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The Apollonian metric is a generalization of the hyperbolic metric. It is defined
in arbitrary domains in Rn. In this paper, we derive optimal comparison results
between this metric and the jG metric in a large class of domains. These results
allow us to prove that Euclidean bilipschitz mappings have small Apollonian
bilipschitz constants in a domain G if and only if G is a ball or half-space.

1. Introduction

The Apollonian metric is a generalization of the hyperbolic metric introduced
by Beardon [2]. It is defined in arbitrary domains in Rn and is Möbius invari-
ant. Another advantage over the well-known quasihyperbolic metric [8] is that
it is simpler to evaluate. On the downside, points cannot generally be connected
by geodesics of the Apollonian metric. This paper is the last in a series of four
papers on the Apollonian metric, the first three being [9, 10, 11]. Other au-
thors who have approached this metric from the same perspective, providing
the incentive for this investigation, are Rhodes [13], Seittenranta [14], Gehring
and Hag [5, 6], and Ibragimov [12]. As becoming of a concluding paper, we
will return here to the beginning and take a new look at the comparison and
bilipschitz properties considered in [10]. Using results from [9], we are able to
answer a question posed to the author by M. Vuorinen, which led to the start of
this investigation, namely: under what circumstances are Euclidean bilipschitz
with small distortion also Apollonian bilipschitz mappings with small distor-
tion? This question can be seen as a step towards answering the question asked
in [2] by Beardon about the isometries of the Apollonian metric, since the com-
parison condition has previously been shown to imply quite some regularity of
the Apollonian metric (cf., e.g., the proof of [10, Theorem 1.6]).
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We start by stating the main results and, at the same time, we sketch the struc-
ture of the rest of the paper. The notation used conforms largely to that of [1, 17],
the reader can consult Section 2.

We will be considering domains (open connected nonempty sets) G in the
Möbius space Rn := Rn ∪{∞}. The Apollonian metric for x, y ∈ G�Rn is de-
fined by

αG(x, y) := sup
a,b∈∂G

log
|a− x|
|a− y|

|b− y|
|b− x| (1.1)

(with the understanding that if a=∞, then we set |a− x|/|a− y| = 1 and simi-
larly for b; see also Section 2.2). It is in fact a metric if and only if the complement
of G is not contained in a hyperplane, as was noted in [2, Theorem 1.1].

To define the comparison property, we need the jG metric, which is a mod-
ification from [16] of a metric introduced in [7]. This metric is defined for
x, y ∈G�Rn by

jG(x, y) := log

(
1 +

|x− y|
min

{
d(x,∂G),d(y,∂G)

}). (1.2)

Definition 1.1. A domain G � Rn has the comparison property if there exists a
constant K such that jG/K ≤ αG ≤ 2 jG.

The upper bound from the previous definition always holds and the constant
2 is the best possible, as was proved in [2, Theorem 3.2]. Next, we define the
exterior ball condition, which played an important role in [10] that dealt with
the comparison property. Several related conditions from the literature were re-
viewed in [10, Section 3].

Definition 1.2. Let G�Rn and L≥ 1. A domain G is said to satisfy the L-exterior
ball condition (L-EB condition) if, for every x ∈ ∂G \ {∞} and r > 0, there exists
a point z ∈ Bn(x,r) such that Bn(z,r/L)⊂Gc.

In [10], it was shown that every EB domain has the comparison property.
Unfortunately, the constant in that paper was 9L, whereas we would like to have
a constant that tends to 1 as L→ 1, since it is known [14, Theorem 4.2] that
this constant equals 1 for 1-EB domains. In fact, we can calculate the optimal
constant for every L≥ 1.

Theorem 1.3. If G�Rn has the L-EB property, then G has the comparison prop-
erty with constant L+

√
L2− 1. This constant is the best possible one depending only

on L.
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In Section 5, we consider the Apollonian bilipschitz modulus which was in-
troduced in [10]. For L≥ 1 and G�Rn, we define

αL(G) := sup
f

sup
x,y∈G

{
α f (G)

(
f (x), f (y)

)
αG(x, y)

,
αG(x, y)

α f (G)
(
f (x), f (y)

)}, (1.3)

where the first supremum is taken over all L-bilipschitz mappings f : G→ Rn

(with the understanding that terms with zero denominators are ignored). Notice
that the second supremum is the Apollonian bilipschitz modulus of f , that is,
the least constant for which f is Apollonian bilipschitz. Hence, αL(G) <∞ if
and only if every L-bilipschitz mapping is Apollonian bilipschitz as well, with
uniformly bounded constant.

The next result answers the question stated in the first paragraph of this paper
regarding getting small Apollonian bilipschitz constants.

Theorem 1.4. If G�Rn is a domain, then

lim
L→1

αL(G)= 1 (1.4)

if and only if G is a ball or half-space.

