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We consider a generalized version of the standard checkerboard and dis-
cuss the difficulties of finding the corresponding field by standard numerical
treatment. A new numerical method is presented which converges indepen-
dently of the local conductivities.

1. Introduction

Very few microstructures yield explicit formulae for their effective conduc-
tivity. One type of such structures is checkerboards. By using a duality ar-
gument Dychne [6] proved about 30 years ago the famous formula for the
effective conductivity

λeff =
√

λgλw (1.1)

for a standard checkerboard of conductivity λg and λw. The explicit solution
of the corresponding temperature-field was later found by Berdichevskii [1].
In particular he found that the heat-flux is infinitely high in the corners of
the squares. Subsequently, explicit solutions for rectangular and triangular
checkerboards were found in [17, 19, 20].

Mortola and Steffé [18] presented in 1985 an interesting conjecture con-
cerning the effective conductivity of four phase checkerboards. Many
attempts were made to prove/disprove the conjecture, even by specialists
in homogenization theory (see [22]), but the problem remained unsolved for
the rest of the century. Very recently the conjecture has been proved by Cras-
ter and Obnosov [5] and independently by Milton [16] (using a completely
different proof).

There are many interesting works on other types of checkerboards. Con-
cerning three-dimensional checkerboards, we refer to [12, 15] (see also [14]).
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Random checkerboards where studied in [2, 13, 7, 21]. A new type has
recently been considered in [10] where the conductivity blows up at the
corners in a diagonal direction and degenerates in the orthogonal direction.
There appears to be two natural ways of defining the effective conductiv-
ity for this problem in terms of variational problems involving weighted
Sobolev spaces. However, the corresponding effective conductivities are very
different (Lavrentiev phenomenon). Similar observations have been done for
nonlinear checkerboards in [23], which also contains a generalization of the
Dykhne formula to power-law materials.

Due to the behavior of the solutions near the corner points it is difficult
to solve the corresponding variational problems by usual numerical methods,
even for the standard checkerboard. In this paper, we consider a general-
ized version of the standard checkerboard and focus on these difficulties,
both theoretically and experimentally (numerical experiments). Moreover,
we present a new numerical method for determining the corresponding field
which converges in the energy norm independent of the local conductivities.

2. The model problem

We consider the stationary heat conduction problem for the checkerboard
structure in Figure 2.1, where the conductivity λ(x) in each quarter V of a
period is given by

λ(x) =

{
kgl(r) on grey parts,
kw(l(r))−1 on white parts,

(2.1)

where 0 < β ≤ l(r) ≤ γ < ∞ for some constants β and γ, r is the distance
from the center of V, and l is continuous at r = 0. Due to symmetries it
is enough to only consider the set V for the calculation of the effective
conductivity λeff. This value can be determined by the following variational
formula:

λeff =
1

|V |
min
u∈W

{∫
V

λ(x)
∣∣gradu+e1

∣∣2dx

}
, (2.2)

or equivalently by (cf. [9])

1

λeff
=

1

|V |
min
u∈W

{∫
V

1

λ(x)

∣∣gradu+e1

∣∣2dx

}
, (2.3)

where

W =
{

u ∈ W1,2(V) : u
(
−1,x2

)
= 0, u

(
1,x2

)
= 0

}
, (2.4)

where e1 = [1,0]. By (2.2) and (2.3) we can obtain the formula

λeff =
√

kwkg, (2.5)
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Figure 2.1. A part of a checkerboard with a quarter of a period, denoted V ,
shown to the right.

which was first proved by Dychne [6]. If W ′ is any subspace of W and λ+
eff

and λ−
eff are the values defined by

λ+
eff =

1

|V |
min

u∈W ′

{∫
V

λ(x)|gradu+e1|2dx

}
, (2.6)

1

λ−
eff

=
1

|V |
min

u∈W′

{∫
V

1

λ(x)

∣∣gradu+e1

∣∣2dx

}
, (2.7)

then it is clear that λ−
eff ≤ λeff ≤ λ+

eff.

3. Solutions found in finite-dimensional spaces

The minimizer u+ of (2.6) is an approximation of the minimizer u of (2.2).
When the ratio kg/kw is large, it becomes almost impossible to obtain good
approximations by using the finite element method (FEM). In fact we have
the following result.

