
L2(Σ)-REGULARITY OF THE BOUNDARY TO
BOUNDARY OPERATOR B∗L FOR HYPERBOLIC
AND PETROWSKI PDEs

I. LASIECKA AND R. TRIGGIANI

Received 20 February 2003

This paper takes up and thoroughly analyzes a technical mathematical issue in
PDE theory, while—as a by-pass product—making a larger case. The techni-
cal issue is the L2(Σ)-regularity of the boundary → boundary operator B∗L
for (multidimensional) hyperbolic and Petrowski-type mixed PDEs problems,
where L is the boundary input→ interior solution operator and B is the control
operator from the boundary. Both positive and negative classes of distinctive
PDE illustrations are exhibited and proved. The larger case to be made is that
hard analysis PDE energy methods are the tools of the trade—not soft analy-
sis methods. This holds true not only to analyze B∗L but also to establish three
inter-related cardinal results: optimal PDE regularity, exact controllability, and
uniform stabilization. Thus, the paper takes a critical view on a spate of “ab-
stract” results in “infinite-dimensional systems theory,” generated by unneces-
sarily complicated and highly limited “soft” methods, with no apparent aware-
ness of the high degree of restriction of the abstract assumptions made—far
from necessary—as well as on how to verify them in the case of multidimen-
sional dynamical systems such as PDEs.

1. A historical overview: hard analysis beats soft analysis on regularity, exact
controllability, and uniform stabilization of hyperbolic and Petrowski-type
PDEs under boundary control

At first, naturally, PDEs boundary control theory for evolution equations tackled
the most established PDE classes—parabolic PDEs—whose Hilbert space theory
for mixed problems was already available in a form close to an optimal book
form [51, 56, 57, 58] since the early 1970s.

Next, in the early 1980s, when the study of boundary control problems for
(linear) PDEs began to address hyperbolic and Petrowski-type systems on a mul-
tidimensional bounded domain [10, 26] (see [5, 6, 35, 44, 45] for overview),
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it faced at the outset an altogether new and fundamental obstacle, which was
bound to hamper any progress. Namely, an optimal, or even sharp, theory on
the preliminary, foundational questions of well-posedness and global regularity
(both in the interior and on the boundary, for the relevant solution traces) was
generally missing in the PDEs literature of mixed (initial and boundary value)
problems for hyperbolic and Petrowski-type systems [51]. Available results were
often explicitly recognized as definitely nonoptimal [57, page 141].

Hard analysis energy methods. A happy and quite challenging exception was the
optimal—both interior and boundary—regularity theory for mixed, nonsym-
metric, noncharacteristic first-order hyperbolic systems culminated through re-
peated efforts in the early 1970s [16, 63, 64]. Its final, full success required even-
tually the use of pseudodifferential energy methods (Kreiss’ symmetrizer). Apart
from this isolated case, mathematical knowledge of global optimal regularity
theory of hyperbolic and Petrowski-type mixed problems was scarce, save for
some trivial one-dimensional cases. Thus, in this gloomy scenario, one may say
that optimal control theory [10, 26, 51] provided a forceful impetus in seeking
to attain an optimal global regularity theory for these classes of mixed PDEs
problems. To this end, PDEs (hard analysis) energy methods—both in differ-
ential and pseudodifferential form—were introduced and brought to bear on
these problems. The case of second-order hyperbolic equations under Dirichlet
boundary control was tackled first. The resulting theory that emerged turns out
to be optimal and does not depend on the space dimension [22, 24, 25, 43, 52].
It was best achieved by the use of energy methods in a differential form. The case
of second-order hyperbolic equations, this time under Neumann boundary con-
trol, proved far more recalcitrant and challenging (in space dimension strictly
greater than one) and was conducted in a few phases. The additional degree
of difficulties for this mixed PDE class stems from the fact that the Lopatinski
condition is not satisfied for it. Unlike the Dirichlet’s, the Neumann boundary
control case requires pseudodifferential analysis. Final results depend on the ge-
ometry [32, 34, 38, 43, 69].