2. Notation and terminology

Sections 2.1, 2.2, and 2.3 contain fairly standard material and can be perused by
the seasoned reader. Sections 2.4 and 2.5, on the other hand, contain material
specific to the Apollonian metric.

2.1. The Möbius space. We denote by {e1, e2, . . . , en} the standard basis of Rn

and by n the dimension of the Euclidean space under consideration and we as-
sume that n ≥ 2. For x ∈ Rn, we denote by xi its ith coordinate. The follow-
ing notation is used for balls, spheres, and the upper half-space (x ∈ Rn and
0 < r <∞):

Bn(x,r) := {y ∈Rn : |x− y| < r
}
, Sn−1(x,r) := ∂Bn(x,r),

Bn := Bn(1), Sn−1 := Sn−1(1), Hn := {y ∈Rn : yn > 0
}
.

(2.1)

We use the notation Rn := Rn ∪ {∞} for the one-point compactification of
Rn. We define the spherical (chordal) metric q in Rn by means of the canonical
projection onto the Riemann sphere. We considerRn as the metric space (Rn,q),
hence, its balls are the (open) balls ofRn, half-spaces, and complements of closed
balls. If G ⊂ Rn, we denote by ∂G, Gc, and G its boundary, complement, and
closure, respectively, all with respect toRn. In contrast to topological operations,
we consider metric operations with respect to the ordinary Euclidean metric.
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2.2. Möbius mappings. The cross ratio |a,b,c,d| is defined by

|a,b,c,d| := q(a,c)q(b,d)
q(a,b)q(c,d)

(
= |a− c||b−d|
|a− b||c−d|

)
(2.2)

for a 	= b, c 	= d, and a,b,c,d ∈Rn, where the second equality holds if a,b,c,d ∈
Rn. A homeomorphism f :Rn→Rn is a Möbius mapping if∣∣ f (a), f (b), f (c), f (d)

∣∣= |a,b,c,d| (2.3)

for every quadruple a,b,c,d ∈ Rn with a 	= b and c 	= d. For more information
on Möbius mappings, see, for example, [1, Section 3]. Using the cross ratio, we
can express the Apollonian metric as

αG(x, y)= sup
a,b∈∂G

|a, y,x,b| (2.4)

for x, y ∈ G⊂Rn. This means, in particular, that αG is Möbius invariant, as was
noted in [2, Introduction (2)].

2.3. Some miscellaneous notation and terminology. (i) For x ∈ G � Rn, we
denote δ(x) := d(x,∂G) :=min{|x− z| : z ∈ ∂G}.

(ii) For x, y,z ∈Rn, we denote by x̂yz the smallest angle between the vectors
x− y and z− y.

(iii) For x, y ∈Rn, we denote by xy the line through x and y and by [x, y] the
closed segment between x and y.

2.4. The Apollonian balls approach. The Apollonian balls approach has pre-
viously been used in [2, 3] and [14, Theorem 4.1] although this presentation is
from [10, Section 5.1]. The notation of this section will be used practically in
every proof in this paper.

For x, y ∈G�Rn, we define

qx := sup
b∈∂G

|b− y|
|b− x| , qy := sup

a∈∂G

|a− x|
|a− y| . (2.5)

The numbers qx and qy are called the Apollonian parameters of x and y (with re-
spect to G). By definition, αG(x, y)= log(qxqy). The Apollonian balls are defined
by

Bx :=
{
z ∈Rn :

|z− x|
|z− y| <

1
qx

}
,

By :=
{
z ∈Rn :

|z− y|
|z− x| <

1
qy

}
.

(2.6)
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We collect the following immediate results regarding these balls:

(1) Bx ⊂G and Bx ∩ ∂G 	= ∅, similarly for By ;
(2) if ix and iy denote the inversions in the spheres ∂Bx and ∂By , then y =

ix(x)= iy(x);
(3) since∞ 	∈G, we have qx,qy ≥ 1; if∞ 	∈G, then qx,qy > 1;
(4) if x0 denotes the center of Bx and rx its radius, then

∣∣x− x0
∣∣= |x− y|

q2
x − 1

= rx
qx

; (2.7)

(5) we have qx − 1≤ |x− y|/δ(x)≤ qx + 1.

2.5. Quasi-isotropy. We define the concept of quasi-isotropy which is a kind
of local comparison property. It was introduced in [11] and was the focus of
[9]; however, it was originally conceived of by the author in order to prove
Theorem 1.4 on the Apollonian bilipschitz modulus.

This property is the weakest regularity property of the Apollonian metric
which we consider. Thus, we will show in Lemma 5.5 that the Apollonian bilip-
schitz constant αL(G) is always greater than or equal to the quasi-isotropy con-
stant. Similarly, it was shown in [11, Section 4] that if G has the comparison
property with constant K , then G is 2K-quasi-isotropic. This means that the
quasi-isotropy constant gives us a lower bound for the comparison constant, a
fact that we will use in the proof of Theorem 1.3.

