rn), bounded mean oscillation space;

M−1,2(Rn) = BMO−1(Rn), Koch and Tataru’s space;

M0,∞(Rn) = B0,∞
∞ (Rn), Bloch space;

Mα,∞(Rn) = Cα(Rn) (0 < α < 1), Hölder spaces.

See [15, Section 6.10].

(ii) More generalized function spaces have been considered extensively in real analysis.

See Cui-Yang [3], Li-Yang [10,11], Liang et al. [12], Lin-Yang [14], Yang-Yuan [25], Yuan-

Sickel-Yang [26] and the reference therein. If we replace the Ḃα,q
q norm to Ḃα,q

p norm

or Ḟα,qp norm in Definition 3.4, and we make the respective modification for Carleson

measures in Definition 3.2, our method can be applied to these general function spaces.

To simplify the notations, we restrict ourselves only to q-mean oscillation spaces.

4. Preliminaries on wavelets

4.1. Meyer wavelets

We present some preliminaries on Meyer wavelets Φε and refer the reader to Meyer [15],

Wojtaszczyk [20] and Yang [23] for further information. Let

En = {0, 1}n \ {0},

Fn = {(ε, k) : ε ∈ En, k ∈ Zn},

Λn = {(ε, j, k) : ε ∈ En, j ∈ Z, k ∈ Zn}.

We will use the real-valued Meyer wavelets. Let Ψ0 be an even function in C∞0 ([−4π/3,

4π/3]) with

0 ≤ Ψ0(ξ) ≤ 1 and Ψ0(ξ) = 1 for |ξ| ≤ 2π

3
.

From now on, let

Ω(ξ) =
√

(Ψ0(ξ/2))2 − (Ψ0(ξ))2.

Then Ω(ξ) is an even function in C∞0 ([−8π/3, 8π/3]). Clearly,

Ω(ξ) = 0 for |ξ| ≤ 2π

3
,

Ω2(ξ) + Ω2(2ξ) = 1 = Ω2(ξ) + Ω2(2π − ξ) for ξ ∈
[

2π

3
,
4π

3

]
.
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Let Ψ1(ξ) = Ω(ξ)e−iξ/2. For any ε = (ε1, . . . , εn) ∈ {0, 1}n, define Φε(x) by Φ̂ε(ξ) =∏n
i=1 Ψεi(ξi). For (ε, j, k) ∈ Λn, let

Φε
j,k(x) = 2jn/2Φε(2jx− k).

The set
{

Φε
j,k : (ε, j, k) ∈ Λn

}
forms a wavelet basis. For any ε ∈ {0, 1}n, k ∈ Zn and a

function f on Rn, we write f εj,k =
〈
f,Φε

j,k

〉
. The following result is well-known.

Theorem 4.1. The Meyer wavelets
{

Φε
j,k

}
(ε,j,k)∈Λn

form an orthogonal basis of L2(Rn).

Consequently, for any f ∈ L2(Rn), the following wavelet decomposition holds in the L2

convergence sense:

f =
∑

(ε,j,k)∈Λn

f εj,kΦ
ε
j,k.

4.2. Wavelet characterization of q-mean oscillation spaces

Meyer [15] gave the wavelet characterizations of Besov spaces. See Sections 6 and 10

of [15]. By this result, we could get the following result. We omit the proof and refer the

reader to [9, Lemma 2.2] and [23, Theorem 5.4] for the details.

For f =
∑

(ε,j,k)∈Λn
f εj,kΦ

ε
j,k, we have

Theorem 4.2. Given m ∈ N, |α| < m.

(i) Let 1 ≤ q <∞. A function f ∈Mα,q(Rn) if

sup
Q
|Q|−1

∑
Qj,k⊂Q

2qj(α+n/2−n/q) ∣∣f εj,k∣∣q
1/q

<∞.

(ii) A function f ∈Mα,∞(Rn) if

sup
(ε,j,k)

2nj/2+jα
∣∣f εj,k∣∣ <∞.

Applying Theorem 4.2, we get

Corollary 4.3. Given m ∈ N, |α| < m and 1 ≤ q <∞.

Mα,q(Rn) (Mα,∞(Rn).
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5. Some properties on vaguelettes

In this section, we consider two kinds of vaguelettes derived from β-harmonic functions and

Meyer wavelets. It allows us to use the method of discretization to consider β-harmonic

functions. Hence, we do not need the skills of Calderón-Zygmund operators like the corre-

sponding author of this paper did in [22]. In Section 5, Chapter 8 of [15], Meyer introduced

the conception of vaguelettes in Rn which are introduced to study the L2 boundedness. See

also [16]. Vaguelettes there are defined as Hölder smooth functions decreasing at certain

speed and with a certain zero vanishing moments. To make the vagulettes to adapt our

situation, we assume that vaguelettes are sufficient smooth functions decreasing enough

fast and with enough zero vanishing moments. That is to say,

Definition 5.1. The functions fj,k(x) (j ∈ Z, k ∈ Zn) on Rn are called to be vaguelettes,

if there exists m ∈ N and a sufficient big N > n such that

|∂γxfj,k(x)| ≤ C2(n/2+|γ|)j(1 + |2jx− k|)−N , ∀ |γ| ≤ m,∫
xγfj,k(x) dx = 0, ∀ |γ| ≤ m− 1.