Naturally, in investigative efforts which moved either in a parallel or in a se-
rial mode, the conceptual and computational “tricks” that had proved successful
in obtaining an optimal, or sharp, regularity theory for second-order hyperbolic
equations were exported, with suitable variations and adaptations, to certain
Petrowski-type systems. The lessons learned with second-order equations served
as a guide and a benchmark study for these other classes. To be sure, not all cases
have been, to date, completely resolved. The problem of optimal regularity of
some Petrowski systems with “high” boundary operators is not yet fully solved.
However, a large body of optimal regularity theory has by now emerged, dealing
with systems such as Schrödinger equations, plate-like equations of both hyper-
bolic (Kirchhoff model) and nonhyperbolic types (Euler-Bernoulli model), and
so forth. Subsequently, additional more complicated dynamics followed such as
system of elasticity, Maxwell equations, dynamic shell equations, and so forth.
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Shared by all these endeavors, there is one common loud message that hard anal-
ysis energy methods have been responsible for the resulting successes. A rather
broad account of these issues under one cover may be found in [35, 43, 45, 53].

Abstract models of PDEs mixed problems. Simultaneously, and in parallel fash-
ion, the aforementioned investigative efforts since the mid 1970s also produced
“abstract models” for mixed PDE problems subject to control either acting on
the boundary of, or else as a point control within, a multidimensional bounded
domain, see [2, 82, 83] for parabolic problems and [24, 25, 73] for hyperbolic
problems. Though, in particular, operators arising in the abstract model depend
on both the specific class of PDEs and its specific homogeneous and nonhomo-
geneous boundary conditions, one cardinal point reached in this line of investi-
gation was the following discovery: most of them—but by no means all of them
[9, 23, 78]—are encompassed and captured by the abstract model

ẏ =Ay +Bu in
[
�
(
A∗
)]′
, y(0)= y0 ∈ Y, (1.1)

where U and Y are, respectively, control and state Hilbert spaces, and where

(i) the operator A : Y ⊃ �(A) → Y is the infinitesimal generator of a
strongly continuous (s.c.) semigroup eAt on Y , t ≥ 0;

(ii) B is an “unbounded” operator U → Y satisfying B ∈ �(U ; [�(A∗)]′)
or, equivalently, A−1B ∈�(U ;Y). Above, as well as in (1.1), [�(A∗)]′

denotes the dual space with respect to the pivot space Y of the domain
�(A∗) of the Y-adjoint A∗ of A. Without loss of generality, we take
A−1 ∈�(Y).

Many examples of these abstract models are given under one cover in [5, 6,
35], [44, 45]; they include the case of first-order hyperbolic systems quoted be-
fore, where again the need for an abstract model came from boundary PDE con-
trol theory and was not available in the purely PDE theory per se. See Section
4.1. Accordingly, having accomplished a first abstract unification of many dy-
namical PDEs mixed problems, it was natural to attempt to extract—wherever
possible—additional, more in-depth, common “abstract properties,” shared by
sufficiently many classes of PDE mixed problems. For the purpose of this paper,
we will focus on three “abstract properties”: (optimal) regularity, exact control-
lability, and uniform stabilization.

Regularity. The variation of parameter formula for (1.1) is

y(t)= eAt y0 + (Lu)(t), (1.2a)

(Lu)(t)=
∫ t

0
eA(t−τ)Bu(τ)dτ, LTu= (Lu)(T)=

∫ T
0
eA(T−t)Bu(t)dt.

(1.2b)

Per se, the abstract differential equation (1.1) is not the critical object of inves-
tigation. It is good to have it inasmuch as it yields (1.2). The key element that
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defines the crucial feature of a particular PDE mixed problem is, however, the
regularity of the operators L and LT . This is what was referred to above as “inte-
rior regularity”: the control u acts on the boundary, while Lu is the correspond-
ing solution acting in the interior. Accordingly, this pursued line of investigation
brought about a second, abstract realization [24, 25, 26, 43] that of determining
the “best” function space Y for each class of mixed hyperbolic and Petrowski-
type problems such that the following interior regularity property holds true:

L : continuous L2(0,T ;U)−→ C
(
[0,T];Y

)
, (1.3)

for one, hence for all positive, finite T . Presently, such space Y is explicitly iden-
tified in most (but by no means all) of the mixed PDE problems of hyperbolic or
Petrowski type. (The case Y = [�(A∗)]′ is always true in the present setting, and
not much informative, save for offering a backup result for (1.1).) An equivalent
(dual) formulation is given in (1.4), see [10, 25, 26].

