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Abstract. In this paper we will investigate the existence of multiple solu-
tions for the problem

(P ) −∆pu + g(x, u) = λ1h(x) |u|p−2 u, in Ω, u ∈ H1,p
0 (Ω)

where ∆pu = div
(
|∇u|p−2 ∇u

)
is the p-Laplacian operator, Ω ⊆ IRN is a

bounded domain with smooth boundary, h and g are bounded functions,
N ≥ 1 and 1 < p < ∞. Using the Mountain Pass Theorem and the Ekeland
Variational Principle, we will show the existence of at least three solutions
for (P).

1. Introduction

In this paper, we will investigate the existence of multiple solutions for
the problem


−∆pu+ g(x, u) = λ1h(x)|u|p−2u, in Ω,

u = 0 on ∂Ω,
(P)

where ∆pu =div(|∇u|p−2 ∇u) is the p-Laplacian operator, 1 < p < ∞,
N ≥ 1, Ω is a bounded domain with smooth boundary,

g : Ω× IR → IR is bounded continuous function
satisfying g(x, 0) = 0,(G1)

and its primitive denoted by
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G(x, s) =
s∫

0

g(x, t)dt is assumed to be bounded,(G2)

λ1 is the first eigenvalue of the following eigenvalue problem with weight{ −∆pu = λ1h(x)|u|p−2u, in Ω,
u = 0 on ∂Ω,(PA)

where

(h) 0 ≤ h ∈ L∞(Ω) with h > 0 on subset of Ω with positive measure.

We recall that λ1 is simple, isolated and it is the unique eigenvalue with
positive eigenfunction Φ1 (see [1] or [2]). There are many papers treating
problem (P ) with h = 1, among others, we would like to mention Lazer
& Landesman [3], Ahmad, Lazer & Paul [4], De Figueiredo & Gossez [5],
Amann, Ambrosetti & Mancini [6], Ambrosetti & Mancini [7], Thews [8],
Bartolo, Benci & Fortunato [9], Ward [10], Arcoya & Cañada [11], Costa &
Silva [12], Fu [13], Gonçalves & Miyagaki [14] when p = 2, and Boccardo,
Drábek & Kučera [15], Anane & Gossez [16], Ambrosetti & Arcoya [17],
Arcoya & Orsina [18], Fu & Sanches [19] when p 
= 2.
We shall show in this paper, the existence of multiple solutions for problem
(P ), by using similar arguments explored in [14] and [19]. Combining a
version of the Mountain Pass Theorem due to Ambrosetti & Rabinowitz
(see [20] and [25]) and the Ekeland variational principle (see [21, Theorem
4.1]), we will find nontrivial critical points of Euler- Lagrange functional
associated to (P ) given by

I(u) =
1
p

∫
Ω

|∇u|p − λ1
p

∫
Ω
h |u|p +

∫
Ω
G(x, u) , u ∈ H1,p

0 (Ω),(1)

which are weak solutions of (P).
Hereafter, we will denoted by ‖ ‖ and | |p the usual norms on the spaces
H1,p

0 (Ω) and Lp(Ω) respectively, and by W the closed subspace

W =
{
u ∈ H1,p

0 (Ω) /
∫
Ω
hu |Φ1|p−2Φ1 = 0

}
.

We can easily prove that W is a complementary subspace of 〈Φ1〉. Therefore
we have the following direct sum (see e.g. Brézis [22])

H1,p
0 (Ω) = 〈Φ1〉 ⊕ W.

We will be denoted by λ2, the following real number

λ2 = inf
u∈W

{∫
Ω

|∇u|p ;
∫
Ω
h |u|p = 1

}
,

and we remind that this value is the second eigenvalue of the p-Laplacian
(see [23] or [24]).
From simplicity and isolation of λ1 (see [1] or [2]), we have 0 < λ1 < λ2 and
by definition of λ2 it follows that∫

Ω
h |w|p ≤ 1

λ2

∫
Ω

|∇w|p , ∀w ∈ W.



