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Abstract. The Czochralski method of the industrial production of a sili-
con single crystal consists of pulling up the single crystal from the silicon
melt. The flow of the melt during the production is called the Czochral-
ski flow. The mathematical description of the flow consists of a coupled
system of six P.D.E. in cylindrical coordinates containing Navier-Stokes
equations (with the stream function), heat convection-conduction equations,
convection-diffusion equation for oxygen impurity and an equation describ-
ing magnetic field effect.

This paper deals with the analysis of the system in the form used for
numerical simulation. The weak formulation is derived and the existence of
the weak solution to the stationary and the evolution problem is proved.

Introduction

Single crystal (monocrystal) silicon is an important raw material for elec-
tronic semiconductor parts. It is produced from polycrystalline silicon. The
most important methods for producing silicon single crystals are floating-
zone method and the Czochralski method. The latter consists in pulling
up the single crystal from silicon melt in a device called Czochralski puller.
Since impurities in the melt (mostly oxygen atoms from the silica (SiO2)
walls of the pot) build in the single crystal, the producers are interested
in the character of the melt flow. The flow is not visible, it is very hard
to measure during the procedure, therefore producers are interested in the
mathematical modelling of the flow on computers.

We shall call this flow of the melt in the Czochralski puller during the
single crystal growth Czochralski flow. The mathematical model of the flow
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used for numerical simulation is represented in the following system of six
coupled partial differential equations
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for unknown functions S,Ω, T, C, ψ, χ (u = u(ψ), w = w(ψ)). For the mean-
ing of the other variables and constants see List of symbols preceeding Sec-
tion 1. The system is accompanied by boundary conditions, see Section 2.
A brief derivation of the system and comments can be found in Section 2.

There are many papers dealing with modelling of the Czochralski flow,
e. g. [6], [15], [8], [2], [7], [11]. Usually the above introduced system (often
without unknowns C and χ and their equations) is studied from the physical
point of view, several discretization schemes and numerical experiments are
introduced.

On the other hand there is an extensive bibliography dealing with the
Navier-Stokes system and its analysis, e. g. [3], [21], [1], [14]. But the Navier-
Stokes system is usually uncoupled, formulated in terms of velocity vector
(not in terms of flow function) in Cartesian coordinates (not in cylindrical
coordinates) and mostly with homogeneous Dirichlet boundary conditions.

The aim of this paper is to give a precise weak formulation of the problem
and to prove existence of the weak solution. We shall investigate the system
in the form which is used for numerical simulation. In contrast to the pure
mathematics which often solves what can be done as it ought to be done and
the applied mathematics which solves what ought to be done as it can be
done the paper is an attempt to solve what ought to be done as it ought to
be done. Thus we use cylindrical coordinates, Navier-Stokes equations with
the flow function and derived variables Svanberg vorticity S, swirl Ω etc.

The problem is rather complicated. Special difficulties arise from the
so-called “wet axis”, in the cylindrical coordinates the coefficients have sin-
gularities, which involves the use of weighted Sobolev spaces. The Navier-
Stokes equations are formulated here in terms of stream function, vorticity



MODELING OF THE CZOCHRALSKI FLOW 3

and swirl. They are coupled with heat convection-conduction equation and
oxygen concentration convection-diffusion equation. The last equation in
the system describes the effect of the axial magnetic field. The system is
evolution but not in all unknowns, it is elliptic in χ.

In the paper we derive the weak formulation, justify it and prove the
existence of the weak solution to both the stationary and evolution problem.
After setting the problem in Section 1, the mathematical model is briefly
derived from its physical grounds in Section 2. The integral identities derived
in Section 3 form the base for the weak formulation of the problem. Section
4 contains weighted function spaces and inequalities that are used in Section
5 and 6. The stationary problem is studied in Section 5. The problem
is reformulated into an operator equation for a vector of unknowns. The
existence of the solution is proved by means of an abstract existence theorem
for weakly continuous operators, see [5]. The evolution problem with time
dependent data is studied in Section 6. The weak formulation is derived
and justified. The existence of the solution is proved by means of the Rothe
method.

List of symbols.

V — the melt volume in Cartesian coordinates (x1, x2, x3)
r, ϕ, z — cylindrical coordinates, t — time
G,Γ — the melt “volume” in the r–z plane and its boundary
Γp,Γs,Γc,Γa — parts of the boundary (pot, free surface, crystal, axis)
n ≡ (nr, nz) — the unit vector of outer normal to Γ
s ≡ (−nz, nr) — the unit tangent vector to Γ
∂/(∂n), ∂/(∂s) the normal and tangent derivatives, see (3.4)
u, v, w — the r, ϕ, z-components of velocity of the flow
Ω — swirl (angular momentum, Ω = rv)
S, ψ — Svanberg vorticity and stream function, see (2.6), (2.8)
T — temperature of the melt
C — oxygen concentration in the melt
χ — stream function for induced electric current in the melt

Ak, B — generalized Laplace and convection operator, see (2.18)
ν, νT , νC , αT , αC , αm, βT , βC , γT , γC , gT , gC , op, oc, Tp, Cp, Tc

— constants and data functions, see Section 2, Summary of data

ψ̃, Ω̃, T̃ , C̃, χ̃ — test functions related to the unknowns ψ,Ω, T, C, χ
a1(u, v), a−1(u, v), a(u, v) — bilinear forms, see (3.5), (3.19)
b(ψ, u; v) — convective trilinear form, see (3.6)
Ωb, Tb, Cb — auxiliary functions having

prescribed boundary values for the unknowns Ω, T, C
M(G) — space of Lebesgue measurable functions on G
Lpr(G), L

p
1/r(G) — Lebesgue spaces with weight r and 1/r

‖u‖p;r, ‖u‖p;1/r — corresponding norms
(u, v) — scalar product in L2r(G)
W 1,2

r (G), W 1,2
1/r(G), W

2∗,2
1/r (G) — weighted Sobolev spaces
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‖u‖1,2;r, ‖u‖1,2;1/r, ‖u‖2∗,2;1/r — the corresponding norms, see Section 4
|u|1,2;r, |u|1,2;1/r, |u|2∗,2;1/r — the corresponding seminorms, see Section 4
Vψ, VΩ, VT , VC , Vχ — function spaces for unknowns ψ,Ω, T, C, χ
kT , kC , kχ — positive multiplicative constants
U = (ψ,Ω, T, C, χ) — vector of the unknowns
V = (ψ̃, Ω̃, T̃ , C̃, χ̃) — vector of the test functions
W,V,H,H0 — spaces of vector functions, see (5.8), (5.9), (6.4)
‖U‖W, ‖U‖H, ‖U‖H0 — the corresponding norms, see (5.17), (6.7), (6.6)
A ,B,C ,D ,E ,F0,Fs,Fe

— operators and functionals, see (5.10) – (5.15), (6.1), (6.2)
A i, . . . ,T i,Ui — semidiscretizated functions, see (6.26), (6.27)
Un, Ûn — Rothe stair function (6.34) and Rothe polygonal function (6.35)
A n, . . . ,T n — stair approximations, see (6.36).

1. Setting up the problem

We shall deal with modelling of melt flow during single crystal growth by
the Czochralski method in a device called the crystal puller or Czochralski
device.

Czochralski device. The apparatus is outlined in Fig. 1. The heart of the
device consists of a melting pot (crucible) set on a turning base.

Polycrystalline silicon is put into the pot (crucible) and heated by a ring
of electric carbon heaters around the pot. When the silicon is melted, a
single crystal nucleus tightened in a turning hanger touches the surface of
the melt. The single crystal starts “growing” as the silicon melt contacts
the silicon solid. Both the pot and the hanger rotate around the common
vertical axis (usually with the opposite orientation) to obtain the axially
symmetric single crystal. The pot and the hanger are movable also in the
vertical direction to set up a suitable position in the middle of the heaters
as the melt level decreases and the single crystal grows.

The diameter of the single crystal is controlled by speed of pulling up the
single crystal and also by changing the heat power. The single crystal grows
in a protective inert atmosphere and in an axial magnetic field produced by
an electromagnetic coil. Also other types of magnetic fields have been used
but we will not deal with them in this paper. Czochralski crystals can also
be grown with no magnetic field, this case is included by setting the constant
αm = 0 and omitting the equation for χ.
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rotating single crystal

device walls

cooling by flow of a gas

electric heating

rotating silica pot

silicon melt

electromagnetic coil

Fig. 1. Czochralski device.

At the walls of the silica (SiO2) melting pot the atoms of oxygen get into
the melt, and on the free surface of the melt they escape into the atmosphere.
Thus character of the flow influences oxygen concentration of the melt in the
area of crystallization and successively oxygen concentration in the single
crystal.

We shall deal with the model taking into account the following phenomena:
— incompressible viscous liquid
— axially symmetric flow in a cylindrical domain
— forced convection caused by rotation of the melting pot and the crystal
— natural convection driven by thermal expansion buoyance and oxygen

concentration expansion buoyance
— Marangoni convection caused by surface tension variations in the free

surface of the liquid
— thermal convection and conduction in the melt
— oxygen concentration convection and diffusion in the melt
— forces caused by the external magnetic field inducing electric current

in the melt.
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2. The mathematical model

We shall confine our modelling to the region V of the melt in the melting
pot. We get use of axial symmetry of the problem. In this section we
briefly derive the system of partial differential equations on domain G with
corresponding boundary conditions.

Geometry of the problem. We shall assume that the region occupied by
the melt is constant and known. This region is denoted by V in Cartesian
coordinates x = (x1, x2, x3). In the cylindrical coordinates (r, ϕ, z) given by

x1 = r cosϕ x2 = r sinϕ x3 = z

the region V corresponds (up to a zero measure set) to G × (0, 2π). The
domain G represents a radial cross-section of V in the r, z–half plane (r > 0).

O

Γa

z

G

r

Γp

ΓsΓc

Fig. 2. Domain G and its boundary.

Due to symmetry of the device we shall assume axial symmetry of the
problem, i. e. all variables are independent of ϕ. Thus the problem will be
considered in the domain G. Boundary Γ of the domain G is divided into
four parts, see Fig. 2:

Γp — contact with the bottom and wall of the melting pot,
Γs — free surface of the melt,
Γc — contact with the crystal and
Γa — axis of the symmetry.

We shall assume that the free surface of the melt has a plane shape, i. e. Γs
is a subset of a line z = const.

We deduce the model for evolution (time-dependent) case with time vari-
able t. Omitting the terms with time derivative we obtain the stationary
problem.

Equations of motion. The flow of an incompressible viscous liquid is de-
scribed by the Navier-Stokes system of equations. In the cylindrical coordi-
nates for axially symmetric problem the system reads as follows
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where u, v, w are the r, ϕ, z–components of velocity vector, ν the kinematic
viscosity coefficient (1/ν corresponds to the Reynolds number), p the kine-
matic pressure i. e. the real pressure divided by the mean density ρ0 from
(2.12) and fr, fϕ, fz are components of the volume force vector f . It consists
of force fV caused by gravity and volume expansion and of force fm caused
by outer magnetic field, f = fV + fm.

In the literature on Czochralski flow the problem is often formulated in
terms of Stokes stream function ψ, Svanberg vorticity S and swirl Ω (angular
moment) instead of velocity components u, v, w.

Variable Ω — swirl defined by Ω = r v is used instead of ϕ-component v
of velocity vector. Replacing v in (2.2) by Ω we obtain
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the ϕ-component of vorticity ω

S = −1
r
ωϕ ≡ 1

r

[
∂w

∂r
− ∂u
∂z

]
.(2.6)

Subtracting equation (2.1) differentiated with respect to z and (2.3) differ-
entiated with respect to r we obtain the equation for S
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where v was replaced by Ω/r.