Hard beats soft on regularity. It is hard analysis that delivers the soft-expressed
interior regularity result (1.3). For the mixed PDEs classes under consideration,
achieving the regularity property (1.3) with the “best” function space Y is, as
amply stressed above, not an accomplishment of soft analysis methods (say,
semigroup theory or cosine operator theory, which instead gives the lousy result
of (1.3) with Y = [�(A∗)]′, and, in fact, something “better” such as [�(A∗α)]′

for some 0 < α < 1 depending on the equation and the boundary conditions
[24, 56, 57, 58], but far from optimal). On the contrary, it is the accomplishment
of hard analysis PDE energy methods, tuned to the specific combination of PDE
and boundary control, which first produces, for each such individual combina-
tion, a PDE estimate for the corresponding dual PDE problem. The precursor
was the multidimensional wave equation with Dirichlet control [22, 24, 25]. All
such a priori estimates thus obtained on an individual basis admit the following
“abstract version”:

L∗T ≡ B∗eA
∗t : continuous Y −→ L2(0,T ;U), (1.4)

where LT is defined by (1.2b) [22, 24, 25].
In PDE mixed problems, property (1.4) is a (sharp) “trace regularity prop-

erty” of the boundary homogeneous problem, which is dual to the correspond-
ing map LT in (1.2b): from the L2(0,T ;U)-boundary control to the PDE solution
at time T , see many examples in [35, 44, 45]. Indeed, such PDE estimate is both
nontrivial and unexpected, and typically yields a finite gain (often 1/2) in the
space regularity of the solution trace, which does not follow even by a formal
application of trace theory to the optimal interior regularity of the PDE solu-
tion. Some PDE circles have come to call it “hidden regularity,” and with good
reasons. It was first discovered in the case of the wave equation with Dirichlet
control [25].
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Only after the fact, if one so wishes, soft methods can be brought into the
analysis to show that, in fact, the abstract trace regularity (1.4) is equivalent to
the interior regularity property (1.3) [10, 25, 26]. (Needless to say, this can ac-
tually be done also on a case-by-case basis for each PDE class.) Thus, one key
message is clear: that for all such questions of regularity of mixed PDE prob-
lems, the slogan “hard beats soft” holds definitely true. It is hard analysis PDE
energy methods (differential or pseudodifferential) that produce the key—and
unexpected—a priori estimates which shine within (1.4). Soft analysis then takes
advantage of these single a priori estimates into a common abstract formula-
tion only afterwards, for the purpose of unification; for instance, in carrying out
the study of optimal control theory with quadratic cost, and so forth. This is
the spirit of abstract, unifying treatments of optimal control problems for PDE
subject to boundary (and point) control that can be found in books such as
[5, 6, 35, 45]. As mentioned above, the regularity (1.4) is equivalent to the regu-
larity (1.3) by a duality argument [10, 25, 26].

Surjectivity of LT or exact controllability. In a similar vein, we can describe the
second abstract dynamic property of model (1.1) or (1.2); namely, the property
that the input-solution operator LT , defined in (1.2b), satisfies

LT be surjective : L2(0,T ;U)−→ onto Y1, (1.5)

where Y1 ⊂ Y . In the most desirable case, Y1 is the same space Y as in (1.3). In
fact, this is often the case with hyperbolic and Petrowski-type systems, but is by
no means always true (e.g., second-order hyperbolic equations with Neumann
control, Euler-Bernoulli plate equations with control in “high” boundary condi-
tions). For time reversible dynamics such as the hyperbolic and Petrowski-type
systems under consideration, the functional analytic property (1.5) is relabelled
“exact controllability in Y1 at t = T” in the PDE control theory literature. By a
standard functional analysis result [70, page 237], property (1.5) is equivalent by
duality to the following so-called “abstract continuous observability” estimate:

∥∥L∗T z∥∥≥ cT‖z‖ or
∫ T

0

∥∥B∗eA∗tx∥∥2
U dt ≥ cT‖x‖2

Y1
∀x ∈ Y1, (1.6)

perhaps only for T sufficiently large in hyperbolic problems with finite speed of
propagation, which we recognize as being the inverse inequality of (1.4), at least
when Y1 = Y and T is large.