We generalize this conception to two kinds of vaguelettes in Rn+1
+ with parameter t.

For wavelettes Φε
j,k(x), we consider P βt Φε

j,k(x) and
∫
φt(x− y)Φε

j,k(y) dy.

5.1. Two kinds of vaguelettes

By wavelette theory, all the β-harmonic functions can be seen as the linear combination

of the basic β-harmonic functions P βt Φε
j,k(x).

Lemma 5.2. There exists small positive real number c such that∣∣∣P βt Φε
j,k(x)

∣∣∣ ≤ C2nj/2(1 + |2jx− k|)−N , ∀ t2jβ ≤ 1,∣∣∣P βt Φε
j,k(x)

∣∣∣ ≤ C2nj/2(t2jβ)Ne−ct2
jβ

(1 + |2jx− k|)−N , ∀ t2jβ > 1,∫
P βt Φε

j,k(x) dx = 0.

Proof. By Fourier transform, we have

P βt Φε
j,k(x) = (2π)−n2−nj/2

∫
e−t|ξ|

β
Φ̂ε(2−jξ)ei(x−2−jk)ξ dξ

= (2π)−n2nj/2
∫
e−t2

jβ |ξ|β Φ̂ε(ξ)ei(2
jx−k)ξ dξ.

Hence, we get ∣∣∣P βt Φε
j,k(x)

∣∣∣ ≤ (2π)−n2nj/2
∫ ∣∣∣e−t2jβ |ξ|β Φ̂ε(ξ)ei(2

jx−k)ξ
∣∣∣ dξ

≤ C2nj/2e−ct2
jβ
.
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If |2jx − k| > 1, we assume that the first biggest component of 2jx − k is the v-th

component. By integration by parts for the v-th component N times, we get

P βt Φε
j,k(x) = i−N (2jxv − kv)−N (2π)−n2j+nj/2

∫
e−t2

jβ |ξ|β Φ̂ε(ξ)
{
∂Nξve

i(2jx−k)ξ
}
dξ

= i−N (−1)N (2jxv − kv)−N (2π)−n2j+nj/2
∫
∂Nξv

{
e−t2

jβ |ξ|β Φ̂ε(ξ)
}
ei(2

jx−k)ξ dξ.

Hence, we get the proof of the conclusion of this lemma.

Further, we consider some vaguelette relative to boundary distribution. Let Φε
j,k(t, x) =∫

φt(x− y)Φε
j,k(y) dy. Then the observed quantity∫

Rn+1
+

f(t, y)Φε
j,k(t, y)

dt

t
dy

of f(t, y) equals to the wavelet coefficient
〈
bf (x),Φε

j,k

〉
. In fact,

〈
bf (x),Φε

j,k

〉
=

〈∫
Rn+1
+

f(t, y)φt(x− y)
dt

t
dy,Φε

j,k

〉
=

∫
Rn+1
+

f(t, y)Φε
j,k(t, y)

dt

t
dy.

The basic oscillators Φε
j,k(t, x) play a role of observers. They can pull back a β-harmonic

functions to its boundary distribution. Further,

Lemma 5.3. There exists 0 < C1 < C2 such that

(i) Φε
j,k(t, x) = 0 for t2jβ ≥ C2 or t2jβ ≤ C1.

(ii) If C1 ≤ t2jβ ≤ C2, then∣∣Φε
j,k(t, x)

∣∣ ≤ CN2nj/2(1 + |2jx− k|)−N , ∀N > n.

(iii)
∫

Φε
j,k(t, x) dx = 0.

Proof. The Fourier transform of Φε
j,k(t, x) is the following function:∫

Φε
j,k(t, x)e−ixξ dx =

∫∫
φt(x− y)Φε

j,k(y)e−ixξ dxdy

=

∫
φt(x)e−ixξ dx

∫
Φε
j,k(y)e−iyξ dy

= φ̂(t1/βξ)Φ̂ε(2−jξ)e−i2
−jkξ.

By Meyer wavelettes properties, (i) and (iii) are true.

By inverse Fourier transform, we have∫
φt(x− y)Φε

j,k(y) dy = (2π)−n2−nj/2
∫
φ̂(t1/βξ)Φ̂ε(2−jξ)ei(x−2−jk)ξ dξ

= (2π)−n2nj/2
∫
φ̂(2jt1/βξ)Φ̂ε(ξ)ei(2

jx−k)ξ dξ.

By Meyer wavelette properties, we get (ii).
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Remark 5.4. In this paper, we use P βt Φε
j,k(x) and Φε

j,k(t, x) to consider the Poisson type

extension and relative boundary distribution theorem.

(i) P βt Φε
j,k(x) is a vagulette which is not located at t = 2−jβ, so we consider its m order

derivatives.

(ii) Φε
j,k(t, x) can not be adapted to the norm of Carleson space Cα,qm , we need its m

order integration.

(iii) In the next subsection, we consider the derivatives for basic β-harmonic functions

and the integrations for the basic observers. To simplify the notations, we consider

only the case m = 1. For m > 1, we need only consider m order derivatives for basic

β-harmonic functions and m order integrations for the basic observers.

5.2. Basic β-harmonic functions

For u = 1, . . . , n, we consider P β,u,εj,k (t, x) = ∂xuP
β
t Φε

j,k(x), the derivative of the basic

β-harmonic functions P βt Φε
j,k(x).