MULTIPLE SOLUTIONS FOR A PROBLEM WITH RESONANCE 193

In this work, we will impose the following condition

g(x, t)t → 0, as |t| → ∞, ∀x ∈ Ω,(G3)

which appeared in [7] for p = 2 and [17] for the general case p > 1. This
condition together with the assumptions on the limits

T (x) = lim inf
|t|→∞

G(x, t) and S(x) = lim sup
|t|→∞

G(x, t), ∀x ∈ Ω,

imply that problem (P ) is in the class of the strongly resonance problem in
the sense of Bartolo-Benci & Fortunato [9].
The following condition means a nonresonance with higher eigenvalues

G(x, t) ≥
(
λ1−λ2

p

)
h(x) |t|p , ∀x ∈ Ω, ∀t ∈ IR.(G4)

In addition to (G3) which is a behaviour of g at infinity, we assume a condi-
tion of the behaviour of G at origin

there exist 0 < δ and 0 < m < λ1 such that
G(x, t) ≥ m

p h(x) |t|p , for |t| < δ, ∀x ∈ Ω.(G5)

Our main result is the following:

Theorem 1. Assume conditions (h), (G1)-(G5). Then, problem (P) has at
least three solutions u1, u2 and u3, with

I(u1), I(u2) < 0 and I(u3) > 0,

provided that the following conditions hold

there exist t−, t+ ∈ IR with t− < 0 < t+ such that∫
ΩG(x, t±Φ1) ≤ ∫

Ω T (x)dx < 0,(G6)

and ∫
Ω
S(x)dx ≤ 0.(G7)

Remark 1. Theorem 1 improves in some sense the main result proved in
[14], since the proof given in [14] works only in Hilbert space framework.

2. Preliminary Results

In this section, we will state and prove some results required in the proof
of Theorem 1. We recall that I : H1,p

0 (Ω) →IR is said to satisfy Palais-
Smale condition at the level c ∈IR ((PS)c in short), if any sequence {un} ⊂
H1,p

0 (Ω) such that

I(un) → c and I ′(un) → 0,

possesses a convergent subsequence in H1,p
0 (Ω).

Lemma 1. Assume (h), (G1) and (G2). Then I satisfies the (PS)c condi-
tion ∀ c < ∫

Ω T (x)dx.
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Proof. We are going to adapt some arguments used in [16, p.1148]. First of
all, we shall show that {un} is bounded. Assume that {un} is unbounded,
therefore, up to subsequence, we have

‖un‖ → ∞.

Letting

vn =
un

‖un‖ ,(*n)

we can assume that there exists v ∈ H1,p
0 (Ω) such that

vn ⇀ v in H1,p
0 (Ω)

and
vn → v in Ls(Ω), for 1 ≤ s < p∗ =

Np

N − p
.

Now, we will show that v 
= 0 and that there exists γ ∈IR such that

v(x) = γΦ1(x), ∀x ∈ Ω.

From (1) and choosing tn = ‖un‖ , we obtain
I ′(un)un

tpn
=

∫
Ω

|∇vn|p − λ1

∫
Ω
h |vn|p + 1

tpn

∫
Ω
g(x, un)un.(2)

Using (G1) together with the fact that

lim
n→∞

I ′(un)un

tpn
= 0,

we get ∫
Ω
h |v|p = 1

λ1
(3)

and therefore v 
= 0.
Using the weak convergence vn ⇀ v, we know that

‖v‖ ≤ 1.(4)

By (3) and (4), it follows that v is an eigenfunction for λ1. Then there exists
γ ∈IR such that

v(x) = γΦ1(x), ∀x ∈ Ω.(5)

In particular,
un

‖un‖ → γΦ1, ∀x ∈ Ω,

which implies
|un(x)| → ∞, ∀x ∈ Ω,

and by (G2) and Fatou’s lemma, we have

(6) lim inf
n→∞

∫
Ω
G(x, un(x))dx ≥

∫
Ω
lim inf
n→∞ G(x, un(x))dx ≥

∫
Ω
T (x)dx.

Now, using the inequality

c+ on(1) = I(un) ≥
∫
Ω
G(x, un(x))dx,(7)
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we have by (6) that

c ≥
∫
Ω
T (x)dx,

which contradicts the hypothesis on the level c, then {un} is bounded.
Let u ∈ H1,p

0 (Ω) be a function such that un ⇀ u, using a similar arguments
explored in [18], we can conclude that

un → u in H1,p
0 (Ω),

and Lemma 1 follows.

