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Given a dense set of points lying on or near an embedded submanifold M0 ⊂ Rn of Eu-
clidean space, the manifold fitting problem is to find an embedding F : M → Rn that ap-
proximates M0 in the sense of least squares. When the dataset is modeled by a probability
distribution, the fitting problem reduces to that of finding an embedding that minimizes
Ed[F], the expected square of the distance from a point in Rn to F(M). It is shown that
this approach to the fitting problem is guaranteed to fail because the functional Ed has no
local minima. This problem is addressed by adding a small multiple k of the harmonic
energy functional to the expected square of the distance. Techniques from the calculus of
variations are then used to study this modified functional.

1. Introduction

In this paper we are concerned with the following problem. Let M0 be the image of
a smooth embedding F0 : M → Rn, where M is a smooth, compact manifold without
boundary, and let Y = {y1, . . . ,yq} ⊂ Rn be a collection of points that we assume to be
contained in a smooth tubular neighborhood Ω of M0. The manifold fitting problem is
to find an embedding F : M →Rn such that F(M) is a good approximation to M0 in the
sense of least squares.

This situation occurs in a variety of contexts such as medical imaging [2, 14, 16, 17,
18], geography [1], computer graphics and vision [5, 6, 9, 10, 15, 19, 22], and mechan-
ical engineering [12, 13, 20]. In this setting, a scanning device is used to collect a set of
points on or near the surface of an object, and the goal is to reconstruct the surface of
the object from that point set. Viewing the surface as an embedding of a 2-dimensional
manifold into R3 reduces the reconstruction problem to a special case of the manifold
fitting problem.

Our approach to the manifold fitting problem is to replace the dataset Y by a smooth
probability density p, which we assume has support in Ω. We measure the goodness of fit
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of the embedding F by the expected square of the distance to F(M):

Ed[F]= 1
2

∫
Rn

∣∣x−F
(
λF(x)

)∣∣2
p(x)dx, (1.1)

where the projection index λF : Rn →M is the map that assigns to each point x ∈ Rn a
point in M such that F(λF(x)) realizes the distance from x to F(M). This reduces the
fitting problem to the problem of finding local minima of this functional.

The critical points of Ed are called principal embeddings. The motivation for this name
comes from the work by Hastie and Stuetzle [7] where the term of principal curve was
coined to formalize the notion of “a curve passing through the middle of a dataset.” Prin-
cipal curves generalize the concept of linear principal components of a probability distri-
bution, that is, straight lines that fit the distribution by least squares.

Duchamp and Stuetzle [4] showed that every critical curve of Ed is a saddle point, and
in Section 3 we generalize this result to arbitrary manifolds. Therefore, any method which
seeks to minimize Ed is guaranteed to fail.

We address this problem by adding a “regularizing term” to Ed. There are a number of
possible terms, but a particularly simple one is the harmonic energy of the embedding F,
which is defined by the expression

Eh[F]= 1
2

∫
M
gi j
〈
∂F

∂xi
,
∂F

∂x j

�
dvolg , (1.2)

where g is a Riemannian metric on M and 〈·,·〉 denotes the Euclidean metric on Rn.
Thus, we set

E[F]= Ed[F] + kEh[F], (1.3)

where k > 0 is a suitably chosen parameter, which we call the spring constant, and we seek
embeddings that are local minima of E. In Section 4 we establish sufficient conditions for
the existence of a local minimum of this functional. Roughly speaking, the functional E
will have a local minimum whenever the spring constant k is sufficiently big.

Our assumption that the support of p lies in a tubular neighborhood of M0 permits
to limit the class of embeddings F : M→Rn to the class of Ω-regular embeddings. We say
that x ∈ Rn is a point of ambiguity if its distance to F(M) is realized by more than one
point in F(M).

Definition 1.1. Let Ω ⊂ Rn be a closed, smoothly bounded region. An embedding F is
Ω-regular or regular with respect to Ω if it satisfies the following conditions:

(i) F(M) is contained in the interior of Ω,
(ii) Ω does not contain any point of ambiguity of F(M),

(iii) the projection index λF : Ω→M is a smooth (n−m)-disk bundle, and its restric-
tion to the boundary λF : ∂Ω→M is a smooth (n−m− 1)-sphere bundle,
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(iv) for all x ∈M, the disk λ−1
F (x) and ∂Ω have transverse intersection; that is, for all

x ∈ λ−1
F (x)∩Ω,

Txλ
−1
F (x) +Tx∂Ω= TxR

n. (1.4)

We denote the class of Ω-regular embeddings by �Ω. We will henceforth assume that
Ω is a fixed region that supports at least one Ω-regular embedding, and we consider only
probability densities whose support is contained in Ω.

The paper is organized as follows. In Section 2 we give a jet bundle formulation to the
theory of Ω-regular embeddings. We believe that this is the natural framework to study
the variational properties of the functional E. We start with some background material
that will be needed in the following sections. We discuss isometric embeddings into Rn

and normal coordinates of an embedded manifold F : M↩Rn. Also, the concept of trans-
verse statistics of a probability density is introduced.

In Section 3 we show that the distance functional does not have local minima within
the class of Ω-regular embeddings. This generalizes the results of Duchamp and Stuetzle
on critical curves [4].

In Section 4 we lay the ground for the study of the general manifold fitting problem,
paying particular attention to the variational properties of E on the class of Ω-regular
embeddings. We characterize the critical points of E in terms of harmonic maps and the
extrinsic geometry of the embedded manifold F(M). We also investigate conditions under
which a critical embedding is a local minimum.

We conclude this paper with Section 5 where we summarize our results and explore
topics of future research.

Notation 1.2. Einstein’s summation convention is enforced throughout this paper. We use
the first letters of the alphabet a, b, c, to denote indices varying between m+ 1 and n; the
indices i, j, k vary between 1 and m. Finally, Greek letters vary between 1 and n.

2. The geometry of regular embeddings

In this section we give a jet bundle formulation to the theory of Ω-regular embeddings.
We believe that this is the natural geometrical framework for the study of the varia-
tional properties of the functional E. We start with some background material that will be
needed in the following sections, such as isometric embeddings into Rn and normal co-
ordinates of an embedded manifold F : M↩Rn. We conclude this section with the notion
of transverse statistics of a probability density.

2.1. Embeddings into Rn. In the forthcoming sections we deal with embedded mani-
folds in Rn. In this section we introduce the basic definitions and notation we will use
throughout.

Let F : M→Rn be an Ω-regular embedding. We denote by NF(x) the orthogonal com-
plement of F∗(TxM) in TF(x)R

n, and define the bundle NF whose fiber at x ∈M is NF(x).
We call NF the normal bundle of F.
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By parallel translation with respect to the Euclidean metric, we may identify the tan-
gent space TF(x)R

n with Rn itself. This gives rise to a bundle map

NF M×Rn

M M

(2.1)

Recall that the projection index λF : Rn →M is the map that assigns to each point x ∈
Rn a point λF(x) ∈M such that F(λF(x)) realizes the distance between x and F(M). We
consider the region Ω as an (n−m)-disk bundle with fiber at x ∈M given by ΩF(x) =
λ−1
F (x). Since Ω does not contain any point of ambiguity of F(M), we can identify Ω with

a subset of NF via the commutative diagram

Ω

λF

i
NF

π

M M

(2.2)

where i is the map defined by

i : Ω� x 	−→ (
λF(x),x− λF(x)

)∈NF ⊂M×R
n, (2.3)

and π : NF →M is the canonical projection.
Let h be the pullback along F of the Euclidean metric on Rn. We want to distinguish

it from the background metric g on M; that is, these are two different metrics defined
on M.

Recall the definition of the second fundamental form B : TM ×TM → NF , which in
local coordinates is given by

〈
B
(

∂

∂xi
,
∂

∂x j

)
,v
�
=
〈

∂2F

∂xi∂x j ,v
�

, v ∈NF. (2.4)

We consider the linear selfadjoint operator S : NF ×TM→ TM defined by

〈
S(v,X),Y

〉= 〈B(X ,Y),v
〉

, X ,Y ∈ TM, v ∈NF. (2.5)

This is called the shape operator of F. For convenience, we denote S(v,X) by SvX . Let ∇
denote the covariant differentiation operator in Rn. It is not hard to see from the defini-
tion of second fundamental form B that Sv satisfies

〈
SvX ,Y

〉=−〈∇Xv,Y
〉
. (2.6)

Remark 2.1. In local coordinates,

(
Sv
) j
i = hjk

〈
∂2F

∂xk∂xi
,v
�
. (2.7)
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Example 2.2 (curves in Rn). Let M = S1. Denote by T∈ C∞(S1,Rn) the unit tangent vec-
tor field along F(S1) and by dT/ds∈ C∞(S1,Rn) its derivative with respect to arc length.
Then, the shape operator Sv in this case is a scalar multiplication by 〈dT/ds,v〉. To check
this, let X = f T, Y = gT∈ C∞(S1,Rn), and compute as follows:〈

SvX ,Y
〉= 〈∇XY ,v

〉= 〈∇ f T(gT),v
〉= 〈 f∇T(gT),v

〉
= 〈 f g∇TT,v

〉
+
〈
f T(g)T,v

〉
= f g

〈∇TT,v
〉= 〈〈∇TT,v

〉
X ,Y

〉
,

(2.8)

which implies SvX = 〈dT/ds,v〉X .

We close this section with the definition of normal connection ∇⊥ : TM ⊗NF → NF ,
given by

(X ,v) 	−→∇⊥Xv ≡∇Xv+ SvX. (2.9)

It is easy to verify that∇⊥ has all of the usual properties of a connection, that is, it is linear
in X , additive in v, and satisfies the Leibniz rule,

∇⊥X f v = f∇⊥Xv+X( f )v, f ∈ C∞(M). (2.10)

2.2. Normal coordinates of an embedded manifold M. In this subsection we will be
concerned with the geometry of tubular neighborhoods of a submanifold M of Euclidean
space. In this setting, the most convenient coordinates to use in computations are normal
coordinates.

Definition 2.3. The normal coordinate map of F is the map νF : NF → Rn defined by the
formula

νF(x,v)= F(x) + v. (2.11)

This is a diffeomorphism of a neighborhood of the zero section of NF .
For future reference, we calculate the Jacobian determinant of the normal coordinate

map. Let {eα} be a locally defined adapted frame relative to F(M) in Rn, and let {θα}
denote the corresponding dual basis. We define a system of local coordinates (x,v) in NF

by writing v ∈NF(x) as v = vaea(x). Consider the local frame { fβ} ⊂ TNF defined by

fi = ei, 1≤ i≤m, fa = ∂

∂va
, m+ 1≤ a≤ n. (2.12)

We compute the matrix representation of the differential νF∗ relative to the frames {eα},
{ fβ}; that is, we compute the numbers θα(dνF( fβ)), 1≤ α,β ≤ n, where dνF : TNF → Rn

denotes the derivative of νF . For 1≤ i, j ≤m, we get

θi
(
dνF

(
f j
))= θi

(
dνF

(
ej
))= θi

(
ej(F + v)

)
. (2.13)

Since ej(F)= F∗ej is identified with ej and since ej(v)=−Svej +∇⊥ej v, we get

θi
(
dνF

(
f j
))= θi

(
ej − Svej +∇⊥ej v

)
. (2.14)
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Since θi(∇⊥ej )= 0, we get

θi
(
dνF

(
f j
))= θi

((
I − Sv

)
ej
)
. (2.15)

We now compute θi(dνF( fa)), 1≤ i≤m, m+ 1≤ a≤ n. We get

θi
(
dνF

(
fa
))= θi

(
∂

∂va
(F + v)

)
. (2.16)

Since v = vbeb,

θi
(
dνF

(
fa
))= θi

(
ea
)= 0. (2.17)

Finally, we compute θa(dνF( fb)) for m+ 1≤ a,b ≤ n:

θa
(
dνF

(
fb
))= θa

(
∂

∂vb
(F + v)

)
. (2.18)

After computing the derivative and simplifying, we get

θa
(
dνF

(
fb
))= δab . (2.19)

Using (2.15), (2.17), and (2.19), we see that the matrix representation of νF∗ relative to
the frames {eα}, { fβ} is of the form

[
νF∗

]=
(
θi
((
I − Sv

)
ej
)

θa
(
dνF

(
ej
))

0 δab

)
, (2.20)

whose determinant is computed as det(I − Sv). Therefore, the Cartesian volume element
dx in Rn becomes det(I − Sv)dvdvolh, where dv denotes the induced Euclidean volume
element on NF .

Example 2.4 (curves in Rn). In this case, we have det(I − Sv)= 1−〈dT/ds,v〉. This follows
from the computation in Example 2.2.

2.3. Regular jets. In our approach to the manifold fitting problem, we compute the ex-
pected value of the distance to F(M) by making a change of variables to normal coordi-
nates. This involves an integration over M and an integration over the transverse disks
to F(M). When formal calculations are performed, it is natural to use the language of
jets. In this way, the study of the regularity properties of Ed reduces to the analysis of
differentiable functions defined on a suitably chosen jet bundle.

Let C∞(M,Rn) denote the space of smooth maps from M into Rn. We consider the
pth jet space J p(M,Rn). Recall that it consists of the equivalent classes j

p
x F of maps

F ∈ C∞(M,Rn) with the same Taylor series expansion up to order p at x ∈M. A local
coordinate system of J p(M,Rn) is defined as follows. Let (xi, yα) be a local coordinate
system of M×Rn. Define the local coordinates (xi, yα, yαi , . . . , yαi1···ip) in J p(M,Rn) by

yα
(
j
p
x F
)= yα

(
F(x)

)
, yαi

(
j
p
x F
)= ∂Fα

∂xi

∣∣∣∣
x
, . . . , yαi1···ip

(
j
p
x F
)= ∂pFα

∂xi1 ···∂xip
∣∣∣∣
x
. (2.21)
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This is called the induced coordinate system on J p(M,Rn). We are concerned with the open
subset J

p
m(M,Rn) of J p(M,Rn) of those p-jets j

p
x F such that the linear map F∗ : TxM→Rn

has rank m. We define the notion of an Ω-regular p-jet.
For F ∈�Ω an Ω-regular embedding, the distance functional Ed[F] is defined by

Ed[F]= 1
2

∫
Ω

∣∣x−F
(
λF(x)

)∣∣2
p(x)dx. (2.22)

Observe that the vector x− F(λF(x)) is normal to F(M) at F(λF(x)). Denote by ΩF(x)

the connected component of Ω∩ (F(x) +NF(x)) containing F(x). By Fubini’s theorem,
we can compute Ed[F] by integrating over the normal disks ΩF(x), and then integrating
over M. This gives

Ed[F]= 1
2

∫
M

∫
ΩF(x)

|v|2p(F + v)det
(
I − Sv

)
dvdvolh. (2.23)

Written in this way, the computation of Ed[F] implies the knowledge of the tensor
Sv : TxM→ TxM at every point x ∈M and every direction v ∈ΩF(x). This is a pointwise-
defined quantity which can be written in local coordinates as a function of up to second-
order derivatives of F (Remark 2.1). We can consider Sv as the value of a tensor-valued
function locally defined near the two-jet j2xF ∈ J2

m(M,Rn).
Recall that for j

p
x F ∈ J

p
m(M,Rn) the linear map F∗ : TxM→Rn has rank m. Let h( j

p
x F)

denote the induced scalar product on TxM by j
p
x F defined as

(
h
(
j
p
x F
))

(X ,Y)= 〈F∗X ,F∗Y
〉∣∣

x, X ,Y ∈ TxM. (2.24)

In local coordinates, we write hi j = 〈∂F/∂xi|x,∂F/∂x j|x〉 and let hi j denote the (i, j)-entry

of the inverse matrix of h( j
p
x F). Henceforth, we restrict ourselves to the case p ≥ 2. For

v ∈ NF(x), define the real numbers (Sv)
j
i = hjk〈∂2F/∂xk∂xi|x,v〉 and express any vector

X ∈ TxM in terms of the local basis {∂F/∂x1|x, . . . ,∂F/∂xm|x}, as X = Xi∂/∂xi|x. We define
the linear map Sv(( j

p
x F)) : TxM→ TxM by

(
Sv
(
j
p
x F
))
X = (Sv) ji Xi ∂F

∂x j

∣∣∣∣
x
. (2.25)

This is called the formal shape operator of j
p
x F along v ∈NF(x). It is a direct computation

to show that this definition is coordinate independent. It follows from Remark 2.1 that
at each x ∈M, the local expression for the shape operator of F coincides with its for-
mal analog Sv( j

p
x F). In particular, if we let I : TxM → TxM denote the identity map, the

determinant det(I − Sv( j
p
x F)) is an invariantly defined smooth function on J

p
m(M,Rn).

