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Distance Eigenvalues and Forwarding Indices of Circulants

Shuting Liu, Huiqiu Lin* and Jinlong Shu

Abstract. In this paper, we give the distance spectral radii of several classes of circulant

graphs. We also list the elements in the first rows of their corresponding distance

matrices, with which all other distance eigenvalues can be obtained. In addition, we

get the relationships between the distance spectral radii and forwarding indices of

circulant graphs. Finally, the exact values of the vertex-forwarding indices and some

bounds of the edge-forwarding indices for these kinds of graphs are presented.

1. Introduction

An interconnection network is often modeled by a connected graph G = (V (G), E(G)),

where the vertex set V (G) corresponds to node set in a network representing communica-

tion centers or processors, and the edge set E(G) represents link set used to communicate

data or messages between different vertices. For notations not defined here, see [3] for

references.

Let G be a connected and simple graph of order n. The distance between the vertices vi

and vj , denoted by d(vi, vj), is the length of a shortest path between them. The diameter

of G, denoted by diam(G), is the maximum distance between any pair of vertices of G.

The distance matrix of G is the n×n matrix D(G) = (dG(vi, vj))vi,vj∈V (G). The spec-

trum of distance matrix, arisen from a data communication problem studied by Graham

and Pollack [6] in 1971, has been studied extensively (see [1, 8]). For vi ∈ V (G), the

transmission of vi in G, denoted by TrG(vi), is defined to be the sum of distances from vi

to all other vertices of G, i.e.,

TrG(vi) =
∑

vj∈V (G)

dG(vi, vj).

Note that TrG(vi) is the row sum of D(G) indexed by the vertex vi. Let Tr(G) be the

n× n diagonal matrix of vertex transmissions of G. That is,

Tr(G) = diag(TrG(v1),TrG(v2), . . . ,TrG(vn)).
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A connected graph G is said to be s-transmission regular if Tr(vi) = s for every vertex

vi ∈ V (G).

The distance matrix D(G) is real and symmetric, so all of its eigenvalues are real,

say ρi, i = 1, 2, . . . , n. Then we can order the distance eigenvalues as: ρ1 ≥ ρ2 ≥ · · · ≥
ρn. If ρ1 > ρ2 > · · · > ρp are the distinct D-eigenvalues and m1,m2, . . . ,mp are their

multiplicities respectively, then the D-spectrum can be represented as ρ1 ρ2 · · · ρp

m1 m2 · · · mp

 .

A graph is called distance integral if its distance spectrum consists entirely of integers.

The largest eigenvalue of distance matrix is called the distance spectral radius or distance

index, denoted by ρ(G).

Definition 1.1. [5] An n× n matrix C is circulant if it takes the following form:

C =


a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2
...

...
...

...

a1 a2 · · · an−1 a0

 .

Let Zn = {0, 1, . . . , n−1}. Suppose S ⊆ Zn−{0} and −S = S (mod n), namely there

exist d1, d2, . . . , dk, such that S = {d1, d2, . . . , dk, n− d1, n− d2, . . . , n− dk}.

Definition 1.2. The graph G of order n is called circulant graph if it satisfies:

(1) V (G) = Zn;

(2) E(G) = {ij | j − i ∈ S}, where the operation takes module n.

The circulant graph G is denoted by Cn(d1, d2, . . . , dk) or briefly Cn(di), where 0 < d1 <

d2 < · · · < dk < (n + 1)/2. The sequence (di) is called jump sequence and di is called

jump.

In this paper, we give the distance spectral radii of several kinds of circulant graphs

and list all elements in the first rows of their distance matrices, with which we can ob-

tain all other distance eigenvalues of these circulant graphs. Furthermore, based on the

relationships between the distance spectral radius and forwarding indices, exact values of

vertex-forwarding indices and some bounds of edge-forwarding indices for these kinds of

graphs are described.
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2. Preliminaries

Before proceeding, we present some known results which will be useful in the proofs of

our main results.

Theorem 2.1. [11] If gcd(n, a) = 1 or gcd(n, b) = 1, then there exists an integer k

satisfying Cn(1, k) ∼= Cn(a, b).

Theorem 2.2. [2] Cn(d1, d2, . . . , dk) is connected if and only if gcd(d1, d2, . . . , dk, n) = 1.