Theorem 3.1. If W′ is a finite-dimensional subspace of W, then

λ+
eff

λeff
−→ ∞ as

kg

kw
−→ ∞. (3.1)

Remark 3.2. As a consequence we obtain that ‖u − u+‖2
λ/λeff → ∞ as

kg/kw → ∞, where ‖v‖λ denotes the energy norm

‖v‖λ =

√
1

|V |

∫
V

λ(x)|gradv|2dx. (3.2)
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This follows since∥∥u−u+
∥∥

λ
=

∥∥u+x1 −
(
u+ +x1

)∥∥
λ
≥ ∥∥u+ +x1

∥∥
λ
−

∥∥u+x1

∥∥
λ

=
√

λ+
eff −

√
λeff =

√
λeff

(√
λ+

eff

λeff
−1

)
.

(3.3)

Proof. Let c = min{l(r)} and let Ωg be the grey area of V. Since

ckg

∫
Ωg

∣∣Du+e1

∣∣2dx ≤
∫
Ωg

λ(x)
∣∣Du+e1

∣∣2dx ≤
∫
V

λ(x)
∣∣Du+e1

∣∣2dx,

(3.4)
we obtain that

1

|V |

√
kg

kw
c inf

u∈W′

∫
Ωg

∣∣Du+e1

∣∣2dx

=
(1/|V |)ckginfu∈W′

∫
Ωg

∣∣Du+e1

∣∣2dx√
kgkw

≤ λ+
eff

λeff
.

(3.5)

Hence, the theorem follows if we can prove that

inf
u∈W′

∫
Ωg

∣∣Du+e1

∣∣2dx > 0. (3.6)

Let Z denote the subspace of L2(Ωg,R2) of the gradients of all functions
in W′. Since Z is finite-dimensional, it is closed, and, therefore the closest
approximation to −e1 exists in Z, that is, we have the existence of the
minimum

min
v∈Z

∥∥v−(−e1)
∥∥2

= min
u∈W′

∫
Ωg

∣∣Du+e1

∣∣2dx. (3.7)

Now, assume that

min
u∈W′

∫
Ωg

∣∣Du+e1

∣∣2dx = 0 (3.8)

(this will lead to a contradiction). Then u = −x1 −1 a.e. in (−1,0)× (0,1)

and u = −x1+1 a.e. in (1,0)×(0,−1). But then u cannot belong to W1,2(V).

To show this, let F be the interior of the triangle defined by the three cor-
ners (1,0), (0,1) and (0,0). Rotate the coordinate axis x1 and x2 by 45◦

counterclockwise and denote the new coordinate axis by x̄1 and x̄2. u has a
representative (still denoted u) which is absolutely continuous on almost all
line segments and whose partial derivatives belong to L2(F) (cf. [24, Theo-
rem 2.1.4.]). Let It be the line segment between the points (0,t) and (t,0).
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V

Figure 3.1. The triangulation of V with 28207 nodes and 9350 elements.

By the Jensen inequality

(
1

It

∫
It

∂u

∂x̄2
dx2

)2

≤ 1

It

∫
It

(
∂u

∂x̄2

)2

dx2. (3.9)

We observe that (
1

It

∫
It

∂u

∂x̄2
dx2

)2

=

(
2−t√

2t

)2

. (3.10)

Thus because

∫
F

(
∂u

∂x̄2

)2

dx =

∫1

0

(∫
It

(
∂u

∂x̄2

)2

dx̄2

)
dt√

2
, (3.11)

(3.9) and (3.10) give us the inequality

∫1

0

(
2−t√

2t

)2√
2t

1√
2
dt ≤

∫
F

(
∂u

∂x̄2

)2

dx. (3.12)

Noting that the left side is ∞, we obtain that
∫

F
|Du|2dx = ∞, which implies

u /∈ W1,2(V), and the proof is complete. �

In order to illustrate the theorem presented above we have computed the
effective conductivity by a standard FEM program in the classical case, l(r) =

1,kg = k and kw = 1/k (concerning the finite element method in general,
(cf. [3, 4]or[11]). In this case λeff = 1 (see (2.5)). We have made an element
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Figure 3.2. Distribution on V of the function v(x) = u(x)+x1 , where u is
the (FEM) solution (v = −1 on the left boundary and v = 1 on the right
boundary).

mesh as shown in Figure 3.1, with increasing number of elements close to
the midpoint of V. The total number of nodes and elements (quadrilateral
8-nodes elements) in this triangulation are 28207 and 9350, respectively.
Even with this large number of elements we clearly see from Table 3.1 that
λ+

eff/λeff diverge rapidly as k increases. This agrees with the theoretical result
presented in Theorem 3.1. It is important to note that not only the number
of elements is critical, but also the choice of the refinement. Our choice
of triangulation is based on the fact that the gradients are large near the
midpoint of V (see the calculated temperature distribution on V, Figure 3.2).