Definition 2.1. A metric space (G,d) with G⊂Rn is K-quasi-isotropic if

limsup
r→0

sup
{
d(x,z) : |x− z| = r

}
inf
{
d(x, y) : |x− y| = r

} ≤ K (2.8)

for every x ∈ G. A metric which is 1-quasi-isotropic is said to be isotropic,
whereas a metric that is not K-quasi-isotropic, for anyK , is said to be anisotropic.
The function qi is defined on the set of domains in Rn so that qi(G) is the least
constant for which αG is quasi-isotropic or qi(G)=∞ if αG is anisotropic.

We will only use quasi-isotropy in a very tangential manner in this paper,
hence, we will not expose here any methods for calculating the quasi-isotropy
constant. For a presentation of such techniques, the reader is referred to [9].

3. The comparison constant of an exterior ball domain

In this section, we calculate the exact value of the comparison constant for EB
domains. We start with a geometrical lemma which is similar to [9, Lemma 3.6],
except that we now consider the Apollonian balls about two points instead of the
Apollonian spheres through one point.

Lemma 3.1. Let x, y ∈G�Rn and let Bx and By be the corresponding Apollonian
balls. If B := Bn(b,r) is a ball with r > d(Bx,By)/2 which does not intersect Bx ∪By ,
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then

|x− b| ≥
√√√√r2 +

2rqy|x− y|(
qxqy − 1

) . (3.1)

Proof. We may assume that B is tangent to both Bx and By , since otherwise |x−
b| is smaller for some other ball with the same radius, or we can choose another
ball with the same distance to x but with a larger r.

Denote the centers of Bx and By by x0 and y0 and set θ := ŷ0x0b, s := |x− x0|,
and w := |x0− y0|. Using the cosine rule in the triangles y0x0b and xx0b, we get
that (

r + ry
)2 = (r + rx

)2
+w2− 2

(
r + rx

)
w cosθ,

|x− b|2 = (r + rx
)2

+ s2− 2
(
r + rx

)
scosθ.

(3.2)

Combining these equations to eliminate cosθ, we get that

|x− b|2 = w− s

w

(
r + rx

)2
+

s

w

(
r + ry

)2
+ s(s−w). (3.3)

It follows from the definition of qx and qy (cf. Result (4) in Section 2.4) that
s= |x− y|/(q2

x − 1), rx = |x− y|qx/(q2
x − 1), ry = |x− y|qy/(q2

y − 1), and

w = ∣∣x0− x
∣∣+ |x− y|+

∣∣y− y0
∣∣= ( 1

q2
x − 1

+ 1 +
1

q2
y − 1

)
|x− y|

= q2
xq

2
y − 1(

q2
x − 1

)(
q2
y − 1

) |x− y|.
(3.4)

Using these in (3.3), we get that

|x− b|2 = q2
y

(
q2
x − 1

)(
r + rx

)2

q2
xq2

y − 1
+

(
q2
y − 1

)(
r + ry

)2

q2
xq2

y − 1
− |x− y|2

q2
x − 1

(
1 +

1
q2
y − 1

)

=
[(

q2
yq

2
x − 1

)
r2 + 2

(
qxqy + 1

)
qyr|x− y|

+
q2
xq

4
y − q2

y(
q2
x − 1

)(
q2
y − 1

) |x− y|2
]

1
q2
xq2

y − 1
− q2

y|x− y|2(
q2
x − 1

)(
q2
y − 1

)
= r2 + 2

qy|x− y|r
qxqy − 1

.

(3.5)
�

We also need the following lemma which is a variant of [14, Theorem 4.2].
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Lemma 3.2. Let x, y ∈ G� Rn and let Bx and By be the Apollonian balls. If the
convex hull of Bx ∪By does not intersect ∂G, then jG(x, y)≤ αG(x, y).

The proof of Theorem 1.3 is quite similar to the proof of [9, Theorem 1.4(1)]
in which we estimated the quasi-isotropy constant of an EB domain. However,
since there is a gap between the Apollonian balls, it follows that for a large
enough αG(x, y), the EB property becomes worthless. Thus, we proceed in two
steps this time; first, considering points with small Apollonian distance (the next
lemma) and then using an ad hoc measure to take care of the rest of the points
in the proof of Theorem 1.3.

Lemma 3.3. Let G� Rn be an L-EB domain for L > 1 and let x, y ∈ G be points
such that

αG(x, y) < log

(
2

√
L+ 1
L− 1

− 1

)
. (3.6)

Then

αG(x, y)≥
(
L−

√
L2− 1

)
jG(x, y). (3.7)

Proof. Fix x, y ∈ G, satisfying inequality (3.6), let Bx and By be the Apollonian
balls, and let qx and qy be the Apollonian ball parameters, as described in Section
2.4.