Lemma 2.3. [5] There is an explicit formula for the eigenvalues λr (0 ≤ r ≤ n − 1) of

the circulant matrix C given by

(2.1) λr =
n−1∑
j=0

ajω
rj ,

where ω = e2πi/n = cos 2π
n + i sin 2π

n and i is the imaginary unit.

A reformulation of inequalities from the theory of nonnegative matrices (see [10, Chap-

ter 2]) yields the following lemma.

Lemma 2.4. [10] If A is a nonnegative irreducible n×n matrix with the largest eigenvalue

ρ(A) and row sums S1, S2, . . . , Sn, then

min
1≤i≤n

{Si} ≤ ρ(A) ≤ max
1≤i≤n

{Si}.

Moreover, one of the equalities holds if and only if the row sums of A are all equal.

On the fact that the circulant graph is vertex-transitive, the distance matrix of the

circulant graph is circulant. So the circulant graph is s-transmission regular, where s =

Tr(vi) = Si, for every vertex vi ∈ V (G). We have the following lemma.

Lemma 2.5. Let G be a circulant graph and ρ(G) be the distance spectral radius of G.

Then

ρ(G) = s.

The distance eigenvalues of the distance matrix of the circulant graph can be given by

the formula (2.1) in Lemma 2.3. In order to obtain all other distance eigenvalues of the

circulant graph, we only need to know all elements in the first row of its distance matrix.

Furthermore, through the calculation by formula (2.1), we can know whether or not all

the distance eigenvalues of the circulant graph are integers.
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3. D-matrix and D-spectral radius

In this section, we give some results on the distance spectral radii of several classes of

circulant graphs and list the elements in the first rows of some of their corresponding

distance matrices.

Let the vertices of a circulant graph be labeled clockwise by 0, 1, 2, . . . , n − 1 (corre-

sponding to 0,−n+ 1, . . . ,−2,−1 respectively), and we refer to vertex i instead of saying

the vertex labeled by i. In general, we can show that a circulant graph is connected by

identifying the existence of a path from 0 to t for each vertex t, i.e., we need a combina-

tion of elements of S that sum to t :
∑η

j=1(αj)(dj) ≡ t (mod n), where (dm) and (αm)

denote the step factor (or jump) and the step number of the 0t-path respectively. For

example, let t = kd+ i be one vertex of a circulant graph G of order n. Let the expression

t = (k)(d)+(i)(1) correspond to a 0t-path (0, d, 2d, . . . , kd, kd+1, kd+2, . . . , kd+ i−1, t).

To obtain ρ(G), by the vertex transitivity of the circulant graph G, we only need to

find the distance between 0 and t for each vertex t ∈ V (G) and calculate
∑

t∈V (G) dG(0, t).

3.1. G = Cn(1, d), (2 ≤ d = n/2)

Let G = Cn(1, d), where 2 ≤ d = n/2. Then G is 3-regular.

Theorem 3.1. Let G = Cn(1, d) be a circulant graph, where 2 ≤ d = n/2. Then we have

the following statements.

(1) If d is even, then the elements in the first row of the distance matrix are 0, 1, 2, . . . , d/2

− 1, d/2, d/2, d/2− 1, . . . , 2, 1, 2, 3, . . . , d/2, d/2, . . . , 2, 1.

(2) If d is odd, then the elements in the first row of the distance matrix are 0, 1, 2, . . . , (d−
1)/2, (d+ 1)/2, (d− 1)/2, . . . , 2, 1, 2, . . . , (d− 1)/2, (d+ 1)/2, (d− 1)/2, . . . , 2, 1.

Theorem 3.2. Let G = Cn(1, d) be a circulant graph, where 2 ≤ d = n/2. Then we have

the following statements.

(1) If d is even, then ρ(G) = d2/2 + d− 1;

(2) If d is odd, then ρ(G) = d2/2 + d− 1/2.

Proof. By Theorem 3.1, if d is even, then

ρ(G) = TrG(0) =

(
1 + 2 + 3 + · · ·+ d

2

)
× 4− 1 =

1

2
d2 + d− 1.