In Table 3.1 we present the results for some values of k.

Table 3.1

k λ−
eff λeff λ+

eff

1 1 1 1

2 1 1 1

5 0.998492 1 1.00151

10 0.947921 1 1.05497

50 0.347867 1 2.87509

100 0.179553 1 5.57028

4. An improved numerical method

We will, in this section, describe a method to overcome the difficulties which
arise when using the minimizer of (2.6) as an approximation of the minimizer
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θ
R r

Sj
Kj

h

φ0

Figure 4.1. The triangulation in the new method.

of (2.2) for a finite-dimensional subspace W′. This method will guarantee
uniform convergence in the energy norm with respect to kw/kg when the
elementsize tends to zero.

Let 0 < α ≤ 1. We insert a disk O in V with centre in 0 and radius R (see
Figure 4.1). The disk O is divided into equally sized sectors {Sj} with angle
φ0, on which we define the functions {tj} of the form

tj(r,θ) =
rα

Rα
hj(θ), (4.1)

where

hj(θ) = ajR
2 cos2 θ+bjR

2 sinθcosθ+cjR
2 sin2

θ+djRcosθ+ejRsinθ+fj.

(4.2)

Moreover, on the triangular elements {Kj} we define the polynomials {pj} of
the form

pj

(
x1,x2

)
= ajx

2
1 +bjx1x2 +cjx

2
2 +djx1 +ejx2 +fj. (4.3)

The coefficients of {tj} and {pj} are coupled in such a way that these func-
tions agree on common traces. For a fixed triangulation with given R, h and
φ0, where h is the longest side length of the triangular elements {Kj}, we let
W′

h denote the space of functions u such that u = v−x1 ∈ W, where v is
antisymmetric (v(x) = −v(−x)), of the form v = tj on Sj and v = pj on Kj.
Now (2.6) takes the form

λ+
eff,h =

1

|V |
min

u∈W′
h

{∫
V

λ(x)
∣∣gradu+e1

∣∣2dx

}
. (4.4)
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For a given u = v−x1 ∈ W′
h put h(θ) = v(Rcosθ,Rsinθ). Using the formula

|gradv|2 =
1

r2

(
∂v

∂θ

)2

+

(
∂v

∂r

)2

(4.5)

we obtain∫
V

λ(x)
∣∣gradu+e1

∣∣2dx =

∫
V

λ(x)|gradv|2dx

=
kw

α
K1

∫π/2

0

(
h′(θ)

)2
dθ+kwαK1

∫π/2

0

(
h(θ)

)2
dθ

+
kg

α
K2

∫π

π/2

(
h′(θ)

)2
dθ+kgαK2

∫π

π/2

(
h(θ)

)2
dθ

+

∫
V\O

λ(x)|Dv|2dx,

(4.6)

where

K1 = 2α

∫R

0

(
l(r)

)−1 r2α−1

R2α
dr, K2 = 2α

∫R

0

l(r)
r2α−1

R2α
dr. (4.7)

In the case when l(r) = 1 for 0 ≤ r ≤ R we obtain that K1 = K2 = 1. We note
that the integrals in (4.6) are easily calculated. For example∫π/2

0

(
h(θ)

)2
dθ =

M−1∑
j=0

∫ (j+1)φ0

jφ0

(
hj(θ)

)2
dθ, (4.8)

where each of the integrals can be found by using standard integration for-
mulae for trigonometric functions. Thus∫ (j+1)φ0

jφ0

(
hj(θ)

)2
dθ (4.9)

becomes a quadratic form in the coefficients aj,bj,cj,dj,ej, and fj. Summing
up ∫

V

λ(x)|gradv|2dx (4.10)

becomes a quadratic form in the collection of all such coefficients. The min-
imizer of (4.4) is therefore found easily by standard numerical treatment.

In order to find an approximation of the minimizer we may solve the
problem for a number of α-values, α ∈ 〈0,1], and search for the α-value
which gives the minimum value of∫

V

λ(x)|gradv|2dx. (4.11)
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However, the following theorem shows that the value

α = α0
def
=

4

πl(0)

√
kw

kg
(4.12)

is always a good choice.