If there are no points of ∂G in the convex hull C of Bx ∪By , then αG(x, y)≥
jG(x, y) by Lemma 3.2 and there is nothing to prove. We may thus assume that
C∩ ∂G 	= ∅. Fix r > d(Bx,By)/2. For ζ ∈ C, let B be the ball with radius r, tan-
gent to Bx and By for which the distance h := d(ζ,B) is minimal. Then every
ball with radius r and center in Bn(ζ,h + r) intersects G. This means that if ζ
was a boundary point of G, then G would not be EB with constant smaller than
(h+ r)/r = |ζ − b|/r, where b denotes the center of the ball. Since we know that
G is L-EB, it follows that |ζ − b| ≤ Lr for ζ ∈ C∩ ∂G.

Combining this with Lemma 3.1, we find that

δ(x)= inf
ζ∈C∩∂G

|x− b|− |ζ − b| ≥ |x− b|−Lr

=
√√√√r2 +

2rqy|x− y|(
qxqy − 1

) −Lr =: f (r)
(3.8)

for all r > d(Bx,By)/2. We choose r so as to maximize the lower bound.
We find that df /dr = (r + c)/

√
r2 + 2rc−L, where we denote that c := qy|x−

y|/(qxqy − 1). Hence, f has a maximum at r0 = c(L/
√
L2− 1− 1). We need to

check that r0 > d(Bx,By)/2 so that Lemma 3.1 is applicable for this value of r.
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The inequality r0 > d(Bx,By)/2 is equivalent to

2
(

L√
L2− 1

− 1
)
qy|x− y|
qxqy − 1

> |x− y|−d
(
x,∂Bx

)−d
(
y,∂By

)
= |x− y|

(
1− 1

qx + 1
− 1
qy + 1

)

= |x− y| qxqy − 1(
qx + 1

)(
qy + 1

) .
(3.9)

We thus have to show that

2
(

L√
L2− 1

− 1
)
>

(
qxqy − 1

)2

qy
(
qx + 1

)(
qy + 1

) . (3.10)

The denominator of the right-hand side of this estimate equals (qxqy + qy)(qy +
1). Since qy ≥ 1, we get the lower bound 2(qxqy + 1) for this denominator. Since
expαG(x, y)= qxqy , we see that it suffices to show that

4
(

L√
L2− 1

− 1
)(

expαG(x, y) + 1
)
>
(

expαG(x, y)− 1
)2
. (3.11)

Solving this second-degree equation in expαG(x, y) gives

expαG(x, y) < 2

√
(L+ 1)
(L− 1)

− 1, (3.12)

which is the assumption of the lemma.
We then set r = r0 in the estimate (3.8), which gives

|x− y|
δ(x)

≤
(
L+

√
L2− 1

)qxqy − 1

qx
. (3.13)

We can derive a similar estimate for δ(y) and so we find that

|x− y|
min

{
δ(x),δ(y)

} ≤ (L+
√
L2− 1

) qxqy − 1

min
{
qx,qy

} . (3.14)

Using the Bernoulli inequality, we find that

jG(x, y)

L+
√
L2− 1

≤ log

1 +
|x− y|(

L+
√
L2− 1

)
min

{
δ(x),δ(y)

}


≤ log

(
1 +

qxqy − 1

min
{
qx,qy

})≤ log
(
qxqy

)= αG(x, y),

(3.15)

which was to be shown. �
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Proof of Theorem 1.3. We first note that if L= 1, then G is convex and the claim
follows from [14, Theorem 4.2]. We assume then that L > 1 and denote d :=
2
√

(L+ 1)/(L− 1)− 1. The bound L+
√
L2− 1 on the comparison constant holds

by Lemma 3.3 if αG(x, y)≤ logd.
Suppose then that x, y ∈ G are such that αG(x, y) ≥ logd. By result (5) in

Section 2.4, we always have

|x− y|
min

{
δ(x),δ(y)

} ≤max
{

1 + qx,1 + qy
}
. (3.16)

Hence, we find that

jG(x, y)
αG(x, y)

≤ log
(
2 + max

{
qx,qy

})
log
(
qxqy

) ≤ log
(
2 + qxqy

)
log
(
qxqy

) ≤ log(2 +d)
logd

. (3.17)

The last inequality follows since the function z �→ log(2 + z)/ logz is decreasing.
Thus, we have seen that for some points, the ratio jG/αG is bounded from

above by L+
√
L2− 1 and for all others by log(2 + d)/ logd. This means that G

has the comparison property with constant less than or equal to

max

L+
√
L2− 1,

log
(

2
√

(L+ 1)/(L− 1) + 1
)

log
(

2
√

(L+ 1)/(L− 1)− 1
)
 . (3.18)

Next, we prove that the first term in the maximum is always greater than the
second one. We introduce a new variable, u2 := (L+ 1)/(L− 1), which satisfies
u > 1.