If d is odd, then

ρ(G) = TrG(0) =

(
1 + 2 + 3 + · · ·+ d+ 1

2

)
× 2 +

(
1 + 2 + 3 + · · ·+ d− 1

2

)
× 2− 1

=
1

2
d2 + d− 1

2
.
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3.2. G = Cn(1, 2, . . . , d), (2 ≤ d ≤ n/2)

Theorem 3.3. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd, 2 ≤ d ≤ n/2
and K ≥ 2 is even. Then

ρ(G) =
K

2

(
K + 2

2
d− 1

)
.

Proof. On the conditions that K is even and n = Kd, we divide G into K equal parts

of order d. For any vertex t of G, let t = kd + i, where 0 ≤ k ≤ K/2 − 1 and 0 ≤
i < d. When kd + 1 ≤ t ≤ (k + 1)d, we construct a 0t-path according to the equality

t = (k)(d) + (1)(t − kd). Obviously, the path given is a shortest path between vertices 0

and t, therefore d(0, t) = k + 1, where 0 ≤ k ≤ K/2− 1. Then we have

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t) = 2

K/2−1∑
k=0

(k + 1)d

− K

2

=
K

2

(
K

2
+ 1

)
d− K

2
=
K

2

(
K + 2

2
d− 1

)
.

Theorem 3.4. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd + n0, 0 <

n0 < d, 2 ≤ d ≤ n/2 and K ≥ 2 is even. Then

ρ(G) =
K + 2

2

(
K

2
d+ n0 − 1

)
.

Proof. The proof goes like in Theorem 3.3, but needs more care. Now we only need to

consider that (K/2)d+ 1 ≤ t ≤ (K/2)d+ bn0/2c.
Case 1: n0 is odd. It follows that

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t)

= 2

K/2−1∑
k=0

(k + 1)d+
⌊n0

2

⌋(K
2

+ 1

) =
K

2

(
K

2
+ 1

)
d+ 2

⌊n0
2

⌋(K
2

+ 1

)

=

(
K

2
+ 1

)(
K

2
d+ 2

⌊n0
2

⌋)
=

(
K

2
+ 1

)(
K

2
d+ n0 − 1

)
.

Case 2: n0 is even. In view of dG(0, n/2) = K/2 + 1, we find that

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t)

= 2

K/2−1∑
k=0

(k + 1)d+
⌊n0

2

⌋(K
2

+ 1

)− (K
2

+ 1

)

=

(
K

2
+ 1

)(
K

2
d+ 2

⌊n0
2

⌋
− 1

)
=

(
K

2
+ 1

)(
K

2
d+ n0 − 1

)
.
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Particularly, for the complete graphKn, we haveKn
∼= Cn(1, 2, . . . , bn/2c) and ρ(Kn) =

n− 1.

Lemma 3.5. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd, 2 ≤ d ≤ n/2

and K is odd. Then

ρ(G) =
K + 1

2

(
K + 1

2
d− 1

)
.

Proof. On the conditions that K is odd and n = Kd, we divide G into K equal parts of

order d. For any vertex t of G, let t = kd + i, where 0 ≤ k ≤ bK/2c and 0 ≤ i < d.

When kd + 1 ≤ t ≤ (k + 1)d, we construct a 0t-path according to the equality t =

(k)(d) + (1)(t− kd). Obviously, the path given is a shortest path between vertices 0 and

t, hence d(0, t) = k + 1.

Now, we focus on bK/2cd+ 1 ≤ t ≤ bK/2cd+ bd/2c.
Case 1: d is odd. This implies that

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t)

= 2

bK/2c−1∑
k=0

(k + 1)d+

⌊
d

2

⌋(⌊
K

2

⌋
+ 1

)
=

⌊
K

2

⌋(⌊
K

2

⌋
+ 1

)
d+ 2

⌊
d

2

⌋(⌊
K

2

⌋
+ 1

)
=

(⌊
K

2

⌋
+ 1

)(⌊
K

2

⌋
d+ 2

⌊
d

2

⌋)
=
K + 1

2

(
K + 1

2
d− 1

)
.