So far, so good: the abstract condition (1.6) shines for its unifying value (and
for the utter simplicity by which it is obtained—just a duality step). But the crux
of the matter begins now: how does one establish the validity of characterization
(1.6) for exact controllability in the appropriate function spaces U and Y1—in
particular, if we can take Y1 = Y—for the classes of multidimensional hyperbolic
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and Petrowski-type PDE with boundary control? The answer is the same as in
the case of regularity of the operator L discussed before, except even more em-
phatically: again, for each single class, one establishes by appropriate PDE energy
(hard analysis) methods the a priori concrete versions of the continuous observ-
ability inequality of which (1.6) is an abstract unifying reformulation. Thus, we
can extract a second lesson, this time for the exact controllability problem. It
is “hard beats soft on exact controllability,” an extension of the same slogan,
now duplicated from global regularity to exact controllability as well. It is hard
PDE analysis that permits one to obtain inverse-type inequalities such as (1.4),
bounding the initial energy of the corresponding boundary homogeneous prob-
lem by the appropriate boundary trace.

Uniform stabilization. One may repeat the same set of considerations, in the
same spirit, when it comes to establishing uniform stabilization of an originally
conservative hyperbolic or Petrowski-type system, by means of a suitable bound-
ary dissipation. The abstract characterization is an inverse-type inequality such
as (1.6), except that it refers now to the boundary dissipative mixed PDE prob-
lem, not the boundary homogeneous conservative PDE problem. The particular
abstract inequality will be given in (2.12) in the context under discussion. How-
ever, the common lesson is duplicated once more. It is again the slogan “hard
beats soft,” this third time applied to the uniform stabilization problem. Indeed,
this conclusion is even more acute in this case than in the preceding two cases, as,
typically, establishing the uniform stabilization inequality for the class of hyper-
bolic or Petrowski-type PDEs under discussion is more challenging, sometimes
by much than obtaining the corresponding specialization of the continuous ob-
servability inequality (1.6).

Enter “infinite-dimensional systems theory”. To repeat ad nauseam, the distinc-
tive thrust described above in connection with the problems of regularity, ex-
act controllability, and uniform stabilization of hyperbolic and Petrowski-type
mixed PDE problems is: one proves the concrete required estimates in each of the
three issues by hard PDE analysis in the energy method, and only afterwards ex-
tracts and delivers the corresponding abstract version for unification purposes.

One unfortunate consequence of all this is that a wanderer coming from out-
side may choose to see only the clean, shining abstract version, not the “dirty”
technical hard analysis that went into proving it in the first place. Thus, such a
traveller may be tempted to move around only within the abstract level, in the
comfort of some standard semigroup setting, and be induced to prove “signifi-
cant” results without descending into the arena of hard analysis. Indeed, in this
way, while holding the neck above the Hilbert or Banach space clouds, one can
show some results. The key is: under what assumptions? Consistently with the
care to remain in lofty land, the assumptions will be “abstract,” of course, mean-
ing now “soft.” And here is the key of this whole matter, the moral of the present
introductory section.
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(i) Are the “abstract” soft assumptions introduced by an alternative, indi-
rect approach ever true, hopefully at least for some nontrivial classes of mul-
tidimensional PDEs? How does one verify them? How does the effort to verify
the assumptions of these indirect routes compare with the more gratifying effort
of establishing directly the relevant, a priori characterizing inequality, as already
available in the literature of the past 20 years?

(ii) In case a hypothesis of the indirect route is indeed true at least for some
classes of relevant PDEs, is it too strong for the final goal that is claimed? That
is, how far is it from being necessary?

(iii) If the proposed “new” route avoids the direct proof of the past litera-
ture to establish the desired result, by going around the circle instead of moving
straight along the relevant diameter, is there anything gained in a detour offered
as an alternative approach?

Infinite-dimensional systems theory offers many illustrations where the an-
swer to the basic questions above is, overall and cumulatively, negative. A most
recent case in point is displayed by [12]. It offers an eloquent opportunity to ana-
lyze and discuss the conceptual thrust of the present paper, which is multifold. It
includes, deliberately, a tutorial component for the purpose of enlightening and
guiding those who are lured to the field, coming from (the smooth avenue of)
Banach spaces, happily unaware of, and recalcitrant to learn, PDE techniques
(save for the eigenfunctions or at most standard Riesz basis, methods of one-
dimensional domains, when applicable). How many times is the word “semi-
group” or the combination “Riesz basis” ever used in Hörmander’s volumes? Yet,
the object of those volumes, a thorough description of dynamical properties of
linear PDEs, though scarce on global properties of mixed PDE problems, should
represent a preliminary setting for the most important and relevant classes of
“infinite-dimensional systems theory.”