We are now prepared to state our formal definition of Ω-regular jets.
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Definition 2.5. j
p
x F ∈ J

p
m(M,Rn) is Ω-regular if it satisfies the following conditions:

(i) F(x) is in the interior of Ω,
(ii) for all v ∈Rn with F(x) + v ∈ΩF(x), det(I − Sv( j

p
x F)) > 0,

(iii) ΩF(x) is diffeomorphic to an (n−m)-disk,
(iv) ∂Ω and ΩF(x) intersect transversally.

The subset of Ω-regular p-jets is denoted by J
p
Ω. This is an open submanifold of J

p
m(M,

Rn) since the conditions (i) to (iv) above are open.

2.4. Transverse statistics. In this section we define various statistical quantities associ-
ated with a probability density p and an Ω-regular embedding F. For x ∈M, the restric-
tion of p to ΩF(x) is called the transverse density induced by p. We can do multivariate
analysis on ΩF(x) and talk about the mean and the covariance matrix of the transverse
probability density. These concepts arise naturally as we use a system of normal coordi-
nates of F in computations.

We assume that for almost every x ∈M the set supp(p)∩ΩF(x) has positive measure
as a subset of the disk ΩF(x).

Definition 2.6. The kth transverse moment is the map Λk : M →Hom(Rn×···×Rn,R)
defined by

Λ0(x)=
∫
ΩF(x)

p
(
F(x) + v

)
dv, k = 0,

Λk
(
X1, . . . ,Xk

)= ∫
ΩF(x)

〈
X1,v

〉···〈Xk,v
〉
p
(
F(x) + v

)
dv, k > 0,

(2.26)

for X1, . . . ,Xk ∈Rn.

Definition 2.7. The mean of the transverse density is the map

µ⊥ : M −→Hom
(
R

n,R
)

(2.27)

defined by

µ⊥ = Λ1

Λ0
. (2.28)

The covariance tensor of the transverse density is the symmetric map σ2⊥ : M →
Hom(Rn×Rn,R) defined by

σ2
⊥ =

Λ2

Λ0
−µ⊥ ⊗µ⊥. (2.29)

Example 2.8 (radial distributions relative to a manifold M). Let Ω be a tubular neigh-
borhood of a manifold M with constant radius, and let p be a probability density on Ω
depending only on the distance to M. We call p a radial density relative to M. In this case,
the transverse mean µ⊥ vanishes identically and the transverse covariance tensor σ2⊥ is
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a constant multiple of the Euclidean scalar product restricted to the disks ΩF(x), x ∈M.
To see this, write v ∈ΩF(x) in terms of the orthonormal frame {e1+m, . . . ,en} ⊂ NF(x) as
v = vaea. Since Ω is a radially symmetric tubular neighborhood of M and p depends only
on the distance to M, all of the transverse integrals

∫
ΩF(x)

p
(
F(x) + v

)
dv,

∫
ΩF(x)

vap
(
F(x) + v

)
dv,

∫
ΩF(x)

vavb p
(
F(x) + v

)
dv (2.30)

are constant. In particular, those whose integrand depends on odd powers of va vanish.
To check this, change to polar coordinates v = rθ, r ≥ 0, θ ∈ Sn−2 to compute them. Since
p(F(x) + v) is a function of r only, integration over Sn−2 vanishes because the values of
va taken on one hemisphere are exactly canceled by the values taken on the antipodal
hemisphere. Therefore, the transverse mean µ⊥ vanishes as well as the off-diagonal en-
tries of the matrix representation of σ2⊥ with respect to the basis {e1+m, . . . ,en}. Since ΩF(x)

is homothetic to the unit disk Dn−m and p depends only on |v|, all of the diagonal en-
tries (σ2⊥)aa are the same. Consequently σ2⊥ is a constant multiple of the Euclidean scalar
product restricted to ΩF(x).

3. Extremal properties of Ed

Recall that for an m-dimensional compact orientable Riemannian manifold M without
boundary and an Ω-regular embedding F : M→Rn, the distance functional is one half of
the expected value of the square of distance to F(M),

Ed[F]= 1
2

∫
Ω

∣∣x−F
(
λF(x)

)∣∣2
p(x)dx, (3.1)

where λF is the projection index and p is the probability density. As we mentioned in the
introduction, this functional does not have local minima within the class of smooth Ω-
regular embeddings. In this section we prove this fact by studying the extremal properties
of Ed.

3.1. Function spaces. Up to now the functional Ed has been defined for smooth embed-
dings. To study its extremal properties we consider it as a functional defined on a Banach
space. Since these properties can be formulated in terms of differential equations, it is
convenient to consider Sobolev spaces for the domain of Ed.

For an m-dimensional compact Riemannian manifold M without a boundary, we de-
fine the Sobolev spaces Γk(M,Rn), k = 0,1, . . . , as follows. Let {Ui}i∈I be a finite cover of
M by local charts diffeomorphic to open bounded subsets of Rm. Let {ϕi} be a partition
of unity subordinate to {Ui}. For F ∈ C∞(M,Rn), we let

∥∥ϕiF
∥∥2
k =

∑
|α|≤k

∫
Ui

∣∣Dα
(
ϕiF

)∣∣2
dx (3.2)
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be the square of the k-Sobolev norm of the vector-valued function ϕiF : Ui → Rn. Then
Γk(M,Rn) is the completion of C∞(M,Rn) with respect to the norm

‖F‖k =
(∑

i∈I

∥∥ϕiF
∥∥2
k

)1/2

. (3.3)

For k ≥ 0, let Ck(M,Rn) be the Banach space of Ck functions with the norm of the
supreme. Sobolev’s lemma establishes that the inclusion Γk+k0 (M,Rn)↩ Ck(M,Rn) is
continuous, where k0 = 1 + [(m− 1)/2] and [(m− 1)/2] denotes the least integer greater
than or equal to (m− 1)/2.

We extend the class of Ω-regular embeddings �Ω to include those embeddings in
Γk(M,Rn) satisfying conditions (i) through (iv) of Definition 1.1. We denote this sub-
set of Γk(M,Rn) by �k

Ω. For k ≥ 2 + k0, this is an open subset of Γk(M,Rn). This fol-
lows from Sobolev’s lemma and from the fact that the subset of Ω-regular two-jets J2

Ω is
an open submanifold of J2(M,Rn); that is, any embedding F ∈ �k

Ω has a neighborhood
U ⊂ Γk(M,Rn) such that for all F̃ ∈ U , the difference between the Taylor series expan-
sions up two second order of F and F̃ is so small that F̃ also satisfies conditions (i) to (iv)
of Definition 1.1.

Lemma 3.1. Let l and q be positive integers and let k > m. Then the map C : �k+2
Ω ×

Ck+l+1(J2
Ω,Rq)→ Γk(M,Rq) defined by

(
C(F,g)

)
(x)= g

(
j2xF

)
(3.4)

is a well-defined Cl map.

Proof. We define some quantities first. For V ∈ C∞(M,Rn), let δ2V : M → TJ2
Ω be the

map defined in local coordinates by the formula

δ2V =
2∑

r=1

∂rVα

∂xi1 ···∂xir
∂

∂yαi1···ir
. (3.5)

For j = 0,1, . . . , l, let

d( j)g : J2
Ω −→Hom

( j times︷ ︸︸ ︷
TJ2

Ω×···×TJ2
Ω,Rq

)
(3.6)

be the jth total derivative of g. We define the map

C( j) : �Ω×Ck+l+1(J2
Ω,Rq

)−→Hom
( j times︷ ︸︸ ︷
C∞

(
M,Rn

)×···×C∞
(
M,Rn

)
,Ck+l+1− j

(
M,Rq

))
(3.7)

given by

(
C( j)(F,g)

)(
V1, . . . ,Vj

)
x =

(
d( j)g

(
j2xF

))(
δ2V1, . . . ,δ2Vj

)
, Vi ∈ C∞

(
M,Rn

)
. (3.8)
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We denote by B(Γk+2(M,Rn) × ··· × Γk+2(M,Rn),Γk(M,Rq)) the Banach space of
bounded operators between Γk+2(M,Rn)×···×Γk+2(M,Rn) and Γk(M,Rq).

The proof of Lemma 3.1 consists of the following steps.

(1) For j = 0,1, . . . , l, we show that the map C( j) extends to a B(Γk+2(M,Rn)×···×
Γk+2(M,Rn),Γk(M,Rq))-valued function defined on �k+2

Ω × Ck+l+1(J2
Ω,Rq). We

also show that for fixed g, the map

C( j)(·,g) : �k+2
Ω −→ B

(
Γk+2(M,Rn

)×···×Γk+2(M,Rn
)
,Γk
(
M,Rq

))
(3.9)

is continuous.
(2) For fixed g, we show that C( j)(·,g) is the jth derivative of C(·,g).
(3) Finally, we show that C is a Cl map.

For the proof of the lemma, a formula to compute the derivatives of C( j)(F,g) in local
coordinates is needed. Let (U ×Rn;xi, yγ) be a local coordinate system on M×Rn, and let
(W ;xi, yγ, y

γ
i , . . . , y

γ
i1···i2 ) be the induced local coordinate system in J2

Ω. For a multi-index
α = (a1, . . . ,am), ai ∈ N, let |α| =∑m

i=1 ai. Denote the α-derivative of a smooth function
f ∈ C∞(U) by

Dα f = ∂|α| f
∂
(
x1
)a1 ···∂(xm)am . (3.10)

For an embedding F ∈�Ω and a function g ∈ Ck+l+1(J2
Ω,Rq), we compute

∑
|α|≤k

Dα
((
C( j)(F,g)

)(
V1, . . . ,Vj

)
x

)

=
[k/2]−1∑
i=0

∑
|α0+α1+···+αj |≤k+2−i

gi,α0···αj

(
ji+2
x F

)(
Dα0F,Dα1V1, . . . ,DαjVj

)
, (3.11)

V1, . . . ,Vj ∈ C∞
(
M,Rn

)
,

where the functions gi,α0···αj are Hom(

j times︷ ︸︸ ︷
R

n×···×R
n,Rq)-valued C1 functions defined

on W . This formula follows by inductively computing the derivatives of (C( j)(F,g))
(V1, . . . ,Vj) using the definition (3.8). For j = 1, we get

(
C(1)(F,g)

)
(V)x =

2∑
r=1

∂g
(
j2xF

)
∂y

γ
i1···ir

∂rVγ

∂xi1 ···∂xir . (3.12)

By the Leibniz rule,

∑
|α|≤k

Dα
(
C(1)(F,g)

)
(V)x =

2∑
r=1

∑
|α|≤k

∑
β≤α

cαβD
α−β

(
∂g
(
j2xF

)
∂y

γ
i1···ir

)
Dα
(

∂rVγ

∂xi1 ···∂xir
)

, (3.13)
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where β ≤ α means bi ≤ ai for 1≤ i≤m, and the numbers cαβ are positive integers whose
exact value is irrelevant to our present needs. We compute the (α− β)th derivative of
∂g( j2xF)/∂y

γ
i1···ir by using the chain rule, and then writing the result in the form

∑
|α|≤k

Dα
(
C(1)(F,g)

)
(V)x =

[k/2]−1∑
i=0

∑
|α+β|≤k+2−i

gi,αβ
(
ji+2
x F

)(
DαF,DβV

)
, (3.14)

where the gi+2,αβ are Hom(Rn×Rn,Rq)-valued functions defined on W . These are at least
C1 since they are given in terms of the first k+ 1 derivatives of g, which is Ck+l+1.
Step 1. Let F ∈ �k+2

Ω and g ∈ Ck+l+1(J2
Ω,Rq). Consider a sequence {Fl} ⊂ �Ω converg-

ing to F in the Γk+2(M,Rn) topology. We show that for any set of vectors V1, . . . ,Vj ∈
C∞(M,Rn), we have (C( j)(Fl,g))(V1, . . . ,Vj) ∈ Γk(M,Rq). Moreover, we also show that
C( j)(Fl,g) defines a bounded operator in B(Γk+2(M,Rn)×···×Γk+2(M,Rn),Γk(M,Rq)),
and that the sequence {C( j)(Fl,g)} ⊂ B(Γk+2(M,Rn)× ··· × Γk+2(M,Rn),Γk(M,Rq)) is
Cauchy. By completeness of the operator space, this sequence converges and we define its
limit as C( j)(F,g). This defines C( j)(F,g) as a bounded operator in B(Γk+2(M,Rn)×···×
Γk+2(M,Rn),Γk(M,Rq)). In particular, the map C( j)(·,g) : �k+2

Ω → B(Γk+2(M,Rn)×···×
Γk+2(M,Rn),Γk(M,Rq)) is continuous for fixed g, by construction.

To show that (C( j)(Fl,g))(V1, . . . ,Vj)∈ Γk(M,Rq), we apply formula (3.11) and show
that it defines a square integrable function on U ⊂ Rm. Notice that the order i + 2 of
the jets ji+2

x Fl satisfies i + 2 ≤ [k/2]− 1 + 2, since the sum over i runs up to [k/2]− 1.
Because k > 2, we have that [k/2]− 1 + 2 ≤ k + 2− 1− [(m− 1)/2] = k + 2− k0, where
k0 = 1 + [(m− 1)/2]. By Sobolev’s lemma, the sequence {Fl} is a converging sequence
in Ck+2−k0 (M,Rn). Consequently, the closure of the set { ji+2

x Fl ∈ J i+2
Ω : l ∈ N, x ∈M} is

contained in a compact subset K ⊂ J i+2
Ω , since in any local coordinate chart, the Tay-

lor series expansion of the Fl’s is bounded. In particular, the functions gi,α0···αj ( j
i+2
x Fl)

are bounded on U ⊂ Rm. On the other hand, suppose that two multi-indices αs and αt
in (3.11) satisfied |αs|, |αt| > k + 2− k0. We would have |αs + αt| = |αs| + |αt| > 2(k +
2− k0). Since these indices vary between 0 ≤ |αs + αt| ≤ k + 2− i, and i varies within
0≤ i≤ [k/2]− 1, we would have 2(k+ 2− k0) < k+ 2− ([k/2]− 1). A computation shows
that this contradicts our assumption on the value of k. As a conclusion, at most one
multi-index αs is strictly greater than k + 2− k0 in magnitude. By Sobolev’s lemma, we
have that j out of Dα0Fl,Dα1V1, . . . ,DαjVj are continuous functions on U ⊂ Rm. This
shows that (3.11) is square integrable. By defining a partition of unity subordinated to
a finite cover of M by local charts, we conclude that C( j)(Fl,g)(V1, . . . ,Vj)∈ Γk(M,Rq).

We next show that C( j)(Fl,g)∈ B(Γk+2(M,Rn)×···× Γk+2(M,Rn),Γk(M,Rq)) for all
l ∈ N, and that {C( j)(Fl,g)} is a Cauchy sequence. We start by estimating the difference
(C( j)(Fl,g)−C( j)(Fm,g)

)
(V1, . . . . ,Vj) in the Γk-norm. We write

gi,α0···αj

(
ji+2
x Fl

)(
Dα0Fl,Dα1V1, . . . ,DαjVj

)− gi,α0···αj

(
ji+2
x Fm

)(
Dα0Fm,Dα1V1, . . . ,DαjVj

)
= gi,α0···αj

(
ji+2
x Fl

)(
Dα0Fl −Dα0Fm,Dα1V1, . . . ,DαjVj

)
+
(
gi,α0···αj

(
ji+2
x Fl

)− gi,α0···αj

(
ji+2
x Fm)

)(
Dα0Fm,Dα1V1, . . . ,DαjVj

)
.