Lemma 5.5. (i) If t2jβ ≤ 1, then∣∣∣P β,u,εj,k (t, x)
∣∣∣ ≤ CN2j+nj/2(1 + |2jx− k|)−N , ∀N > n.

(ii) If t2jβ > 1, then there exists small positive real number c such that∣∣∣P β,u,εj,k (t, x)
∣∣∣ ≤ CN2j+nj/2(t2jβ)Ne−ct2

jβ
(1 + |2jx− k|)−N , ∀N > n.

Proof. By Fourier transform, we have

P β,u,εj,k (t, x) = ∂xuP
β
t Φε

j,k(x)

= i(2π)−n2−nj/2
∫
ξue
−t|ξ|β Φ̂ε(2−jξ)ei(x−2−jk)ξ dξ

= i(2π)−n2j+nj/2
∫
ξue
−t2jβ |ξ|β Φ̂ε(ξ)ei(2

jx−k)ξ dξ.

Hence, we get∣∣∣∂xuP βt Φε
j,k(x)

∣∣∣ ≤ (2π)−n2j+nj/2
∫ ∣∣∣ξue−t2jβ |ξ|β Φ̂ε(ξ)ei(2

jx−k)ξ
∣∣∣ dξ

≤ C2j+nj/2e−ct2
jβ
.
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If |2jx − k| > 1, we assume that the first biggest component of 2jx − k is the v-th

component. By integration by parts for the v-th component N times, we get

∂xuP
β
t Φε

j,k(x)

= i1−N (2jxv − kv)−N (2π)−n2j+nj/2
∫
ξue
−t2jβ |ξ|β Φ̂ε(ξ)

{
∂Nξve

i(2jx−k)ξ
}
dξ

= i1−N (−1)N (2jxv − kv)−N (2π)−n2j+nj/2
∫
∂Nξv

{
ξue
−t2jβ |ξ|β Φ̂ε(ξ)

}
ei(2

jx−k)ξ dξ.

Hence, we get the proof of the conclusion of this lemma.

We consider then the integration of the basic β-harmonic functions. For ε = (ε1, ε2, . . . ,

εn) ∈ En, denote by iε the smallest index such that εiε = 1. Let ∂ε = ∂xiε and IεΦ
ε(x) =

IiεΦ
ε(x). For IεP

β,ε
j,k (t, x) = IεP

β
t Φε

j,k(x), by similar way in the above lemma, we have

Lemma 5.6. (i) If t2jβ ≤ 1, then∣∣∣IεP β,εj,k (t, x)
∣∣∣ ≤ CN2−j+nj/2(1 + |2jx− k|)−N , ∀N > n.

(ii) If t2jβ > 1, then there exists a small positive real number c such that∣∣∣IεP β,εj,k (t, x)
∣∣∣ ≤ CN2−j+nj/2(t2jβ)Ne−ct2

jβ
(1 + |2jx− k|)−N , ∀N > n.

5.3. Basic observers

We consider some properties on the integration of the basic oscillators Φε
j,k(t, x) =

∫
φt(x−

y)Φε
j,k(y) dy. For i = 1, . . . , n and any function f , define

Iif(x) =

∫ xi

−∞
f(x1, . . . , x−1+iε , y, x1+iε , . . . , xn) dy.

Let Bε
j,k(t, x) = IεΦ

ε
j,k(t, x) and

(5.1) f εj,k =
〈
bf (x),Φε

j,k

〉
= −

∫
Rn+1
+

∂εf(t, y)Bε
j,k(t, y)

dt

t
dy.

Lemma 5.7. There exists 0 < C1 < C2 such that

(i) Bε
j,k(t, x) = 0 for t2jβ ≥ C2 or t2jβ ≤ C1.

(ii) If C1 ≤ t2jβ ≤ C2, then∣∣Bε
j,k(t, x)

∣∣ ≤ CN2nj/2−j(1 + |2jx− k|)−N , ∀N > n.
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Proof. By a direct computation, we have∫
IεΦ

ε(x)e−ixξ dx = (iξiε)
−1

∫
Φε(x)e−ixξ dx.

Hence, for Bε
j,k(t, x) = IεΦ

ε
j,k(t, x), we have∫

Bε
j,k(t, x)e−ixξ dx = (iξiε)

−1φ̂(t1/βξ)Φ̂ε(2−jξ)e−i2
−jkξ.

By inverse Fourier transformation, we get

Bε
j,k(t, x) = (2π)−n2−nj/2

∫
φ̂(t1/βξ)(iξiε)

−1Φ̂ε(2−jξ)ei(x−2−jk)ξ dξ

= (2π)−n2nj/2−j
∫
φ̂(2jt1/βξ)(iξiε)

−1Φ̂ε(ξ)ei(2
jx−k)ξ dξ,

which implies the desired conclusion of the above lemma.

6. Fractional Bloch spaces and β-harmonic functions

The boundary value of a harmonic function in Cα,∞(Rn+1
+ ) may not be locally integrable.

We can characterize the boundary distribution in such spaces with fractional Bloch spaces

Ḃα,∞
∞ (Rn). For Poisson extension, we use the properties of basic β-harmonic functions.

For trace result, we use the properties of the basic observers.

Theorem 6.1. Let |α| < m.