We have to prove that

log(2u+ 1)
log(2u− 1)

≤ u2 + 1
u2− 1

+

[(
u2 + 1
u2− 1

)2

− 1

]1/2

= u+ 1
u− 1

. (3.19)

Since log(2u− 1) > 0, this is equivalent to

g(u) := u+ 1
u− 1

log(2u− 1)− log(2u+ 1)≥ 0. (3.20)

We will show that g is decreasing; we differentiate g:

dg

du
=− 2

(u− 1)2
log(2u− 1) +

u+ 1
u− 1

2
2u− 1

− 2
2u+ 1

. (3.21)

Then we multiply the inequality dg/du≤ 0 by −(u− 1)2/2 to get the equivalent
inequality

h(u) := log(2u− 1) +
(u− 1)2

2u+ 1
− u2− 1

2u− 1

= log(2u− 1)− 6u
u− 1

4u2− 1
≥ 0.

(3.22)
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We find that

dh

du
= 2

2u− 1
− 6

4u2− 2u+ 1(
4u2− 1

)2 = 8
(u− 1)

(
2u2 + 1

)(
4u2− 1

)2 , (3.23)

and so it is clear that h is increasing. It follows that h(u)≥ h(1)= 0, which means
that dg/du≤ 0. Since g is decreasing, it follows that

g(u)≥ lim
u→∞g(u)≥ lim

u→∞ log(2u− 1)− log(2u+ 1)= 0, (3.24)

which means that the first term in the maximum is greater than the second one
and completes the proof that L+

√
L2− 1 is an upper bound for the comparison

constant.
To show that this constant is the best possible, recall from Section 2.5 that the

quasi-isotropy constant is always less than one half of the comparison constant.
It was proven in [9, Theorem 1.4(1)] that there exists an L-EB domain with
quasi-isotropy constant 2(L+

√
L2− 1) and so the comparison constant of this

domain is at least L+
√
L2− 1, which concludes the proof. �

4. The spiral mapping

In this section, we will define a bilipschitz mapping that has large rotational
distortion even with small bilipschitz constant. This mapping is a generalization
of a mapping of R2 onto itself considered by Freedman and He in [4]. Note
that the difficulty in extending it to Rn lies therein, that we wish to preserve the
property f (x) = x for x 	∈ Bn. The following quite lengthy proof is based on a
series of elementary estimates.

Lemma 4.1. Let P ≥ 1 and let x = (r cosθ,r sinθ, x̂) ∈ Rn, where r ∈ [0,∞), θ ∈
[0,2π), and x̂ ∈ Rn−2. Let θ′ := θ + (P − 1/P) log(r/(1 − |x̂|)). The mapping
f :Rn→Rn given by

f (x)= f
(
r cosθ,r sinθ, x̂

)
:= (r cosθ′, r sinθ′, x̂

)
(4.1)

for r + |x̂| < 1 and f (x)= x for r + |x̂| ≥ 1 is P2-bilipschitz.

Proof. Suppose that x and y are two points in Rn with x = (r cosθ,r sinθ, x̂) and
y = (scosφ,ssinφ, ŷ) where x̂, ŷ ∈Rn−2. We define

H :=
{
z ∈Rn :

√
z2

1 + z2
2 +
√
z2

3 + ···+ z2
n < 1

}
. (4.2)

Observe that H is precisely the domain in which f is not by definition equal to
the identity. We first assume that r + |x̂| < 1 and that s+ | ŷ| < 1, that is, x, y ∈H .
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We need to show that

P4|x− y|2 = P4[(r cosθ− scosφ)2 + (r sinθ− ssinφ)2 + |x̂− ŷ|2]
≥ (r cosθ′ − scosφ′)2 + (r sinθ′ − ssinφ′)2 + |x̂− ŷ|2

= ∣∣ f (x)− f (y)
∣∣2
,

(4.3)

where

θ′ := θ +
(
P− 1

P

)
log
(

r

1−|x̂|
)
,

φ′ := φ+
(
P− 1

P

)
log
(

s

1−| ŷ|
)
.