(3.15)
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Let W be a local chart of J i+2
Ω induced by the chart U ⊂ Rm. Without loss of generality

we assume that W is a convex subset of Euclidean space. By the mean value theorem
applied to the C2 function gi,α0···αj : W →Hom(Rn×···×Rn,Rq), there exists t ∈ [0,1]
such that (

gi,α0···αj

(
ji+2
x Fl

)− gi,α0···αj

(
ji+2
x Fm

))
= dgi,α0···αj

(
(1− t) ji+2

x Fl + t ji+2
x Fm

)(
δi+2Fl − δi+2Fm

)
,

(3.16)

where dgi,α0···αj : TW →Hom(Rn×···×Rn,Rq) denotes the differential of gi,α0···αj and
the map δi+2Fl : U → TW is defined by (3.5). By hypothesis, the sequence {Fl} ⊂ Γk+2(M,
Rn) is Cauchy and by Sobolev’s lemma, it is also Cauchy in Ck+2−k0 (M,Rn). Therefore,
since i+ 2 ≤ k + 2− k0, the convex hull of the set { ji+2

x Fl ∈ J i+2
Ω : l ∈ N, x ∈M} is con-

tained in a compact subset K ⊂ J i+2
Ω , and then the maps gi,α0···αj , dgi,α0···αj are bounded

on W . We now use (3.15) and (3.16) to obtain a global estimate in the Γk-norm of the
difference (C( j)(Fl,g)−C( j)(Fm,g))(V1, . . . ,Vj) using a partition of unity. This gives

∥∥(C( j)(Fl,g)−C( j)(Fm,g
))(

V1, . . . ,Vj
)∥∥

k

≤ c1
∥∥Fl −Fm

∥∥
k+2

∥∥V1
∥∥
k+2 ···

∥∥Vj

∥∥
k+2

+ c2
∥∥Fl −Fm

∥∥
Ck+2−k0

∥∥Fm∥∥k+2

∥∥V1
∥∥
k+2 ···

∥∥Vj

∥∥
k+2,

(3.17)

for positive c1, c2. Since {‖Fm‖k+2} ⊂ R is a bounded sequence of real numbers and the
inclusion Γk+2(M,Rn)↩Ck+2−k0 (M,Rn) is continuous, the last term above is bounded
by a positive multiple of ‖Fl − Fm‖k+2‖V1‖k+2 ···‖Vj‖k+2. This shows that C( j)(Fl, g)−
C( j)(Fm,g) is a bounded operator in B(Γk+2(M,Rn) × ··· × Γk+2(M,Rn),Γk(M,Rq))
whose operator norm is bounded by a positive multiple of ‖Fl −Fm‖k+2. This shows that
the sequence

{
C( j)(Fl,g)−C( j)(Fm,g

)}⊂ B
(
Γk+2(M,Rn

)×···×Γk+2(M,Rn
)
,Γk
(
M,Rq

))
(3.18)

is Cauchy. This concludes the proof of Step 1.
Step 2. Fix g ∈ Ck+l+1(J2

Ω,Rq). For j = 1, we show that the limit

lim
t→0

∥∥∥∥C(F + tV ,g)−C(F,g)
t

−C(1)(F,g)V
∥∥∥∥
k
= 0, (3.19)

for all F ∈�Ω, V ∈ C∞(M,Rn). Since the map

C(1)(·,g) : �k+2
Ω −→ B

(
Γk+2(M,Rn

)
,Γk
(
M,Rq

))
(3.20)

is continuous, we conclude that C(1)(·,g) is the derivative of C(·,g) [11, page 37].
To prove (3.19), we consider a cover of M by local charts. In each of these charts U ⊂

Rm, we have the pointwise limit

lim
t→0

∑
|α|≤k

Dα

(
g
(
j2x(F + tV)

)− g
(
j
p
x F
)

t
−dg

(
j2xF

) · δ2V

)
= 0. (3.21)
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We can write the quotient (g( j2x(F + tV))− g( j2xF))/t by applying the mean value theorem
to the function φ(t)= g( j2x(F + tV)). We get

g
(
j2x(F + tV)

)− g
(
j2xF

)
t

= dg
(
j2x
(
F + t1V

)) · δ2V , (3.22)

for some |t1| ≤ |t|. We apply the Lebesgue dominated convergence theorem to the se-
quence


 ∑
|α|≤k

Dα

(
g
(
j2x(F + tV)

)− g
(
j2xF

)
t

−dg
(
j2xF

) · δ2V

)

t∈I
⊂ Γ0(U ,Rq

)
(3.23)

to show that the limit (3.21) holds in the Γ0-norm. For this, it suffices to find a function
G∈ Γ0(U ,R) such that ∣∣∣∣∣∣

∑
|α|≤k

Dαdg
(
j2x(F + tV)

) · δ2V

∣∣∣∣∣∣≤G, (3.24)

for all t ∈ I , since by (3.22) we will have

∣∣∣∣∣∣
∑
|α|≤k

Dα

(
g
(
j2x(F + tV)

)− g
(
j2xF

)
t

−dg
(
j2xF

) · δ2V

)∣∣∣∣∣∣≤ 2G. (3.25)

To construct such a function G, we give a uniform estimate on t of

∣∣∣∣∣∣
∑
|α|≤k

Dαdg
(
j2x(F + tV)

) · δ2V

∣∣∣∣∣∣ . (3.26)

By formula (3.11), we have

∑
|α|≤k

Dαdg
(
j2x(F + tV)

) · δ2V

=
[k/2]−1∑
i=0

∑
|α+β|≤k+2−i

gi,αβ
(
ji+2
x (F + tV)

)(
Dα(F + tV),DβV

)
.

(3.27)

Since t varies within a small interval, the set { ji+2
x (F + tV) ∈ J i+2

Ω : t ∈ I , x ∈M} is con-
tained in a compact subset K ⊂ J i+2

Ω , and then the functions gi,αβ are bounded on it. We
estimate∣∣∣∣∣∣

∑
|α|≤k

Dαdg
(
j2x(F + tV)

) · δ2V

∣∣∣∣∣∣≤ c
[k/2]−1∑
i=0

∑
|α+β|≤k+2−i

∣∣Dα(F + tV)
∣∣∣∣DβV

∣∣

≤ c
[k/2]−1∑
i=0

∑
|α+β|≤k+2−i

(∣∣DαF
∣∣+

∣∣DαV
∣∣)∣∣DβV

∣∣,

(3.28)
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for some c > 0. Set

G= c
[k/2]−1∑
i=0

∑
|α+β|≤k+2−i

(∣∣DαF
∣∣+

∣∣DαV
∣∣)∣∣DβV

∣∣. (3.29)

A computation shows that at least one of the multi-indices α, β is less than or equal to
k + 2− k0. By Sobolev’s lemma, at least one of DαF, DβV is a continuous function. This
shows that G ∈ Γ0(U ,R). Therefore, the limit (3.21) holds in Γ0(U ,Rq) for every local
chart U of M. A similar argument shows that C( j)(·,g) is the j-derivative of C(·,g). This
proves Step 2.
Step 3. To show that the map C is Cl, we first note that for g1,g2 ∈ Ck+l+1(J2

Ω,Rq) we have
g1( j2xF) + g2( j2xF) = (g1 + g2)( j2xF); that is, the map C(F,g) is linear in g and, since it is
a bounded operator for fixed F, it is also smooth. We have also shown that C( j)(F,g) is
continuous in F for fixed g, therefore it suffices to show that it is jointly continuous in F
and g.

Let (F,g) be a fixed pair in �k+2
Ω ×Ck+l+1(J2

Ω,Rq) and let (F̃, g̃) be in a neighborhood of
(F,g). We estimate the operator norm of C( j)(F,g)−C( j)(F̃, g̃). We have

∣∣∣∣∣∣C( j)(F,g)−C( j)(F̃, g̃)
∣∣∣∣∣∣≤ ∣∣∣∣∣∣C( j)(F,g)−C( j)(F̃,g)

∣∣∣∣∣∣+
∣∣∣∣∣∣C( j)(F̃,g − g̃)

∣∣∣∣∣∣. (3.30)

Since the map C( j)(·,g) is continuous, it suffices to show that |||C( j)(F̃,g − g̃)||| goes
to zero as (F̃, g̃) tends to (F,g). So we estimate the norm |||C( j)(F̃,g − g̃)||| using local
coordinates of M. Let V1, . . . ,Vj ∈ Γk+2(M,Rn), by formula (3.11), we have

∑
|α|≤k

Dα
((
C( j)(F̃,g − g̃)

)(
V1, . . . ,Vj

)
x

)

=
[k/2]−1∑
i=0

∑
|α0+α1+···+αj |≤k+2−i

(
gi,α0···αj

(
ji+2
x F̃

)− g̃i,α0···αj

(
ji+2
x F̃

))
· (Dα0 F̃,Dα1V1, . . . ,DαjVj

)
,

(3.31)

where gi,α0···αj and g̃i,α0···αj are Hom(Rn×···×Rn,Rq)-valued functions which depend
linearly on the derivatives of g and g̃, respectively. We find an upper bound for the ex-
pression above in terms of the Ck+l+1-norm of the difference g − g̃. This will show that
(3.30) goes to zero as (F̃, g̃) tends to (F,g).

By Sobolev’s lemma, a neighborhood U of F in Γk+2(M,Rn) is contained in a neigh-
borhood W of F in Ck+2−k0 (M,Rn). Since the order i+ 2 of the jets ji+2

x F̃ is bounded by
k + 2− k0, the set { ji+2

x F̃ ∈ J i+2
Ω : x ∈M, F̃ ∈ U} is contained in a compact set K of J i+2

Ω .
Therefore, the functions gi,α0···αj , g̃i,α0···αj are bounded on their domain, and by using a
partition of unity we can bound the difference (C( j)(F̃,g − g̃))(V1, . . . ,Vj) by the Ck+l+1-
norm on the compact K of g − g̃. We get

∥∥(C( j)(F̃,g − g̃
))(

V1, . . . ,Vj
)∥∥

k

≤ c1
∥∥g − g̃

∥∥
Ck+l+1(K ,Rq)

∥∥F̃∥∥k+2

∥∥V1
∥∥
k+2 ···

∥∥Vj

∥∥
k+2,

(3.32)
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where c1 is a positive number independent of F̃ ∈ U , and we used the fact that j of
the functions Dα0 F̃,Dα1V1, . . . ,DαjVj are continuous. Since the subset of real numbers
{‖F̃‖k+2 ∈ R : F̃ ∈ U} is bounded, we have found that, for some c2 > 0 independent
of F̃ ∈ U , |||C( j)(F̃,g − g̃)||| ≤ c2‖g − g̃‖Ck+l+1(K ,Rq). This proves Step 3 and the lemma.

�

3.2. Regularity properties of Ed. In our approach to the manifold fitting problem, we
compute the expected value of the distance to F(M) by making a change of variables to
normal coordinates. This results in an integration over M and an integration over the
transverse disks to F(M). This double integration leads us to consider the manifold of
Ω-regular jets J

p
Ω in which the study of the regularity properties of Ed can be reduced to

the analysis of differentiable functions defined on J
p
Ω.

Denote by Ck(Ω) the space of functions with continuous kth-order derivatives in the
interior of Ω that are bounded in Ω, with norm

‖ f ‖Ck(Ω) =max
|α|≤k

sup
∣∣Dα f

∣∣. (3.33)

For k > m, define the map Ed : �k+2
Ω ×Ck+3(Ω)→R given by

Ed(F, p)= 1
2

∫
Ω

∣∣x−F
(
λF(x)

)∣∣2
p(x)dx. (3.34)

Theorem 3.2. Let k > m. Then Ed is a C2 map.

Proof. By formula (2.23), the map Ed can be written as

E(F, p)= 1
2

∫
M

∫
ΩF

|v|2p(F + v)det
(
I − Sv

)
dvdvolh. (3.35)

We write this double integral in terms of a function defined on J2
Ω. For p ∈ Ck+3(Ω),

consider the Ck+3 function sp : J2
Ω→R given by

sp
(
j2xF

)= 1
2

∫
ΩF(x)

|v|2p(F(x) + v
)

det
(
I − Sv

(
j2xF

))
dv
√
h
(
j2xF

)/√
g(x), (3.36)

where dv denotes the induced Euclidean volume element on ΩF(x) and g is a Riemannian
metric on M. We have

Ed(F, p)=
∫
M
sp
(
j2xF

)
dvolg . (3.37)

Therefore, in order to prove Theorem 3.2, it suffices to show that the map �Ω×Ck+3(Ω)�
(F, p) 	→ sp( j2xF)∈ C∞(M) extends to a C2 map from �k+2

Ω ×Ck+3(Ω) into Γk(M). But this
follows from Lemma 3.1. �
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3.3. First variation of Ed. In this section we characterize the critical embeddings of the
distance functional Ed by computing its first variational derivative at an Ω-regular em-
bedding F. Consider a smooth variation of F, that is, a smooth function

Φ : M× (−ε,+ε)−→R
n (3.38)

such that Φ(·,0) = F. Differentiating Φ with respect to t at t = 0 gives a vector field V
defined along F(M). We call V a variational vector field. Let Φt =Φ(·, t) and let λ(·, t) :
Ω→M be the projection index associated with Φt.

Theorem 3.3. Let F be an Ω-regular embedding and let Φ be a smooth variation of F. Then

dEd
[
Φ(·, t)]
dt

∣∣∣∣
t=0
=
∫
M

〈
τF ,V

〉
dvolh, (3.39)

where τF : M→Rn is the normal vector field along F defined by

τF(x)=−
∫
ΩF(x)

p
(
F(x) + v

)
det

(
I − Sv

)
vdv, (3.40)

and V is the variational vector field generated by Φ. Moreover, the embedding F is critical if
and only if it satisfies the equation

τF = 0. (3.41)

Proof. This is a direct calculation. Set Ed(t)= Ed[Φ(·, t)]. Then

E′d(t)= d

dt

1
2

∫
Ω

∣∣x−Φ
(
λ(x, t), t

)∣∣2
p(x)dx

=−
∫
Ω

〈
x−Φ

(
λ(x, t), t

)
,
∂Φ
(
λ(x, t), t

)
∂xi

∂λi(x, t)
∂t

+
∂Φ
(
λ(x, t), t

)
∂t

〉
p(x)dx.

(3.42)

Note that for x ∈ Ω, the vector ∂Φt/∂xi is tangential to Φt(M) at Φ(λ(x, t), t). Since
Φ(λ(x, t), t) is the point on Φt(M) nearest to x, it follows that x−Φ(λ(x, t), t) is orthogo-
nal to ∂Φ(λ(x, t), t)/∂xi. Thus

E′d(t)=−
∫
Ω

〈
x−Φ

(
λ(x, t), t

)
,
∂Φ
(
λ(x, t), t

)
∂t

〉
p(x)dx. (3.43)

By switching to normal coordinates, we obtain

E′d(0)=−
∫
Ω

〈
x−F

(
λ(x,0)

)
,V
(
λ(x,0)

)〉
p(x)dx

=−
∫
M

∫
ΩF(x)

〈v,V〉p(F + v)det
(
I − Sv

)
dvdvolh.

(3.44)

Taking the integral over the normal disks ΩF(x) inside the scalar product 〈v,V〉 and writ-
ing the result in terms of τF gives (3.39). �
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3.4. Second variation of Ed. We now show that the distance functional does not have lo-
cal minima within the class of Ω-regular embeddings. As a preparation for the statement
of our result, we introduce the following notation.

For X ∈ C∞(M,Rn), we define the vector-valued one-form dX ∈Rn⊗T∗M given by
the differentials dXα, α= 1, . . . ,n, of the components of X relative to the canonical basis
of Rn. For a normal vector v ∈NF , we define the one-form 〈dX ,v〉 ∈ T∗M by

〈dX ,v〉(Y)= 〈dX(Y),v
〉

, Y ∈ TM. (3.45)

We denote by 〈dX ,v〉# ∈ TM the contravariant representative of 〈dX ,v〉.
Our formulation of the second variation of Ed involves two additional quantities: the

function PF : M→R defined by

PF(x)=
∫
ΩF(x)

p
(
F(x) + v

)
det

(
I − Sv

)
dv (3.46)

and the map HF : C∞(M,Rn)×C∞(M,Rn)→ C∞(M) given by

HF(X ,Y)=
∫
ΩF

〈
πFX −〈dX ,v〉#,

(
I − Sv

)−1(
πFY −〈dY ,v〉#)〉

× p(F + v)det
(
I − Sv

)
dv,

(3.47)

where

πF(x) : TF(x)R
n −→ TxM (3.48)

denotes the orthogonal projection of TF(x)R
n onto TxM. This formula may look more

complicated than it really is.

Remark 3.4. In local coordinates, we have

〈
〈dX ,v〉#,

(
I − Sv

)−1〈dY ,v〉#
〉
=
〈
∂X

∂xi
,v
�
hi j
[(
I − Sv

)−1
]k
j

〈
∂Y

∂xk
,v
�
. (3.49)

We check this formula by writing 〈dX ,v〉# in local coordinates as

〈dX ,v〉# = hi j
〈
∂X

∂xi
,v
�
∂F

∂x j . (3.50)

Hence 〈
〈dX ,v〉#,

(
I − Sv

)−1〈dY ,v〉#
〉

= h
(
hi j
〈
∂X

∂xi
,v
�
∂F

∂x j ,
(
I − Sv

)−1
hkl
〈
∂Y

∂xk
,v
�
∂F

∂xl

)

= hi j
〈
∂X

∂xi
,v
�
hkl
〈
∂Y

∂xk
,v
�〈

∂F

∂x j ,
(
I − Sv

)−1 ∂F

∂xl

�
.