(i) For any f ∈Mα,∞(Rn), we have

f(t, x) =: P βt f(x) ∈ Cα,∞m (Rn+1
+ ).

(ii) For any f(t, x) ∈ Cα,∞m (Rn), there exists a function f ∈Mα,∞(Rn) such that

f(t, x) = P βt f(x).

Proof. For m > 1, we need only to consider more derivatives and more integrations. To

simplify the proof, we consider only the case m = 1.

(i) Note that

∂xuP
β
t f =

∑
ε,j,k

f εj,k∂xuP
β
t Φε

j,k(x).
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Applying Theorem 4.2 and Lemma 5.5, we have∣∣∣∂xuP βt f ∣∣∣ ≤ C ∑
t2jβ≤1,k

2j(1−α)(1 + |2jx− k|)−N

+ C
∑

t2jβ>1,k

2j(1−α)(t2jβ)Ne−ct2
jβ

(1 + |2jx− k|)−N

≤ C
∑
t2jβ≤1

2j(1−α) + C
∑
t2jβ>1

2j(1−α)(t2jβ)Ne−ct2
jβ

≤ Ct(α−1)/β.

(ii) Applying Lemma 5.7 and the equation (5.1), we get

∣∣f εj,k∣∣ ≤ C ∫
C1≤t2jβ≤C2

∫
Rn
t(α−1)/β

∣∣Bε
j,k(t, x)

∣∣ dxdt
t

≤ C
∫
C1≤t2jβ≤C2

∫
Rn
t(α−1)/β2nj/2−j(1 + |2jx− k|)−N dxdt

t

≤ C
∫
C1≤t2jβ≤C2

t(α−1)/β2−nj/2−j
dt

t

≤ C2−nj/2−jα.

7. β-harmonic function and oscillation spaces

In Section 7.1, by Theorem 7.1, we extend the functions in Mα,q(Rn) to β-harmonic

functions on Rn+1
+ . The essential ideas are to decompose functions with Meyer wavelets,

then apply the properties of basic β-harmonic functions to prove the relative results. In

Section 7.2, by Theorems 2.10 and 7.2, we apply the basic observers to pull back the β-

harmonic functions in Cα,qm (Rn+1
+ ) into their relative boundary distribution in Mα,q(Rn).

7.1. β-Poisson extension

In this subsection, we extend the functions in Mα,q(Rn) to β-harmonic functions in Car-

leson spaces. In fact,

Theorem 7.1. Let 1 ≤ q <∞ and |α| < m. For any f ∈Mα,q(Rn), we have

f(t, x) =: P βt f(x) ∈ Cα,qm (Rn+1
+ ).

Proof. For m > 1, we need only to consider m order derivatives. To simplify the notations,

we consider only the case m = 1. For i = 1, . . . , n, denote

CI,i = |I|−1

∫
Sβ(I)

|∂xif(t, x)|qtq(1−α)/β−1 dxdt.
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By wavelet characterization, we write ∂xif(t, x) to the sum of basic harmonic functions

∂xif(t, x) =
∑
ε,j,k

f εj,kP
β,i,ε
j,k (t, x).

We decompose it into two terms

Ii(t, x) =
∑

ε,j,k,2nj |I|<1

f εj,kP
β,i,ε
j,k (t, x),

IIi(t, x) =
∑

ε,j,k,2nj |I|≥1

f εj,kP
β,i,ε
j,k (t, x).

For i = 1, . . . , n, denote

C1
I,i = |I|−1

∫
Sβ(I)

|Ii(t, x)|qtq(1−α)/β−1 dxdt,

C2
I,i = |I|−1

∫
Sβ(I)

|IIi(t, x)|qtq(1−α)/β−1 dxdt.

For ‖f‖Mα,q ≤ 1, we only need to prove that

sup
I
CsI,i . C, s = 1, 2, i = 1, 2, . . . , n.

On Carleson box Sβ(I), Ii(t, x) can be estimated by constant depending on I. In fact,

by Corollary 4.3, |f εj,k| ≤ C2−jα−nj/2. For all (t, x) ∈ Sβ(I), we have

|Ii(t, x)| .
∑

ε,j,k,2nj |I|<1

2−jα−nj/2
∣∣∣P β,i,εj,k (t, x)

∣∣∣
.

∑
ε,j,k,2nj |I|<1

2j(1−α)(1 + |2jx− k|)−N

. C|I|(α−1)/n.

Hence, we have

C1
I,i . |I|−1

∫
Sβ(I)

|I|q(α−1)/ntq(1−α)/β−1 dxdt ≤ C.

For arbitrary small positive δ, we have

|IIi(t, x)|q

.
∑

ε,j,k,2nj |I|≥1

2(q−1)(j+nj/2−jδ)
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣
 ∑
ε,j,k,2nj |I|≥1

2−j−nj/2+jδ
∣∣∣P β,i,εj,k (t, x)

∣∣∣
q−1

. t−(q−1)δ/β
∑

ε,j,k,2nj |I|≥1

2(q−1)(j+nj/2−jδ)
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣ .
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Hence, we get

C2
I,i

. |I|−1
∫
Sβ(I)

∑
ε,j,k,2nj |I|≥1

2(q−1)(j+nj/2−jδ)
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣ tq(1−α)/β−1−(q−1)δ/β dxdt
= |I|−1

∫
I×[0,2−jβ ]

∑
ε,j,k,2nj |I|≥1

2(q−1)(j+nj/2−jδ)
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣ tq(1−α)/β−1−(q−1)δ/β dxdt
+ |I|−1

∫
I×[2−jβ ,l(I)β ]

∑
ε,j,k,2nj |I|≥1

2(q−1)(j+nj/2−jδ)
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣ tq(1−α)/β−1−(q−1)δ/β dxdt.
There exists 2n different dyadic cube Ii such that

(i) dist(Ii, Ij) = 0, ∀ i, j = 1, . . . , 2n;

(ii) 2−n|I| ≤ |Ii| = |Ij | < |I|, ∀ i, j = 1, . . . , 2n;

(iii) I ⊂
⋃
i=1,...,2n Ii.