Theorem 4.1. Let α = α0. For every ε > 0 there exist R, φ0, h > 0 so that
|λ+

eff/λeff −1| < ε, for every value of kw/kg.

Remark 4.2. In contrast to Remark 3.2, the above theorem implies that
‖u − u+‖2

λ = λ+
eff − λeff < ελeff for every value of kw/kg. This follows by

using the Euler equations for the minimum problem (2.2).

Proof. Assume that kw/kg ≤ 1 (otherwise we just use the same arguments
for kg/kw). Without loss of generality, put kg = 1, and kw = k, hence
λeff =

√
k. Let

Gk(u) =

∫
V

λ(x)
∣∣Du+e1

∣∣2dx. (4.13)

First we want to prove that there exist a > 0, and u ∈ W such that

∣∣∣∣1−
Gk(u)

λeff,h

∣∣∣∣ < ε (4.14)

for every 0 < k ≤ a. Next, we will show that there exist R,φ,h, and u ∈ W′
h,

such that (4.14) holds for k ∈ 〈0,a] and such that |1−λ+
eff/λeff| < ε for every

k ∈ [a,1]. Put

g(θ) =




1−
4

π
θ for 0 ≤ θ ≤ π

2
,

1 for −
π

2
≤ θ < 0,

(4.15)

and let g(θ) = −g(θ − π) for π/2 < θ < 3π/2. Let QR,g be the contin-
uous function defined by QR,g = (r/R)αg(θ) on O, QR,g(1,x2) = 1 and
QR,g(−1,x2) = −1. Moreover, in the grey part of V\O we let QR,g = 1 and
−1 (on opposite quadrants), and let QR,g be linear in x1 in the white parts
of V\O. For the function u = QR,g −x1 ∈ W, we have that

Gk(u) =

∫
V\O

λ(x)
∣∣Du+e1

∣∣2dx+

∫
O

λ(x)
∣∣Du+e1

∣∣2dx. (4.16)
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We observe that |V |−1
∫

V\D
λ(x)

∣∣Du+e1

∣∣2dx = kC where C is independent
of k. Moreover,∫

O

λ(x)
∣∣Du+e1

∣∣2dx = 2

∫√
α

0

∫π/2

−π/2

λ(x)
∣∣D(QR,g)

∣∣2rdrdθ

+2

∫R

√
α

∫π/2

−π/2

λ(x)
∣∣D(QR,g)

∣∣2rdrdθ.

(4.17)

We obtain∫√
α

0

∫π/2

−π/2

λ(x)
∣∣D(QR,g)

∣∣2rdrdθ ≤ 1

c−
α

k

∫√
α

0

∫π/2

0

∣∣D(QR,g)
∣∣2rdrdθ

+c+
α

∫√
α

0

∫0

−π/2

∣∣Du+e1

∣∣2rdrdθ,

(4.18)∫R

√
α

∫π/2

−π/2

λ(x)
∣∣D(QR,g)

∣∣2rdrdθ ≤ c+

∫1

√
α

∫0

−π/2

∣∣Du+e1

∣∣2rdrdθ

+
1

c−
k

∫1

√
α

∫π/2

0

∣∣Du+e1

∣∣2rdrdθ,

(4.19)

where

c−
α = min

0≤r<
√

α
{l(r)}, c+

α = max
0≤r<

√
α
{l(r)},

c− = min
0≤r<1

{l(r)}, c+ = max
0≤r<1

{l(r)}.
(4.20)

Using the formula

|Du|2 =

(
∂u

∂r

)2

+

(
∂u

∂θ

)2
1

r2
, (4.21)

we see that the right-hand side of (4.18) and (4.19), denoted F(g) and H(g),

can be written as

F(g) =
αα

R2α2α

(
c+

αα2 π

2
+

k

c−
α

∫π/2

0

(
α2g(θ)2 +

(
∂g(θ)

∂θ

)2
)

dθ

)
, (4.22)

H(g) =

(
1

2α
−

αα

R2α2α

)(
c+α2 π

2
+

k

c−

∫π/2

0

(
α2g(θ)2 +

(
∂g(θ)

∂θ

)2
)

dθ

)
,

(4.23)
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respectively. By some further calculations we obtain that

F(g) =
√

k
αα

R2α

(
k

3c−
αl(0)

+
l(0)

c−
α

+
c+

α

l(0)

)
,

H(g) =
√

k

(
1−

αα

R2α

)(
k

3c−l(0)
+

l(0)

c−
+

c+

l(0)

)
.