(3.51)

Define the numbers [(I − Sv)−1]ml by

(
I − Sv

)−1 ∂F

∂xl
=
[(
I − Sv

)−1
]m
l

∂F

∂xm
, (3.52)
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then (3.51) gives

〈
〈dX ,v〉#,

(
I − Sv

)−1〈dY ,v〉#
〉

= hi j
〈
∂X

∂xi
,v
�
hkl
〈
∂Y

∂xk
,v
�〈

∂F

∂x j ,
[(
I − Sv

)−1
]m
l

∂F

∂xm

�

= hi j
〈
∂X

∂xi
,v
�
hkl
〈
∂Y

∂xk
,v
�[(

I − Sv
)−1

]m
l

〈
∂F

∂x j ,
∂F

∂xm

�
.

(3.53)

Since 〈∂F/∂x j ,∂F/∂xm〉 = hjm, a simplification of the formula above establishes (3.49). To
check (3.50), we multiply both sides by a vector Y ∈ TxM and write the left-hand side in
local coordinates.

Consider a smooth variation Φ : M× (−ε,+ε)× (−ε,+ε)→Rn such that Φ(·,0)= F.
Let Φst =Φ(·,s, t) and let λ(·,s, t) : Ω→M be the projection index associated with Φst.

Theorem 3.5. Let F be a critical embedding of the distance functional and let Φ be a smooth
variation of F. Then the second variation of Ed is given by the formula

∂2Ed
[
Φ(·,s, t)]
∂s∂t

∣∣∣∣
(s,t)=0

=
∫
M

(
PF〈V ,W〉−HF(V ,W)

)
dvolh, (3.54)

where V and W are the variational vector fields generated by Φ. Moreover, all critical em-
beddings are saddle points of Ed.

Before proving Theorem 3.5, we discuss the meaning of the quantities PF and HF . We
assume that for almost every x ∈M the set supp(p)∩ΩF(x) has positive measure as a
subset of the disk ΩF(x). Then, the function PF is positive almost everywhere since the
determinant det(I − Sv) is nonvanishing in Ω. Moreover, integration of PF over M gives

∫
M
PF dvolh =

∫
M

∫
ΩF(x)

p
(
F(x) + v

)
det

(
I − Sv

)
dvdvolh =

∫
Ω
p(x)dx = 1, (3.55)

where we switched back from normal coordinates to Cartesian coordinates. Consequent-
ly, the function PF is a probability density on M.

Proposition 3.6. The map HF satisfies the following properties:

(i) HF(X ,Y)=HF(Y ,X); X ,Y ∈ C∞(M,Rn),
(ii) HF(X ,X)≥ 0 and HF(X ,X)= 0 if and only if X ∈NF and∇⊥X = 0.

Proof. Property (i) follows from the fact that the shape operator Sv : TxM→ TxM is self-
adjoint. To derive property (ii), observe that the operator I − Sv is positive definite for
an Ω-regular embedding F ∈ �Ω since the Jacobian det(I − Sv) of the normal coordinate
map does not vanish in Ω. This implies that HF(X ,X)≥ 0. If HF(X ,X)= 0, then

〈
πFX −〈dX ,v〉#,

(
I − Sv

)−1(
πFX −〈dX ,v〉#)〉= 0, (3.56)
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for all v ∈ΩF(x). Since I − Sv is positive definite, we have πFX −〈dX ,v〉# = 0 for all v ∈
NF(x). Set v = 0, then πFX = 0, which implies that X ∈NF . On the other hand, all (Y ,v)∈
TxM×ΩF(x) is such that

0= 〈〈dX ,v〉#,Y
〉= 〈dX(Y),v

〉= 〈v,∇YX
〉

, (3.57)

which implies∇⊥YX = 0 for all Y ∈ TxM. Therefore,∇⊥X = 0. �

We conclude this section with the proof of Theorem 3.5. By (3.43),

∂2Ed(s, t)
∂s∂t

=− ∂

∂s

∫
Ω

〈
x−Φ

(
λ(x,s, t),s, t

)
,
∂Φ
(
λ(x,s, t),s, t

)
∂t

〉
p(x)dx. (3.58)

Let

g(x,s, t)=− ∂

∂s

〈
x−Φ

(
λ(x,s, t),s, t

)
,
∂Φ
(
λ(x,s, t),s, t

)
∂t

〉
. (3.59)

Differentiation and an application of the chain rule give

g(x,s, t)=
〈
∂Φ
(
λ(x,s, t),s, t

)
∂xi

∂λi(x,s, t)
∂s

,
∂Φ
(
λ(x,s, t),s, t

)
∂t

〉

+

〈
∂Φ
(
λ(x,s, t),s, t

)
∂s

,
∂Φ
(
λ(x,s, t),s, t

)
∂t

〉

−
〈

x−Φ
(
λ(x,s, t),s, t

)
,
∂2Φ

(
λ(x,s, t),s, t

)
∂xi∂t

∂λi(x,s, t)
∂s

〉

−
〈

x−Φ
(
λ(x,s, t),s, t

)
,
∂2Φ

(
λ(x,s, t),s, t

)
∂s∂t

〉
.

(3.60)

We compute g(x,0). Let Z = ∂2Φ(·,0)/∂s∂t. Substituting the identities

∂Φ
(
λ(x,0),0

)
∂xi

= ∂F

∂xi
(
λ(x,0)

)
, (3.61)

∂Φ
(
λ(x,0),0

)
∂s

=V
(
λ(x,0)

)
, (3.62)

∂Φ
(
λ(x,0),0

)
∂t

=W
(
λ(x,0)

)
, (3.63)

∂Φ
(
λ(x,0),0

)
∂x j

∂λj(x,0)
∂s

= ∂λ

∂s
(x,0), (3.64)

∂2Φ
(
λ(x,0),0

)
∂x j∂t

∂λj(x,0)
∂s

= dW
(
λ(x,0)

)(∂λ
∂s

(x,0)
)

(3.65)
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into (3.60) at s, t = 0 gives

g(x,0)=
〈
∂λ

∂s
(x,0) +V

(
λ(x,0)

)
,W

(
λ(x,0)

)�

−
〈

x−F
(
λ(x,0)

)
,dW

(
λ(x,0)

)(∂λ
∂s

(x,0)
)

+Z
(
λ(x,0)

)�
.

(3.66)

Since ∂λ(x,0)/∂s is tangent to M, we can write

〈
∂λ

∂s
(x,0),W

(
λ(x,0)

)�=〈∂λ

∂s
(x,0),πF(λ(x,0))W

(
λ(x,0)

)�
. (3.67)

Substituting (3.67) into (3.66) and collecting the factors of ∂λ(x,0)/∂s gives

g(x,0)= 〈V(λ(x,0)
)
,W

(
λ(x,0)

)〉
+
〈
πF(λ(x,0))W

(
λ(x,0)

)− 〈dW(
λ(x,0)

)
,x−F

(
λ(x,0)

)〉#
,
∂λ

∂s
(x,0)

�
− 〈x−F

(
λ(x,0)

)
,Z
(
λ(x,0)

)〉
.

(3.68)

We need a formula for ∂λ(x,0)/∂s. Observe that

〈
x−Φ

(
λ(x,s, t),s, t

)
,
∂Φ
(
λ(x,s, t),s, t

)
∂xi

〉
= 0, i= 1, . . . ,m, (3.69)

identically in s and t since x−Φ(λ(x,s, t),s, t) is normal to Φst(M) and ∂Φst/∂xi is tan-
gential to Φst(M). Differentiating with respect to s at s= 0 gives

−
〈
∂Φ
(
λ(x,0),0

)
∂x j

∂λj(x,0)
∂s

+
∂Φ
(
λ(x,0),0

)
∂s

,
∂Φ
(
λ(x,0),0

)
∂xi

〉

+

〈
x−Φ

(
λ(x,0),0

)
,
∂2Φ

(
λ(x,0),0

)
∂xi∂x j

∂λj(x,0)
∂s

+
∂2Φ

(
λ(x,0),0

)
∂xi∂s

〉
= 0.

(3.70)

Using the identities (3.61) through (3.65) gives

−
〈
∂λ

∂s
(x,0) +V

(
λ(x,0)

)
,
∂F

∂xi
(
λ(x,0)

)�

+
〈

x−F
(
λ(x,0)

)
,∇(∂λ/∂s)(x,0)

∂F

∂xi
(
λ(x,0)

)
+dV

(
λ(x,0)

)( ∂F
∂xi

(
λ(x,0)

))�= 0.

(3.71)

We use (2.5) to write

〈
x−F

(
λ(x,0)

)
,∇(∂λ/∂s)(x,0)

∂F

∂xi
(
λ(x,0)

)�=〈Sx−F(λ(x,0))
∂λ

∂s
(x,0),

∂F

∂xi
(
λ(x,0)

)�
.

(3.72)
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Substituting (3.72) into (3.71) and collecting the factors of ∂λ/∂s and ∂F/∂xi gives

〈(
Sx−F(λ(x,0))− I

)∂λ
∂s

(x,0) +
〈
dV

(
λ(x,0)

)
,x−F

(
λ(x,0)

)〉#

−πF(λ(x,0))V
(
λ(x,0)

)
,
∂F

∂xi
(
λ(x,0)

)�= 0.
(3.73)

This holds for every basis element ∂F(λ(x,0))/∂xi in the local coordinate frame. There-
fore, we must have

(
Sx−F(λ(x,0))− I

)∂λ
∂s

(x,0) +
〈
dV

(
λ(x,0)

)
,x−F

(
λ(x,0)

)〉#−πF(λ(x,0))V
(
λ(x,0)

)= 0.

(3.74)

Since F ∈�Ω, the operator Sx−F(λ(x,0))− I : Tλ(x,0)M→Tλ(x,0)M is nonsingular for all x∈Ω.
Solving for ∂λ(x,0)/∂s in (3.74) gives

∂λ

∂s
(x,0)= (I − Sx−F(λ(x,0))

)−1
(〈
dV

(
λ(x,0)

)
,x−F

(
λ(x,0)

)〉#−πF(λ(x,0))V
(
λ(x,0)

))
.

(3.75)

Substituting into (3.68) gives

g(x,0)= 〈V(λ(x,0)
)
,W

(
λ(x,0)

)〉
−
〈
πF(λ(x,0))V

(
λ(x,0)

)− 〈dV(λ(x,0)
)
,x−F

(
λ(x,0)

)〉#
,(

I − Sx−F(λ(x,0))
)−1

(
πF(λ(x,0))W

(
λ(x,0)

)− 〈dW(
λ(x,0)

)
,x−F

(
λ(x,0)

)〉#
)〉

− 〈x−F
(
λ(x,0)

)
,Z
(
λ(x,0)

)〉
.

(3.76)

Multiplying by the probability distribution p(x), integrating over Ω, and reverting to
normal coordinates gives

∂2Ed
∂s∂t

∣∣∣∣
(s,t)=0

=
∫
Ω
g(x,0)p(x)dx

=
∫
M

∫
ΩF

{
〈V ,W〉−

〈
πFV −〈dV ,v〉#,

(
I − Sv

)−1(
πFW −〈dW ,v〉#)〉

−〈v,Z〉
}
p(F + v)det

(
I − Sv

)
dvdvolh.

(3.77)

Distributing the factor p(F + v)det(I − Sv) and writing the result in terms of PF , HF , and
τF gives

∂2Ed
∂s∂t

∣∣∣∣
(s,t)=0

=
∫
M

{
PF〈V ,W〉−HF(V ,W) +

〈
τF ,Z

〉}
dvolh. (3.78)

If F is a critical embedding of Ed, then τF = 0 and formula (3.54) follows.
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To prove that critical embeddings are saddle points of Ed, set W = V with V ∈ NF

in (3.54). If ∇⊥V = 0, by Proposition 3.6, we have HF(V ,V) = 0. This gives a positive
second derivative.

On the other hand, since V ∈NF , πFV = 0. Hence

HF(V ,V)=
∫
ΩF

〈
〈dV ,v〉#,

(
I − Sv

)−1〈dV ,v〉#
〉
p(F + v)det

(
I − Sv

)
dv. (3.79)

For an operator A : TxM → TxM, let |A| denote its operator norm. We can estimate
HF(V ,V) as

HF(V ,V)≤
∫
ΩF

∣∣∣(I − Sv
)−1

∣∣∣∣∣〈dV ,v〉#
∣∣2
p(F + v)det

(
I − Sv

)
dv. (3.80)

Now we give an estimate of the squared norm of the vector 〈dV ,v〉# ∈ TM. Consider a
local orthonormal frame {ei} along F(M). We have

∣∣〈dV ,v〉#
∣∣2 =

m∑
i=1

〈
ei,〈dV ,v〉#〉2

. (3.81)

Since, by definition, 〈ei,〈dV ,v〉#〉 = 〈∇eiV ,v〉 and since v ∈ NF(x) is a normal vector to
F(M), we have

∣∣〈dV ,v〉#
∣∣2 =

m∑
i=1

〈∇⊥eiV ,v
〉2 ≤

m∑
i=1

∣∣∇⊥eiV∣∣2|v|2 (3.82)

by the Schwartz inequality. Substituting into (3.80) and factoring out the squared norm
|∇⊥V |2 ≡∑m

i=1 |∇⊥eiV |2 gives

HF(V ,V)≤ ∣∣∇⊥V∣∣2
∫
ΩF

∣∣∣(I − Sv
)−1

∣∣∣|v|2p(F + v)det
(
I − Sv

)
dv. (3.83)

Therefore, choosing a variation with large |∇⊥V | and small |V | (in the L2 sense) in (3.54)
leads to a negative second derivative.

4. Extremal properties of the energy functional

In this section we lay the ground for the study of the general fitting problem. Our main
concerns are the variational properties of E on the class of Ω-regular embeddings. We
characterize the critical points of E in terms of harmonic maps and the extrinsic geom-
etry of the embedding F : M →Rn. We also investigate conditions under which a critical
embedding yields a local minimum.

4.1. Regularity properties of E. In this subsection we continue with the analysis of the
regularity of E started in Section 3.2. We will show that the harmonic functional Eh is a
C∞ map defined on an appropriate Sobolev space.

For k > m, consider the map E : �k+2
Ω ×Ck+3(Ω)×R→R given by

E(F, p,k)= Ed(F, p) + kEh(F), (4.1)
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where Ed is defined by (3.34) and Eh is the harmonic functional (1.2). Our goal in this
section is to prove the following theorem.

Theorem 4.1. Let k > m. Then E is a C2 map.

Proof. We show that Eh : Γk+2(M,Rn)→R is a smooth map. Then, from Theorem 3.2, it
will follow that E is C2.

Consider a local orthonormal frame {eMi } ⊂ TM with respect to the metric g. Let
F,V ∈ Γk+2(M,Rn). We have

∣∣∣∣∣Eh(F + tV)−Eh(F)
t

−
∫
M
δi j
〈
dF
(
eMi
)
,dV

(
eMj
)〉
dvolg

∣∣∣∣∣
=
∣∣∣∣∣ (1/2)

∫
M δi j

{〈
d(F + tV)

(
eMi
)
,d(F + tV)

(
eMj
)〉− 〈dF(eMi ),dF(eMj )〉}dvolg

t

−
∫
M
δi j
〈
dF
(
eMi
)
,dV

(
eMj
)〉
dvolg

∣∣∣∣∣
= t

2

∫
M
δi j
〈
dV

(
eMi
)
,dV

(
eMj
)〉
dvolg .

(4.2)

Thus

lim
t→0

∣∣∣∣∣Eh(F + tV)−Eh(F)
t

−
∫
M
δi j
〈
dF
(
eMi
)
,dV

(
eMj
)〉
dvolg

∣∣∣∣∣= 0. (4.3)

Then, the Gâteaux derivative δEh(F)∈ Γk+2(M,Rn)∗ of Eh at F is given by

δEh(F) ·V =
∫
M
δi j
〈
dF
(
eMi
)
,dV

(
eMj
)〉
dvolg . (4.4)

We now prove that this is continuous as a map δEh : Γk+2(M,Rn)→ Γk+2(M,Rn)∗. This
will imply that Eh is a C1 map [11, page 37]. For F1,F2 ∈ Γk+2(M,Rn), we have

∣∣δEh(F1
) ·V − δEh

(
F2
) ·V∣∣

=
∣∣∣∣∣
∫
M
δi j
〈
dF1

(
eMi
)
,dV

(
eMj
)〉
dvolg −

∫
M
δi j
〈
dF2

(
eMi
)
,dV

(
eMj
)〉
dvolg

∣∣∣∣∣
≤ ∥∥F1−F2

∥∥
1‖V‖1.