Case 2: d is even. Similar to the discussion in Case 1, applying with dG(0, n/2) =

bK/2c+ 1, we obtain that

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t)

= 2

bK/2c−1∑
k=0

(k + 1)d+

⌊
d

2

⌋(⌊
K

2

⌋
+ 1

)− (⌊K
2

⌋
+ 1

)

=

(⌊
K

2

⌋
+ 1

)(⌊
K

2

⌋
d+ 2

⌊
d

2

⌋
− 1

)
=
K + 1

2

(
K + 1

2
d− 1

)
.

Lemma 3.6. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd + n0, 2 ≤ d ≤
n/2, 0 < n0 < d and K is odd. Then

ρ(G) =
K + 1

2

(
K + 1

2
d+ n0 − 1

)
.

Proof. Now, we mainly consider that bK/2cd+ 1 ≤ t ≤ bK/2cd+ b(n0 + d)/2c.
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Case 1: d+ n0 is odd. It follows that

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t)

= 2

bK/2c−1∑
k=0

(k + 1)d+

⌊
n0 + d

2

⌋(⌊
K

2

⌋
+ 1

)
=

(⌊
K

2

⌋
+ 1

)(⌊
K

2

⌋
d+ 2

⌊
n0 + d

2

⌋)
=
K + 1

2

(
K + 1

2
d+ n0 − 1

)
.

Case 2: d+ n0 is even. It is clear that dG(0, n/2) = bK/2c+ 1. We see that

ρ(G) = TrG(0) =
∑
t∈V

dG(0, t)

= 2

bK/2c−1∑
k=0

(k + 1)d+

⌊
n0 + d

2

⌋(⌊
K

2

⌋
+ 1

)− (⌊K
2

⌋
+ 1

)

=

(⌊
K

2

⌋
+ 1

)(⌊
K

2

⌋
d+ 2

⌊
n0 + d

2

⌋
− 1

)
=
K + 1

2

(
K + 1

2
d+ n0 − 1

)
.

Combining Lemma 3.5 with Lemma 3.6, we have the following theorem.

Theorem 3.7. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd+n0, 2 ≤ d ≤
n/2, 0 ≤ n0 < d and K is odd. Then

ρ(G) =
K + 1

2

(
K + 1

2
d+ n0 − 1

)
.

Let G = Cn(1, 2, . . . , d) (2 ≤ d ≤ n/2) be a circulant graph. The D-eigenvalues of

G can be obtained by putting the elements in the first row of D(G) into formula (2.1)

in Lemma 2.3. Then we give the following theorems to describe the elements in the first

rows of the distance matrices of these classes of circulants.

Theorem 3.8. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd and 2 ≤ d ≤
n/2.

(1) If K is even, then the elements in the first row of the distance matrix D(G) are

P = (0, 1, . . . , 1︸ ︷︷ ︸
d

, 2, . . . , 2︸ ︷︷ ︸
d

, . . . ,K/2, . . . ,K/2︸ ︷︷ ︸
2d−1

, . . . , 2, . . . , 2︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
d

).

(2) If K is odd, then the elements in the first row of the distance matrix D(G) are

P = (0, 1, . . . , 1︸ ︷︷ ︸
d

, . . . , bK/2c, . . . , bK/2c︸ ︷︷ ︸
d

, bK/2c+ 1, . . . , bK/2c+ 1︸ ︷︷ ︸
d−1

,

bK/2c, . . . , bK/2c︸ ︷︷ ︸
d

, . . . , 1, . . . , 1︸ ︷︷ ︸
d

).
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Theorem 3.9. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd+n0, 2 ≤ d ≤
n/2 and 0 < n0 ≤ d− 1.

(1) If K is even, then the elements in the first row of the distance matrix D(G) are

P = (0, 1, . . . , 1︸ ︷︷ ︸
d

, . . . ,K/2, . . . ,K/2︸ ︷︷ ︸
d

,K/2 + 1, . . . ,K/2 + 1︸ ︷︷ ︸
n0−1

,

K/2, . . . ,K/2︸ ︷︷ ︸
d

, . . . , 1, . . . , 1︸ ︷︷ ︸
d

).

(2) If K is odd, then the elements in the first row of the distance matrix D(G) are

P = (0, 1, . . . , 1︸ ︷︷ ︸
d

, . . . , bK/2c, . . . , bK/2c︸ ︷︷ ︸
d

, bK/2c+ 1, . . . , bK/2c+ 1︸ ︷︷ ︸
d+n0−1

,

bK/2c, . . . , bK/2c︸ ︷︷ ︸
d

, . . . , 1, . . . , 1︸ ︷︷ ︸
d

).