(4.4)

This inequality can be reexpressed as

(
P4− 1

)[
r2 + s2 + |x̂− ŷ|2]≥ 2rs

[
P4 cosγ− cos(γ+ λ)

]
, (4.5)

where γ := θ−φ and λ := (P− 1/P)[log(r/(1−|x̂|))− log(s/(1−| ŷ|))]. We will
use the elementary estimate

P4 cosγ− cos(γ+ λ)

= (P4− cosλ
)

cosγ+ sinλsinγ ≤
√(

P4− cosλ
)2

+ sin2 λ

=
√
P8 + 1− 2P4 cosλ≤

√
P8 + 1− 2P4 + 2P4λ2

= (P2− 1
)√√√√(1 +P2

)2
+ 2P2

[
log
(

r

1−|x̂|
)
− log

(
s

1−| ŷ|
)]2

.

(4.6)

We use (4.6) in (4.5) and see that it is sufficient to prove that(
P2 + 1

)[
r2 + s2 + |x̂− ŷ|2]

≥ (P2 + 1
)[
r2 + s2 +

(|x̂|− | ŷ|)2]
≥ 2rs

√√√(
P2 + 1

)2
+ 2P2

[
log
(
r

s

)
+ log

(
1−| ŷ|
1−|x̂|

)]2

.

(4.7)

We divide through by (P2 + 1). Since 2P2/(P2 + 1)2 ≤ 1/2, it suffices to prove that

[
r2 + s2 +

(|x̂|− | ŷ|)2]2

(2rs)2
≥ 1 +

(
1
2

)[
log
(
r

s

)
+ log

(
1−| ŷ|
1−|x̂|

)]2

. (4.8)

We assume, without loss of generality, that r ≥ s and denote that |x̂| − | ŷ| = c.
We see that (1−| ŷ|)/(1−|x̂|)= 1 + c/(1−|x̂|) is maximized by maximizing |x̂|
for c > 0, and that the ratio is smaller than 1 for c < 0. Since |x̂| < 1− r, we see
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that the right-hand side is less than or equal to

1 +

[
log(rs) + log

(
(r + c)/r

)]2

2
= 1 +

log2 ((r + c)s
)

2
. (4.9)

We introduce the variables u := r/s≥ 1 and v := c2/(rs). Then we have to prove
that

[
r2 + s2 + c2

]2

(2rs)2
=
[
u+ 1

/
u+ v

]2

4
≥ 1 +

log2 (u+
√
uv
)

2

= 1 +
log2 ((r + c)

/
s
)

2
.

(4.10)

We define yet another variable w := u+
√
uv. We will consider how u+ 1/u+ v

varies for fixed w ≥ 1. Since v = (w − u)2/u, this amounts to considering the
function

g(u) := u+
1
u

+
(w−u)2

u
= 2u− 2w+

1 +w2

u
. (4.11)

Now, g′(u) = 2− (1 +w2)/u2 has one zero at u = √(1 +w2)/2, which is a mini-
mum of g. Hence,

g(u)≥
√

2
(
1 +w2

)− 2w+
1 +w2√(
1 +w2

)
/2
= 2
√

2
√

1 +w2− 2w, (4.12)

and we see that it suffices to prove that

[
2
√

2
√

1 +w2− 2w
]2

4
=
[√

2
√

1 +w2−w
]2

= 2 + 3w2−w
√

8
(
1 +w2

)≥ 1 +
log2(w)

2

(4.13)

for w ≥ 1. Clearly, this inequality holds for w = 1 and so it suffices to show that
the left-hand side grows faster than the right-hand side. In terms of derivatives,
this means that

6w−√8
1 + 2w2
√

1 +w2
≥ logw

w
. (4.14)

Since logw ≤w− 1, it suffices to show that

(
6w2−w+ 1

)√
1 +w2 ≥√8

(
2w2 + 1

)
w. (4.15)
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Squaring both sides and collecting all terms on one side, we see that this inequal-
ity is equivalent to

[
(2w− 1)2w2 + 4w2 + 1

]
(w− 1)2 ≥ 0, (4.16)

which is obvious. We have now proved that f is P2-lipschitz in H .
Next, assume that x ∈H and y 	∈H . Let z be the point on ∂H such that |x−

z|+ |z− y| = |x− y|. Since f (z)= z and f (y)= y, we have

∣∣ f (x)− f (y)
∣∣≤ ∣∣ f (x)− f (z)

∣∣+
∣∣ f (z)− f (y)

∣∣
≤ P2

∣∣x− z
∣∣+ |z− y| ≤ P2|x− y|. (4.17)

Finally, the case x, y 	∈H is trivial since f is the identity for these points.
The inverse of f is of the same form as f ; only the direction of rotation

is changed. It is therefore clear that f −1 is P2-lipschitz too, and so f is P2-
bilipschitz. �

5. The limiting behavior of the Apollonian bilipschitz modulus

In this section, we study how the quantity αL(G) behaves when L→ 1. The results
derived on the behavior of αL(G) in [10] are useful only for large L and thus these
two approaches are complementary. We prove in Theorem 1.4 that αL(G)→ 1 as
L→ 1 if and only if G is a ball or half-space. To prove this result, we need to show
two things: if G is a ball or half-space, then αL(G)→ 1 and if αL(G)→ 1, then G
is a ball or half-space. The comparison results that have been derived so far in
this paper are good for a lower bound on αG and the following result provides
the upper bound. This result will suffice for the first implication.