(4.24)

Observe that α → 0 as k → 0, which by the continuity of l at 0 implies that
c+

α and c−
α → l(0). Since αα → 1 as k → 0, and

√
k =

1

|V |
min
u∈W

{
Gk(u)

} ≤ 1

|V |

(
2F(g)+2H(g)+Ck

)
, (4.25)

we can conclude that

Gk(u)

|V |
√

k
−→ 1 as k −→ 0. (4.26)

The function QR,g can be approximated by QR,gn in W′
h, where

gn(θ) =




−
4

π

sin
(
θ−θi

)
sin(π/2n)

π

2n
+1−

4

π
θi for θ ∈ (

θi,θi+1

]
,

1 for −
π

2
≤ θ < 0.

(4.27)

Here, θi = πi/(2n) for i = 0,1, . . . ,n−1 and gn(θ) = −gn(θ−π) for π/2 <

θ < 3π/2 (note that sin(θ−θi) = sinθcosθi − sinθi cosθ). Let φ = θi+1 −

θi = π/(2n), then it is easy to see that

d
(
gn −g

)
(θ)

dθ
−→ 0,

(
gn −g

)
(θ) −→ 0 uniformly in θ as φ −→ ∞.

(4.28)
Using (4.28) in (4.22) and (4.23) we obtain from (4.25) that for every ε > 0,

there is an N such that

Gk

(
un

)
|V |

√
k

−1 < ε ∀n ≥ N, ∀k ≤ 1

N
, (4.29)

where un = QR,gn −x1.
Let the index of vk denote that vk is a minimizer of Gk in Wh. We want

to show that for any closed subset P ⊂ 〈0,1], of the positive real numbers,
there exist R,φ, and h such that,∣∣∣∣1−

Gk

(
vk

)
√

k

∣∣∣∣ < ε holds ∀k ∈ P. (4.30)

Put k− = mink∈P{k} and put A+ = maxk∈P{Gk(vk)} < ∞. Choose a finite
subset J of P such that for every k ∈ P there is some y ∈ J, such that k ≥ y
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and k − y = ∆t < δ/(x−A+). Choose R,φ and h so small (using standard
theory for error estimates in the finite element method, compare, e.g., with
[11, page 97]) that ∣∣∣∣1−

Gy(vy)√
y

∣∣∣∣ <
ε

2
∀y ∈ J. (4.31)

Let k be some arbitrary point in P and let y ∈ J be such that,

k ≥ y, k−y = ∆t <
δ

x−A+
. (4.32)

Put

A(v) =
2

|V |

∫1

0

∫1

0

λ
(
x1,x2

)∣∣Dv+e1

∣∣2dx, (4.33)

B(v) =
2

|V |

∫−1

0

∫1

0

λ
(
x1,x2

)∣∣Dv+e1

∣∣2dx. (4.34)

It follows that

Gy

(
vy

) ≤ Gk

(
vk

) ≤ Gk

(
vy

)
= A

(
vy

)
+B

(
vy

)
=

(∆t+y)

k
A

(
vy

)
+B

(
vy

) ≤ Gy

(
vy

)
+

∆t

k
A

(
vy

)
< Gy

(
vy

)
+δ.

(4.35)

Hence, G(k,vk)−G(y,vy) < δ. Since the function k 	→ 1/
√

k is uniformly
continuous in P, there is a δ > 0 such that∣∣∣∣Gy

(
vy

)
√

y
−

Gk

(
vk

)
√

k

∣∣∣∣ <
ε

2
(4.36)

holds for every k ∈ P, hence from (4.31) and (4.36), we conclude that (4.30)
holds.

Put QR,gn −x1 = uR,n. Observe from (4.29) that we can obtain k1 ∈ (0,1]

and n1 such that Gx(u1,n1
)/
√

k−1 < ε/2 holds for every k < k1. By (4.30)
we can find R = R1, h = h1, and φ = φ0,1 such that Gk(vk)/

√
k−1 < ε for

every k ∈ [k1,1]. Again by (4.29), there is a number k2, 0 < k2 < k1, and
n2 ≥ n1 such that

Gk

(
uR1,n2

)
√

k
−1 <

ε

2
(4.37)

holds for every k < k2. Hence, there is h = h2 and φ = φ0,2 such that
Gk(vk)/

√
k−1 < ε holds for every k < k2. Let F ⊂ Wh consists (for h = h2,

R = R1, φ0 = φ0,2) of the functions in Wh that is equal to u1,n2
inside the



Stein A. Berggren et al. 169

K2

P2

t2

S2 S1

t1

t3 t4

S4S3

P1

K1

K4

p4

K3

p3

Figure 4.2. The simplest case of triangulation with the new method.