3.3. G = Cn(1, d), (2 ≤ d < n/2)

Let G = Cn(1, d) (n ≥ 6) be a 4-regular circulant graph. The following theorems can be

obtained by Lemmas 3.1, 3.3, 3.5 and 3.7 in [9].

Theorem 3.10. Let G = Cn(1, d) be a circulant graph, where n = Kd and K ≥ 4 is even.

Then

ρ(G) =

H −K/4 if d is even,

H if d is odd,

where H = K
2

(
K
2 d+ d2

2 −
1
2

)
.

Theorem 3.11. Let G = Cn(1, d) be a circulant graph, where n = Kd and K ≥ 3 is odd.

Then

ρ(G) =

M − (K − 1)/4 if d is even,

M − 1/4 if d is odd,

where M = K−1
2

(
K−1
2 d+ d2

2 + d− 1
2

)
+ d2

4 .

Theorem 3.12. Let G = Cn(1, d) be a circulant graph, where n = Kd + n0, 0 < n0 < d

and K ≥ 4 is even.

(1) If n0 is odd, then

ρ(G) =

N − 1/4 if d is even,

N + (K − 1)/4 if d is odd,
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(2) If n0 is even, then

ρ(G) =

N if d is even,

N +K/4 if d is odd,

where N = K
2

(
K
2 d+ d2

2 + n0 − 1
)

+
n2
0
4 .

Theorem 3.13. Let G = Cn(1, d) be a circulant graph, where n = Kd + n0, 0 < n0 < d

and K ≥ 3 is odd.

(1) If d+ n0 is odd, then

ρ(G) =

S − (K + 4)/4 if d is odd,

S − (2K + 1)/4 if d is even,

(2) If d+ n0 is even, then

ρ(G) =

S − (K + 1)/2 if d is even,

S − (K + 1)/4 if d is odd,

where S = K−1
2

(
K+1
2 d+ d2

2 + n0
)

+ n0
2

2 +
(
d−n0

2

)2
+ d.

Elements in the first rows of the distance matrices of the 4-regular circulant graphs

G = Cn(1, d) (n ≥ 6) can be given according to the methods of constructing shortest

paths provided in [9]. Now we will give a theorem to describe the elements in the first row

of the distance matrix of one kind of circulant graph. And we won’t detail other cases in

this article.

Theorem 3.14. Let G = Cn(1, d) be a circulant graph, where n = Kd and K ≥ 4 is even.

Then the elements in the first row of the distance matrix of G are: 0, 1, . . . , bd/2c, d −
bd/2c, . . . , 2, 1, 2, . . . , bd/2c+ 1, d− bd/2c+ 1, . . . , 3, 2, . . . ,K/2, . . . , bd/2c+K/2− 1, d−
bd/2c + K/2 − 1, . . . ,K/2 + 1,K/2,K/2 + 1, . . . , d − bd/2c + K/2 − 1, bd/2c + K/2 −
1, . . . ,K/2, . . . , 2, 3, . . . , d− bd/2c+ 1, bd/2c+ 1, . . . , 2, 1, 2, . . . , d− bd/2c, bd/2c, . . . , 1.

Proof. On the conditions that K is even and n = Kd, we divide G into K equal parts of

order d. For any vertex t of G, let t = kd+ i, where 0 ≤ k ≤ K/2− 1.

Case 1: kd + 1 ≤ t ≤ kd + bd/2c. We construct a 0t-path according to the equality

t = (k)(d) + (t − kd)(1). Obviously, the path given is a shortest path between vertices 0

and t, therefore d(0, t) = k + t− kd.