The next lemma uses Seittenranta’s metric δG in an intermediate step; since
this is the only use for the metric here, the reader is referred to [14] for the
definition.

Lemma 5.1. Let f : Hn → Rn be L-bilipschitz and denote G := f (Hn). Then f is
L4-lipschitz with respect to the Apollonian metric, that is,

αG
(
f (x), f (y)

)≤ L4αHn(x, y). (5.1)

Proof. By [14, Theorem 3.11], we know that the inequality αG ≤ δG is valid in
every domain G�Rn. Also, we have αHn = δHn since both metrics are equal to
the hyperbolic metric in the half-space (by [2, Lemma 3.1] and [17, Lemma 8.39]
for αHn and δHn , respectively). It follows that

αG
(
f (x), f (y)

)≤ δG
(
f (x), f (y)

)≤ L4δHn(x, y)= L4αHn(x, y), (5.2)

where the second inequality is stated in [14, Theorem 3.18]. �
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As usual, the lower bound for the Apollonian metric is harder to come by. We
need a series of lemmas. The next lemma follows easily from an extension result
of Väisälä [15].

Lemma 5.2. Let f : Bn → Rn be an L-bilipschitz mapping. There exists an L0 > 1
such that f (Bn) has the K(L)-EB property for L < L0 with K(L)→ 1 as L→ 1.

Proof. It follows from [15, Example 6.13] that there exists an L′-bilipschitz map-
ping f ′ : Rn → Rn such that f ′|Bn = f . Moreover, L′ → 1 as L→ 1. Using this
extended mapping, it is easy to see that the claim of the lemma holds. �

We need the previous result in the half-space. The following lemma will be
used to transfer it to this setting.

Lemma 5.3. Let G�Rn and let f : G→Rn be an L-bilipschitz mapping. Let π be
the inversion in a sphere with radius r > 0 whose center is not in G. Then π ◦ f ◦π
is L3-bilipschitz in π(G).

Proof. Denote the center of inversion by w. It is well known, and follows easily
from the definition of an inversion, that

∣∣π(x)−π(y)
∣∣= r2|x− y|

|x−w||y−w| (5.3)

for x, y ∈ G. We denote that x′ := π(x) and y′ := π(y). It follows from the in-
equality

∣∣g(x)− g(y)
∣∣= r2

∣∣ f (x′)− f (y′)
∣∣∣∣ f (x′)−w

∣∣∣∣ f (y′)−w
∣∣

≤ r2L|x′ − y′|
|x′ −w||y′ −w|/L2

= L3|x− y|,
(5.4)

(and similarly for the lower bound) that g is bilipschitz in π(G) with constant
L3. In this inequality, we used | f (x′) + en| = | f (x′) + f (en)| ≥ |x′ + en|/L and so
forth. �

Corollary 5.4. Let f : Hn → Rn be an L-bilipschitz mapping. If L < L0, then
f (Hn) has the K(L)-EB property with K(L)→ 1 as L→ 1.

Proof. Let π be the inversion in Sn−1(−en,
√

2). Then π ◦ f ◦ π satisfies the as-
sumptions of Lemma 5.2 and is thus extendable. If g̃ denotes the extension, we
define f̃ = π ◦ g̃ ◦π. By Lemma 5.3, this mapping is a bilipschitz extension of f .
Using this extension, we easily see that the claim holds. �

To prove the converse implication of the main theorem, we use the concept of
quasi-isotropy. The idea behind the next lemma is that the bilipschitz condition
does not constrain rotation very much, provided that it happens in a sufficiently
small ball.
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Lemma 5.5. If G�Rn, then αL(G)≥ qi(G) for every L > 1.

Proof. Let G�Rn be a domain with 1 < qi(G) <∞ (the claim is trivial if qi(G)=
1, the case qi(G)=∞ is considered below). Fix ε > 0 and let θ,φ ∈ Sn−1, x ∈ G,
and 0 < δ ≤ δ(x)/2 be such that αG(x,x+ tθ)/α(x,x+ tφ) > qi(G)− ε for |t| ≤ δ.