Due to continuity equation (2.4) there exists a function ψ describing the
r, z-components of velocity vector:
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The equation (2.4) can be omitted since each functions u,w defined by (2.8)
satisfy (2.4). On the other hand we have to add a relation between S and
ψ. Replacing u and w by ψ in (2.6) we obtain the last equation:
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Equation for temperature and oxygen concentration. Equation de-
scribing heat convection and conduction in cylindrical coordinates for ax-
isymmetric problem admits the form

∂T

∂t
+ u
∂T

∂r
+ w

∂T

∂z
= νT

[
1
r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2

]
,(2.10)

where T is temperature, νT coefficient of thermal diffusivity. The equation
describing diffusion and transport of oxygen in the melt is of the same form
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where C is oxygen concentration and νC diffusion coefficient.

Volume expansion. The temperature and oxygen concentration variations
cause volume expansion and consequently density variations

(2.12) ρ = ρ0(1 − δ) , δ
.= constT (T − To) + constC(C − Co) .

The linear dependence of ρ on T and C is sometimes called Boussinesq
approximation. The gravity force (0, 0,−ρg) acting on the melt can now be
written as ρ0fV with

(2.13) fV = (0, 0, fV ) , fV = −g + αT (T − T0) + αC(C − C0) .
The constants αT , αC include both the volume expansion coefficients and
the gravitational acceleration g.

Magnetic field. We suppose that the electromagnetic coil installed around
the melting pot creates in the melt a known homogeneous axial magnetic
field. The field is described by the magnetic induction vector B = (0, 0, Bz)
with single nonzero component. In the moving melt the magnetic field in-
duces an electric field E and an electric current j.

Since the electric current j satisfies continuity equation (the same equation
as (2.4) for velocity vector), its components jr, jz can be expressed by means
of an electric current stream function denoted by χ
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where q is the constant of electrical conductivity. On the other hand j obeys
Ohm’s law j = q(E+v×B). Moreover the field E is potential, thus E = ∇Φ.
Comparing these four relations we obtain
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Combining derivatives ∂zjr −∂rjz we obtain the equation for electric stream
function
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Since the neighbourhood of the melt is electrically insulating the equation
is completed by natural boundary conditions χ = 0 on boundary Γ.
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Finally the magnetic field acts on the moving melt by the force fm = j×B.
Inserting for j we obtain the second part of volume force f

(2.15) fm = (fr, fϕ, 0) , fr = − 1
r
q B2

z

∂ψ

∂z
, fϕ = − 1

r
q B2

z

∂χ

∂z
.

Geometric boundary conditions. The forced convection is caused by
rotation of the melting pot and by rotation or counter-rotation of the crystal.
Let us denote the angular velocity of the pot by op and of the crystal by
oc. Then due to assumption of viscous flow we have the following geometric
boundary conditions

u = w = 0 on Γp ∪ Γc , v = r · op on Γp , v = r · oc on Γc .

On the plane free surface and the axis of symmetry the normal component
of the velocity vector equals to zero

unr + wnz ≡ w = 0 on Γs , u = 0 on Γa .

We have to rewrite these conditions for variables ψ and Ω. The stream
function ψ has zero tangent derivatives on Γ, thus we can put ψ = 0 on Γ.
Moreover we have ∇ψ = 0 on Γp∪Γc∪Γa. Conditions for v yields conditions
for Ω:

Ω = r2op on Γp , Ω = r2oc on Γc .

Conditions on the free surface. On the free surface of the melt the
surface tension variations occur due to temperature and concentration gra-
dients. This surface tension variations produce shear stress which generates
a surface flow — the so-called Marangoni effect.

Let us suppose linear dependence of the surface tension A on T and C

A = Ao[1 − constT (T − To) − constC(C − Co)] .(2.16)

The shear stress is given by the surface gradient of A and it represents the
only tangential surface force acting on the free surface. Denoting the stress
tensor by τ we have

t · ∇A = t · τn
for any tangential t and the normal vector n = (nr, 0, nz) to the surface.
Between the stress tensor τ and the stretching tensor ε(v) = (∇v+(∇v)�)/2
we assume linear dependence (Newton law) τ = 2 νρ ε(v) . Combining these
relations we obtain

t · ∇A = νρ t · [∇v + (∇v)�]n(2.17)

In our case of plane free surface Γs we have n = (0, 0, 1). First in (2.17)
we take the tangent vector t = (0, 1, 0). Since A, u,w are independent of
ϕ on the plane surface we obtain 0 = −νρ (∂v)/(∂z) which rewritten for Ω
yields the condition

∂Ω
∂n

≡ ∂Ω
∂z

= 0 on Γs .
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Then in (2.17) we take the tangent vector in the r, z plane t = (1, 0, 0).
We obtain

∂A
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(
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∂z
+
∂w

∂r

)
.

Since w = 0 on Γs we have ∂w/∂r = 0 and using (2.6) and (2.16), we can
rewrite the boundary condition for S

S = βT
1
r
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∂r
+ βC

1
r

∂C

∂r
on Γs

with material constants βT and βC .

Boundary conditions for temperature and concentration. We shall
assume that the temperature is known at the pot walls and crystal interface:
T = Tp on Γp and T = Tc on Γc. At the free surface we consider heat
flow caused by both the conduction to cooling inert gas and the radiation to
device’s walls. The linearized heat flow can be described by

∂T

∂z
= gT − γTT on Γs ,

with a function gT and a constant γT . Symmetry of the problem yields
∂T/∂r = 0 at axis Γa .

Similarly we assume that the concentration is known at the pot walls, it
is symmetric at the axis and no segregation occurs at the crystal interface:

C = Cp on Γp ,
∂C

∂r
= 0 on Γa ,

∂C

∂n
= 0 on Γc .

On the free surface we consider an oxygen flow due to evaporating. The
linearized flow can be described by

∂C

∂z
= gC − γCC on Γs

with a function gC and a constant γC . The last condition is often replaced
by C = 0, in that case also γC = 0.

Summary of differential equations. The mathematical model of the
Czochralski flow consists of Navier-Stokes equations (2.5), (2.7), (2.9). We
used (2.4), inserted coupling volume forces (2.13), (2.15) and set αm = qB2

z .
Adding equations (2.10), (2.11) and (2.14) and using (2.4) we obtain a sys-
tem of six partial differential equations mentioned in Introduction, that are
used in papers dealing with numerical simulations of Czochralski flow.

Now we substitute u and w from (2.8). We shall simplify the notation of
the system. In the equations two types of operators appear: a generalized
Laplace operator and a convection operator. Denoting the operators by Ak
and B

(2.18) Ak(f) = −k
r

∂f

∂r
− ∂

2f

∂r2
− ∂

2f

∂z2
, B(ψ, f) =

1
r

(
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∂z

∂f

∂r
− ∂ψ
∂r

∂f

∂z

)
we can rewrite the system as follows:

∂S

∂t
+ ν A3(S) +B(ψ, S) +

1
r4
∂

∂z

(
Ω2
)
=(2.19)
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= αT
1
r
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1
r
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+ αm

1
r2
∂2ψ

∂z2
,

∂Ω
∂t

+ ν A−1(Ω) +B(ψ,Ω) = −αm ∂χ
∂z
,(2.20)

∂T

∂t
+ νTA1(T ) +B(ψ, T ) = 0 ,(2.21)

∂C

∂t
+ νCA1(C) +B(ψ,C) = 0 ,(2.22)

A−1(ψ) = r2 S ,(2.23)

A−1(χ) = − ∂Ω
∂z
.(2.24)

Summary of boundary conditions. The system of differential equations
is completed with the following system of boundary conditions:

— at the melting pot wall Γp:

(2.25) Ω = r2 op , T = Tp , C = Cp , ψ = 0 , ∇ψ = 0 , χ = 0 ,

— at the crystal interface Γc:

(2.26) Ω = r2 oc , T = Tc ,
∂C

∂n
= 0 , ψ = 0 , ∇ψ = 0 , χ = 0 ,

— at the free surface Γs:

(2.27)
S = βT

1
r

∂T

∂r
+ βC

1
r

∂C

∂r
,

∂Ω
∂z

= 0 ,

∂T

∂z
= gT − γTT , ∂C

∂z
= gC − γCC , ψ = 0 , χ = 0 ,

— and at the symmetry axis Γa:

(2.28) Ω = 0 ,
∂T

∂r
= 0 ,

∂C

∂r
= 0 , ψ = 0 , ∇ψ = 0 , χ = 0 .

Summary of the data. The data describing the problem can be divided
into two groups: constants of the constitutive relations i. e. material proper-
ties and operational data.

Coefficients of the constitutive relations
ν — silicon melt viscosity, ν > 0,
νT — thermal diffusivity of the silicon melt, νT > 0,
νC — oxygen diffusion coefficient in the silicon melt, νC > 0,
αT , αC — coefficient of buoyance caused by thermal and oxygen volume
expansion in the gravitation field. The constants determine natural
convection,
βT , βC — coefficients of condition describing the surface flow in the free
surface
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γT , gT , γC , gC — data in conditions describing the linearized heat and
oxygen flow on the free surface. They depend also on the surrounding
walls and the flow of cooling gas. We assume γT ≥ 0, γC ≥ 0. Of
course gT , gC would rather belong to the operational data.

Operational data

G — the cross-section of the volume of the melt, namely inner dimen-
sions of the melting pot: its radius rp and height of the melt, crystal
diameter etc.,
op, oc — angular velocity of the pot and the crystal rotation. The
constants determine the forced convection,
αm — constant describing effect of the applied magnetic field,
Tp, Cp, Tc — given temperature and oxygen concentration on the pot
walls and temperature on the crystal surface.

The data of functional character gT , gC , Tp, Cp, Tc may be dependent on
the space variables r, z.

In the evolution case the problem is completed by initial conditions giving
the value of ψ,Ω, T, C in time t = 0. Moreover, the operational data may be
time-dependent, namely op, oc, Tp, Cp, Tc, αm, gT , gC may vary in time. In
Sections 5 and 6 operational data op, oc, Tp, Cp, Tc will be included in func-
tions Ωb, Tb, Cb on G that have the prescribed values on the corresponding
parts of the boundary.

Normalization
For computation the variables are often normalized. The space and time

variables are rescaled such that the radius of the pot and the circumference
velocity of the pot (or crystal) are of unit magnitude, the temperature T is
shifted and rescaled to take its values in [0, 1] and the oxygen concentration
C is rescaled to maximum value 1. Then some constants of the system can
be expressed by means of dimensionless criteria

ν = 1/Re
νT = 1/(RePr)
νC = 1/(Re Sc)
αm = St

αT = Gr/Re2

αC = Grd/Re2

βT = Mn/(RePr)
βC = Mnd/(Re Sc) ,

where the criteria are (their values for the real problem are introduced in
the brackets — if they are known to the author)

Re — Reynolds number (104 – 106)
Pr — Prandtl number (0.024)
Sc — Schmidt number
Gr — Grashof number (108 – 1010)
Grd — Grashof diffusion number
Mn — Marangoni number (104 – 105)
Mnd — Marangoni diffusion number
St — Stuart number (0 – 103).
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The criteria and their values are taken from the physical part of [17] written
by O. Litzman.

3. INTEGRAL IDENTITIES

Integral identities derived in this section will be the base for generalized
formulation of the problems.

Each equation of the system (2.19)–(2.24) will be multiplied by a weight r
or 1/r and by a test function and integrated over G. Using Green’s theorem
(“integration by parts” in the plane) and taking into account the boundary
conditions we obtain integral identities with lower order derivatives.

We shall suppose that all integrals exist and are finite. All computations
are based on the following two formulas∫

G

∂u

∂r
v dG =

∫
Γ
u v nr dΓ −

∫
G
u
∂v

∂r
dG ,(3.1)

∫
G

∂u

∂z
v dG =

∫
Γ
u v nz dΓ −

∫
G
u
∂v

∂z
dG .(3.2)

To simplify the notation we denote the scalar product with weight r by

(u, v) =
∫
G
r u v dG .(3.3)

We suppose that the normal vector n = (nr, nz) exists on the boundary Γ
(except for a finite number of points) and we define normal and tangent
derivatives by

∂u

∂n
=
∂u

∂r
nr +

∂u

∂z
nz

∂u

∂s
= −∂u

∂r
nz +

∂u

∂z
nr .(3.4)

Since in the equations some operators appear several times we start with
couple of lemmas transforming the common integrals simultaneously.