(4.5)

Thus ‖δEh(F1)− δEh(F2)‖Γk+2(M,Rn)∗ ≤ ‖F1−F2‖k+2; that is, Eh is a C1 map. By (4.4), the
map δEh is linear, therefore smooth. This proves that Eh is smooth. �
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4.2. First variation ofE. In this subsection we characterize the critical embeddings of the
functional E by computing its first variational derivative at an Ω-regular embedding F.

Let ∆g denote the Laplace-Beltrami operator relative to the metric g in M. In local
coordinates,

∆g f =− 1√
g

∂

∂xi

(√
ggi j

∂ f

∂x j

)
. (4.6)

Consider a local orthonormal frame {eMi } ⊂ TM with respect to the metric g and let h be
the Euclidean metric induced on M.

Theorem 4.2. Let F be an Ω-regular embedding and let Φ be a smooth variation of F. Then

dE
[
Φ(·, t)]
dt

∣∣∣∣
t=0
=
∫
M

〈
τF ,V

〉
dvolh + k

∫
M

〈
∆gF,V

〉
dvolg , (4.7)

where V is the variational vector field generated by Φ. Moreover, the embedding F is critical
if and only if F : M→ F(M) is a harmonic map and satisfies the equation

τF

√
h√
g
− kδi jB

(
eMi ,eMj

)= 0, (4.8)

where τF is the normal vector field to F defined by (3.40).

We call (4.8) the transversal Euler-Lagrange equation of a critical embedding. Before
proving Theorem 4.2, we discuss some examples.

Example 4.3. Curves in Rn. Let M = S1. Then a critical embedding F has a constant speed
parameterization and for all X ∈Rn,

−Λ1(X) +Λ2

(
dT
ds

,X
)
−
(
kLF
2π

)〈
dT
ds

,X
�
= 0, (4.9)

where LF denotes the length of F(S1),T∈ C∞(S1,Rn) is the unit tangent along F(S1), and
dT/ds ∈ C∞(S1,Rn) denotes its derivative with respect to arc length. To verify (4.9) we
compute the Euler-Lagrange equation of a critical curve. We use the identities

√
h√
g
= |F′|, ∆gF =−F′′. (4.10)

By Example 2.4, we have det(I − Sv)= 1−〈dT/ds,v〉. Let X ∈Rn. By (3.40),

〈
τF ,X

〉=〈−∫
ΩF

p(F + v)
(

1−
〈
dT
ds

,v
�)

vdv,X
�
. (4.11)

We expand this out and write the result in terms of the transverse moments Λk. We get

〈
τF ,X

〉=−Λ1(X) +Λ2

(
dT
ds

,X
)
. (4.12)
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By the definition of arc length,

s=
∫ u

0
|F′|du, (4.13)

we can write dT/ds as T′/|F′| in (4.12). We get

〈
τF ,X

〉=−Λ1(X) +Λ2

(
T′

|F′| ,X
)
. (4.14)

We scalar-multiply (4.8) by X and use (4.10) to write the result

〈
τF ,X

〉|F′|− k〈F′′,X〉 = 0. (4.15)

By (4.14), we get

(
−Λ1(X) +Λ2

(
T′

|F′| ,X
))
|F′|− k〈F′′,X〉 = 0. (4.16)

Set X = F′. Since Λk(F′)= 0, we get 〈F′′,F′〉 = 0. Thus, a critical embedding F has con-
stant speed |F′| which can be computed by using (4.13) as

|F′| = LF
2
π. (4.17)

The second derivative F′′ can be written as F′′ = (|F′|T)′ = |F′|T′. Substituting into
(4.16) and taking the derivatives with respect to arc length gives

(
−Λ1(X) +Λ2

(
dT
ds

,X
))
|F′|− k

〈 |F′|2dT
ds

,X
�
= 0. (4.18)

Substituting (4.17) into (4.18) and dividing the result by |F′| gives (4.9).

Example 4.4. For radial distributions relative to a curve Γ (see Figure 4.1), the covari-
ance tensor is a constant multiple |σ2⊥| of the Euclidean scalar product restricted to NF(u)

(Example 2.8). Let F : S1 → Rn be a constant speed parameterization of Γ and set k =
2π|σ2⊥|/L2

F . For this value of k we have that Γ is a critical curve. To check this, we ver-
ify (4.9) for all X ∈ Rn. By Example 2.8, we have µ⊥ = 0, which implies Λ1 = 0. Using
Definition 2.7 to write Λ2 in terms of σ2⊥ gives

−Λ1(X) +Λ2

(
dT
ds

,X
)
− kLF

2π

〈
dT
ds

,X
�
=Λ0σ

2
⊥

(
dT
ds

,X
)
− kLF

2π

〈
dT
ds

,X
�
. (4.19)

Since σ2⊥ is a constant multiple |σ2⊥| of the Euclidean scalar product restricted to NF(u) and
since dT/ds∈NF(s), we have

Λ0σ
2
⊥

(
dT
ds

,X
)
− kLF

2π

〈
dT
ds

,X
�
=Λ0

∣∣σ2
⊥
∣∣〈dT

ds
,X
�
−
(
kLF

2
π
)〈

dT
ds

,X
�
. (4.20)
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Figure 4.1. A radial distribution relative to a curve.

We now compute an explicit formula for Λ0. We switch to normal coordinates in the
integral

∫
Ω p(x)dx and express the result in terms of the transverse moments,

1=
∫
Ω
p(x)dx =

∫ LF

0

∫
ΩF(s)

p
(
F(s) + v

)(
1−

〈
v,
dT
ds

�)
dvds

=
∫ LF

0

(
Λ0−Λ1

(
dT
ds

))
ds.

(4.21)

Since Λ0 is constant and Λ1 = 0, we have that Λ0 = 1/LF . Substituting into (4.19) gives

Λ0σ
2
⊥

(
dT
ds

,X
)
− kLF

2π

〈
dT
ds

,X
�
=
(

1
LF

)∣∣σ2
⊥
∣∣〈dT

ds
,X
�
−
(
kLF

2
π
)〈

dT
ds

,X
�
. (4.22)

Since k = 2π|σ2⊥|/L2
F , we have that (4.19) vanishes identically. This shows that Γ is a critical

curve.

Example 4.5 (the annulus). In this example we consider a special probability distribution
in the plane. Let

Ω= {x ∈R
2 : r1 ≤ |x| ≤ r2

}
. (4.23)

Assume that p depends only on |x|. Let

νk =
∫ r2

r1

ρk p(ρ)dρ. (4.24)

We assert that if the spring constant k satisfies

r1 <
1/2π− ν2

k
< r2, (4.25)

then the circle of radius r = (1/2π− ν2)/k is a critical curve.
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To prove the assertion we verify (4.8). We consider the embedding

F(u)= r
(

cos(u), sin(u)
)
, u∈ [0,2π]. (4.26)

Denote by N the unit normal vector field along F(S1) oriented so that the pair (T,N) is
consistent with the standard orientation of R2. We have the identities〈

T′

|F′| ,N
�
=−1

r
,

√
h√
g
= r, F′′ = −rN. (4.27)

To compute τF , we note that for this type of distribution the disks ΩF(u) are line segments
perpendicular to the circle F(S1) whose length is equal to the width of the annulus, that
is, r2− r1. Then the transverse integration along ΩF(u) in the definition of τF can be per-
formed by computing an ordinary integral on the interval [r1− r,r2− r]. We use the first
identity in (4.27) to write τF as

τF =−
∫
ΩF

p(F + v)
(

1−
〈

T′

|F′| ,vN
�)

vNdv

=−
∫ r2−r

r1−r
p(r + v)

(
1 +

v

r

)
vNdv.

(4.28)

Simplifying and making the change of variables ρ = r + v gives

τF =−1
r

∫ r2

r1

ρ(ρ− r)p(ρ)dρN, (4.29)

which, written in terms of the νk’s, reads

τF =−ν2 + ν1

r
N. (4.30)

We give an explicit formula for ν1. By changing to polar coordinates in the integral∫
Ω p(x)dx, we get

1=
∫
Ω
p(x)dx =

∫ 2π

0

∫ r2

r1

p(ρ)ρdρdθ, (4.31)

from which it follows that 1= 2πν1 or ν1 = 1/2π. Substituting this into (4.30) gives

τF = −ν2 + 1/2π
r

N. (4.32)

We now write (4.8) multiplying τF by
√
h/
√
g = r and adding k∆gF =−krN:

τF

√
h√
g

+ k∆gF =
(
− ν2 +

1
2
π
)

N− krN. (4.33)

This expression vanishes identically since r = (1/2π− ν2)/k. This shows that F is a critical
embedding.
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Example 4.6. The spherical shell. We now consider a probability distribution that is sup-
ported on the region

Ω= {x ∈R
3 : r1 ≤ |x| ≤ r2

}
. (4.34)

We assume that p depends only on |x|. Let

νk =
∫ r2

r1

ρk p(ρ)dρ. (4.35)

We assert that if the spring constant k satisfies

r1 <
ν3

2k+ 1/4π
< r2, (4.36)

then the sphere S2
r of radius r = ν3/(2k+ 1/4π) is critically embedded in Ω.

To verify this assertion we check that the inclusion i : S2 ↩R3 satisfies the Euler-
Lagrange equation (4.8). For this, we compute the quantities appearing in it. First no-
tice that the quotient of volume elements is given by

√
h√
g
= r2, (4.37)

since the sphere S2
r is a dilation by a factor of r of the standard unit sphere S2. Let n̂ ∈

C∞(M,Rn) be the outer unit normal vector field along S2
r , and denote by vn̂ ∈ NF(x),

v ∈R, any vector normal to S2
r at F(x). By the symmetry of the sphere, the shape operator

S is a scalar multiplication by −1/r. Then, we can write a formula for τF as

τF =−
∫
ΩF

p
(
F + vn̂

)
det

(
I − Sv

)
vn̂dv =−

∫ r2−r

r1−r
p(r + v)

(
1 +

v

r

)2

vn̂dv. (4.38)

To evaluate this integral, we make the change of variables ρ = r + v and write the result in
terms of the νi’s. We get

τF = −
(
ν3− rν2

)
n̂

r2
. (4.39)

We next compute an explicit formula for ν2 using the identity
∫
Ω p(x)dx = 1:

1=
∫
Ω
p(x)dx =Vol

(
S2)∫ r2

r1

p(ρ)ρ2dρ = 4πν2. (4.40)

Substituting ν2 = 1/4π into (4.39) gives

τF = −
(
ν3− r/4π

)
n̂

r2
. (4.41)

Finally, we write a formula for δi jB(eMi ,eMj ) in terms of the shape operator S as

δi jB
(
eMi ,eMj

)= δi j
〈
SeMi ,eMj

〉
n̂. (4.42)
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Using that S is a scalar multiplication by −1/r and the identity δi j〈eMi ,eMj 〉 = 2r2 gives

δi jB
(
eMi ,eMj

)=−2r. (4.43)

Using (4.37), (4.41), and (4.43) to write (4.8) gives

τF

√
h√
g
− kδi jB

(
eMi ,eMj

)=−(ν3− r

4
π− 2rk

)
n̂, (4.44)

which vanishes since r = ν3/(1/4π + 2k). This shows that S2
r is a critical sphere.

Proof of Theorem 4.2. This is a direct calculation. Set Ed(t) = Ed[Φ(·, t)] and Eh(t) =
Eh[Φ(·, t)]. By the definition of harmonic energy, we have

E′h(t)= d

dt

1
2

∫
M
gi j
〈
∂Φ

∂xi
(x, t),

∂Φ

∂x j (x, t)
�
dvolg

=
∫
M
gi j
〈
∂Φ

∂xi
(x, t),

∂2Φ

∂t∂x j (x, t)
�
dvolg .

(4.45)

Evaluating at t = 0 yields

E′h(0)=
∫
M
gi j
〈
∂F

∂xi
,
∂V

∂x j

�
dvolg =

∫
M

〈
∆gF,V

〉
dvolg , (4.46)

where the last equality follows by integrating by parts. Adding this to the first variation of
Ed computed in Theorem 3.3 gives formula (4.7).

We now prove the second statement of the theorem, that is, that F is a critical em-
bedding if and only if F : M → F(M) is a harmonic map and satisfies (4.8). For F to be
a critical embedding, the derivative E′(0) must vanish for all V . This is equivalent to the
condition

τF

√
h√
g

+ k∆gF = 0, (4.47)

where the difference in the volume element between the two integrals in (4.7) is expressed
in terms of the quotient

√
h/
√
g. Since τF is normal to F(M), the tangential component

of ∆gF is zero,

(
∆gF

)
‖ = 0. (4.48)

Therefore, a critical embedding F is harmonic, considered as a map from M onto its
image, that is, F : M→ F(M) [21, page 138].

We now compute the normal component of ∆gF. Let V ∈NF . We use (4.6) to compute
〈∆gF,V〉 taking into account that 〈∂F/∂xi,V〉 = 0. We have

〈
∆gF,V

〉=−gi j〈 ∂2F

∂xi∂x j ,V
�
=−gi j

〈
B
(
∂F

∂xi
,
∂F

∂x j

)
,V
�

(4.49)



José L. Martı́nez-Morales 861

by the definition of second fundamental form. Since this equality holds for every V ∈NF ,
we get

(
∆gF

)
⊥ = −gi jB

(
∂F

∂xi
,
∂F

∂x j

)
=−δi jB(eMi ,eMj

)
. (4.50)

Substituting into (4.47) establishes (4.8). �

We close this section with a technical lemma that will be needed.

Lemma 4.7. Let F0 ∈ C∞(S1,Rn). Then there exists ε > 0 such that for all F ∈ C∞(S1,Rn)
with ‖F −F0‖C1 < ε there exist V ∈NF0 and a diffeomorphism φ : S1 → S1 such that

F = (F0 +V
)◦φ. (4.51)

Moreover, F has constant speed; that is, |F′|′ = 0 if and only if φ, when viewed as a real-
valued function, has its inverse given by the formula

φ−1(u)= 1
|F′|

∫ u

0

∣∣F′0(v) +V ′(v)
∣∣dv. (4.52)

Proof. Let V = F −F0 ◦ λF0 ◦F. Since λF0 assigns to F(u)∈Ω a point λF0 (F(u))∈ S1 such
that F0(λF0 (F(u))) realizes the distance between F(u) and F0(S1), we have that V(u) is
normal to F0(S1) at F0(λF0 ◦F(u)), that is, V(u)∈NF0(λF0◦F(u)). We also have

F = F0 ◦ λF0 ◦F +V. (4.53)

To prove the lemma, it suffices to show that the map φ : S1 → S1 defined by φ = λF0 ◦F is
a diffeomorphism. For this, we apply the following sublemma.

Sublemma 4.8. Let F0 ∈ C∞(S1,Rn). Then there exists ε > 0 such that for all u0 ∈ S1 and
all F ∈ C∞(S1,Rn) with ‖F −F0‖C1 < ε, the angle between T0(u0) and T(u) is less than π/2,
for all u∈ φ−1{u0}.
Proof of Sublemma 4.8. For F in a C1 neighborhood of F0 and u∈ φ−1{u0}, we show that

∣∣T0
(
u0
)−T(u)

∣∣ <√2. (4.54)

Let ε1 > 0 such that if ‖F − F0‖C1 < ε1, then ‖T−T0‖C0 < 1/
√

2. Since T0 ◦ λF0 : Ω→ Rn

is a uniformly continuous function on the compact Ω, there exists ε2 > 0 such that for
all x1,x2 ∈ Ω with |x1 − x2| < ε2, we have |T0 ◦ λF0 (x1)− T0 ◦ λF0 (x2)| < 1/

√
2. Setting

ε =min{ε1,ε2}, we have∣∣T0
(
u0
)−T(u)

∣∣= ∣∣T0
(
φ(u)

)−T(u)
∣∣

≤ ∣∣T0
(
φ(u)

)−T0
(
λF0 ◦F0(u)

)∣∣+
∣∣T0

(
λF0 ◦F0(u)

)−T(u)
∣∣. (4.55)

Writing φ = λF0 ◦F, and since |F(u)−F0(u)| < ε ≤ ε2, we get

∣∣T0
(
u0
)−T(u)

∣∣ < 1√
2

+
∣∣T0

(
λF0 ◦F0(u)

)−T(u)
∣∣. (4.56)
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Since λF0 ◦F0 : S1 → S1 is the identity map,

∣∣T0
(
u0
)−T(u)

∣∣ < 1√
2

+
∣∣T0(u)−T(u)

∣∣. (4.57)

Using |T0(u)−T(u)| < 1/
√

2 gives (4.54). �

We now continue with the proof of Lemma 4.7. We use Sublemma 4.8 to prove that φ
is a diffeomorphism.