For all l ∈ Zn, denote SI,l = {(j, k) : 2nj |I| ≥ 1, Ij,k ⊂ l|I1|1/n + I1}. Denote

C2,1,l
I,i = |I|−1

∫
I×[0,2−jβ ]

∑
ε,(j,k)∈SI,l

2(q−1)(j+nj/2−jδ)

×
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣ tq(1−α)/β−1−(q−1)δ/β dxdt,

C2,2,l
I,i = |I|−1

∫
I×[2−jβ ,l(I)β ]

∑
ε,(j,k)∈SI,l

2(q−1)(j+nj/2−jδ)

×
∣∣f εj,k∣∣q ∣∣∣P β,i,εj,k (t, x)

∣∣∣ tq(1−α)/β−1−(q−1)δ/β dxdt.

By this way,

C2
I,i .

∑
l∈Zn

C2,1,l
I,i +

∑
l∈Zn

C2,2,l
I,i .

We apply (i) of Lemma 5.5 to the estimate of C2,1,l
I,i . For |l| ≤ 4n, we have

C2,1,l
I,i ≤ C|I|

−1

∫
[0,2−jβ ]

∑
ε,(j,k)∈SI,l

2q(j+n/2)−nj−(q−1)jδ
∣∣f εj,k∣∣q tq(1−α)/β−1−δ/β dxdt

≤ C sup
Q
|Q|−1

∑
Qj,k⊂Q

2qj(α+n/2−n/q) ∣∣f εj,k∣∣q .
For |l| > 4n, we have

C2,1,l
I,i ≤ C|I|

−1
∫
[0,2−jβ ]

∑
ε,(j,k)∈SI,l

2q(j+n/2)−nj−(q−1)jδ
∣∣f εj,k∣∣q (2j |I|1/n|l|)n−N tq(1−α)/β−1−δ/β dxdt

≤ C sup
Q
|Q|−1

∑
Qj,k⊂Q

2qj(α+n/2−n/q)
∣∣f εj,k∣∣q |l|n−N .
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We apply (ii) of Lemma 5.5 to the estimate of C2,2,l
I,i . For |l| ≤ 4n,

C2,2,l
I,i

≤ C|I|−1
∫
[2−jβ ,l(I)β ]

∑
ε,(j,k)∈SI,l

2q(j+n/2)−nj−(q−1)jδ(t2jβ)Ne−ct2
jβ ∣∣f εj,k∣∣q tq(1−α)/β−1−δ/β dxdt

≤ C sup
Q
|Q|−1

∑
Qj,k⊂Q

2qj(α+n/2−n/q)
∣∣f εj,k∣∣q .

For |l| > 4n, we have

C2,2,l
I,i ≤ C|I|

−1

∫
[2−jβ ,l(I)β ]

∑
ε,(j,k)∈SI,l

2q(j+n/2)−nj−(q−1)jδ(t2jβ)Ne−ct2
jβ ∣∣f εj,k∣∣q

× (2j |I|1/n|l|)n−N tq(1−α)/β−1−δ/β dxdt

≤ C sup
Q
|Q|−1

∑
Qj,k⊂Q

2qj(α+n/2−n/q) ∣∣f εj,k∣∣q |l|n−N .
Since supQ |Q|−1

∑
Qj,k⊂Q 2qj(α+n/2−n/q)

∣∣∣f εj,k∣∣∣q ≤ C, we get

C2
I,i ≤ C

∑
l∈Zn

(1 + |l|)n−N + C
∑
l∈Zn

(1 + |l|)n−N ≤ C.

7.2. Boundary distribution

The boundary value of a β-harmonic function in Cα,q(Rn+1
+ ) may not be locally integrable.

But we have

Theorem 7.2. Let 1 ≤ q < ∞ and |α| < m. For any f(t, x) ∈ Cα,q(Rn), there exists a

function f ∈Mα,q(Rn) such that

f(t, x) = P βt f(x).