Transformation of some integrals.

Lemma 3.1. The integrals with operators Ak with k = 1,−1 can be trans-
formed as follows∫

G
rk Ak(u)v dG = ak(u, v) −

∫
Γ
rk
∂u

∂n
v dΓ ,

where

ak(u, v) =
∫
G
rk
(
∂u

∂r

∂v

∂r
+
∂u

∂z

∂v

∂z

)
dG .(3.5)

The proof consists in applying (3.1), (3.2) to the second order derivatives.

Lemma 3.2. The trilinear form b(u, v;w) born by the operator B(u, v)

(3.6) b (u, v;w) ≡
∫
G
r B(u, v)w dG =

∫
G

(
∂u

∂z

∂v

∂r
− ∂u
∂r

∂v

∂z

)
w dG
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transforms as follows

b (u, v;w) = −b (w, v;u) −
∫
Γ
u
∂v

∂s
w dΓ,

b (u, v;w) = −b (u,w; v) +
∫
Γ

∂u

∂s
v w dΓ.

Equation for concentration C and temperature T . The unknown
function C has prescribed values at Γp, thus we choose the corresponding
condition for its test function C̃

C̃ = 0 on Γp .(3.7)

We multiply equation (2.22) by r and by test function C̃ and integrate it
over domain G∫

G
r
∂C

∂t
C̃ dG+ νC

∫
G
r A1(C) C̃ dG+

∫
G
r B(ψ,C) C̃ dG = 0 .

We rewrite the first evolution term using the scalar product (3.3), the second
diffusion term is transformed using Lemma 3.1; the boundary condition for
C with (3.7) yields an integral over Γs, we put it to the right-hand side. The
third convective term is rewritten using notation (3.6). Thus we obtain the
integral identity corresponding to the equation for C

(3.8)
(
∂C

∂t
, C̃

)
+ νC a1(C, C̃) + b (ψ,C; C̃) = νC

∫
Γs

r(gC − γCC)C̃ dΓ.

The values for T are prescribed on Γp ∪ Γc thus we choose its test function
T̃ satisfying

T̃ = 0 on Γp ∪ Γc .(3.9)

We multiply equation (2.21) by r T̃ and integrate it over G∫
G
r
∂T

∂t
T̃ dG+ νT

∫
G
r A1(T )T̃ dG+

∫
G
r B(ψ, T )T̃ dG = 0 .

Again, like in the previous case, we transform the terms using Lemma 3.1
and Lemma 3.2; the boundary integral due to boundary condition yields an
integral on the right-hand side. We obtain the integral identity correspond-
ing to the equation for T :

(3.10)
(
∂T

∂t
, T̃

)
+ νT a1(T, T̃ ) + b (ψ, T ; T̃ ) = νT

∫
Γs

r(gT − γTT )T̃ dΓ.

Equation for electric flow function χ. Due to zero boundary condition
for χ we choose the test function χ̃ satisfying

χ̃ = 0 on Γ .(3.11)

In this case we multiply equation (2.24) by χ̃/r and integrate over G:∫
G

1
r
A−1(χ)χ̃dG = −

∫
G

1
r

∂Ω
∂z
χ̃dG .
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Using Lemma 3.1 we obtain the integral identity for χ:

a−1(χ, χ̃) = −
(
1
r

∂Ω
∂z
,
χ̃

r

)
.(3.12)

Equation for swirl Ω. The boundary condition for Ω are prescribed on
Γ − Γs. Thus we choose a test function Ω̃ satisfying

Ω̃ = 0 on Γ − Γs .(3.13)

We multiply equation (2.20) by Ω̃/r and integrate it over G:∫
G

1
r

∂Ω
∂t

Ω̃ dG+ ν
∫
G

1
r
A−1(Ω) Ω̃ dG+

∫
G

1
r
B(ψ,Ω) Ω̃ dG

= −αm
∫
G

1
r

∂χ

∂z
Ω̃ dG.

We rewrite the second term using Lemma 3.1; the boundary integral van-
ishes due to boundary condition for Ω̃. The term on the right hand side is
converted by (3.2), the boundary term vanishes due to χ = 0 on Γ. Thus we
obtain the identity corresponding to the equation for Ω

(3.14)

(
∂

∂t

Ω
r
,
Ω̃
r

)
+ ν a−1(Ω, Ω̃) + b

(
ψ,Ω;

Ω̃
r2

)
= αm

(
χ

r
,
1
r

∂Ω̃
∂z

)
.

Equation for vorticity S and stream function ψ. The remaining two
equations present a problem. On the boundary Γ − Γs the second order
equation (2.23) for ψ has two boundary conditions ψ = 0, ∂ψ/∂n = 0 (they
are equivalent to ψ = 0,∇ψ = 0) while equation (2.19) for S has no boundary
condition. If we express S by ψ using equation (2.23)

S ≡ S(ψ) = r−2A−1(ψ)(3.15)

and insert it into equation (2.19) we obtain a fourth order equation for ψ
which has two boundary conditions: ψ = 0 on Γ and

∂ψ

∂n
= 0 on Γ − Γs , S(ψ) = βT

1
r

∂T

∂s
+ βC

1
r

∂C

∂s
on Γs .

We choose a test function ψ̃ satisfying

ψ̃ = 0 on Γ , ∇ψ̃ = 0 on Γ − Γs .(3.16)

We multiply equation (2.19) by r ψ̃ and integrate it over domain G:

(3.17)

∫
G
r
∂S(ψ)
∂t

ψ̃ dG+ ν
∫
G
r A3(S(ψ)) ψ̃ dG+

∫
G
r B(ψ, S(ψ)) ψ̃ dG

+
∫
G

1
r3
∂

∂z
(Ω2) ψ̃ dG

=
∫
G

[
αT
∂T

∂r
+ αC

∂C

∂r

]
ψ̃ dG+ αm

∫
G

1
r

∂2ψ

∂z2
ψ̃ dG .
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The first integral can be rewritten using Lemma 3.1; due to boundary con-
ditions the boundary integrals vanish∫

G
r
∂S(ψ)
∂t

ψ̃ dG =
∫
G

1
r

∂

∂t
(A−1(ψ)) ψ̃ dG = a−1

(
∂ψ

∂t
, ψ̃

)
.

In the second term we use the following forms of the operators A3 and A−1

(3.18)
A3(S) = −1

r

∂

∂r

[
1
r

∂

∂r

(
r2S

)]
− ∂

2S

∂z2
,

A−1(ψ) = −r ∂
∂r

(
1
r

∂ψ

∂r

)
− ∂

2ψ

∂z2

and the computation with double use of (3.1) and (3.2) yields∫
G
r A3(S(ψ)) ψ̃ dG = −

∫
Γ

1
r

∂

∂n

(
r2 S(ψ)

)
ψ̃ dΓ +

∫
Γ
r S(ψ)

∂ψ̃

∂n
dΓ

+
∫
G
r

[
∂

∂r

(
1
r

∂ψ

∂r

)
+

1
r

∂2ψ

∂z2

] [
∂

∂r

(
1
r

∂ψ̃

∂r

)
+

1
r

∂2ψ̃

∂z2

]
dG .

Due to (3.16) the first integral over Γ is zero and the second one vanishes
on Γ − Γs. The last integral over G has integrand of the form (a+ b)(ã+ b̃).
We use integration by parts (3.1) and (3.2) twice to the “mixed” term ab̃ to
obtain an integrand of form c c̃:∫
G

∂

∂r

(
1
r

∂ψ

∂r

)
∂2ψ̃

∂z2
dG =

∫
Γ

1
r

∂ψ

∂r

[
∂2ψ̃

∂z2
nr − ∂2ψ̃

∂r ∂z
nz

]
dΓ+

∫
G

1
r

∂2ψ

∂r ∂z

∂2ψ̃

∂r ∂z
dG.

The integrals over Γ vanish due to ∂ψ/∂r = 0 on Γ. The second “mixed”
term ãb can be transformed in the same way. Thus we obtained∫

G
r A3(S(ψ)) ψ̃ dG =

∫
Γs

r S(ψ)
∂ψ̃

∂n
dΓ +a(ψ, ψ̃)

where a(ψ, v) is a bilinear form with second order derivatives

a(ψ, ψ̃) =(3.19)

=
∫
G
r

[
∂

∂r

(
1
r

∂ψ

∂r

)
∂

∂r

(
1
r

∂ψ̃

∂r

)
+ 2

1
r

∂2ψ

∂r ∂z

1
r

∂2ψ̃

∂r ∂z
+

1
r

∂2ψ

∂z2
1
r

∂2ψ̃

∂z2

]
dG

=

(
∂

∂r

(
1
r

∂ψ

∂r

)
,
∂

∂r

(
1
r

∂ψ̃

∂r

))
+2

(
1
r

∂2ψ

∂r ∂z
,
1
r

∂2ψ̃

∂r ∂z

)
+

(
1
r

∂2ψ

∂z2
,
1
r

∂2ψ̃

∂z2

)
.

In the integral over Γs we use (2.27) and put it to the right-hand side.
We rewrite the third integral of identity (3.17) using Lemma 3.2 and

(3.15), the fourth term remains unchanged. The last integral with αm is
rewritten using (3.2) and (3.16).
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Thus we obtain the last integral identity

(3.20)

a−1

(
∂ψ

∂t
, ψ̃

)
+ ν a(ψ, ψ̃) − b

(
ψ, ψ̃;

1
r2
A−1(ψ)

)
+
∫
G

1
r3
∂

∂z

(
Ω2
)
ψ̃ dG+ αm

(
1
r

∂ψ

∂z
,
1
r

∂ψ̃

∂z

)

=

(
αT
∂T

∂r
+ αC

∂C

∂r
,
ψ̃

r

)
− ν

〈
βT
∂T

∂r
+ βC

∂C

∂r
,
∂ψ̃

∂z

〉
Γs

,

where 〈· , ·〉Γs
means the integral

〈u , v〉Γs
=
∫
Γs

u v dΓ .(3.21)

We have obtained a system of five integral identities. The relation between
them and the original system of pointwise equations can be stated in the
following assertion:

Theorem 3.3. (Relation between pointwise equations and integral identi-
ties)

(i) Let the functions S,Ω, T, C, ψ, χ satisfy the system of pointwise equa-
tions (2.19)–(2.24) with the boundary conditions (2.25)–(2.28).

Then the integral identities (3.20), (3.14), (3.10), (3.8) and (3.12) hold
for all sufficiently smooth test functions ψ̃, Ω̃, T̃ , C̃, χ̃ satisfying the corre-
sponding boundary conditions: (3.16), (3.13), (3.9), (3.7) and (3.11).

(ii) On the other hand let the functions ψ,Ω, T, C, χ satisfy the derived
integral identities for all smooth test functions ψ̃, Ω̃, T̃ , C̃, χ̃ satisfying the
corresponding boundary conditions and let the functions ψ,Ω, T, C, χ be
sufficiently smooth. Then they also satisfy the system of pointwise differen-
tial equations with corresponding boundary conditions, where S is given by
(3.15).

4. Auxiliary results

In this section we introduce function spaces for the unknowns and the test
functions and some inequalities. They are directed to Theorem 4.9 saying
that all terms in the integral identities are “well defined”. For weighted
Lebesgue and Sobolev spaces see e. g. [13].

Function spaces. Our domain G represents radial cross-section of the melt
volume. We assume it is a bounded domain with Lipschitz boundary. Due
to cylindrical coordinates the basic function space will be Lebesgue space of
square integrable functions with weight r

L2r(G) =
{
u ∈ M(G)

∣∣ ∫
G
r u2 dG <∞

}
,
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where M(G) is the space of classes of a. e. equal measurable functions on G.
It is a Hilbert space with scalar product and norm defined by

(u, v) ≡ (u, v)r =
∫
G
r u v dG , ‖u‖2;r =

[∫
G
r |u|2 dG

]1/2
.