disc of radius R, and let qk denote a minimizer of Gk in F. Observe that for
any k ≤ k1 it holds that

Gk

(
u1,n2

)
√

k
−1 <

ε

2
. (4.38)

Hence, by (4.30) there is h = h2 and φ = φ0,3 such that |1−Gk(qk)/
√

k| < ε

holds for every k2 ≤ k ≤ k1, thus |1−Gk(vk)/
√

k| < ε. Put

R = R1, φ = min
{
φ0,1,φ0,2,φ0,3

}
, h = min

{
h1,h2

}
. (4.39)

Then, Gk(vk)/
√

k− 1 < ε holds for every k > 0. This completes the proof.
�

5. An illustrative example

For the sake of illustration put l(r) = 1, kg = k, kw = 1/k, and consider the
simple triangulation shown in Figure 4.2.

Without presenting the detailed calculation we compute an upper esti-
mate for λ+

eff,h by choosing the function u = v−x1 ∈ W′
h where v is anti-

symmetric (v(x) = −v(−x)), of the form v = tj on Sj and v = pj on Kj. Here,

t1 = −t3 =
rα cos2θ

Rα

(
=

rα
(
2cos2 θ−1

)
Rα

)
, t2 = −t4 = −

rα

Rα
,

p1 = −p3 = 2x2
1 −1, p2 = −p4 = −1.

(5.1)
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We obtain

1

|V |

∫
V

λ(x)|gradv|2dx

=
2

|V |

∫
S1∪S4

λ(x)|gradv|2dx+
2

|V |

∫
K1∪K4

λ(x)|gradv|2dx.

(5.2)

It is easily seen that∫
K1∪K4

λ(x)|gradv|2dx =
1

k

(
16

3
−π

)
. (5.3)

Moreover,∫
S1∪S4

λ(x)|gradv|2dx =

∫π/2

−π/2

∫1

0

λ(x)

(
1

r2

(
∂v

∂θ

)2

+

(
∂v

∂r

)2
)

rdrdθ

=
1

k

(
π

α
+

π

8α

(
α2 −4

))
+k

(
π

4
α

)
.

(5.4)

Thus

1

|V |

∫
V

λ(x)|gradv|2dx =
1

2k

(
16

3
−π+

1

8
πα+

π

2α

)
+k

π

8
α. (5.5)

Setting

α =
4

πl(0)

√
kw

kg
=

4

πk
, (5.6)

we obtain from (5.5) that

λ+
eff,h ≤ 1

|V |

∫
V

λ(x)|gradv|2dx =
1

4k2
+

8

3k
−

π

2k
+

π2

16
+

1

2
. (5.7)

Remark 5.1. We recall that the exact value λeff = 1. In our example, we only
use 4 elements outside the disk O. From (5.7) we obtain that λ+

eff,h ≤ 1.12783

when k = 100. Note that the corresponding value from the standard numer-
ical treatment (with 9350 elements) in Section 3 is 5.57028 (see Table 3.1).
This illustrates the power of our new method.

Remark 5.2. In the special case of standard checkerboards we have only
compared our method with calculations obtained from using the finite el-
ement method (FEM). However, there exist methods based on solving in-
tegral equations numerically which are significantly better than standard
FEM in case of difficult geometries. Here we want to refer to a recent work
of Helsing [8] which considers checkerboards in which the white squares
(with conductivity = 100) are a little bit smaller than the darker ones (with
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conductivity = 1). In particular, by his method he has calculated the effec-
tive conductivity to be 9.89299 in the case when the white squares occupy
49,9999999% of the whole structure. According to Helsing it is also possible
to apply a modified version of his method in case of standard checkerboards.

6. Some final comments

We think that the results obtained in this paper will be useful for mathe-
maticians and engineers dealing with checkerboard composites. Our numer-
ical experiments show that it is difficult to obtain good approximations by
using the finite element method, and Theorem 3.1 (see also Remark 3.2)
even states that there exists no finite-dimensional function space which can
approximate the actual solution (independently of the material properties in
the checkerboard).

By the new method we overcome this obstacle (see Theorem 4.1). It seems
to be possible to extend the method to 4-phase checkerboards. We aim to
develop these ideas in a forthcoming paper.
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