Case 1.1: k = 0 and 1 ≤ t ≤ bd/2c. Then 1 ≤ d(0, t) = t ≤ bd/2c, i.e., d(0, t) are

respectively 0, 1, 2, . . . , bd/2c − 1, bd/2c, when the value of t goes from 0 to bd/2c.
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Case 1.2: k = 1 and d+ 1 ≤ t ≤ d+ bd/2c. Then 2 ≤ d(0, t) = 1 + t− d ≤ 1 + bd/2c,
i.e., d(0, t) are respectively 2, 3, . . . , bd/2c, bd/2c+ 1, when the value of t goes from d+ 1

to d+ bd/2c.
Case 1.3: k = K/2 − 1 and (K/2 − 1)d + 1 ≤ t ≤ (K/2 − 1)d + bd/2c. Then

K/2 ≤ d(0, t) ≤ K/2 − 1 + bd/2c, i.e., d(0, t) are respectively K/2,K/2 + 1, . . . ,K/2 +

bd/2c−2,K/2+bd/2c−1, when the value of t goes from (K/2−1)d+1 to (K/2−1)d+bd/2c.
Case 2: kd + bd/2c + 1 ≤ t ≤ (k + 1)d. Similar to Case 1, the shortest path can be

constructed by the equality t = (k + 1)(d) + ((k + 1)d− t)(−1), so the distance d(0, t) =

k + 1 + (k + 1)d− t.
Case 2.1: k = 0 and 1 + bd/2c ≤ t ≤ d. Then 1 ≤ d(0, t) = 1 + d − t ≤ d − bd/2c,

i.e., d(0, t) are respectively d−bd/2c, d−bd/2c− 1, . . . , 2, 1, when the value of t goes from

1 + bd/2c to d.

Case 2.2: k = 1 and d+1+bd/2c ≤ t ≤ 2d. Then 2 ≤ d(0, t) = 2+2d−t ≤ 1+d−bd/2c,
i.e., d(0, t) are respectively 1 + d−bd/2c, d−bd/2c, . . . , 3, 2, when the value of t goes from

d+ 1 + bd/2c to 2d.

Case 2.3: k = K/2 − 1 and (K/2 − 1)d + 1 + bd/2c ≤ t ≤ (K/2)d. Then K/2 ≤
d(0, t) ≤ K/2 − 1 + d − bd/2c, i.e., d(0, t) are respectively K/2 + d − bd/2c − 1,K/2 +

d− bd/2c − 2, . . . ,K/2 + 1,K/2, when the value of t goes from (K/2− 1)d+ 1 + bd/2c to

(K/2)d.

Based on the above cases, we then list the elements in the first row of the dis-

tance matrix as follows: 0, 1, . . . , bd/2c, d − bd/2c, . . . , 2, 1, 2, . . . , bd/2c + 1, d − bd/2c +

1, . . . , 3, 2, . . . ,K/2, . . . , bd/2c + K/2 − 1, d − bd/2c + K/2 − 1, . . . ,K/2 + 1,K/2,K/2 +

1, . . . , d− bd/2c+K/2− 1, bd/2c+K/2− 1, . . . ,K/2, . . . , 2, 3, . . . , d− bd/2c+ 1, bd/2c+

1, . . . , 2, 1, 2, . . . , d− bd/2c, bd/2c, . . . , 1.

4. Forwarding indices and D-spectral radius

To measure the load of a vertex, Chung et al. in [4] introduced the notion of forwarding

index, which is one of the fault tolerance parameters of a network and has received consid-

erable attentions owning to its importance in networks (see nice survey [16] and references

therein).

A routing R of G is a set of n(n− 1) elementary paths R(x, y) specified for all ordered

pairs (x, y) of vertices of G. If each of the paths specified by R is shortest, the routing

R is said to be minimal, denoted by Rm. If R(x, y) = R(y, x) specified by R, that is to

say the path R(y, x) is the reverse of the path R(x, y) for all x, y, then we say that the

routing is symmetric.

Let the sets of routings and minimum routings in a graph G be denoted by R(G) and

Rm(G) respectively. For a given R ∈ R(G) and x ∈ V (G), the load of a vertex x in a given
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routing R of a graph G, denoted by ξx(G,R), is defined as the number of paths specified

by R passing through x and admitting x as an inner vertex. The forwarding index of G

with respect to R is the maximum number of paths of R going through any vertex x in G

and is denoted by

ξ(G,R) = max{ξx(G,R) : x ∈ V (G)}.

The minimum forwarding index over all possible routings of a graph G, denoted by

ξ(G) = min{ξ(G,R) : R ∈ R(G)},

is called the forwarding index of G.