In case of (·, ·)r we often omit the subscript r and write only (·, ·), see (3.3).
We can obtain the same space by completion of smooth functions C∞(G) in
the norm ‖ · ‖2;r. In the same way we introduce weighted spaces Lpr(G) of
functions integrable with p-th power (1 ≤ p <∞) and norm ‖ · ‖p;r

Lpr(G) =

{
u ∈ M(G)

∣∣ ‖u‖p;r ≡
[∫

G
r |u|p dG

]1/p
<∞

}
.

Spaces Lp1/r(G) with weight 1/r and norm ‖ · ‖r;1/r are introduced similarly

Lp1/r(G) =

{
u ∈ M(G)

∣∣ ‖u‖p;1/r ≡
[∫

G

1
r

|u|p dG
]1/p

<∞
}
.

In the same way using convenient norms generated by the bilinear forms
ak(·, ·) we introduce weighted Sobolev spaces for the unknowns: W 1

r (G)
space with weight r for the unknowns T,C is defined by completion of
C∞(G) in the norm

‖u‖1,2;r =
[
‖u‖22;r + a1(u, u)

]1/2 ≡
[
‖u‖22;r +

∥∥∥∥∂u∂r
∥∥∥∥2
2;r

+
∥∥∥∥∂u∂z

∥∥∥∥2
2;r

]1/2
.

Similarly, space W 1
1/r(G) with weight 1/r for the unknowns Ω, χ is defined

as completion of C∞ functions in the norm

‖u‖1,2;1/r =
[
‖u‖22;1/r + a−1(u, u)

] 1
2 ≡

[
‖u‖22;1/r +

∥∥∥∥∂u∂r
∥∥∥∥2
2;1/r

+
∥∥∥∥∂u∂z

∥∥∥∥2
2;1/r

] 1
2

.

For the last unknown ψ we introduce a special weighted second order deriva-
tive Sobolev space W 2∗

1/r(G) by completion of C∞(G) in the norm containing
the bilinear form a(u, v):

‖u‖2∗,2;1/r =
[
‖u‖21,2;1/r +a(u, u)

]1/2
≡
‖u‖22;1/r +

∥∥∥∥∂u∂r
∥∥∥∥2
2;1/r

+
∥∥∥∥∂u∂z

∥∥∥∥2
2;1/r

+
∥∥∥∥r ∂∂r

(
1
r

∂u

∂r

)∥∥∥∥2
2;1/r

+ 2

∥∥∥∥∥ ∂2u∂r ∂z
∥∥∥∥∥
2

2;1/r

+

∥∥∥∥∥ ∂2u∂z2
∥∥∥∥∥
2

2;1/r

1/2 .
Remarks. (i) The weighted space L2r(G) is a natural counterpart to the
space L2(V ), where V is the cylindrical domain in R

3 having the cross-
section G. Indeed, the following equality holds

2π
∫
G
r u(r, z) dG =

∫
V
u∗(x1, x2, x3)dx ,
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where u∗(x1, x2, x3) = u(
√
x21 + x

2
2, x3).

In the same way we see that the space W 1
r (G) is a Hilbert space and it is

connected to its natural counterpart W 1(V ) by equality

2π ‖u‖21,2;r = ‖u∗‖21,2 .
The equality is used in several proofs.

(ii) For the unknown ψ we need a weighted Sobolev space of functions
with second order derivatives. The standard Sobolev space W 2

1/r(G) defined
by completion of the smooth functions in the standard norm

‖u‖22,2;1/r =
∑

|α|≤2

‖Dαu‖22;1/r

is not convenient, since it is too narrow. Indeed, its norm requires condition
(∂2u)/(∂r2) = 0 a. e. along the axis Γa. The norm induced by a admits
nonzero values of ∂2ψ/∂r2 at the axis, e. g. u(r, z) = r2 is in W 2∗

1/r(G) but
not in W 2

1/r(G).

(iii) As we shall see in Lemma 4.1 the weighted space W 1
r (G) is imbedded

into Lqr(G) for q ≤ 6 only. In case of the standard Sobolev spaces this is true
for domains in R

3 and for G ⊂ R
2 the standard imbedding holds for q <∞.

It is caused by the correspondence mentioned in the preceeding Remark (i).

(iv) As we shall see in Lemma 4.2 functions of the weighted spaceW 1
1/r(G)

have zero traces on the axis Γa.

Imbedding, traces and inequalities.

Lemma 4.1. (On embedding) For q ≤ 6 we have W 1
r (G) ⊂ Lqr(G) i. e.

‖u‖q;r ≤ const · ‖u‖1,2;r for q ≤ 6 .

For q < 6 the imbedding is compact, namely any sequence un converging
weakly in W 1

r (G) is converging strongly in Lqr(G).

The assertion is a direct consequence of the corresponding imbedding in
three dimensional domains if we rewrite the integrals over G to integrals over
the corresponding volume V in R

3.

Lemma 4.2. (On traces)
(i) The functions of W 1

r (G) have traces on Γs in L2(Γs), i. e.

‖u‖L2(Γs) ≤ cs‖u‖1,2;r ,
where the constant cs depends on G and Γs only.

(ii) The functions of W 1
1/r(G) has zero trace on Γa and the functions u

of W 2∗
1/r(G) satisfy u = 0 and ∇u = 0 on Γa in sense of traces.

Since Γs ⊂ Γ has positive distance from the axis r = 0 the first part of the
lemma is a direct consequence of Theorem on traces in R

3, see e. g. [12]. The
second part follows from the fact that any continuous function u ∈W 1

1/r(G)
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cannot have nonzero value and nonzero gradient on Γa. For functions of
W 2∗

1/r(G) the same reasoning can be used.

Lemma 4.3. (On bilinear forms) Let us introduce seminorms generated by
the bilinear forms a1(u, v), a−1(u, v), a(u, v):

|u|1,2;r = [a1(u, u)]
1/2 , |u|1,2;1/r = [a−1(u, u)]

1/2 , |u|2∗,2;1/r = [a(u, u)]1/2 .

The first two seminorms represent equivalent norms on subspaces of func-
tions with zero trace on a part of the boundary M ⊂ Γ − Γa of positive
measure, the third semimorm |u|2∗,2:1/r is an equivalent norm on the sub-
space of functions with traces of both u and ∇u vanishing on M . Thus on
these subspaces the bilinear forms satisfy

a1(u, u) ≥ c1‖u‖21,2;r , a−1(u, u) ≥ c−1‖u‖21,2;1/r , a(u, u) ≥ c3‖u‖22∗,2;1/r .

On the other hand, on the whole spaces W 1
r (G),W

1
1/r(G),W

2∗
1/r(G) we have

a1(u, v) ≤ ‖u‖1,2;r ‖v‖1,2;r , a−1(u, v) ≤ ‖u‖1,2;1/r ‖v‖1,2;1/r ,
a(u, v) ≤ ‖u‖2∗,2;1/r ‖v‖2∗,2;1/r .

The results can be proved by transforming the integral over G into inte-
gral over the volume V in R

3 and using corresponding results for standard
Sobolev spaces.

Lemma 4.4. The following inequalities hold

|(u, v)| ≤ ‖u‖2;r ‖v‖2;r ,∣∣∣∣(ur , vr
)∣∣∣∣ ≤

∥∥∥∥ur
∥∥∥∥
2;r

∥∥∥∥vr
∥∥∥∥
2;r

= ‖u‖2;1/r ‖v‖2;1/r ,∣∣∣∣∫
G
u v dG

∣∣∣∣ ≤ ‖u‖2;r
∥∥∥∥vr
∥∥∥∥
2;r

= ‖u‖2;r‖v‖2;1/r ,∣∣∣∣∫
G
u v w dG

∣∣∣∣ ≤
∥∥∥∥ur
∥∥∥∥
4;r

‖v‖2;r ‖w‖4;r ,∣∣∣∣∫
G

1
r2
u v w dG

∣∣∣∣ ≤
∥∥∥∥ur
∥∥∥∥
4;r

‖v‖2;1/r
∥∥∥∥wr

∥∥∥∥
4;r
.

The proofs are based on Cauchy inequality | ∫ f g dG| ≤ ‖f‖2 · ‖g‖2 and
on Hölder inequality | ∫ f g hdG| ≤ ‖f‖4 · ‖g‖2 · ‖h‖4 .

Lemma 4.5. Functions with zero trace u = 0 on Γa satisfy∥∥∥∥ ur2
∥∥∥∥
2;r

≤
∥∥∥∥∂u∂r

∥∥∥∥
2;1/r

,

∥∥∥∥ ur2
∥∥∥∥
4;r

≤ 2
3

∥∥∥∥1r ∂u∂r
∥∥∥∥
4;r
.
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Adding inequalities of the previous lemma we obtain∥∥∥∥ ∂∂r
(
u

r

)∥∥∥∥
2;r

≤ const · ‖u‖1,2;1/r for u ∈W 1
1/r(G) ,∥∥∥∥ur

∥∥∥∥
q;r

≤ const · ‖u‖1,2;1/r for u ∈W 1
1/r(G) q ≤ 6 ,∥∥∥∥1r ∂u∂r

∥∥∥∥
4;r
,

∥∥∥∥1r ∂u∂z
∥∥∥∥
4;r

≤ const · ‖u‖2∗,2;1/r for u ∈W 2∗
1/r(G) .

The proof is based on the following two cases of Hardy’s inequality [13]∫ δ

0
r

∣∣∣∣F (r)r2
∣∣∣∣2 dr ≤

∫ δ

0

1
r
|f(r)|2dr,

∫ δ

0
r

∣∣∣∣F (r)r2
∣∣∣∣4 dr ≤

(
2
3

)4∫ δ

0

1
r3

|f(r)|4dr ,
where F (r) =

∫ r
0 f(s)ds and Lemma 4.2 (ii).

It remains to estimate the boundary integrals 〈· , ·〉Γs
in identity (3.20).

The standard trace theorem (Lemma 4.2) is not sufficient, the boundary
integral exists only for smooth functions. Using a more delicate estimate we
can extend it to the desired case:

Lemma 4.6. The bilinear form 〈· , ·〉Γs
on a smooth part of boundary Γs

defined for smooth functions by (3.21) can be extended by continuity to the
case 〈

∂u

∂r
,
∂v

∂z

〉
Γs

, u ∈W 1
r (G) , v ∈W 2∗

1/r(G)

satisfying ∣∣∣∣∣
〈
∂u

∂r
,
∂v

∂z

〉
Γs

∣∣∣∣∣ ≤ const · ‖u‖1,2;r‖v‖2∗,2;1/r .

Sketch of the proof. Since both weights r and 1/r are bounded on Γs we need
not take care of them. We shall use results saying that functions of Sobolev
spaces have their traces in fraction order spaces. A function v ∈ W 2∗

1/r(G)
has its derivative in W 1

1/r(G) and the trace of the derivative is in W 1/2(Γs).
The second function u ∈ W 1

r (G) has its trace in W 1/2(Γs) and its tangent
derivatives in the spaceW−1/2(Γs) dual toW 1/2(Γs). The pairing inequality
onW−1/2(Γs)×W 1/2(Γs) yields the inequality and justifies the extension.

Estimates of the nonlinear terms and the conclusion.

Lemma 4.7. We have the following estimates of the nonlinear convective
terms

|b (u, v1;w1)| ≤ const · ‖u‖2∗,2;1/r ‖v1‖1,2;r ‖w1‖1,2;r ,∣∣∣∣∫
G

u

r3
∂

∂z
(v22) dG

∣∣∣∣ ≤ const · ‖u‖2∗,2;1/r ‖v2‖21,2;1/r ,∣∣∣∣b(u, v2; w2r2
)∣∣∣∣ ≤ const · ‖u‖2∗,2;1/r ‖v2‖1,2;1/r ‖w2‖1,2;1/r ,∣∣∣∣b(u, v3; 1r2A−1(w3)
)∣∣∣∣ ≤ const · ‖u‖2∗,2;1/r ‖v3‖2∗,2;1/r ‖w3‖2∗,2;1/r
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provided v1, w1 ∈W 1
r (G) , v2, w2 ∈W 1

1/r(G) and u, v3, w3 ∈W 2∗
1/r(G).