Proof. For m > 1, we need only to consider m order integrations. To simplify the nota-

tions, we consider only the case m = 1. For simplicity, for any ε, let

(f,Wα,q)ε(I) =: |I|−1
∑

(j,k):Ij,k⊂I

2qj(α+n/2)−nj ∣∣f εj,k∣∣q .
We write

(f,Wα,q)(I) = |I|−1
∑

(ε,j,k)∈Λn:Ij,k⊂I

2qj(α+n/2)−nj ∣∣f εj,k∣∣q ≡∑
ε

(f,Wα,q)ε(I).
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Because the contribution of β-harmonic function f(t, x) to the vaguelette Φε
j,k(t, x) is

f εj,k = −〈∂εf(t, x), Bε
j,k(t, x)〉, we have

(f,Wα,q)ε(I)

= |I|−1
∑
Ij,k⊂I

2qj(α+n/2)−nj ∣∣f εj,k∣∣q
= |I|−1

∑
Ij,k⊂I

2qj(α+n/2)−nj
∣∣∣∣∫ ∞

0

∫
Rn
∂εf(t, y)Bε

j,k(t, y) dy
dt

t

∣∣∣∣q
≤ |I|−1

∑
Ij,k⊂I

2qj(α+n/2)−nj
∫ ∞

0

∫
Rn
|∂εf(t, y)|q

∣∣Bε
j,k(t, y)

∣∣ dydt
tq

×
(∫ ∞

0

∫
Rn

∣∣Bε
j,k(t, y)

∣∣ dydt)q−1

. |I|−1
∑
Ij,k⊂I

2qj(α+n/2)−nj−(q−1)(n/2+1+β)j

∫ ∞
0

∫
Rn
|∂εf(t, y)|q

∣∣Bε
j,k(t, y)

∣∣ dydt
tq
.

Denote I = Ij0,k0 and ∀ l ∈ Zn, denote Il = 2−j0 l + Ij0,k0 = 2−j0 l + I. Hence

(f,Wα,q)ε(I) .
∑
l∈Zn
|I|−1

∑
Ij,k⊂I

2qj(α+n/2)−nj−(q−1)(n/2+1+β)j

×
∫ ∞

0

∫
Il

|∂εf(t, y)|q
∣∣Bε

j,k(t, y)
∣∣ dydt

tq

≡
∑
l∈Zn

Cε,I,l.

For |l| < 2n+1, we have

Cε,I,l . |I|−1
∑

2nj |I|≥1

2qj(α−1)−(q−1)βj

∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|q dydt
tq

. |I|−1
∑

2nj |I|≥1

∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|qtq(1−α)/β−1 dydt.

For |l| ≥ 2n+1, we have

Cε,I,l . |I|−1
∑

2nj |I|≥1

2qj(α−1)−(q−1)βj(2j−j0 |l|)−N
∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|q dydt
tq

. |I|−1
∑

2nj |I|≥1

∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|qtq(1−α)/β−1 dydt|l|−N .

Since |I|−1
∑

2nj |I|≥1

∫ C22−jβ

C12−jβ

∫
Il
|∂εf(t, y)|qtq(1−α)/β−1 dydt ≤ C, we get

(f,Wα,q)ε(I) ≤ C
∑
l∈Zn

(1 + |l|)−N ≤ C.
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8. Proof of Theorems 3.6 and 3.7

In this section, we apply the above results to prove Theorems 3.6 and 3.7 in Section 3.

8.1. Proof of Theorem 3.6

We prove first two preliminaries theorems.

Theorem 8.1. Given m ∈ N, |α| < m, 1 ≤ q ≤ ∞. If f(x, t) ∈ Cα,qm , then ∀ (ε, j, k) ∈ Λn,∣∣∣∣∫ ∞
0

〈
f(t, x), P βt Φε

j,k(x)
〉
dt

∣∣∣∣ < Cεj,k.

Proof. We consider only m = 1. By integration by parts, we get∫ ∞
0

〈
f(t, x), P βt Φε

j,k(x)
〉
dt = −

∫ ∞
0

〈
∂εf(t, x), IεP

β
t Φε

j,k(x)
〉
dt.

By applying Lemma 5.6 and the property f(x, t) ∈ Cα,qm , we get the conclusion.

Theorem 8.2. Given m ∈ N, |α| < m, 1 ≤ q ≤ ∞. If 0 6= f(x) ∈Mα,q, then there exists

(ε, j, k) ∈ Λn such that ∣∣∣∣∫ ∞
0

〈
Hβ
t f(x), P βt Φε

j,k(x)
〉
dt

∣∣∣∣ =∞.

Proof. By Fourier transform and inverse Fourier transform, we have∣∣∣∣∫ ∞
0

〈
Hβ
t f(x), P βt Φε

j,k(x)
〉
dt

∣∣∣∣
= C2−nj/2

∫ ∞
0

dt

{∫
Rn
et|ξ|

β
f̂(ξ)e−t|ξ|

β
Φ̂ε(2−jξ)ei2

−jkξ dξ

}
= C2−nj/2

∫ ∞
0

dt

{∫
Rn
f̂(ξ)Φ̂ε(2−jξ)ei2

−jkξ dξ

}
= C

∫ ∞
0

dt
{〈
f(x),Φε

j,k(x)
〉}

= C
∣∣f εj,k∣∣ ∫ ∞

0
dt.

That is to say, if f εj,k 6= 0, then∣∣∣∣∫ ∞
0
〈Hβ

t f(x), P βt Φε
j,k(x)〉 dt

∣∣∣∣ = C
∣∣f εj,k∣∣ ∫ ∞

0
dt =∞.

Proof of Theorem 3.6. By Theorems 6.1, 7.1 and 7.2 in Sections 6 and 7, we need only

prove the uniqueness of β-harmonic functions. In fact, if f ∈Mα,q, then

P βt f ∈ Cα,qm ⊂ S ′0(Rn).