We start by showing that φ is injective. Let u0 ∈ S1 and consider the subset {ui}i∈I ⊂ S1

such that φ(ui)= u0. Then ui ∈ φ−1{u0} and F(ui)∈ λ−1
F0
{u0} for all i∈ I . Consider now

the plane NF0(u0) orthogonal to F0(S1) at F0(u0). Then {F(ui)} ⊂NF0(u0) is the set of points
at which F(S1) intersects NF0(u0). By Sublemma 4.8, the angle between the tangent vectors
T0(u0) and T(ui) is less than π/2, for all i∈ I . This can only happen if {F(ui)} consists of
one element only. This shows that φ is injective.

Next we show that φ is surjective. Since φ = λF0 ◦F is continuous and since S1 is Haus-
dorff and compact, by the closed map lemma, φ(S1) is closed. In particular, we have that
φ(S1) contains its boundary ∂φ(S1) ⊂ S1. Assume that ∂φ(S1) �= ∅ and let u1 ∈ S1 with
φ(u1)∈ ∂φ(S1). Set u0 = φ(u1). Then u1 ∈ φ−1{u0}, and by Sublemma 4.8, the angle be-
tween T0(u0) and T(u1) is less than π/2. In particular, there is an open segment near
F(u1) in F(S1) that projects onto an open segment of F0(u0) in F0(S1). This contradicts
that φ(u1)∈ ∂φ(S1), and then ∂φ(S1)=∅. This shows that φ is surjective.

From the homeomorphism theorem, it follows that the continuous bijection φ : S1 →
S1 from the compact and Hausdorff space S1 onto itself is a homeomorphism. A sufficient
condition for a smooth homeomorphism to be a diffeomorphism is that its differential
be nonsingular at every point of S1. Since F is an embedding, to show that φ∗ = (λF0 ◦F)∗
is injective, it suffices to show that λF0∗T(u) �= 0, for all u∈ S1. If λF0∗T(u1)= 0 for some
u1 ∈ S1, the angle between T(u1) and T0(λF0 ◦ F(u1)) would be π/2. This contradicts
Sublemma 4.8, and therefore λF0∗T(u) �= 0 for all u ∈ S1. This shows that φ is a diffeo-
morphism.

We now prove the second statement of the lemma, that is, that F has constant speed if
and only if φ−1 is given by (4.52).

View φ as a real-valued function defined on the interval [0,2π]. Without loss of gen-
erality, let φ(0) = 0. We compute |F′| by applying the chain rule in (4.51). This gives
|F′| = |(F′0 +V ′)◦φ||φ′|. Since φ is a diffeomorphism and φ(0)= 0, φ′ > 0. Hence

|F′| = ∣∣(F′0 +V ′)◦φ∣∣φ′. (4.58)

We use the formula for the derivative of the inverse function (φ−1)′ ◦φ= 1/φ′ and (4.58)
to obtain (φ−1)′ ◦φ= (1/|F′|)|F′0 +V ′| ◦φ. Composing with φ on the right and integrat-
ing from 0 to u∈ [0,2π] gives

φ−1(u)−φ−1(0)=
∫ u

0

∣∣F′0(v) +V ′(v)
∣∣∣∣F′(v)

∣∣ dv, (4.59)
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since φ(0) = 0. If |F′| is constant, then this formula implies (4.52). Conversely, assume
that (4.52) holds. Then we have

∫ u

0

∣∣F′0(v) +V ′(v)
∣∣∣∣F′(v)

∣∣ dv = 1∣∣F′(u)
∣∣
∫ u

0

∣∣F′0(v) +V ′(v)
∣∣dv. (4.60)

By taking the derivative with respect to u and simplifying, we get |F′|′ = 0. This proves
the lemma. �

4.3. Second variation of E. We now investigate conditions under which a critical em-
bedding yields a local minimum of E by computing its second variation.

Denote by g∗ the induced metric in the cotangent bundle T∗x M. Our formulation of
the second variation of E involves two additional quantities:

(i) the symmetric functional QF : C∞(M,Rn)×C∞(M,Rn)→ C∞(M) given by

QF(X ,Y)= kδi j
〈
dX
(
eMi
)
,dY

(
eMj
)〉−HF(X ,Y)

√
h√
g

; (4.61)

(ii) the bilinear map qF : (Rn⊗T∗M)× (Rn⊗T∗M)→ C∞(M) given by

qF(X ⊗ ξ,Y ⊗η)= k〈X ,Y〉g∗(ξ,η)

−
∫
ΩF

〈X ,v〉〈Y ,v〉
〈
ξ#,
(
I − Sv

)−1
η#
〉
p(F + v)det

(
I − Sv

)
dv

√
h√
g
.

(4.62)

Our main goal in this section is to prove the following.

Theorem 4.9. Let F be a critical embedding of E and let Φ be a smooth variation of F. Then
the second variation of E is given by the formula

∂2E
[
Φ(·,s, t)]
∂s∂t

∣∣∣∣
(s,t)=0

=
∫
M
PF〈V ,W〉dvolh +

∫
M
QF(V ,W)dvolg , (4.63)

where V and W are the variational vector fields generated by Φ. Moreover, if PF > 0, the
bilinear map qF is positive definite, and M = S1, then there is an ε > 0 such that all F̃ ∈ �Ω

with ‖F − F̃‖C2 < ε satisfy E[F]≤ E[F̃].

Theorem 4.10. Consider the standard sphere S2 ⊂ R3 with the induced Euclidean metric.
Let F : S2 → S2 ⊂ R3 be a critical embedding of E. If qF is positive semidefinite, then the
second variation of E is positive semidefinite.

Before proving Theorems 4.9 and 4.10, we discuss some of their consequences.

Example 4.11 (curves in Rn). In this case qF is positive definite if and only if

k|X|2− Λ2(X ,X)
|F′| > 0, X ∈R

n. (4.64)
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To verify this we compute formula (4.62) using the identities

(
I − Sv

)−1
det

(
I − Sv

)= 1,
〈
ξ#,η#〉= g∗(ξ,η)

|F′|2 ,

√
h√
g
= |F′|. (4.65)

We get

qF(X ⊗ ξ,Y ⊗η)= k〈X ,Y〉g∗(ξ,η)

−
∫
ΩF

〈X ,v〉〈Y ,v〉g∗(ξ,η)|F′|−2p(F + v)dv|F′|. (4.66)

Simplifying and writing the result in terms of Λ2 gives

qF(X ⊗ ξ,Y ⊗η)= g∗(ξ,η)
(
k〈X ,Y〉− Λ2(X ,Y)

|F′|
)

, (4.67)

from which the statement follows.

Example 4.12. Let p be a radial density relative to a curve Γ. From Example 2.8, it follows
that the covariance tensor σ2⊥ is a constant multiple |σ2⊥| of the Euclidean scalar product
restricted to ΩF(u). If k = 2π|σ2⊥|/L2

F , then Γ is a critical curve by Example 4.4. In this case,
we have

qF(X ⊗ ξ,Y ⊗η)= k〈T,X〉〈T,Y〉g∗(ξ,η). (4.68)

To verify this, use the identities Λ0 = 1/LF , µ⊥ = 0, |F′| = LF/2π, and k = 2π|σ2⊥|/L2
F , and

write Λ2 in terms of σ2⊥ in (4.67). We have

qF(X ⊗ ξ,Y ⊗η)= g∗(ξ,η)
(
k〈X ,Y〉− Λ0

(
σ2⊥ +µ⊥ ⊗µ⊥

)
(X ,Y)

|F′|
)

= g∗(ξ,η)
(

2π
∣∣σ2⊥

∣∣〈X ,Y〉
L2
F

−
(

1
LF

)
σ2⊥(X ,Y)
LF/2π

)
.

(4.69)

Since the covariance tensor is a constant multiple |σ2⊥| of the Euclidean scalar product
restricted to ΩF(u), we get that the scalar product of the normal components 〈X⊥,Y⊥〉
cancels (here X⊥ = X −〈T,X〉T). This implies the assertion.

Example 4.13. For critical curves in the plane, we write

µ⊥
(

N(u)
)= µ⊥(u), σ2

⊥
(

N(u),N(u)
)= σ2

⊥(u). (4.70)

Then qF is positive definite if and only if

k >
2πΛ0

(
µ2⊥ + σ2⊥

)
LF

. (4.71)

In particular, for an annular distribution, this condition is satisfied if and only if the
radius of a critical circle is less than 1/(2πν0), where ν0 is defined by (4.24).
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To verify this, we use the identity |F′| = LF/2π, write X = 〈T,X〉T + 〈N,X〉N, and
write Λ2 in terms of µ⊥ and σ2⊥ in (4.67). We have

qF(X ⊗ ξ,X ⊗ ξ)= g∗(ξ,ξ)
(
k|X|2− Λ0

(
σ2⊥ +µ⊥ ⊗µ⊥

)
(X ,X)

|F′|
)

= g∗(ξ,ξ)
(
k
(〈T,X〉2 + 〈N,X〉2)− Λ0

(
σ2⊥ +µ2⊥

)〈N,X〉2

LF/2π

)
.

(4.72)

This is positive for all X ∈ TuS1, X �= 0, if and only if k > 2πΛ0(µ2⊥ + σ2⊥)/LF . Now set
X = dT/ds in (4.9). We get

−Λ1

(
dT
ds

)
+Λ2

(
dT
ds

,
dT
ds

)
−
(
kLF
2π

)〈
dT
ds

,
dT
ds

�
= 0. (4.73)

By (4.67), we have that qF is positive definite if and only if −Λ1(dT/ds) > 0. For a critical
circle with radius r in an annular distribution, we have, by the definition of Λ1,

−Λ1

(
dT
ds

)
=−

∫ r2−r

r1−r

〈
dT
ds

,vN
�
p(r + v)dv. (4.74)

Using 〈dT/ds,N〉 = −1/r and making the change of variables ρ = r + v gives

−Λ1

(
dT
ds

)
=−

∫ r2

r1

(
− 1

r

)
(ρ− r)p(ρ)dρ. (4.75)

Simplifying and writing the result in terms of νk gives

−Λ1

(
dT
ds

)
= ν1− rν0

r
. (4.76)

Since ν1 = 1/2π (Example 4.5), we get that qF is positive definite if and only if r <
1/(2πν0).

Example 4.14 the spherical shell. In Example 4.6 we showed that the sphere S2
r of radius

r = ν3/(2k+ 1/4π) is critically embedded in Ω. For this, the second variation of E is posi-
tive semidefinite if the quadratic form

k〈X ,Y〉−
(
Λ0
(
µ⊥ ⊗µ⊥ + σ2

⊥
)

+
Λ3
(

n̂
)

r

)
(X ,Y), X ,Y ∈R

n, (4.77)

is positive semidefinite. To verify this claim, we compute qF and apply Theorem 4.10.
We substitute the identities

〈
ξ#,η#〉= g∗(ξ,η)

r2
,

(
I − Sv

)−1
det

(
I − Sv

)= 1 +
v

r
,

√
h√
g
= r2 (4.78)

in definition (4.62) of qF to obtain

qF(X ⊗ ξ,Y ⊗η)= k〈X ,Y〉g∗(ξ,η)−
∫
ΩF

g∗(ξ,η)r−2
(

1 +
v

r

)
p(F + v)dv r2. (4.79)
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We write v = 〈vn̂, n̂〉 and use the definition of transverse moments Λk to get

qF(X ⊗ ξ,Y ⊗η)= k〈X ,Y〉g∗(ξ,η)− g∗(ξ,η)
(
Λ2(X ,Y) +Λ3

(
X ,Y ,

n̂
r

))
. (4.80)

Writing Λ2 in terms of the transverse mean µ⊥ and the covariance tensor σ2⊥ gives (4.77)
multiplied by the factor g∗(ξ,η). Therefore qF is positive semidefinite if and only if (4.77)
defines a positive semidefinite quadratic form.

Example 4.15 (embedded surfaces in R3). We write the second variation of the func-
tional E for the case when the manifold is an embedded surface in R3. The second vari-
ation of E is expressed in terms of the function PF and of QF . The following corollary to
Theorem 4.9 states that if the variational vector fields are normal to the embedded sur-
face and if a certain quadratic form that depends on the spring constant, the metric of
the surface, the Euclidean metric induced in the surface, the second and third moments,
and the shape operator is positive definite, then the second variation is positive definite.
The meaning of this corollary is that a necessary condition for an embedding to be a
minimum of the functional E is that the spring constant is sufficiently large so that this
quadratic form is positive definite.

Let n̂ denote the outer unit vector to M and let the second variation of the functional
E involve the shape operator. The following is the definition of an operation of 2× 2
matrices. This operation is applied to the shape operator in the calculation of the second
variation.

Corollary 4.16. Suppose that

(1) X and Y are normal to F(M),
(2) for almost all x ∈M, kgi j−(

√
h/
√
g)hik(µ2δ

j
k−µ3(S†)

j
k) is positive definite.

Then ∂2E[Φ(·,s, t)]/∂s∂t|(s,t)=0 is positive definite.

In the proof of Corollary 4.16 one computes QF in terms of the quadratic form in the
statement of the corollary evaluated at the gradients of the magnitudes of the variational
vector fields. For it, the partial derivatives of the variational vector fields are computed in
local coordinates. On the other hand, the function PF is positive almost everywhere since
the determinant det(I − Sv) is nonvanishing in Ω and since, by hypothesis, the quadratic
form is positive definite; Theorem 4.9 implies that the second variation of E is positive
definite.

Proof of Corollary 4.16. By Hypothesis (1),

∂X

∂xi
= ∂

〈
n̂,X

〉
∂xi

n̂ +
〈

n̂,X
〉 ∂n̂
∂xi

. (4.81)

Therefore,

〈
∂X

∂xi
,
∂Y

∂x j

�
= ∂

〈
n̂,X

〉
∂xi

∂
〈

n̂,Y
〉

∂x j +
〈〈

n̂,X
〉 ∂n̂
∂xi

,
〈

n̂,Y
〉 ∂n̂
∂x j

�
, (4.82)
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since 〈n̂,∂n̂/∂xi〉 = 0. By (4.82), (4.61), and Hypothesis (1),

QF(X ,Y)= kgi j
〈
∂X

∂xi
,
∂Y

∂x j

�
− 〈grad

〈
X , n̂

〉
,
(
µ2I −µ3S†

)
grad

〈
Y , n̂

〉〉√h√
g

= kgi j
(
∂
〈

n̂,X
〉

∂xi
∂
〈

n̂,Y
〉

∂x j +
〈〈

n̂,X
〉 ∂n̂
∂xi

,
〈

n̂,Y
〉 ∂n̂
∂x j

�)

− ∂
〈
X , n̂

〉
∂xi

hi j
(
µ2I −µ3S†

)k
j

∂
〈
Y , n̂

〉
∂xk

√
h√
g
.

(4.83)

The function PF is positive almost everywhere since the determinant det(I − Sv) is nonva-
nishing in Ω. Then, by (4.83), Hypothesis (2), and Theorem 4.9, ∂2E[Φ(·,s, t)]/∂s∂t|(s,t)=0

is positive definite. �

Proof of Theorem 4.9. By (4.45),

∂2Eh(s, t)
∂s∂t

= ∂

∂s

∫
M
gi j
〈
∂Φ

∂xi
(x,s, t),

∂2Φ

∂t∂x j (x,s, t)

〉
dvolg

=
∫
M
gi j
(〈

∂2Φ

∂s∂xi
(x,s, t),

∂2Φ

∂t∂x j (x,s, t)

〉
+

〈
∂Φ

∂xi
(x,s, t),

∂3Φ

∂s∂t∂x j (x,s, t)

〉)
dvolg .