The inequalities follows from Lemmas 4.4, 4.5 and (3.18). For the evo-
lution case in Section 6 we need more delicate estimates of the nonlinear
terms:

Lemma 4.8. Under the assumptions of Lemma 4.7 we have

|b (u, v1;w1)| ≤ const · ‖u‖1/41,2;1/r ‖u‖3/42∗,2;1/r ‖v1‖1,2;r ‖w1‖1/42;r ‖w1‖3/41,2;r ,∣∣∣∣∫
G

u

r3
∂

∂z
(v22) dG

∣∣∣∣ ≤ const · ‖u‖1/41,2;1/r ‖u‖3/42∗,2;1/r‖v2‖
1/4
2;1/r ‖v2‖7/41,2;1/r ,∣∣∣∣b(u, v2; w2r2

)∣∣∣∣ ≤ const · ‖u‖1/41,2;1/r ‖u‖3/42∗,2;1/r ‖v2‖1,2;1/r ‖w2‖1/42;1/r ‖w2‖3/41,2;1/r

and ∣∣∣∣b(u, v3; 1r2A−1(w3)
)∣∣∣∣

≤ const · ‖u‖1/41,2;1/r ‖u‖3/42∗,2;1/r ‖v3‖2∗,2;1/r ‖w3‖1/41,2;1/r ‖w3‖3/42∗,2;1/r ,

provided v1, w1 ∈W 1
r (G) , v2, w2 ∈W 1

1/r(G) and u, v3, w3 ∈W 2∗
1/r(G).

The estimates follow from Lemmas 4.4 and 4.5 if we estimate the first
and the third factor using the following inequality which follows from Hölder
inequality and Lemma 4.1

‖u‖4;r ≤ const · ‖u‖1/42;r ‖u‖3/46;r ≤ const · ‖u‖1/42;r ‖u‖3/41,2;r

or using a similar estimate for ‖u/r‖4;r .
Applying all previous lemmas estimating individual terms we can conclude

the section with the following statement:

Theorem 4.9. Let the unknown functions ψ,Ω, T, C, χ and the test func-
tions ψ̃, Ω̃, T̃ , C̃, χ̃ be in corresponding spaces i. e.

ψ, ψ̃ ∈W 2∗
1/r(G) , Ω, Ω̃, χ, χ̃ ∈W 1

1/r(G) , T, T̃ , C, C̃ ∈W 1
r (G)

and the data functions gT , γC ∈ L2(Γs). In the evolution case in addition we
assume

∂ψ

∂t
∈W 1

1/r(G) ,
∂Ω
∂t

∈ L21/r(G) ,
∂T

∂t
,
∂C

∂t
∈ L2r(G) .

Then all integrals in identities (3.8), (3.10), (3.12), (3.14), (3.20) are well
defined and finite.

5. Stationary problem

In this section we introduce the weak and operator formulation of the
stationary problem and prove existence of the solution — Theorem 5.2. To
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obtain the stationary problem we drop evolution terms in the integral identi-
ties (3.20), (3.14), (3.10), (3.8), (3.12) of Section 3 with the time independent
unknowns ψ,Ω, T, C, χ and the test functions ψ̃, Ω̃, T̃ , C̃, χ̃:

(5.1)

ν a(ψ, ψ̃) − b(ψ, ψ̃; 1
r2
A−1(ψ)) +

∫
G

1
r3
∂

∂z

(
Ω2
)
ψ̃ dG

+ αm

(
1
r

∂ψ

∂z
,
1
r

∂ψ̃

∂z

)

=

(
αT
∂T

∂r
+ αC

∂C

∂r
,
ψ̃

r

)
− ν

〈
βT
∂T

∂r
+ βC

∂C

∂r
,
∂ψ̃

∂z

〉
Γs

,

ν a−1(Ω, Ω̃) + b

(
ψ,Ω;

Ω̃
r2

)
= αm

(
χ

r
,
1
r

∂Ω̃
∂z

)
,(5.2)

νT a1(T, T̃ ) + b (ψ, T ; T̃ ) = νT
∫
Γs

r(gT − γTT ) T̃ dΓ ,(5.3)

νC a1(C, C̃) + b (ψ,C; C̃) = νC
∫
Γs

r(gC − γCC) C̃ dΓ ,(5.4)

a−1(χ, χ̃) = −
(
1
r

∂Ω
∂z
,
χ̃

r

)
,(5.5)

where the forms ai(·, ·), a(·, ·), b (·, · ; ·) are defined by (3.5), (3.19), (3.6)
and 〈· , ·〉Γs

is justified in Lemma 4.6.

Function spaces. According to various boundary conditions for the test
functions we introduce function spaces. The spaces will be denoted by sub-
script of the unknown. The equalities on the boundary are taken in sense of
traces:

Vψ =
{
ψ ∈W 2∗

1/r(G)
∣∣ ψ = 0 on Γ, ∇ψ = 0 on Γ − Γs

}
,

VΩ =
{
Ω ∈W 1

1/r(G)
∣∣ Ω = 0 on Γ − Γs

}
,

VT =
{
T ∈W 1

r (G)
∣∣ T = 0 on Γp ∪ Γc

}
,

VC =
{
C ∈W 1

r (G)
∣∣ C = 0 on Γp

}
,

Vχ =
{
χ ∈W 1

1/r(G)
∣∣ χ = 0 on Γ

}
.

On a part of the boundary the unknowns Ω, T, C have prescribed nonhomo-
geneous boundary values. Therefore for the weak formulation we introduce
auxiliary functions having prescribed boundary conditions: Let Ωb, Tb and
Cb be arbitrary functions

Ωb ∈W 1
1/r(G) , Tb ∈W 1

r (G) , Cb ∈W 1
r (G)(5.6)

chosen such that they satisfy the corresponding nonhomogeneous bound-
ary conditions prescribed for Ω, T, C by (2.25), (2.26). In Lemma 5.8 the
functions Ωb, Tb, Cb will be modified.
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Remark. The physical substance of the problem enables to choose “better”
(e. g. bounded) auxiliary functions Ωb, Tb, Cb, nevertheless the assumption
(5.6) is sufficient for proving the existence result.

Weak formulation. Let us summarize the assumptions. We assumed that
the bounded domain G of shape sketched in Fig. 2 has Lipschitz boundary.
Let the data be such that there exist auxiliary functions Ωb, Tb, Cb satisfying
(5.6). Further, we assume

(5.7) ν, νT , νC > 0 , γT , γC , αm ≥ 0 , gT , gC ∈ L2(Γs) .
The other constants αT , αC , βT , βC need not be positive.

Problem 5.1. We say that the functions ψ,Ω, T, C, χ are the weak solu-
tion to the stationary problem iff

ψ ∈ Vψ , Ω − Ωb ∈ VΩ , T − Tb ∈ VT , C − Cb ∈ VC , χ ∈ Vχ,
and the integral identities (5.1) – (5.5) hold for each test functions

ψ̃ ∈ Vψ , Ω̃ ∈ VΩ , T̃ ∈ VT , C̃ ∈ VC , χ̃ ∈ Vχ .
Vector formulation. To simplify the notation we gather all the unknowns
into a vector U of unknown functions and all the test functions into a vector
V of test functions

U = (ψ,Ω, T, C, χ) , V = (ψ̃, Ω̃, T̃ , C̃, χ̃) .

We introduce a basic space W for the vector functions U and V

(5.8) W =W 2∗
1/r(G) ×W 1

1/r(G) ×W 1
r (G) ×W 1

r (G) ×W 1
1/r(G) ,

its subspace V of functions with prescribed zero traces for the test vector V

V = Vψ × VΩ × VT × VC × Vχ,(5.9)

and a vector for nonhomogenous boundary conditions Ub = (0,Ωb, Tb, Cb, 0).

Operators and functionals. We multiply the equations (5.1) – (5.5) with
positive constants kψ, kΩ, kT , kC , kχ, respectively and sum them up. We
choose kψ = kΩ = 1 since both ψ and Ω correspond to the same physical
quantity. The constants kT , kC , kχ will be chosen such that they ensure
coercivity of the operator. They will be specified later in Lemma 5.7.

Summing the identities we obtain an identity containing 17 terms, each
linear in its test function. We associate the terms into four groups, the first
three represent defining formulae for operators A ,B,C : W → V

∗:
The first principal linear operator A contains all scalar product like terms:

(5.10)

〈A (U) ,V 〉 = ν a(ψ, ψ̃) + ν a−1(Ω, Ω̃)

+ kT νT
[
a1(T, T̃ ) + γT

∫
Γs

r T T̃ dΓ
]

+ kCνC
[
a1(C, C̃) + γC

∫
Γs

r C C̃ dΓ
]
+ kχ a−1(χ, χ̃)

+ αm

(
1
r

∂ψ

∂z
,
1
r

∂ψ̃

∂z

)
.
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The second convective nonlinear operator B consists of all trilinear forms:

(5.11)

〈B(U) ,V 〉 = −b
(
ψ, ψ̃;

1
r2
A−1(ψ)

)
+
∫
G

1
r3
∂

∂z
(Ω2) ψ̃ dG

+ b

(
ψ,Ω;

Ω̃
r2

)
+ kT b (ψ, T ; T̃ ) + kC b (ψ,C; C̃) .

The third coupling operator C contains remaining bilinear terms that couple
the equations together:

(5.12)

〈C (U) ,V 〉 = −
(
αT
∂T

∂r
+ αC

∂C

∂r
,
1
r
ψ̃

)
+ ν

〈
βT
∂T

∂r
+ βC

∂C

∂r
,
∂ψ̃

∂z

〉
Γs

− αm
(
χ

r
,
1
r

∂Ω̃
∂z

)

+ kχ
(
1
r

∂Ω
∂z
,
χ̃

r

)
.

The remaining terms form a functional F0 on V:

〈F0 ,V 〉 = kT νT
∫
Γs

r gT T̃ dΓ + kCνC
∫
Γs

r gC C̃ dΓ .(5.13)

Using the operators we can reformulate the stationary problem:

Problem 5.1a. The functions (ψ,Ω, T, C, χ) ≡ U are the weak solution
to the stationary problem iff U ∈ W such that U−Ub ∈ V and the following
operator equation on V

∗ is satisfied

A (U) + B(U) + C (U) = F0 .

Conversion to homogeneous boundary conditions. In order to get
rid of nonhomogeneous boundary conditions we replace the unknown U by
U + Ub with U ∈ V. Then the operator equation reads

A (U + Ub) + B(U + Ub) + C (U + Ub) = F0 .

We shall rewrite the equation to the form

A (U) + B(U) + C (U) + D(U) = Fs ,

where the operator D contains all new terms linear in the unknown U:

(5.14)
〈D(U) ,V 〉 = 2

∫
G

1
r3
∂

∂z
(ΩΩb)ψ̃ dG+ b

(
ψ,Ωb;

Ω̃
r2

)
+ kT b (ψ, Tb; T̃ ) + kC b (ψ,Cb; C̃)

and the functional Fs consists of all terms without the unknown U:

(5.15)
〈Fs ,V 〉 = kT νT

∫
Γs

r gT T̃ dΓ + kCνC
∫
Γs

r gC C̃ dΓ

− 〈A (Ub) ,V 〉 −
∫
G

1
r3
∂

∂z

(
Ω2
b

)
ψ̃ dG− 〈C (Ub) ,V 〉 .

Thus we obtained the final formulation of the stationary problem:
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Problem 5.1b. The function U + Ub is weak solution to the stationary
problem iff U ∈ V and the following operator equation holds on V

∗

A (U) + B(U) + C (U) + D(U) = Fs .(5.16)

Main result – Existence theorem.

Theorem 5.2. Let the assumption (5.6) and (5.7) be satisfied. Then the
stationary problem 5.1b is well defined and admits a weak solution.