Further, Hβ
t f ∈ S ′β,t(Rn). By Theorem 8.2, Hβ

t f /∈ S ′0(Rn). Hence the unique β-harmonic

function in the relative Carleson measure space is P β,0t f = P βt f . This completes the

proof.
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8.2. Proof of Theorem 3.7

First we prove a preliminary theorem.

Theorem 8.3. Given m ∈ N, |α| < m, 1 ≤ q <∞. If f ∈Mα,q
0 , then

lim
t→0

∥∥∥f(x)− P βt f(x)
∥∥∥
Mα,q

= 0.

Proof. If f ∈Mα,q
0 , then for all 0 < δ < ‖f‖Mα,q , there exists j0 ∈ N such that

‖f1,δ(x)‖Mα,q < δ and ‖f2,δ(x)‖Mα,q < δ + ‖f‖Mα,q ,

where f1,δ(x) =
∑

ε,j≥j0,k f
ε
j,kΦ

ε
j,k(x) and f2,δ(x) =

∑
ε,j<j0,k

f εj,kΦ
ε
j,k(x). It is easy to see

that ∥∥∥f1,δ(x)− P βt f1,δ(x)
∥∥∥
Mα,q

< 2δ.

Let

aε,ε
′

j,k,j′,k′ =
〈

(e−t(−∆)β/2 − 1)Φε
j,k(x),Φε′

j′,k′(x)
〉
.

By Fourier transform, we have

aε,ε
′

j,k,j′,k′ = 2−
n
2

(j+j′)

∫
(e−t|ξ|

β − 1)Φ̂ε(2−jξ)Φ̂ε′(2−j
′
ξ)e−i(2

−jk−2−j
′
k′)ξ dξ

= 2
n
2

(j−j′)
∫

(e−t2
jβ |ξ|β − 1)Φ̂ε(ξ)Φ̂ε′(2j−j

′
ξ)e−i(k−2j−j

′
k′)ξ dξ.

The support of the Fourier transform of Meyer wavelets is contained in a ring, then

∀ |j − j′| ≥ 2, aε,ε
′

j,k,j′,k′ = 0.

Further, for |ξ| ∼ 1, α, u ∈ N, v ∈ R, we have ∂αξi(ξ
u|ξ|v) ≤ C. If |j − j′| ≤ 1, we have∣∣∣aε,ε′j,k,j′,k′

∣∣∣ ≤ Ct2jβ(1 + |k − 2j−j
′
k′|)−n−N .

By the orthogonality of Meyer wavelets, we have

f2,δ(x)− P βt f2,δ(x) =
∑

ε,ε′,k,k′,j<j0,|j−j′|≤1

f εj,ka
ε,ε′

j,k,j′,k′Φ
ε′
j′,k′(x).

For a dyadic cube Q with side length 2−j0 , denote Q̃ the dyadic cube which contains

Q with double side length. We decompose Rn into the union 21−j0 l+ Q̃, l ∈ Zn. If q = 1,
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then

|Q|−1
∑

ε′,Qj′,k′⊂Q
2j
′(α−n/2)

∣∣∣∣∣∣
∑

ε,j<j0,|j−j′|≤1,k

f εj,ka
ε,ε′

j,k,j′,k′

∣∣∣∣∣∣
≤ |Q|−1

∑
ε′,Qj′,k′⊂Q

2j
′(α−n/2)

∑
l∈Zn

∑
ε,j<j0,|j−j′|≤1,Qj,k⊂21−j0 l+Q̃

∣∣f εj,k∣∣ ∣∣∣aε,ε′j,k,j′,k′

∣∣∣
≤
∑
l∈Zn
|Q̃|−1

 sup
Qj,k⊂21−j0 l+Q̃

∑
ε′,Qj′,k′⊂Q,j′≤1+j0,|j−j′|≤1

∣∣∣aε,ε′j,k,j′,k′

∣∣∣
 ∑
ε,Qj,k⊂21−j0 l+Q̃

2j(α−n/2)
∣∣f εj,k∣∣

≤ t2βj0
∑
l∈Zn

(1 + |l|)−n−1|Q̃|−1
∑

ε,Qj,k⊂21−j0 l+Q̃

2j(α−n/2)
∣∣f εj,k∣∣ .

If 1 < q < ∞, we choose a sufficient small positive real number δ and denote τ =

(q − 1)(n+ δ)/q.

If Qj′,k′ ⊂ Q and |l| ≤ 4n, then∣∣∣∣∣∣∣
∑

Qj,k⊂21−j0 l+Q̃

f εj,ka
ε,ε′

j,k,j′,k′

∣∣∣∣∣∣∣
q

≤
∑

Qj,k⊂21−j0 l+Q̃

∣∣f εj,k∣∣q .
If Qj′,k′ ⊂ Q and |l| > 4n, then∣∣∣∣∣∣∣

∑
Qj,k⊂21−j0 l+Q̃

f εj,ka
ε,ε′

j,k,j′,k′

∣∣∣∣∣∣∣
q

≤
∑

Qj,k⊂21−j0 l+Q̃

∣∣f εj,k∣∣q
and

|Q|−1
∑

ε′,Qj′,k′⊂Q
2qj
′(α+n/2−n/q)

∣∣∣∣∣∣
∑

ε,j<j0,|j−j′|≤1,k

f εj,ka
ε,ε′

j,k,j′,k′

∣∣∣∣∣∣
q

≤ |Q|−1
∑

ε′,Qj′,k′⊂Q
2qj
′(α+n/2−n/q)