3. Existence of two solutions (Ekeland’s principle)

We will denote by Q± the following sets

Q+ = {tΦ1 + w, t ≥ 0 and w ∈ W}
and

Q− = {tΦ1 + w, t ≤ 0 and w ∈ W} .
It is easy to see that

∂Q+ = ∂Q− =W.

Lemma 2. If conditions (h),(G2) and (G6) hold, then functional I is bound-
ed from below on H1,p

0 (Ω). Moreover, the infimum is negative on Q+ and
Q−.

Proof. From condition (G2), its easy to see that I is bounded from below on
H1,p

0 (Ω).
Using condition (G6), we have

I(t±Φ1) =
∫
Ω
G(x, t±Φ1) ≤

∫
Ω
T (x)dx < 0,

therefore
inf

u∈Q±
I(u) < 0.

Remark 2. Using condition (G4) and the definition of the number λ2, we
remark that

I(w) ≥ 1
p

∫
Ω

|∇w|p − λ2
p

∫
Ω
h(x) |w|p ≥ 0, ∀w ∈ W.

Therefore Lemma 2 implies that if the infimum of I on Q± is achieved by,
for example, u±

0 ∈ Q±, we can assume that

u±
0 ∈ Q±\ W.(8)

This fact is very important when we are working with Ekeland’s variational
principle.

Theorem 2. If conditions (h),(G1),(G2),(G4) and (G6) hold, then there
exist u1 ∈ Q+ and u2 ∈ Q− solutions of (P), such that

I(u1), I(u2) < 0.
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Proof. From the proof of Lemma 2 we can conclude that

inf
u∈Q±

I(u) ≤
∫
Ω
G(x, t±Φ1) ≤

∫
Ω
T (x)dx < 0.

If
inf

u∈Q±
I(u) =

∫
Ω
G(x, t±Φ1) = I(t±Φ1) ≤

∫
Ω
T (x)dx < 0,

occurs we can take u1 = t+Φ1 and u2 = t−Φ1. Otherwise if

inf
u∈Q±

I(u) <
∫
Ω
G(x, t±Φ1) ≤

∫
Ω
T (x)dx,

holds using the Ekeland’s variational principle and the same argument ex-
plored in [14], we can show that there exist sequences {un} ⊂ Q+ and
{vn} ⊂ Q− satisfying

I(un) → inf
u∈Q+

I(u) and I ′(un) → 0,

and
I(vn) → inf

u∈Q−
I(u) and I ′(vn) → 0.

By Lemma 1, there exist u1 and u2 such that

un → u1 and vn → u2 in H1,p
0 (Ω).

Therefore, u1 and u2 are solutions of (P ) verifying

I(u1) = inf
u∈Q+

I(u) < 0 and I(u2) = inf
u∈Q−

I(u) < 0,

which implies from Remark 2 that u1 ∈ Q+ and u2 ∈ Q−. This completes
the proof of Theorem 2.

4. Existence of a third solution (Mountain Pass)

Using condition (G5) and arguing as in [14], we can easily show that

G(x, t) ≥ m

p
h(x) |t|p − C |t|σ , ∀x ∈ Ω, t ∈ IR(9)

where p < σ < p∗ and C is a constant independent of x.
By (9), we have that

I(u) ≥ m

pλ1

∫
Ω

|∇u|p − C

∫
Ω

|u|σ ,

and then

I(u) ≥ m

pλ1
‖u‖p + o (‖u‖) , as ‖u‖ → 0.(10)

Using (G6), we obtain
I(t±Φ1) < 0,

which together with (10) imply that there exist r, ρ > 0 and e = t+Φ1 such
that

I(u) ≥ r > 0, for ‖u‖ ≤ ρ and I(e) < 0.
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Therefore, using a version of the Mountain Pass Theorem without a sort
of Palais-Smale condition [25, Theorem 6], there exists a sequence {un} ⊂
H1,p

0 (Ω) satisfying

I(un) → c ≥ r > 0 and
∥∥I ′(un)

∥∥
H1,p

0 (Ω)∗ (1 + ‖un‖) → 0.(11)

Remark 3. We recall the sequence obtained in (11) was introduced by Ce-
rami in [26].

Theorem 3. If conditions (h),(G1) -(G3) and (G5)-(G7) hold, then prob-
lem (P) has a solution u3, with

I(u3) > 0.