Well possedness of the problem is a consequence of the Theorem 4.9. The
proof of existence of the solution is based on the following abstract existence
theorem:

Theorem 5.3. ([5]). Let V be a reflexive separable Banach space and T an
operator T : V → V ∗ which is

— coercive i. e.

lim
‖u‖→∞

〈T (u) , u 〉
‖u‖ = ∞ ,

— weakly continuous i. e. it preserves weakly continuous sequences

un ⇀ u =⇒ T (un)⇀ T (u).

Then for any b ∈ V ∗ the equation T (u) = b admits a solution.

Sketch of the proof of Theorem 5.3. We consider a sequence of finite dimen-
sional subspaces Vn of the space V and corresponding sequence of Galerkin
approximation of the problem T (u) = b from V to subspaces Vn:

Find un ∈ Vn such that 〈T (un) , v〉 = 〈b , v〉 holds for all v ∈ Vn.
Since T is coercive on V it is coercive on Vn, weak continuity on V yields

continuity on finite dimensional subspace Vn and thus the approximative
solution un exists. Moreover un is bounded by a constant independent of
Vn.

Due to reflexivity of V there is a subsequence {un′} weakly converging
to an element u ∈ V . It remains to prove that the limit u is a solution of
T (u) = b , i. e. for each v ∈ V we have 〈T (u) , v〉 = 〈b , v〉.

Since V is separable the sequence of its subspaces Vn can be chosen such
that the distance of any v ∈ V from Vn tends to zero. Let us take a v ∈ V .
There exists a sequence vn ∈ Vn such that vn → v. Now putting this vn into
the equality for un we can pass to the limit in 〈T (un′) , vn′〉 = 〈b , vn′〉.

Indeed, since T is weakly continuous un′ ⇀ u implies T (un′) ⇀ T (u).
Further T (un′) is bounded, vn → v and the result follows. For details see
[5].

at the end. The proof of Theorem 5.2 consists of verifying the assumptions
of Theorem 5.3, namely weak continuity and coercivity of the operator.

Weak continuity.

Lemma 5.4. The operator A + B + C + D is weakly continuous.
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Proof. Since weakly continuous operators form a linear space we can study
their weak continuity separately. Linear continuous operators are also weakly
continuous (see e. g. [5]), thus A , C and D are weakly continuous.

The remaining nonlinear operator B is weakly continuous, too. The proof
is based on compactness of the following imbedding W 1

r (G) ⊂ L4r(G), see
Lemma 4.1.

Let Un ⇀ U in W weakly, where Un,U are vector functions with compo-
nents (ψ,Ω, T, c, χ). Then the following strong convergences in L4r(G) and
also in L2r(G) hold:

1
r

∂ψn
∂r

→ 1
r

∂ψ

∂r
,

1
r

∂ψn
∂z

→ 1
r

∂ψ

∂z
,

1
r
Ωn → 1

r
Ω , Tn → T , Cn → C .

Expression 〈B(Un) ,V 〉 consists of trilinear forms. Each term represents
an integral of a product of three functions

∫
G fn gn hdG: the first one is the

unknown in the highest derivative — thus converging weakly, the second one
is the unknown in lower order derivative — thus converging strongly and the
third one is the stationary test function. Thus their product converges to
product of their limits and the weak continuity of operator B follows.

Coercivity. To prove the coercivity we choose a special norm on W and
the vector Ub such that the operator A is coercive and the other operators
B,C ,D are sufficiently small not to violate the coercivity.

We start with introducing a convenient norm on the product space W with
vectors U = (ψ,Ω, T, C, χ). The definition contains constants kT , kC , kχ:

(5.17)
‖U‖W =

[
ν‖ψ‖22∗,2;1/r + ν‖Ω‖21,2;1/r

+ kT νT ‖T‖21,2;r + kCνC‖C‖21,2;r + kχ‖χ‖21,2;1/r
]1/2
.

Let us remark that the introduced norm is equivalent to the standard product
norm on the space W.

Lemma 5.5. The principal linear operator A satisfies estimates:

〈A (U) ,U 〉 ≥ K0 ‖U‖2
W

for U ∈ V

〈A (U) ,V 〉 ≤ KA ‖U‖W · ‖V‖W for U,V ∈ W ,

where the constant K0 equals to minimum of the equivalent norm constants
of Lemma 4.3 and both K0,KA are independent of the choice of kT , kC , kχ.

Lemma 5.6. The convective nonlinear operator B satisfies

〈B(U) ,U 〉 = 0 for U ∈ W .

Proof. Proof According to Lemma 3.2 the first, fourth and fifth term in
〈B(U) ,U 〉 equals zero. We transform the third term using Lemma 3.2 and
carrying out differentiation ∂

∂r (Ω/r
2) we find

b

(
ψ,Ω;

Ω
r2

)
= −b

(
Ω
r2
,Ω;ψ

)
= −b

(
Ω,Ω;

ψ

r2

)
− 2

∫
G

1
r3
∂Ω
∂z

Ωψ dG .
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Again the convection form b is zero and the integral is cancelled by the
second term in 〈B(U) ,U 〉 and the equality is proved.

Lemma 5.7. The coupling linear operator C is a continuous operator sat-
isfying

〈C (U) ,U 〉 ≤ KC ‖U‖2
W

for U ∈ V .

By proper choice of constants kT , kC , kχ the positive constant KC can be
arbitrary small, particularly there exist kT , kC , kχ such that KC ≤ K0/4.

Proof. In case αm > 0 choosing kχ = αm the last two terms in 〈C (U) ,V 〉
cancel for U = V. The remaining four integrals contain product of two
unknowns ψ and T or C. They can be estimated by means of inequality
ab ≤ a2 ε/2 + b2/(2ε). Let us deal with e. g. the first integral

αT

(
∂T

∂r
,
ψ

r

)
≤ αT ‖ψ‖2∗,2;1/r · ‖T‖1,2;r ≤ ε αT

2
‖ψ‖22∗,2;1/r +

αT
2ε

‖T‖21,2;r .

We choose ε > 0 such that the constant by ‖ψ‖2 is less than K0 ν/16. Let
kTG be a constant dominating the constant standing by ‖T‖2 and let kTΓ be
an analogous constant obtained during the estimate of the second integral
containing T . Then we choose kT such that (kTG + kTΓ) = K0kT νT /8. In
the same way we choose the constant kC to dominate the integrals with C
and the desired estimate follows.

In case αm = 0 we cannot put kχ = 0 and thus the term with multiplier
kχ remains. Nevertheless it can be estimated by the same trick. Indeed,
the term is estimated by kχ ‖Ω‖ · ‖χ‖ which is less or equal to ‖Ω‖2 ε/2 +
‖χ‖2 k2χ/(2ε). With ε = K0/2 we can choose kχ such that also the constant
by ‖χ‖2 is dominated by K0/4 and the estimate is true even in this case.

Lemma 5.8. The forced convection operator D satisfies

〈D(U) ,U 〉 ≤ KD‖U‖2
W

for U ∈ V .

By proper choice of auxiliary functions Ωb, Tb, Cb (satisfying (5.6) and the
corresponding nonhomogeneous boundary conditions (2.25), (2.26)) the pos-
itive constant KD can be made arbitrary small, particularly, there exist func-
tions Ω∗

b , T
∗
b , C

∗
b such that KD = K0/4.

The proof is based on the following lemma, see e. g. [3], [18]:

Lemma 5.9. (Lemma on cut off function) For each ε > 0 there exists a
smooth function ζ ∈ C∞(G), 0 ≤ ζ ≤ 1 with ζ = 1 on Γ and satisfying
meas(supp(ζ)) ≤ ε.
Proof of Lemma 5.8. Taking a cut off function ζ of the previous lemma we
replace the functions Ωb, Tb, Cb by functions

Ω∗
b = Ωbζ , T ∗

b = Tbζ , C∗
b = Cbζ .

Let us remark that we replace Ub by U∗
b not only in D but also in the

functional Fs denoted again by Fs.
Since ζ = 1 at the boundary the new functions Ω∗

b , T
∗
b , C

∗
b coincide with

Ωb, Tb, Cb on Γ and satisfy the required boundary conditions. Since ζ is
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smooth (5.6) remains valid. Since ζ can have support of arbitrarily small
measure we get the desired estimate.

The expression 〈D(U) ,U 〉 contains one integral and three forms b. The
form with Tb is transformed by Lemma 3.2 and estimated using Lemmas 4.4,
4.5

|b(ψ, T ∗
b ;T )| = |b(ψ, T ;T ∗

b )| ≤ const · ‖ψ‖2∗,2;1/r · ‖T‖1,2;r · ‖T ∗
b ‖4;r .

Due to imbedding W 1
r (G) ⊂ L6(G) (Lemma 4.1) and Hölder inequality we

obtain

‖T ∗
b ‖4;r = ‖Tbζ‖4;r ≤ ‖Tb‖6;r · ‖ζ‖12;r ≤ const · ‖Tb‖1,2;r · ‖ζ‖12;r ,

where ‖ζ‖12;r can be made arbitrary small. Indeed, following Lemma on cut
off function we can write

‖ζ‖1212;r =
∫
G
r ζ12 dG ≤ max

G
r · meas(supp(ζ)) ≤ const · ε .

In the same way we can handle the form b with Cb.
The term b with Ωb can be estimated similarly. Using Lemmas 3.2, 4.4

and 4.5 we get∣∣∣∣∣b
(
ψ,Ω∗

b ;
Ω̃
r2

)∣∣∣∣∣ =
∣∣∣∣∣b
(
ψ,

Ω̃
r2
; Ω∗

b

)∣∣∣∣∣ ≤ const‖ψ‖2∗,2;1/r ‖Ω̃‖1,2;1/r
∥∥∥∥Ω∗

b

r

∥∥∥∥
4;r
.

Due to the imbedding Ωb/r ∈ W 1
r (G) ⊂ L6(G) we have ‖Ωbζ/r‖4;r ≤

‖Ωb/r‖6;r · ‖ζ‖12;r and we can proceed in the same way as above. Applying
the integration by parts (3.2) to obtain an expression with undifferentiated
Ω∗
b we can handle the last term and the proof is complete.

Proof of Theorem 5.2. Due to estimates in the previous lemmas all terms
are integrable i. e. the problem is well defined. Moreover all operators and
functionals are bounded and continuous.

Let us verify the assumptions of the abstract existence Theorem 5.3. The
space V is a separable reflexive Banach space since it is a product of closed
subspaces of separable reflexive Banach spaces.

Weak continuity of the operator A + B + C + D was proved in Lemma
5.4. The coercivity is a consequence of Lemmas 5.5–5.8: the coercivity of
operator A is not violated if we use the indicated choice of the constants
kT , kC , kχ and the auxiliary functions Ω∗

b , T
∗
b , C

∗
b with the cut off function ζ:

(5.18) 〈(A + B + C + D)(U) ,U 〉 ≥ 1
2
K0‖U‖2

W
for U ∈ V.

Thus the solution exists and the proof is complete.

Remark. For small data we can prove even the uniqueness of the solution.

6. Evolution problem

In this section we introduce the weak formulation of the evolution problem
with some time dependent data and prove existence of its weak solution by
means of the Rothe method.
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Evolution problem. In the evolution problem all the unknowns are time
dependent and the equations contain terms with time derivatives. The func-
tions Ωb, Tb, Cb and the data γT , γC , gT , gC and αm may be time dependent.
The boundary value problem is completed by initial conditions. The basis
for the formulation are integral identities (3.20), (3.14), (3.10), (3.8), (3.12).

Operator equation. Like in the stationary case we gather the unknowns
into a vector function

U(t) ≡ (ψ,Ω, T, c, χ)(t)

and test functions into a vector V ≡ (ψ̃, Ω̃, T̃ , C̃, χ̃). We sum up the inte-
gral identities multiplied with the same constants 1, 1, kT , kC , kχ as in the
stationary problem of Section 5. Further we split the terms into operators
A ,B,C ,D defined by (5.10) – (5.12), (5.14). Since we admit time depen-
dent data Ωb(t), Tb(t), Cb(t), γT (t), γC(t), gT (t), gC(t), αm(t) the operators
(except for B) are time dependent A (t), C (t), D(t).