Similar concepts for the edge version of a graph were introduced by Heydemann et

al. in [7]. The load of an edge e with respect to R, denoted by πe(G,R), is defined as the

number of the paths specified by R going through it. The edge forwarding index of G with

respect to R is the maximum number of paths specified by R going through any edge of

G and is denoted by

π(G,R) = max{πe(G,R) : e ∈ E(G)}.

We call

π(G) = min{π(G,R) : R ∈ R(G)}

the edge forwarding index of G.

For routings of shortest paths, define

ξm(G) = min{ξ(G,Rm) : Rm ∈ Rm(G)}

and

πm(G) = min{π(G,Rm) : Rm ∈ Rm(G)}.

Clearly, ξ(G) ≤ ξm(G) and π(G) ≤ πm(G). The equalities, however, do not always

hold and some examples can be seen in [7].

Even if the diameter of the graph is 2, the forwarding index problem is NP-complete,

which was proved by Saad in [12]. Solé [13] showed that the vertex forwarding indices of

graphs in a class of quasi-Cayley graphs, a new class of vertex-transitive graphs, which

contain Cayley graphs, achieve the minimum. However, it is very difficult to find the exact

value or a good estimate of the forwarding index of a graph, even for some special classes

of graphs such as circulant graphs. In [17] Xu et al. have established upper and lower

bounds of forwarding indices for circulant graphs. But these obtained bounds are difficult

to compute generally. Moreover, a uniform routing of shortest paths may not exist for

circulant graphs, just as the case for Cayley graphs in [14].
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For the circulant graph G = Cn(1, 3d+ 1, 3d2 − 1), where n = 3d2 + 3d+ 1, Thomson

and Zhou [15] determined

π(G) =
1

3
d(d+ 1)(2d+ 1) for d ≥ 2.

For the circulant digraph
−→
G(dk;S) with S = {1, d, . . . , dk−1}, n = dk, d ≥ 2 and k ≥ 2,

Xu et al. in [17], obtained

ξ(
−→
G(dk;S)) =

1

2
(d− 1)dkk − (dk − 1) and π(

−→
G(dk;S)) =

1

2
(d− 1)dk.

Generally, it is very difficult to compute the forwarding indices of a graph. The purpose

of this section is to study the forwarding indices of circulant graphs listed in the third

section.

Theorem 4.1. [7] If G is a Cayley graph of order n, then, for any vertex x in V ,

ξ(G) = ξm(G) =
∑
y∈G

dG(x, y)− (n− 1).

Lemma 4.2. If G is a connected circulant graph of order n, then

ξ(G) = ξm(G) = ρ(G)− (n− 1).

Some relationships between vertex-forwarding index and edge-forwarding index are

presented as follows.

Theorem 4.3. [7] For any connected graph G of order n, the maximum degree ∆ and

the minimum degree δ,

(a) 2ξ(G) + 2(n− 1) ≤ ∆π(G);

(b) π(G) ≤ ξ(G) + 2(n− 1);

(c) πm(G) ≤ ξm(G) + 2(n− δ).

All these inequalities are also valid for symmetric routings and the inequality in (a) is also

valid for minimal routings.

Remark 4.4. [7] In (a) the equality holds for Cn, Wn, K1,n, the n-cube, the Petersen

graph and its line graph as can be calculated with the values given in Section 6 in [7]. In

(b) the equality holds for the complete graph.

Lemma 4.5. Suppose that G = (V,E) is a connected r-regular circulant graph of order

n. Then

(4.1)
2ρ(G)

r
≤ π(G) ≤ n+ ρ(G)− (2r − 1).
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Proof. By Lemma 4.2, ξ(G) = ξm(G) = ρ(G)−(n−1), and by (a) and (c) in Theorem 4.3,

we obtain

(4.2)
2ρ(G)

∆
≤ π(G) ≤ πm(G) ≤ ξm(G) + 2(n− δ) ≤ ρ(G) + n− (2δ − 1).

By Lemma 4.2 and (b) in Theorem 4.3, it follows that

(4.3)
2ρ(G)

∆
≤ π(G) ≤ ρ(G) + n− 1.