Proof. Let {un} ⊂ H1,p
0 (Ω) be the sequence obtained in (11); then arguing

as in Lemma 1, if {un} is unbounded, we can assume that
|un(x)| → ∞, ∀x ∈ Ω.(12)

Using (11), we have

on(1) = I ′(un)(un) = ‖un‖p − λ1 |un|pp +
∫
Ω
g(x, un)undx,

and then

0 ≤ ‖un‖p − λ1 |un|pp ≤ −
∫
Ω

|g(x, un)un|+ on(1).

Combining (12), (G3) with the inequality above, we conclude that

‖un‖p − λ1 |un|pp → 0.

Now, using the equality

c+ on(1) = I(un) =
1
p

[
‖un‖p − λ1 |un|pp

]
+

∫
Ω
G(x, un(x))dx,

together with Fatou Lemma and (G7) we obtain

c ≤ lim sup
n→∞

∫
Ω
G(x, un(x))dx ≤

∫
Ω
S(x)dx ≤ 0,

which is a contradiction , because c > 0 by (11). Then {un} is bounded.
Let u3 ∈ H1,p

0 (Ω) be such that

un ⇀ u3.(13)

By a similar argument explored in [18], we have that

un → u3 in H1,p
0 (Ω),(14)

and consequently

I(u3) = c ≥ r > 0 and I ′(u3) = 0,

which shows that u3 is a solution of problem (P).

5. Proof of Theorem 1

Theorem 1 is an immediate consequence of Theorems 2 and 3.
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6. Example

Making Ω = (0, 1), p = 2, and h = 1, we shall give an elementary example
of a nonlinearity g verifying the set of assumptions.
We recall that λn = n2, n = 1, 2, ... are eigenvalues of (PA) and Φ1 = sinπx
is the first eigenvalue of (PA).
Let g : Ω×IR→IR defined by

g(x, s) = R(x)g1(s),

where g1 :IR→IR is given by

g1(s) =




s, for 0 ≤ s ≤ 1,
2− s, for 1 < s ≤ 5,
s − 8 for 5 < s ≤ 8 +

√
30
2 ,

8 +
√
30− s, for 8 +

√
30
2 < s ≤ 8 +

√
30,

0 for s ≥ 8 +
√
30,

−g(−s) for s ≤ 0,

and R : Ω →IR is defined by

R(x) =

{
4x+ 1, for 0 ≤ x ≤ 1

2 ,
−4x+ 5, for 1

2 ≤ x ≤ 1.

Then

G1(s) =
s∫

0

g1(t)dt and G(x, s) =
s∫

0

g(x, t)dt = R(x)G1(s)

and

S(x) = T (x) = −R(x)
2

.

By the definition of g, it is easy to see that it verifies the conditions (Gi) for
i
= 6.
Thus, we shall prove that G satisfies (G6), for t+ = 8.
Indeed, observe that

G(x, 8Φ1(x)) = G(1− x, 8Φ1(1− x)), x ∈ Ω,

that is, the function above is symmetric with respect to x = 1
2 .

Then,

1∫
0

G(x, 8Φ1(x)) dx = 2

1
2∫
0

R(x)G1(8Φ1(x))dx

= 2

1
2∫
0

4xG1(8Φ1(x))dx+ 2

1
2∫
0

G1(8Φ1(x))dx

≡ I1 + I2.
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Now, we shall estimate each integrals Ij , (j = 1, 2). Since G1(2 +
√
2) = 0,

choosing α0 ∈IR such that 8Φ1(α0) = 2+
√
2, which satisfies 0 < α0 <

1
6 , we

obtain

I1 ≤ 2
α0∫
0

4xG1(8Φ1(x))dx ≤ 8α0 <
4
3
.

On the other hand,

I2 = 2(

1
6∫

0

+

1
3∫

1
6

+

1
2∫

1
3

)G1(8Φ1(x))dx

≤ 2(

1
6∫

0

G1(2)dx+

1
3∫

1
6

G1(4)dx+

1
2∫

1
3

G1(6)dx)

≤ −2.
Therefore,

1∫
0

G(x, 8Φ1(x)) dx = I1 + I2 < −2
3
<

1∫
0

T (x)dx.

Analogously for t− = −8. This proves that G satisfies (G6).
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