The remaining evolution terms with time derivatives will be gathered into
an operator E defined by

(6.1) 〈E (U) ,V 〉 = a−1

(
ψ, ψ̃

)
+

(
Ω
r
,
Ω̃
r

)
+ kT

(
T, T̃

)
+ kC

(
C, C̃

)
.

Also the right-hand side functional is time dependent

(6.2)

〈Fe(t) ,V 〉 = kT νT
∫
Γs

r gT (t) T̃ dΓ + kC νC
∫
Γs

r gC(t) C̃ dΓ

− 〈A (Ub(t)) ,V 〉 −
∫
G

1
r3
∂

∂z

(
Ω2
b(t)

)
ψ̃ dG

− 〈C (Ub(t)) ,V 〉 − d
dt

〈E (Ub(t)) ,V 〉 .
Thus we obtain an operator equation — evolution equivalent of (5.16):

d
dtE (U(t)) + (A (t) + B + C (t) + D(t)) (U(t)) = Fe(t) .(6.3)

Vector function spaces. In Section 5 by (5.8) we introduced the basic
Sobolev space W and by (5.9) its subspace V of vectors satisfying homoge-
neous boundary conditions. Both spaces are equipped with the norm ‖ · ‖W

defined by (5.17). The dual space to V is denoted by V
∗ and equipped with

the natural norm ‖ · ‖V∗ .
We introduce another space H for time derivatives of the unknowns

H =W 1
1/r × L21/r(G) × L2r(G) × L2r(G) × L21/r(G) ,(6.4)

and its subspace H0 of vectors with the last zero component

H0 =W 1
1/r × L21/r(G) × L2r(G) × L2r(G) × {0}(6.5)

since E does not contain the component χ. Using the operator E we endow
the space H0 with a scalar product (·, ·)H0 and the corresponding norm

(6.6) (U ,V)
H0

= 〈E (U) ,V 〉 , ‖U‖H0 = (U,U)1/2
H0

≡ 〈E (U) ,U 〉1/2 .



MODELING OF THE CZOCHRALSKI FLOW 31

To cover the whole space H we complete the scalar product and the norm
with the last component

(6.7) (U ,V)
H
= 〈E (U) ,V 〉 + kχ

(
χ

r
,
χ̃

r

)
, ‖U‖H = (U ,U)1/2

H

Clearly on H0 both norms coincide. In case of vectors U = {ψ,Ω, T, C, χ}
with components Ω, χ satisfying equation (2.24) i. e. in the weak formulation

(6.8) Find χ ∈ Vχ such that a−1(χ, χ̃) = −
(
1
r

∂Ω
∂z
,
χ̃

r

)
∀ χ̃ ∈ Vχ .

We see ‖χ‖1,2;1/r ≤ const‖Ω‖1,2;1/r and thus both norms are equivalent i. e.
there exists a constant cχ > 0 such that

cχ ‖U‖H ≤ ‖U‖H0 ≤ ‖U‖H(6.9)

for all U = (ψ,Ω, T, C, χ) ∈ V satisfying (6.8).
We shall deal with the space H

∗ dual to the space H. Using Riesz rep-
resentation theorem we identify both spaces and identify the duality map
〈· ,· 〉

H
on H

∗ × H with the scalar product (· , ·)
H
on H × H. The evolution

problem will be considered in a time interval I = [0,Θ]. The vector func-
tion U(t) takes its values in the space V. The time derivative (d/dt)E (U)
is considered in generalized sense — in the sense of scalar distribution in t.
Thus the operator equation (6.3) with space test function V and time test
function ϕ is taken in the sense

(6.10)

∫
I
[ − 〈E (U(t)) ,V 〉ϕ′(t)

+ 〈(A (t) + B + C (t) + D(t))(U(t)) ,V 〉ϕ(t)] dt
=
∫
I
〈Fe(t) ,V 〉ϕ(t) dt , ∀V ∈ V ,∀ϕ ∈ C∞

0 (I) .

In order to formulate the evolution problem we need to specify time depen-
dence. We adopt standard notation for spaces of abstract functions. The
space of abstract functions with values in X Bochner integrable on I with
p−th power are denoted by Lp(I,X) and essentially bounded functions by
L∞(I,X). Further the space of continuous functions with values in X will
be denoted by C(I,X).

We shall work with a sequence of four imbedded Banach spaces:

V ⊂ H ∼= H
∗ ⊂ V

∗ .(6.11)

All spaces are reflexive separable and the imbedding V ⊂ H is compact.
Following Lions theorem (see e. g. [3], section 8.6) we have the following
result:

Lemma 6.1. Let V,H,V∗ be spaces introduced above and let us denote

W = {U ∈ L2(I,V) ∣∣ d
dtE (U) ∈ L4/3(I,V∗)} ,(6.12)

where the time derivative is taken in the sense of distribution. Then
(i) W ⊂ L2(I,H) is compact imbedding ,
(ii) W ⊂ C(I,V∗) is continuous imbedding.



32 JAN FRANCŮ

Weak formulation of the problem.

Assumptions. (i) The constitutive relation constants are positive

ν, νT , νC > 0 ,(6.13)

constants αT , αC , βT , βC may be any real numbers.
(ii) Functions describing heat conduction, radiation and oxygen evapora-

tion on Γs satisfy

(6.14) γT (t), γC(t) ≥ 0 , γT , γC ∈ L∞(I) , gT , gC ∈ L2(I, L2(Γs)) .
(iii) Forced convection data op, oc, Tp, Cp, Tc are such that there exist

auxiliary functions Ub = (0,Ωb, Tb, Cb, 0) satisfying

Ub ≡ (0,Ωb, Tb, Cb, 0) ∈ L∞(I,W) ,(6.15)
d
dtUb ≡

(
0, ddtΩb,

d
dtTb,

d
dtCb, 0

)
∈ L2(I,V∗) .(6.16)

(iv) Parameter αm(t) characterizing intensity of the applied magnetic field
satisfies

αm(t) ≥ 0 , αm ∈ L∞(I) .(6.17)

(v) The initial value vector U0 satisfies

U0 ≡ (ψ0,Ω0, T0, c0, 0) ∈ H0 .(6.18)

Since no initial condition is prescribed for χ we introduce a projection
operator

P : U = (ψ,Ω, T, C, χ) �−→ P(U) = (ψ,Ω, T, C, 0) .(6.19)

Problem 6.2. A function U+Ub : I → W is called weak solution to the
evolution problem iff

U ∈ L2(I,V) ∩ L∞(I,H) ,

P(U(0) + Ub(0)) = U0 in V
∗ ,

and

(6.20) d
dtE (U(t)) + (A (t) + B + C (t) + D(t))(U(t)) = Fe(t) ,

where the operator equation on V
∗ with time derivative is taken in the sense

of distributions (6.10).

Justification of the weak formulation. Taking into account Assump-
tions 6.1 we can justify the weak formulation:

Lemma 6.3. Let the assumptions (6.13) – (6.18) be satisfied. If U ∈
L2(I,V) then

(6.21) A (U) ∈ L2(I,V∗) , C (U) ∈ L2(I,V∗) , D(U) ∈ L2(I,V∗) ,
(6.22) Fe ∈ L2(I,V∗) .

If moreover U ∈ L∞(I,H) then we obtain

B(U) ∈ L4/3(I,V∗)(6.23)
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If further U solves the equation (6.20), then its distributional derivative sat-
isfies

d
dtE (U) ∈ L4/3(I,V∗)(6.24)

and U ∈ C(I,V∗) which gives sense to P(U(0)) + Ub(0) = U0 in V
∗.

Sketch of the proof. The properties of the operators A (t),B,C (t),D(t) are
described in lemmas of Section 5. Since the parameters γT , γC , αm are
bounded there exists a constant KA of the estimate in Lemma 5.5 valid
for a. e. t ∈ I and we can estimate the linear operator A (t)∫
I
|〈A (t)(U(t)) ,V 〉|2 dt ≤

∫
I
K2

A ‖U(t)‖2 ·‖V‖2 dt = K2
A ·‖U‖2L2(I,W) ·‖V‖2

W
.

In the same way we estimate also linear operators C (t) and D(t). In this
place we need only Ub ∈ L2(I,W). Thus (6.21) takes place.

Similar estimates are used in proof of (6.22). In terms with linear data
functions gT (t), gC(t) we use (6.14), in terms with time derivative we need
(6.16). To obtain (6.23) we need a more delicate estimate of operator B

|〈B(U) ,V 〉| ≤ K∗
B‖U‖3/2

W
· ‖U‖1/2

H0
· ‖V‖W .(6.25)

The inequality (6.25) is based on estimates of Lemma 4.8. We can write∫
I
|〈B(U(t)) ,V 〉|4/3 dt ≤ (K∗

B)4/3
∫
I
‖U(t)‖2

W
· ‖U(t)‖2/3

H0
· ‖V‖4/3

W
dt

≤ (K∗
B)4/3‖U‖2L2(I,W) · ‖U‖2/3L∞(I,H) · ‖V‖4/3

W

which yield (6.24).
Let U satisfy the operator equality (6.20). Since the other terms are

at least in L4/3(I,V∗) the sixth assertion follows. Since the derivative is
integrable in t Lemma 6.1 yields U ∈ C(I,V∗) and the initial condition
makes sense.

Main result – Existence theorem.

Theorem 6.4. Let the assumptions (6.13) – (6.18) be satisfied. Then there
exists a solution to the evolution problem 6.2.

The proof will be carried out by means of the Rothe method. First we deal
with time dependent data. We use the existence result of Section 5. Due to
the assumptions (6.13) – (6.17) the data γT (t), γC(t), αm(t) are bounded and
we can choose the constants kT , kC , kχ such that the estimates of Lemmas
5.5, 5.7 are valid with the constants K0,KA ,KC independent of t. Further,
since Ωb, Tb, Cb are bounded in time (6.15) we can replace them by Ω∗

b , T
∗
b , C

∗
b

with a time independent cut off function ζ such that the estimate of Lemma
5.8 is valid for a. e. t ∈ I. Thus for a. e. t ∈ I the operator (A +B+C +D)
is weakly continuous and coercive.

We look for the solution in the form U(t) + U∗
b(t), with U∗

b(t) = ζUb(t).
Replacing Ub(t) by U∗

b(t) in D(t) we replace it also in Fe but the functional
is again denoted by Fe(t). This modified U∗

b will be also denoted by Ub.
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The proof can be divided into several steps. Let us characterize the indi-
vidual steps:
— By semidiscretization in time we obtain a sequence of stationary prob-

lems for “time level” solutions Ui ≈ U(ti).
— We prove existence of the level solutions Ui.
— We find apriori estimates of the solutions Ui.
— We introduce two sequences of Rothe functions Un(t), Ûn(t).
— Using the apriori estimates we extract weakly converging subsequences

and prove that their limits coincide.
— The operator equation (6.20) is satisfied in sense (6.37) if we replace U

by Rothe function Ûn in the term with time derivative and by Un in
all other terms. We justify passing to the limit n→ ∞ in this equality
and find that the limit U is the solution.

Semidiscretization. Let n be a positive integer and let us divide the time
interval I = [0,Θ] into n parts by ti = i · h , i = 0, . . . , n with time step
h = Θ/n. The vector Ui will correspond to the value U(ti).

The first vector U0 is given by

U0 = (ψ0,Ω0, T0, C0, χ0) − Ub(0) ,

where (ψ0,Ω0, T0, C0, 0) ≡ U0 is from the initial condition. Since we have no
initial condition for χ we set χ0 = 0.

The other vectors Ui ∈ V (i = 1, 2, . . . , n) will be defined using the oper-
ator equation (6.20). Since some operators are time dependent we introduce
the average discretization. Let T be an abstract function T : I → X. Then
by T i, i = 1, . . . , n we denote a family of integral averages

T i =
1
h

∫ ti

ti−1

T (t) dt .(6.26)

Replacing the time derivative with time difference in the operator equation
we obtain

(6.27) 1
h

[
E (Ui − Ui−1)

]
+ A i(Ui) + B(Ui) + C i(Ui) + D i(Ui) = F i ,

where A i, C i, D i, F i are operators A (t), C (t), D(t) and functional Fe(t)
discretizated by (6.26).