We know from Section 4 (from [4] for n= 2) that there exists an L-bilipschitz
mapping f : Rn → Rn such that f (x) = x, f (x + δ′′φ) = x + δ′′θ, and f (z) = z
for |x− z| > δ′, where 0 < δ′′ < δ′ < δ and δ′′ depends on L and δ′. Note that for
this mapping, we have f (G)=G. It follows that

αL(G)≥ α f (G)
(
f (x), f (x+ δ′′φ)

)
αG(x,x+ δ′′φ)

= αG(x,x+ δ′′θ)
αG(x,x+ δ′′φ)

> qi(G)− ε. (5.5)

Since ε > 0 is arbitrary, it follows that αL(G)≥ qi(G).
If qi(G) = ∞, then for every ε > 0, we find θ,φ ∈ Sn−1, x ∈ G, and 0 < δ ≤

δ(x)/2 such that αG(x,x+ tθ)/α(x+ tφ) > 1/ε for |t| ≤ δ. We then argue as above
that αL(G) > 1/ε, and so we find that αL(G)=∞. �

We are now ready for the proof of the main result.

Proof of Theorem 1.4. Suppose first that αL(G) → 1 as L → 1. It follows from
Lemma 5.5 that qi(G)≤ 1, hence, qi(G)= 1, that is, G is isotropic. It then follows
from [9, Theorem 1.10] that G is a ball or half-space.

Next, suppose that G is a half-space and assume, without loss of generality,
that G=Hn. Let f : Hn →Rn be an L-bilipschitz mapping. Then by Lemma 5.1
we have α f (Hn) ≤ L4αHn and so only the lower bound remains to be established
(the situation is asymmetric, since Hn is a half-space, but f (Hn) need not be).

It follows from Corollary 5.4 that f (Hn) is an L′-EB domain. Hence, it follows
from Theorem 1.3 that

α f (Hn)
(
f (x), f (y)

)≥ (L′ −√L′2− 1
)
j f (Hn)

(
f (x), f (y)

)
≥
(

1−
√

1−L′−2
)
jHn(x, y),

(5.6)

since f is L′-bilipschitz with respect to jHn , which follows directly from the
Bernoulli inequalities. We see that it suffices to find a lower bound for jHn(x, y)/
αHn(x, y).

In the half-space, we have an explicit formula for αHn , which equals the hy-
perbolic metric in this case [1, page 35], namely,

αHn(x, y)= arcosh

(
1 +

|x− y|2
2xnyn

)

= log

(
1 +

|x− y|2
2xnyn

+
|x− y|
2xnyn

√
|x− y|2 + 2xnyn

)
,

(5.7)



1156 Limits of the comparison and bilipschitz properties

where xn denotes the nth coordinate of x. We use the inequality log(1 + a)/
log(1 + b)≥ a/b, which is valid for a≤ b, to estimate jHn/αHn . We find that

jHn(x, y)
αHn(x, y)

≥ |x− y|/min
{
xn, yn

}
|x− y|2/(2xnyn)+ |x− y|

√
|x− y|2 + 4xnyn/

(
2xnyn

)
= 2xnyn

min
{
xn, yn

} 1

|x− y|+
√
|x− y|2 + 4xnyn

≥ xnyn
min

{
xn, yn

} 1
|x− y|+√xnyn

≥
√
xnyn

|x− y|+√xnyn ≥
1

1 + |x− y|/min
{
xn, yn

} ,

(5.8)

where we used min{xn, yn} ≤ √xnyn in the last two estimates.
Combining this estimate with inequality (5.6), we find that

α f (Hn)
(
f (x), f (y)

)≥ (1−
√

1−L′−2
)
jHn(x, y)

≥
(

1−
√

1−L′−2
) αHn(x, y)

1 + |x− y|/min
{
xn, yn

} . (5.9)

This estimate is good only when |x − y|/min{xn, yn} is small. Thus, we need
another approach when |x− y|/min{xn, yn} is large.

We always have α f (Hn)( f (x), f (y))≥ αHn(x, y)− 4logL, directly from the def-
inition of the Apollonian metric. Hence, we find that if αHn(x, y) ≥ 4log(L)/√
L− 1, then

α f (Hn)
(
f (x), f (y)

)
αHn(x, y)

≥ 1− 4logL
αHn(x, y)

≥ 1−√L− 1. (5.10)

On the other hand, if αHn(x, y) ≤ 4log(L)/
√
L− 1, then we have (the first in-

equality follows from [14, Theorem 4.2] since Hn is convex)

1 +
|x− y|

min
{
xn, yn

} = exp
{
jHn(x, y)

}
≤ exp

{
αHn(x, y)

}≤ exp
{

4log(L)√
L− 1

}
.

(5.11)

We combine the estimates from (5.9) and (5.10). This gives

α f (Hn)
(
f (x), f (y)

)
αHn(x, y)

≥min
{(

1−
√

1−L′−2
)
L−4/

√
L−1,1−√L− 1

}
, (5.12)

irrespective of the value of αHn(x, y). Thus, we have a lower bound that ap-
proaches 1 as L→ 1.
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Now, we are done with the case when Hn equals a half-space. But using
Lemma 5.3, we easily deduce the conclusion for Bn from this. �
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