(4.84)

Evaluation at s, t = 0 gives

∂2Eh
∂s∂t

∣∣∣∣
(s,t)=0

=
∫
M
gi j
(〈

∂V

∂xi
,
∂W

∂xj

�
+
〈
∂F

∂xi
,
∂Z

∂x j

�)
dvolg

=
∫
M

(
δi j
〈
dV

(
eMi
)
,dW

(
eMj
)〉

+
〈
∆gF,Z

〉)
dvolg ,

(4.85)

where Z = (∂2Φ/∂s∂t)|(s,t)=0, and we integrated by parts in the last step. Adding this to
the second derivative of Ed (formula (3.78)) gives

∂2E
[
Φ(·,s, t)]
∂s∂t

∣∣∣∣
(s,t)=0

= ∂2Ed
[
Φ(·,s, t)]
∂s∂t

∣∣∣∣
(s,t)=0

+ k
∂2Eh

[
Φ(·,s, t)]
∂s∂t

∣∣∣∣
(s,t)=0

=
∫
M

(
PF〈V ,W〉−HF(V ,W) +

〈
τF ,Z

〉)
dvolh

+ k
∫
M

(
δi j
〈
dV

(
eMi
)
,dW

(
eMj
)〉

+
〈
∆gF,Z

〉)
dvolg .

(4.86)

Since F is a critical embedding, Theorem 4.2 implies that the terms involving Z cancel.
Writing (4.86) in terms of QF establishes (4.63). �

Next we prove the second statement of the theorem, that is, the sufficient conditions
for a local minimum of E. We have the following proposition.
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Proposition 4.17. There is a neighborhood U0 of F0 in C2(S1,Rn) such that for any em-
bedding F in this neighborhood satisfying |F′|′ = 0, there exists V ∈ NF0 such that F =
(F0 + V) ◦ φ, where φ : S1 → S1 is a diffeomorphism that, viewed as a real-valued func-
tion, has its inverse defined by (4.52). Moreover, for all such embeddings F ∈ U0, there
exist C,ε > 0 such that if ‖F − F0‖C2 < ε, then the second variation of E at F satisfies
δ2E[F]≥ C‖V‖2

1, where ‖V‖2
1 is the square of the Sobolev norm of V .

Proof of Proposition 4.17. This is a consequence of Lemma 4.7. To prove the “moreover”
part we let W ∈ C∞(S1,Rn) be a variational vector field. We compute δ2E(W ,W) as

δ2E(W ,W)=
∫
S1

{
PF
〈
W⊥,W⊥

〉|F′|+ k
(〈

T,
W ′
‖

|F′|
�
−
〈

T′

|F′| ,W⊥
�)2

+ qF
(∇⊥W⊥,∇⊥W⊥

)}
du.

(4.87)

We will prove this formula later; we use it now to find a lower bound of δ2E(W ,W). Since
qF0 is positive definite, by Lemma 4.20, there are C1,ε1 > 0 such that for all F ∈ �Ω with
‖F −F0‖C2 < ε1, we have

qF
(
dW⊥,dW⊥

)≥ C1

∣∣∣∣W ′⊥
|F′|

∣∣∣∣2

. (4.88)

If PF0 > 0, by Lemma 4.18, there are C2,ε2 > 0 such that if ‖F −F0‖C2 < ε2, then

PF|F′| ≥ C2. (4.89)

Combining inequalities (4.88) and (4.89) with estimate (4.87) gives

δ2E(W ,W)≥
∫
S1

{
C2
∣∣W⊥

∣∣2
+C1

∣∣∣∣W ′⊥
|F′|

∣∣∣∣2}
du≥min

{
C1,C2

}∥∥W⊥
∥∥2

1. (4.90)

Now we consider a constant speed variation Φt = (F + tV) ◦ φt and compute W =
(dΦt/dt)|t=0. By the chain rule,

dΦt

dt

∣∣∣∣
t=0
= [(F′ + tV ′)◦φt ·φ′t

]
t=0 +V ◦φt

∣∣
t=0 = F′φ′t

∣∣
t=0 +V. (4.91)

Since F′(u) ∈ TuS1, we get W⊥ = V . Substituting this into (4.90), we get that if ‖F −
F0‖C2 < min{ε1,ε2}, then the second variation δ2E(W ,W) is bounded below by

δ2E(W ,W)≥min
{
C1,C2

}‖V‖2
1. (4.92)

This proves Proposition 4.17. �

We now continue with the proof of Theorem 4.9. We use Proposition 4.17 to define
a constant speed variation of F0 given by Φt = (F0 + tV) ◦ φt, with φt given by (4.52).
Consider the real-valued function defined by E(t)= E[Φt]. By Taylor’s theorem,

E[F]−E
[
F0
]= E′(0) +

∫ 1

0
(1− t)E′′(t)dt. (4.93)
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Since F0 is a critical embedding, then E′(0)= 0. Since E′′ ≥ C‖tV‖2
1 = Ct2‖V‖2

1, we have

E[F]−E
[
F0
]≥ C‖V‖2

1

12
. (4.94)

We use this inequality to show that F0 is a local minimum. Any F̃ ∈U0 can be written as
F̃ = (F0 +V) ◦ φ̃ with V ∈ NF0 and φ̃ : S1 → S1 a diffeomorphism. Let F be the constant
speed embedding defined by F = (F0 +V) ◦φ with φ given by (4.52). We show first that
E[F]≤ E[F̃], and then use (4.94) to conclude that E[F0]≤ E[F̃] for all F̃ ∈U0.

Let γ = (F0 +V)(S1) be the image curve of S1 under F0 +V . Since the length of γ does
not depend on the parameterization of S1, we have∫ 2π

0

∣∣F̃′∣∣du= Lγ =
∫ 2π

0
|F′|du. (4.95)

Since |F′| is constant, we have |F′| = Lγ/2π. Hence

Eh[F]= 1
2

∫ 2π

0
|F′|2du= L2

γ

4π
= 1

4π

(∫ 2π

0

∣∣F̃′∣∣du
)2

. (4.96)

By Schwarz’s inequality,

Eh[F]≤ 1
4π

∫ 2π

0
12du

∫ 2π

0

∣∣F̃′∣∣2
du= Eh

[
F̃
]
. (4.97)

Since the expected value of the distance to γ does not depend on the parameterization of
S1, that is, Ed[F]= Ed[F̃], by (4.97), we have

Ed[F] + kEh[F]= Ed
[
F̃
]

+ kEh[F]≤ Ed
[
F̃
]

+ kEh
[
F̃
]
. (4.98)

By (4.94), we conclude

E
[
F0
]≤ E[F]≤ E

[
F̃
]
. (4.99)

This shows that F0 is a local minimum.
To complete the proof of Theorem 4.9 we need to prove formula (4.87). For this, we

use formulas (4.137) through (4.140). We start by computing (4.138) using the identities

eMi = T, dW
(
eMi
)= W ′

|F′| , δi jh
(
dW‖

(
eMi
)
,dW‖

(
eMj
))=〈T,

W ′
‖

|F′|
�2

. (4.100)

Since W‖ = 〈T,W‖〉T, W ′
‖ = 〈T,W‖〉′T + 〈T,W‖〉T′. Hence, the normal component of

W ′
‖ is given by

B
(
eMi ,W‖

)= 〈T,W‖
〉 T′

|F′| . (4.101)

This implies that

B
(
W‖,W‖

)= 〈T,W‖
〉2 T′

|F′| , B
(
eMi ,eMj

)= T′

|F′| . (4.102)
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By the Gauss equation [3, page 135],

RF
(
W‖,eMi ,eMj ,W‖

)= 〈B(W‖,W‖
)
,B
(
eMi ,eMj

)〉− 〈B(W‖,eMi
)
,B
(
W‖,eMj

)〉
. (4.103)

Substituting (4.101) and (4.102) gives

RF
(
W‖,eMi ,eMj ,W‖

)=
〈〈

T,W‖
〉2 T′

|F′| ,
T′

|F′|

〉
−
〈〈

T,W‖
〉 T′

|F′| ,
〈

T,W‖
〉 T′

|F′|

〉
= 0.

(4.104)

Therefore (4.138) can be written using (4.100) as

δ2E
(
W‖,W‖

)= k
∫
S1

〈
T,

W ′
‖

|F′|
�2

du. (4.105)

We next compute δ2E(W‖,W⊥), computing the three terms occurring in (4.139). By
(4.100) and (4.101),

〈
B
(
eMi ,W‖

)
,dW⊥

(
eMj
)〉=〈〈T,W‖

〉 T′

|F′| ,
W ′⊥
|F′|

�
. (4.106)

By (4.102),

−〈dW⊥
(
W‖

)
,B
(
eMi ,eMj

)〉=−〈〈T,W‖
〉W ′⊥
|F′| ,

T′

|F′|
�
. (4.107)

By Example 2.2, the shape operator SW⊥ is a scalar multiplication by 〈T′/|F′|,W⊥〉. Using
this, together with the first two identities in (4.100), gives

−〈dW‖
(
eMi
)
,SW⊥e

M
j

〉=−〈W ′
‖

|F′| ,
〈

T′

|F′| ,W⊥
�

T
�
. (4.108)

We add (4.88), (4.107), and (4.108) to write a formula for δ2E(W‖,W⊥). After simplify-
ing, we get

δ2E
(
W‖,W⊥

)=−k∫
S1

〈
T,

W ′
‖

|F′|
�〈

T′

|F′| ,W⊥
�
du. (4.109)

Finally we compute δ2E(W⊥,W⊥). We have

〈
SW⊥e

M
i ,SW⊥e

M
j

〉=〈〈 T′

|F′| ,W⊥
�

T,
〈

T′

|F′| ,W⊥
�

T
�
=
〈

T′

|F′| ,W⊥
�2

. (4.110)

Substituting this into (4.140) gives

δ2E
(
W⊥,W⊥

)=∫
S1
PF
〈
W⊥,W⊥

〉|F′|du+
∫
S1

{
k
〈

T′

|F′| ,W⊥
�2

+ qF
(∇⊥W⊥,∇⊥W⊥

)}
du.

(4.111)
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Now we add (4.105) twice (4.109) and (4.111) to obtain δ2E(W ,W). After simplifying,
we get (4.87).

Proof of Theorem 4.10. We compute δ2E(V ,V) = δ2E(V‖,V‖) + 2δ2E(V‖,V⊥) + δ2E(V⊥,
V⊥) and show that δ2E(V‖,V‖),δ2E(V⊥,V⊥)≥ 0 and δ2E(V‖,V⊥)= 0. This will give the
result. To compute each of these terms, we apply Lemma 4.21.

We begin by showing that δ2E(V‖,V‖)≥ 0. By (4.138), we have that δ2E(V‖, V‖) is the
second variation formula of the harmonic functional [21, page 155]. By Theorem 4.2, we
have that F : S2 → S2 is a harmonic diffeomorphism. Since a harmonic diffeomorphism
between Riemannian surfaces is minimizing [8, Theorem 3], we have that the second
variation δ2E(V‖,V‖) is nonnegative.

Next we prove that δ2E(V‖,V⊥) = 0. Let n̂ ∈ C∞(S2,Rn) be the outer unit normal
vector field along S2. Write V⊥ = f n̂, for f ∈ C∞(S2). We compute separately the three
terms occurring in (4.139) starting with

δi j
〈
B
(
eMi ,V‖

)
,dV⊥

(
eMj
)〉= δi j

〈
B
(
eMi ,V‖

)
,eMj ( f )n̂ + f dn̂

(
eMj
)〉
. (4.112)

Since 〈n̂, dn̂(eMj )〉 = 0, by (2.5), we get

δi j
〈
B
(
eMi ,V‖

)
,dV⊥

(
eMj
)〉= δi j

〈
eMj ( f )SeMi ,V‖

〉= 〈Sgradg f ,V‖
〉

, (4.113)

where gradg f = δi jeMi ( f )eMj denotes the gradient of f with respect to the metric g. Note
that in this case, the shape operator S : TxS2 → TxS2 is a scalar multiplication by−1. Since
g = h, we have

δi j
〈
B
(
eMi ,V‖

)
,dV⊥

(
eMj
)〉=−〈gradh f ,V‖

〉=−V‖( f ). (4.114)

Next we compute

−δi j〈dV⊥(V‖),B(eMi ,eMj
)〉=−δi j〈V‖( f )n̂ + f dn̂

(
V‖
)
,B
(
eMi ,eMj

)〉
. (4.115)

Proceeding as before,

−δi j〈dV⊥(V‖),B(eMi ,eMj
)〉=−δi j〈V‖( f )SeMi ,eMj

〉=V‖( f )δi j
〈
eMi ,eMj

〉
. (4.116)

Since g = h,

−δi j〈dV⊥(V‖),B(eMi ,eMj
)〉=V‖( f )2. (4.117)

Finally we compute

−δi j〈dV‖(eMi ),SV⊥eMj 〉=−δi j〈dV‖(eMi ),− f eMj
〉
. (4.118)

Since g = h,

−δi j〈dV‖(eMi ),SV⊥eMj 〉= f divV‖. (4.119)
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Adding (4.114), (4.117), and (4.119) gives

δ2E
(
V‖,V⊥

)= k
∫
S2

div
(
f V‖

)
dvolg , (4.120)

which vanishes by the divergence theorem.
We finally prove that δ2E(V⊥,V⊥)≥ 0. For X ∈ TxS2, we have

∇⊥V⊥(X)=∇⊥X f n̂= X( f )n̂. (4.121)

Hence ∇⊥V⊥ = n̂⊗ df . Since qF is positive definite, we have qF(∇⊥V⊥,∇⊥V⊥)= qF(n̂⊗
df , n̂⊗ df ) ≥ 0. Therefore, by (4.140), we have δ2E(V⊥,V⊥) ≥ 0. This shows Theorem
4.10. �

We conclude this section with some technical lemmas used in the proofs of Theorems
4.9 and 4.10.

Lemma 4.18. The map P : �Ω×C(Ω)→ C(M) given by

P(F, p)=
∫
ΩF

p(F + v)det
(
I − Sv

)
dv

√
h√
g

(4.122)

is continuous. Here C(M) and C(Ω) are considered as Banach spaces with the norm of the
supreme, and also �Ω is considered as a subset of C2(M,Rn).

Proof. Let ε > 0. We write P(F, p) in terms of a continuous function defined on J2
Ω. Let

sp : J2
Ω→R be given by

sp
(
j2xF

)= ∫
ΩF(x)

p
(
F(x) + v

)
det

(
I − Sv

(
j2xF

))
dv

√
h
(
j2xF

)
√
g(x)

. (4.123)

Then we write (P(F, p))(x)= sp( j2xF). Assume there exists a neighborhood N ⊂ J2
Ω of the

set { j2xF ∈ J2
Ω : x ∈M} such that its closure N is compact. Since sp is uniformly continu-

ous on N , there exists δ > 0 such that for all F̃ ∈�Ω with ‖F − F̃‖C2 < δ, we have

sup
M

∣∣sp( j2xF)− sp
(
j2x F̃

)∣∣ < ε
2
. (4.124)

Consider now the continuous function s : J2
Ω→R given by

s
(
j2xF

)= ∫
ΩF(x)

det
(
I − Sv

(
j2xF

))
dv

√
h
(
j2xF

)
√
g(x)

. (4.125)

We see that sp ≤ s‖p‖C(Ω). Since P is linear in p, we estimate |P(F, p)−P(F̃, p̃)| as

∣∣P(F, p)−P
(
F̃, p̃

)∣∣≤ ∣∣P(F, p)−P
(
F̃, p

)∣∣+P
(
F̃, p− p̃

)
≤ sup

M

∣∣sp( j2xF)− sp
(
j2x F̃

)∣∣+ sup
M

s
(
j2xF

) ·∥∥p− p̃
∥∥
C(Ω).

(4.126)
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If ‖F−F̃‖C2 < δ and ‖p− p̃‖C(Ω) < ε/(2supN s), by (4.124), we have |P(F, p)−P(F̃, p̃)| < ε.
This proves the lemma. �

Lemma 4.19. Let F ∈ �Ω such that qF is positive definite. There exists C > 0 such that all
x ∈M and all (X ,ξ)∈Rn×T∗x M,X �= 0,ξ �= 0, satisfy qF(X ⊗ ξ,X ⊗ ξ) > Cg∗(ξ,ξ)|X|2.