Lemma 6.5. The sequence of semidiscretized problems (6.27) admits solu-
tions U1, . . . ,Un .

Proof. The existence is obtained by induction. Having the vector Ui−1 the
next vector Ui is given as a solution of the following equation(

1
hE + A i + B + C i + D i

)
(Ui) = 1

hE (Ui−1) + F i .(6.28)

The problem is a stationary equation of type studied in Section 5. Having
chosen constants kT , kC , kχ and auxiliary function Ub = (0,Ωb, Tb, Cb, 0) such
that (5.18) holds for a. e. t ∈ I we obtain the same estimate for the integral
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averages defined by (6.26). Thus the left hand side operator is coercive and
weakly continuous and existence of the sequence U1, . . . ,Un follows.

Apriori estimates.

Lemma 6.6. The sequence of vectors Ui , i = 1, 2, . . . , n satisfies the fol-
lowing estimates with a constants C1,C2 independent of n

max
k∈{1,...,n}

∥∥∥Uk
∥∥∥

H

≤ C1 ,(6.29)

n∑
i=1

∥∥∥Ui − Ui−1
∥∥∥2

H

≤ C1 ,(6.30)

h
n∑
i=1

∥∥∥Ui
∥∥∥2

W

≤ C2 .(6.31)

Proof. Let us apply equation (6.26) to the test function Ui and use (6.6)

(6.32) 1
h

(
Ui − Ui−1 ,Ui

)
H0

+
〈
(A i + B + C i + D i)(Ui) ,Ui

〉
=
〈
F i ,Ui

〉
Using inequality ab ≤ a2/(4ε) + ε b2 the right hand side can be estimated∣∣∣〈F i ,Ui

〉∣∣∣ ≤ ∥∥∥F i
∥∥∥

V∗ ·
∥∥∥Ui

∥∥∥
W

≤ 1
4ε

‖F i‖2
V∗ + ε‖Ui‖2

W
.

We multiply inequality (6.32) by 2h. We estimate the second term of the
left hand side using (5.18); the constant K0/2 is diminished by ε from the
estimate of F i in the right hand side. We estimate the first term in the left
hand side using equality 2(‖a‖2 − (a, b)) = ‖a‖2 − ‖b‖2 + ‖a− b‖2 with the
scalar product on the space H0 defined by (6.6). Thus we obtain

‖Ui‖2
H0

− ‖Ui−1‖2
H0

+ ‖Ui − Ui−1‖2
H0

+ 2h(K0/2 − ε)‖Ui‖2
W

≤ h

2ε
‖F i‖2

V∗ .

Now the result follows. Summing the inequalities for i = 1 up to k we
obtain the first inequality (6.29); summing the inequalities up to n we obtain
(6.30), (6.31) since the right hand side is bounded by a constant independent
of n

h
k∑
i=1

‖F i‖2
V∗ ≤ h

n∑
i=1

‖F i‖2
V∗ ≤

∫
I
‖Fe(t)‖2V∗ dt = ‖Fe‖2L2(I,V∗) .

The components of vectors Ui satisfy (6.8) thus in the estimates we can
replace the norm ‖ · ‖H0 by cχ ‖ · ‖H, see (6.9).

Lemma 6.7. The sequence of vectors Ui , i = 1, 2, . . . , n satisfies the fol-
lowing estimate with constant C3 independent of n

h
n∑
i=1

∥∥∥ 1h E (Ui − Ui−1)
∥∥∥ 4

3

V∗ ≤ C3.(6.33)
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Proof. We express (E (Ui − Ui−1))/h from the equation (6.27). Using esti-
mates of Lemmas 5.5 – 5.8 and inequality (6.25) we obtain∥∥∥ 1hE (Ui − Ui−1)

∥∥∥
V∗

≤ (KA +KC +KD) ‖Ui‖W +K∗
B‖Ui‖3/2

W
‖Ui‖1/2

H
+ ‖F i‖V∗ .

We put both sides to power 4/3, use inequality (a+ b+ c)p ≤ cp(ap+ bp+ cp)
with p = 4/3. Multiplying the equations by h, summing them from 1 to
n and using estimates (6.29), (6.30) of the preceding lemma we obtain the
desired estimate.

Rothe functions and their properties. We shall pass from semidis-
cretized problem to time dependent problem. For each n we introduce two
Rothe functions: a “stair function” i. e. piecewise constant function Un(t)

Un(t) =

{
U0 for t = 0 ,
Ui for t ∈ (ti−1, ti], i = 1, 2, . . . , n

(6.34)

and a “polygonal” i. e. continuous piecewise linear function Ûn(t)

(6.35) Ûn(t) = Ui − ti − t
h

(
Ui − Ui−1

)
for t ∈ [ti−1, ti] , i = 1, 2, . . . , n .

Since on (0, t1) the function Ûn has values that need not be in V we introduce
a modified Rothe polygonal function Û

∗
n(t) setting Û

∗
n(t) = U1 for t ∈ [0, h].

The Rothe functions pass through values Ui i. e. we have Un(ti) = Ûn(ti) =
Û

∗
n(ti) = Ui for i = 1, . . . , n .
For a function T : I → X we defined the family T 1, . . . ,T n by (6.26).

Now using T i we introduce a stair approximation of the function T setting

T n(t) = T i for t ∈ (ti−1, ti] , i = 1, 2, . . . , n .(6.36)

Since 1
h(U

i−Ui−1) = d
dtÛ(t) for t ∈ (ti−1, ti) we observe that these functions

satisfy the operator equation

(6.37) d
dtE (Ûn) + A n(Un) + B(Un) + C n(Un) + Dn(Un) = Fn ∀t �= ti ,

where A n(t),C n(t),Dn(t),Fn(t) are stair approximations of A i,C i,D i,F i

defined by (6.36).
The estimates for {Ui} of Lemmas 6.6, 6.7 yield similar estimates for the

Rothe functions. Since Ûn(t) need not be in V for t < h the corresponding
estimate is valid on Ih = (h,Θ) only:
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Lemma 6.8. The Rothe functions Un(t) and Ûn(t) satisfy the following es-
timates with constants independent of n:

(6.38)
∥∥∥Un

∥∥∥
L∞(I,H)

≤ C1 ,
∥∥∥Ûn

∥∥∥
C(I,H)

≤ C1 ,

(6.39)
∥∥∥Un

∥∥∥
L2(I,V)

≤ C2 ,
∥∥∥Ûn

∥∥∥
L2(Ih,V)

≤ C2 ,
∥∥∥Û∗

n

∥∥∥
L2(I,V)

≤ C2 ,

(6.40)
∥∥∥Un − Ûn

∥∥∥2
L2(I,H)

≤ h
3
C1 ,

(6.41)
∥∥∥ d
dtE (Ûn)

∥∥∥
L4/3(I,V∗)

≤ C3/4
3 ,

where Ih = (h,Θ).

Compactness and limit procedure.

Lemma 6.9. There exists a function U : I → V , U ∈ W and

U ∈ L2(I,V) ∩ L∞(I,H) , d
dtE (U) ∈ L4/3(I,V∗)

and a subsequence n′ such that (ε > 0)

(6.42) Un′ , Ûn′ → U weak-: in L∞(I,H) and strongly in L2(I,H) ,

(6.43) Un′ , Û
∗
n′ ⇀ U weakly in L2(I,V) , Ûn′ ⇀ U weakly in L2(Iε,V) ,

(6.44) d
dtE (Ûn′)⇀ d

dtE (U) weakly in L4/3(I,V∗) ,

Moreover the limit U satisfies the initial condition P(U + Ub)(0) = U0 .

Sketch of the proof. We shall use the following properties of reflexive spaces
X:
— a sequence bounded in Lp(I,X) (1 < p < ∞) contains a weakly con-

verging subsequence,
— a sequence bounded in L∞(I,X) contains a weak-: converging subse-

quence.
The estimates of Lemma 6.8 ensure existence of a subsequence n′ such that

— Un′ , Ûn′ converges weak-: in L∞(I,H),
— Un′ , Û

∗
n′ converge weakly in L2(I,V) and Ûn′ converges weakly in

L2(Iε,V) for any ε > 0,
— d

dtE (Ûn′) converges weakly in L4/3(I,V∗).

Compactness of Lemma 6.1 yields strong convergence Un′ , Ûn′ → U in
L2(I,H). Due to (6.40) the limits of Un′ and Ûn′ coincide, let us denote
the limit by U. Since differentiation is a linear operator we can prove
that the limit of derivatives coincide with derivative of the limit function
lim d

dtE (Ûn′) = d
dtE (U). Finally, since Ûn ∈ C(I,V∗) and all Ûn satisfy

the initial condition then also their limit U in L∞(I,V∗) is continuous and
satisfies the initial condition.

Lemma 6.10. Passing to the limit in (6.37) we obtain (6.10) .
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Sketch of the proof. We have to prove convergence of terms of the following
form:∫

I

〈
T n′(t)(Un′(t)) − T (t)(U(t) ,V

〉
ϕ(t) dt→ 0 ∀V ∈ V , ϕ ∈ C∞(I) .

In the proof we shall use the following property: Let T ∈ Lp(I,X) and T n

be its stair (piecewise constant) approximation defined by (6.26) and (6.36).
Then
(i) T n → T strongly in Lp(I,X) if p <∞ ,
(ii) T n → T weak-: in Lp(I,X) if p = ∞ .
Let us sketch the proof. Any continuous function F on a compact interval

I is uniformly continuous with continuity modulus δ(ε) which yields the
result for continuous functions. Indeed, ‖T n(t)−T (t)‖ = ‖T (ξ)−T (t)‖ ≤
δ(Θ/n) with |ξ − t| ≤ h = Θ/n. Further continuous functions are dense in
Lp-space (p < ∞) which yields (i). For p = ∞ the density in not true and
we obtain only weak-: convergence (ii).

Let us return to proof of Lemma 6.10. For each n the equality (6.37) is
equivalent to

(6.45)

∫
I

[
−
〈
E (Ûn(t)) ,V

〉
ϕ′(t)

+
〈
(A n + B + C n + Dn)(Un(t)) ,V

〉
ϕ(t)

]
dt

=
∫
I

〈
Fn(t) ,V

〉
ϕ(t) dt , ∀V ∈ V ,∀ϕ ∈ C∞

0 (I) .

Taking the extracted subsequence n′ and using convergences of Lemma 6.9
we examine all terms of the equality by passing n′ → ∞. We see that each
term represents an integral of product of one or two sequences (and constant
functions respectively) but at most one sequence converges weakly or weak-
:. Thus we can pass to the limit. By this argument we can handle all terms
of the equality and the lemma is proved.

Summary of the proof of Theorem 6.4. We constructed sequences of Rothe
functions Ûn,Un that satisfy the equation (6.37) and initial condition. We
extracted a subsequence n′ such that Rothe functions converge to a function
U (Lemma 6.9). Lemma 6.10 justify passing to the limit in (6.37). Thus
U+Ub is a solution to the evolution problem and the proof is complete.

Remarks. (i) We did not admit all data to be time dependent. With re-
spect to physical substance of the problem we supposed the constitutive
relation constants are time independent. Nevertheless the proof can be car-
ried out even in the case of bounded time dependent αT , αC and bounded
continuously time dependent βT , βC .

(ii) Further we assumed bounded data Ub in order to find time inde-
pendent cut off function ζ. Generalization to unbounded Ub would bring
time dependent cut off function and other technical difficulties. Neverthe-
less to obtain Fe ∈ L2(I,V∗) we need at least Ωb ∈ L4(I,W 1

1/r(G)). With
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some technical difficulties the proof can be extended to the case of e. g.
Fe ∈ L4/3(I,V∗).

(iii) Under some additional assumptions the uniqueness of the weak so-
lution can be proved using the method of proof of Theorem 8.7.76 in [3].
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