For a connected circulant graph G with order n and δ ≥ 1, combining inequality (4.2)

with inequality (4.3), we have

2ρ(G)

∆
≤ π(G) ≤ n+ ρ(G)− (2δ − 1).

Also, since r = ∆ = δ, it completes the proof.

Theorem 4.6. Let G = Cn(1, d) be a 3-regular circulant graph, where 2 ≤ d = n/2.

(1) If d is even, then

ξ(G) =
d(d− 2)

2
and

d(d+ 2)− 2

3
≤ π(G) ≤ d(d+ 6)− 12

2
.

(2) If d is odd, then

ξ(G) =
d(d− 2) + 1

2
and

d(d+ 2)− 1

3
≤ π(G) ≤ d(d+ 6)− 11

2
.

Proof. We know that G = Cn(1, d) (n = 2d) is a 3-regular graph.

If d is even, by Lemma 4.2, ξ(G) = ξm(G) = ρ(G) − (n − 1). From Theorem 3.2,

ρ = d2/2 +d−1 induces to ξ(G) = d2/2 +d−1−2d+ 1 = d(d−2)/2. By inequality (4.1),

i.e., 2ρ(G)/3 ≤ π(G) ≤ n + ρ(G) − 5 in Lemma 4.5, it implies that (d(d + 2) − 2)/3 ≤
π(G) ≤ (d(d+ 6)− 12)/2.

If d is odd, by Theorem 3.2, ρ = d2/2 + d − 1/2. Taking Lemma 4.2, we see that

ξ(G) = (d(d−2)+1)/2. By inequality (4.1) in Lemma 4.5, it holds that (d(d+2)−1)/3 ≤
π(G) ≤ (d(d+ 6)− 11)/2.

Theorem 4.7. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd, 2 ≤ d ≤ n/2,

and K ≥ 2 is even. Then

(1) ξ(G) = (n− 2)(K − 2)/4;

(2) ((n − 2)K + 2n)/(4d) ≤ π(G) ≤ (n − 2)(K − 2)/4 + 2(n − 2d) when d 6= n/2 and

π(G) = 2 when d = n/2.
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Proof. Suppose that the circulant graph G = Cn(1, 2, . . . , d) is a r-regular graph.

By Theorem 3.3, ρ(G) = K
2

(
K+2
2 d − 1

)
. Using Lemma 4.2, we find that ξ(G) =

ξm(G) = ρ(G)− (n− 1) = K
2

(
K+2
2 d− 1

)
−Kd+ 1 = (K−2)n

4 − K
2 + 1 = (K−2)(n−2)

4 .

By the inequality (4.1) in Lemma 4.5, we divide the proof into two cases:

Case 1: If 2 ≤ d < n/2, then r = 2d. From the inequality 2ρ(G)/r ≤ π(G) ≤
n + ρ(G) − (2r − 1), we show that 2ρ(G)

r = K
2d

(
K+2
2 d − 1

)
= (n−2)K+2n

4d ≤ π(G) and

π(G) ≤ n+ ρ(G)− (2r − 1) = (n−2)(K−2)
4 + 2(n− 2d).

Case 2: If d = n/2, then r = n − 1. 2ρ(G)/r ≤ π(G) ≤ n + ρ(G) − (2r − 1) implies

π(G) = 2. Indeed, in this case, G ∼= Kn and ρ(Kn) = n− 1.

Theorem 4.8. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd+n0, 2 ≤ d ≤
n/2, 0 < n0 < d, and K ≥ 2 is even. Then

ξ(G) = ξm(G) = ρ(G)− (n− 1) and
ρ(G)

d
≤ π(G) ≤ ρ(G) + (n− 4d+ 1),

where ρ(G) = K+2
2

(
K
2 d+ n0 − 1

)
.

Theorem 4.9. Let G = Cn(1, 2, . . . , d) be a circulant graph, where n = Kd+n0, 2 ≤ d ≤
n/2, 0 ≤ n0 < d and K is odd. Then

ξ(G) = ξm(G) = ρ(G)− (n− 1) and
ρ(G)

d
≤ π(G) ≤ ρ(G) + (n− 4d+ 1),

where ρ(G) = K+1
2

(
K+1
2 d+ n0 − 1

)
.
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