Proof. Suppose that the lemma is false. Then, for all n∈N, there exist xn ∈M and (Xn,ξn)
∈ Rn×T∗xnM with |Xn|2 = 1, g∗(ξ,ξ)= 1, such that qF(Xn⊗ ξn,Xn⊗ ξn)≤ 1/n. Since M
is compact, there exist sequences {xn} ⊂M, {(Xn,ξn)} ⊂Rn×T∗xnM converging, respec-
tively, to x ∈M, (X ,ξ)∈Rn×T∗x M with |X|2 = 1, g∗(ξ,ξ)= 1. Hence

qF(X ⊗ ξ,X ⊗ ξ)= lim
n→∞qF

(
Xn⊗ ξn,Xn⊗ ξn

)≤ lim
n→∞

1
n
= 0. (4.127)

This is a contradiction since we assumed that qF was positive definite. This proves the
lemma. �

Lemma 4.20. Let (F, p,k) ∈ �Ω ×C(Ω)×R such that qF is positive definite. Then there
exists a neighborhood U ⊂ C2(M,Rn)×C(Ω)×R of (F, p,k) such that all (F̃, p̃, k̃) ∈ U
with F̃ ∈ �Ω satisfy that qF̃ is positive definite, and the constant C given by Lemma 4.19 is
independent of (F̃, p̃, k̃)∈U .

Proof. We write qF in terms of a continuous function defined on J2
Ω. Let sp : J2

Ω×T∗M×
Rn→R be given by

sp
(
j2xF,ξ,X

)= ∫
ΩF(x)

h∗
(
j2xF

)(
ξ,
[(
I − Sv

(
j2xF

))−1
]∗

ξ
)
〈X ,v〉2

× p
(
F(x) + v

)
det

(
I − Sv

(
j2xF

))
dv

√
h
(
j2xF

)
√
g(x)

.

(4.128)

By formula (4.62), we can write qF(X ⊗ ξ,X ⊗ ξ) as

qF(X ⊗ ξ,X ⊗ ξ)= kg∗(ξ,ξ)|X|2− sp
(
j2F,ξ,X

)
. (4.129)

To prove the lemma we show that this formula defines a continuous function in both
variables F and p.

Consider the space � of continuous functions f : J2
Ω×T∗M×Rn→R with the topol-

ogy of the uniform convergence on compact sets. Consider also the composition map
C : (C2(M,Rn)∩�Ω)×C(Ω)→� given by

(
C(F, p)

)(
j2xF,ξ,X

)= sp
(
j2xF,ξ,X

)
. (4.130)

We will prove that C is continuous. Assume this for now and suppose that the lemma
is false. Then there would exist sequences {(Fn, pn,kn)} ⊂ (C2(M,Rn)∩�Ω)× C(Ω)×
R, {(xn,ξn)} ⊂ T∗M with g∗(ξn,ξn) = 1 and {Xn} ⊂ Sn−1, such that {(Fn, pn,kn)} con-
verges to (F, p,k) and qFn(Xn ⊗ ξn,Xn ⊗ ξn) ≤ cg∗(ξn,ξn)|Xn|2, with c > 0 defined as in
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Lemma 4.19. Since M is compact, there exist (x,ξ)∈ T∗M with g∗(ξ,ξ)= 1 and X ∈ Sn−1

such that a subsequence of {(xn,ξn)} converges to (x,ξ) and a subsequence of {Xn} con-
verges to X . On the other hand, by the continuity of the composition map C, the sequence
{C(Fn, pn)} ⊂� converges uniformly on compact sets, and therefore it is equicontinuous
on compact sets. This implies

qF(X ⊗ ξ,X ⊗ ξ)= lim
n→∞qFn

(
Xn⊗ ξn,Xn⊗ ξn

)≤ cg∗(ξ,ξ)|X|2. (4.131)

By Lemma 4.19, this is a contradiction since we assumed that qF was positive definite.
This proves Lemma 4.20. �

We now prove that the composition map C(F, p) is continuous. Let (F, p) ∈ (C2(M,
Rn)∩�Ω)×C(Ω) and let K1 ⊂ J2

Ω, K2 ⊂ T∗M, K3 ⊂ Rn be compact subsets such that
the set { j2xF ∈ J2

Ω : x ∈M} ⊂ K1. Let ε > 0. Since sp is uniformly continuous on K = K1×
K2 ×K3, there exists δ > 0 such that for all F̃ ∈ C2(M,Rn)∩�Ω with ‖F̃ − F‖C2 < δ, we
have

∣∣sp( j2xF,ξ,X
)− sp

(
j2x F̃,ξ,X

)∣∣ < ε
2

, (4.132)

for all x ∈M, ξ ∈ K2, X ∈ K3. Now consider the continuous function s : J2
Ω × T∗M ×

Rn→R given by

s
(
j2xF,ξ,X

)

=
∫
ΩF(x)

h∗
(
j2xF

)(
ξ,
[(
I − Sv

(
j2xF

))−1
]∗

ξ
)
〈X ,v〉2 det

(
I − Sv

(
j2xF

))
dv

√
h
(
j2xF

)
√
g(x)

.

(4.133)

By (4.128), we have

sp ≤ s‖p‖C(Ω). (4.134)

Since sp is linear in p, then the composition map C(F, p) is also linear in p. We estimate
the supreme on K of the difference C(F̃, p̃)−C(F, p) as

∥∥C(F̃, p̃
)−C(F, p)

∥∥
C(K) ≤

∥∥C(F̃, p̃− p
)∥∥

C(K) +
∥∥C(F̃, p

)−C(F, p)
∥∥
C(K)

= sup
K

∣∣sp̃−p( j2x F̃,ξ,X
)∣∣+ sup

K

∣∣sp( j2x F̃,ξ,X
)− sp

(
j2xF,ξ,X

)∣∣.
(4.135)

If ‖F̃ −F‖C2 < δ and ‖ p̃− p‖C(Ω) < ε/(2supK s), then by (4.132) and (4.134), we have

∥∥C(F̃, p̃
)−C(F, p)

∥∥
C(K) < sup

K
s
∥∥ p̃− p

∥∥
C(Ω) +

ε
2
< ε. (4.136)

This proves that C is continuous.
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Lemma 4.21. For F ∈�Ω, let RF : TM×TM→Hom(TM,TM) be the curvature tensor of
M with respect to the induced metric h. Write V‖ = πFV and V⊥ =V −V‖. Then

δ2E(V ,W)= δ2E
(
V‖,W‖

)
+ δ2E

(
V‖,W⊥

)
+ δ2E

(
V⊥,W‖

)
+ δ2E

(
V⊥,W⊥

)
, (4.137)

where

δ2E
(
V‖,W‖

)= k
∫
M
δi j
{
h
(
dV‖

(
eMi
)
,dW‖

(
eMj
))

−h
(
RF
(
V‖,eMi

)
eMj ,W‖

)}
dvolg ,

(4.138)

δ2E
(
V‖,W⊥

)= k
∫
M
δi j
{〈
B
(
eMi ,V‖

)
,dW⊥

(
eMj
)〉− 〈dW⊥

(
V‖
)
,B
(
eMi ,eMj

)〉
− 〈dV‖(eMi ),SW⊥e

M
j

〉}
dvolg ,

(4.139)

δ2E
(
V⊥,W⊥

)= ∫
M
PF
〈
V⊥,W⊥

〉
dvolh

+
∫
M

{
kδi j

〈
SV⊥e

M
i ,SW⊥e

M
j

〉
+ qF

(∇⊥V⊥,∇⊥W⊥
)}
dvolg ,

(4.140)

where∇⊥ denotes the normal connection of F.

Proof. We compute each of these formulas separately.

Proof of (4.138). By (3.47),

HF
(
V‖,W‖

)= ∫
ΩF

〈
πFV‖ −

〈
dV‖,v

〉#
,
(
I − Sv

)−1
(
πFW‖ −

〈
dW‖,v

〉#
)〉

· p(F + v)det
(
I − Sv

)
dv,

(4.141)

where πFV‖ =V‖. We also have 〈dV‖,v〉# = SvV‖ since, for any Y ∈ TxM,

〈〈
dV‖,v

〉#
,Y
〉
= 〈dV‖(Y),v

〉
. (4.142)

By (2.5),

〈〈
dV‖,v

〉#
,Y
〉
= 〈SvV‖,Y〉. (4.143)

Therefore we can write the integrand above in a contravariant way as

HF
(
V‖,W‖

)= ∫
ΩF

〈
V‖ − SvV‖,

(
I − Sv

)−1(
W‖ − SvW‖

)〉
p(F + v)det

(
I − Sv

)
dv

=
∫
ΩF

〈
V‖ − SvV‖,

(
I − Sv

)−1(
I − Sv

)
W‖

〉
p(F + v)det

(
I − Sv

)
dv.

(4.144)
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Simplifying and using (2.5) gives

HF
(
V‖,W‖

)= ∫
ΩF

(〈
V‖,W‖

〉− 〈dW‖
(
V‖
)
,v
〉)
p(F + v)det

(
I − Sv

)
dv

= 〈V‖,W‖
〉∫

ΩF

p(F + v)det
(
I − Sv

)
dv

+
〈
dW‖

(
V‖
)
,−
∫
ΩF

p(F + v)det
(
I − Sv

)
vdv

�
.

(4.145)

By the definition of PF and τF ,

HF
(
V‖,W‖

)= 〈V‖,W‖
〉
PF +

〈
dW‖

(
V‖
)
,τF
〉
. (4.146)

Using this in the definition of QF gives

QF
(
V‖,W‖

)
= kδi j

〈
dV‖

(
eMi
)
,dW‖

(
eMj
)〉− (〈V‖,W‖

〉
PF +

〈
dW‖

(
V‖
)
,τF
〉)√h√

g
.

(4.147)

By (4.8),

QF
(
V‖,W‖

)= kδi j
〈
dV‖

(
eMi
)
,dW‖

(
eMj
)〉− 〈V‖,W‖

〉
PF

√
h√
g

− 〈dW‖
(
V‖
)
,kδi jB

(
eMi ,eMj

)〉
.

(4.148)

We write the first term 〈dV‖(eMi ),dW‖(eMj )〉 separating it into normal and tangential

components of dV‖(eMi ) and dW‖(eMj ). We get

QF
(
V‖,W‖

)= kδi j
〈
B
(
eMi ,V‖

)
,B
(
eMj ,W‖

)〉
+ kδi jh

(
dV‖

(
eMi
)
,dW‖

(
eMj
))

− 〈V‖,W‖
〉
PF

√
h√
g
− 〈B(V‖,W‖

)
,kδi jB

(
eMi ,eMj

)〉
,

(4.149)

where we also used (dW‖(V‖))⊥ = B(V‖,W‖). By the Gauss equation [3, page 135],

QF
(
V‖,W‖

)
= kδi j

(
h
(
dV‖

(
eMi
)
,dW‖

(
eMj
))−RF

(
V‖,eMi ,eMj ,W‖

))− 〈V‖,W‖
〉
PF

√
h√
g
.

(4.150)

By (4.63),

δ2E
(
V‖,W‖

)= ∫
M

{
kδi j

(
h
(
dV‖

(
eMi
)
,dW‖

(
eMj
))−RF

(
V‖,eMi ,eMj ,W‖

))}
dvolg , (4.151)

where the term involving PF has been canceled. This gives (4.138). �
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Proof of (4.139). By (3.47),

HF
(
V‖,W⊥

)= ∫
ΩF

〈
πFV‖ −

〈
dV‖,v

〉#
,
(
I − Sv

)−1
(
πFW⊥ −

〈
dW⊥,v

〉#
)〉

×p(F + v)det
(
I − Sv

)
dv.

(4.152)

Using the identities πFV‖ =V‖, 〈dV‖,v〉# = SvV‖, and πFW⊥ = 0 gives

〈
V‖ − SvV‖,

(
I − Sv

)−1
(
− 〈dW⊥,v

〉#
)〉

=
〈(

I − Sv
)
V‖,

(
I − Sv

)−1
(
− 〈dW⊥,v

〉#
)〉

.
(4.153)

Since (I − Sv)∗ is selfadjoint,

〈
V‖ − SvV‖,

(
I − Sv

)−1
(
− 〈dW⊥,v

〉#
)〉

=
〈
V‖,

(
− 〈dW⊥,v

〉#
)〉
= 〈−dW⊥

(
V‖
)
,v
〉= 〈v,−dW⊥

(
V‖
)〉
.

(4.154)

Substituting into (4.152),

HF
(
V‖,W⊥

)= ∫
ΩF

〈
v,−dW⊥

(
V‖
)〉
p(F + v)det

(
I − Sv

)
dv

=
〈
−
∫
ΩF

p(F + v)det
(
I − Sv

)
vdv,dW⊥

(
V‖
)〉

.
(4.155)

By the definition of τF ,

HF
(
V‖,W⊥

)= 〈τF ,dW⊥
(
V‖
)〉
. (4.156)

Using this in the definition of QF gives

QF
(
V‖,W⊥

)= kδi j
〈
dV‖

(
eMi
)
,dW⊥

(
eMj
)〉− 〈τF ,dW⊥

(
V‖
)〉√h√

g
. (4.157)

By (4.8),

QF
(
V‖,W⊥

)= kδi j
〈
dV‖

(
eMi
)
,dW⊥

(
eMj
)〉− kδi j

〈
B
(
eMi ,eMj

)
,dW⊥

(
V‖
)〉
. (4.158)

We write the term 〈dV‖(eMi ),dW⊥(eMj )〉 separating it into normal and tangential compo-

nents of dV‖(eMi ) and dW⊥(eMj ). We get

QF
(
V‖,W⊥

)= kδi j
(− 〈SW⊥e

M
j ,dV‖

(
eMi
)〉

+
〈
B
(
eMi ,V‖

)
,dW⊥

(
eMj
)〉)

− kδi j
〈
B
(
eMi ,eMj

)
,dW⊥

(
V‖
)〉
.

(4.159)

Using (4.63) gives (4.140). �
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Proof of (4.140). By (3.47),

HF
(
V⊥,W⊥

)= ∫
ΩF

〈
πFV⊥ −

〈
dV⊥,v

〉#
,
(
I − Sv

)−1
(
πFW⊥ −

〈
dW⊥,v

〉#
)〉

× p(F + v)det
(
I − Sv

)
dv

=
∫
ΩF

〈〈
dV⊥,v

〉#
,
(
I − Sv

)−1〈
dW⊥,v

〉#
〉
p(F + v)det

(
I − Sv

)
dv.

(4.160)

We have 〈dV⊥,v〉# = 〈(dV⊥)⊥,v〉#. Hence

HF
(
V⊥,W⊥

)= ∫
ΩF

〈〈(
dV⊥

)
⊥,v

〉#
,
(
I − Sv

)−1
(〈(

dW⊥
)
⊥,v

〉#
)�

p(F + v)det
(
I − Sv

)
dv.

(4.161)

Using this in the definition of QF gives

QF
(
V⊥,W⊥

)
= kδi j

〈
dV⊥

(
eMi
)
,dW⊥

(
eMj
)〉

−
∫
ΩF

〈〈(
dV⊥

)
⊥,v

〉#
,
(
I − Sv

)−1
(〈(

dW⊥
)
⊥,v

〉#
)�

p(F + v)det
(
I − Sv

)
dv

√
h√
g
.

(4.162)

We write 〈dV⊥(eMi ),dW⊥(eMj )〉 separating it into normal and tangential components of

dV⊥(eMi ) and dW⊥(eMj ). By (2.9),

QF
(
V⊥,W⊥

)
= kδi j

〈
SV⊥e

M
i ,SW⊥e

M
j

〉
+ kδi j

〈(
dV⊥

(
eMi
))
⊥,
(
dW⊥

(
eMj
))
⊥
〉

−
∫
ΩF

〈〈(
dV⊥

)
⊥,v

〉#
,
(
I − Sv

)−1
(〈(

dW⊥
)
⊥,v

〉#
)�

p(F + v)det
(
I − Sv

)
dv

√
h√
g
.

(4.163)

This can be written in terms of qF as

QF
(
V⊥,W⊥

)= kδi j
〈
SV⊥e

M
i ,SW⊥e

M
j

〉
+ qF

(∇⊥V⊥,∇⊥W⊥
)
. (4.164)

Using (4.63) gives (4.140). �

5. Conclusions

In this paper we studied the variational properties of the functional

E : �Ω −→R (5.1)
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on the class of Ω-regular embeddings of a manifold M into a closed region Ω⊂ Rn. We
characterized the critical embeddings of this functional by the Euler-Lagrange equation
(4.8). In the special case when M is diffeomorphic to the circle, we gave conditions under
which critical embeddings are local minima (Theorem 4.9).

A number of open questions remain. Two important special cases of the manifold fit-
ting problem are the curve and surface fitting problems. The problem of global existence
of regular local minima remains open, even in the relatively simple case of curves. In
the case of surfaces, we have not yet succeeded in finding an easily verifiable sufficient
condition for a critical surface to be a local minimum of E.
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