∑
ε,j<j0,|j−j′|≤1,k

∣∣f εj,k∣∣q ∣∣∣aε,ε′j,k,j′,k′

∣∣∣
≤ |Q|−1

∑
ε′,Qj′,k′⊂Q

2qj
′(α+n/2−n/q)

∑
l∈Zn

∑
ε,j<j0,|j−j′|≤1,Qj,k⊂21−j0 l+Q̃

∣∣f εj,k∣∣q ∣∣∣aε,ε′j,k,j′,k′

∣∣∣
≤
∑
l∈Zn
|Q|−1

 sup
Qj,k⊂21−j0 l+Q̃

∑
ε′,j′<1+j0,Qj′,k′⊂Q

∣∣∣aε,ε′j,k,j′,k′

∣∣∣
 ∑
ε,Qj,k⊂21−j0 l+Q̃

2qj(α+n/2−n/q)
∣∣f εj,k∣∣q

≤ t2βj0
∑
l∈Zn

(1 + |l|)−n−1|Q̃|−1
∑

ε,Qj,k⊂21−j0 l+Q̃

2qj(α+n/2−n/q)
∣∣f εj,k∣∣q .

We choose t sufficient small such that t2βj0 < δ, we get the conclusion.

Proof of Theorem 3.7. (i) By Theorem 3.6, the unique β-harmonic function in Cα,qm is

P βt f . Now we only need to prove

(8.1) P βt f ∈ C
α,q
m,0.
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For all 0 < δ < ‖f‖Mα,q
0

, there exists j0 such that fj0 =
∑

(ε,j≥j0,k) f
ε
j,kΦ

ε
j,k(x) and

‖fj0‖Mα,q
0

< δ. Hence
∥∥P βt fj0∥∥Cα,qm

< Cδ.

To prove the conclusion of (8.1), we need to consider

f − fj0 =
∑

(ε,j<j0,k)

f εj,kΦ
ε
j,k(x).

For j < j0 and γ ∈ Nn and |γ| = m, denote

gj,γ(t, x) =
∑
(ε,k)

f εj,k∂
γP βt Φε

j,k(x).

Since f(x) ∈Mα,q ⊂Mα,∞, we have

|gj,γ | ≤ C2(α−m)j .

Since α < m, hence ∣∣∣∂γP βt (f − fj0)
∣∣∣ ≤ C2(α−m)j0 .

That is to say,

|I|−1

∫
Sβ(I)

∣∣∣∇mP βt (f − fj0)
∣∣∣q tq(m−α)/β−1 dxdt

≤ |I|−1

∫
Sβ(I)

2q(α−m)j0tq(m−α)/β−1 dxdt

≤ 2q(α−m)j0 l(I)q(m−α) = {2j0 l(I)}q(m−α).

We choose 2j0 l(I) sufficient small, we get the conclusion.

(ii) By Theorems 7.1 and 7.2, we get bf ∈Mα,q. Now we prove that bf ∈Mα,q
0 . Similar

to the proof of Theorem 7.2, we have

(f,Wα,q)ε(I)

. |I|−1
∑
Ij,k⊂I

2qj(α+n/2)−nj−(q−1)(n/2+1+β)j

∫ ∞
0

∫
Rn
|∂εf(t, y)|q

∣∣Bε
j,k(t, y)

∣∣ dydt
tq
.

Denote I = Ij0,k0 and ∀ l ∈ Zn, denote Il = 2−j0 l + Ij0,k0 = 2−j0 l + I. Hence

(f,Wα,q)ε(I) .
∑
l∈Zn
|I|−1

∑
Ij,k⊂I

2qj(α+n/2)−nj−(q−1)(n/2+1+β)j

×
∫ ∞

0

∫
Il

|∂εf(t, y)|q
∣∣Bε

j,k(t, y)
∣∣ dydt

tq

≡
∑
l∈Zn

Cε,I,l.



1136 Heping Liu, Haibo Yang and Qixiang Yang

For |l| < 2n+1, we have

Cε,I,l . |I|−1
∑

2nj |I|≥1

2qj(α−1)−(q−1)βj

∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|q dydt
tq

. |I|−1
∑

2nj |I|≥1

∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|qtq(1−α)/β−1 dydt.

For |l| ≥ 2n+1, we have

Cε,I,l . |I|−1
∑

2nj |I|≥1

2qj(α−1)−(q−1)βj(2j−j0 |l|)−N
∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|q dydt
tq

. |I|−1
∑

2nj |I|≥1

∫ C22−jβ

C12−jβ

∫
Il

|∂εf(t, y)|qtq(1−α)/β−1 dydt|l|−N .

Since f(t, x) ∈ Cα,qm,0, then for any 0 < δ < ‖f‖Cα,qm
, there exists Iδ such that, for any

|I| ≤ Iδ, we have |I|−1
∑

2nj |I|≥1

∫ C22−jβ

C12−jβ

∫
Il
|∂εf(t, y)|qtq(1−α)/β−1 dydt ≤ Cδ, we get

(f,Wα,q)ε(I) ≤ C
∑
l∈Zn

(1 + |l|)−N ≤ Cδ.

By Theorem 8.3, we get

lim
t→0
‖bf − f(t, x)‖Mα,q = 0.
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