2. A first analysis of the stabilization problem via B∗L in light of the content
of Section 1

The recent paper [12] furnishes clear support for the analysis set forth in Section
1 of the present paper. To begin, we point out some information for readers less
acquainted with the topic and the literature.

(a) [12, Theorem 1, page 47] has been known in a much stronger nonlin-
ear and multivalued version, see [19]. Moreover, a rather comprehensive treat-
ment of this and other related problems, including references and numerous
applications can be found in [21, Chapter 1]. For the linear model (which is
the case considered in [12]) stronger results are given in the monograph
[45, Theorem 7.6.2.2, page 665]. The fact that “admissibility” of the control op-
erator has nothing to do with the issue of generation (which seems surprising
compared to [12]) has been known at least from these references.

(b) [12, Theorem 2, page 50] is well known as the so-called Russell’s principle
“controllability via stabilizability” for time reversible dynamics, put forward by
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Russell also for infinite-dimensional systems [65, 66]. It has since been openly
invoked in the literature of boundary control for PDE many times, including
the first case of a boundary controllability result of the wave equation with Neu-
mann control, in the energy space H1(Ω)× L2(Ω), obtained in [7]. By the way,
in the spirit of the content of Section 1, this “principle” turned out to be a not
so sound strategy as it traded the generally easier exact controllability problem
with the generally harder uniform stabilization result.

(c) The statement reported in [12, page 46, 3rd paragraph] about the lack of
exact controllability on any [0,T] in the case of a bounded finite-dimensional
control operator B has likewise been known, and in a much stronger version
since the University of Minnesota, 1973 Ph.D. thesis by the second author, where
the relevant topic was published in [71, 72], and has been reported widely also in
a book form. Indeed, various more demanding extensions motivated by bound-
ary control of PDE have been later provided, in [75, 77]; see also the lack of
uniform stabilization in [75, 76].

In light of Section 1 of the present paper, we intend to concentrate on [12,
Theorem 3, page 53], which, apparently, is also announced in [1, Proposition
3.3]. This result deals with the relationship between exact controllability and
stabilization. First, we give some background. This is the setting of [19] and [45,
Chapter 7, page 663].

A second-order equation setting. Let H , U be Hilbert spaces and

(h1) let � :H ⊃�(�)→H be a positive selfadjoint operator;
(h2) �∈�(U ; [�(�1/2)]′); equivalently, �−1/2�∈�(U ;H).

We consider the open-loop control system

vtt + �v =�u, v(0)= v0, vt(0)= v1, (2.1)

as well as the corresponding closed-loop, dissipative feedback system

wtt + �w+ ��∗wt = 0, w(0)=w0, wt(0)=w1. (2.2)

We rewrite (2.1) and (2.2) as first-order systems of the form (1.1) in the space
Y =�(�1/2)×H :

d

dt

[
v(t)
vt(t)

]
= A

[
v(t)
vt(t)

]
+Bu,

d

dt

[
w(t)
wt(t)

]
= AF

[
w(t)
wt(t)

]
, (2.3)

A=
[

0 I
−� 0

]
, AF =

[
0 I
−� −��∗

]
= A−BB∗, B =

[
0
�

]
, (2.4)

with obvious domains. The operator AF is maximal dissipative and thus the
generator of a s.c. contraction semigroup eAFt, t ≥ 0, on Y [45, Proposition
7.6.2.1, page 664].
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Setting y(t) = [w(t),wt(t)], y0 = [w0,w1], we have that the variation of pa-
rameter system for the w-problem is

[
w(t)
wt(t)

]
= y(t)= eAFt y0 = eAt y0−

∫ t

0
eA(t−τ)BB∗eAFτ y0dτ (2.5a)

= eAt y0−
{
L
(
B∗eAF·y0

)}
(t), (2.5b)

recalling the operator L defined in (1.2b).

A first-order equation setting. We now consider a first-order model with skew-
adjoint generator. Let Y and U be two Hilbert spaces. The basic setting is now as
follows:

(a1) A = −A∗ is a skew-adjoint operator Y ⊃ �(A) → Y , so that A = iS,
where S is a selfadjoint operator on Y , which (essentially without loss
of generality) we take positive definite (as in the case of the Schrödinger
equation of Section 4.2 below). Accordingly, the fractional powers of S,
A, and A∗ are well defined;

(a2) B is a linear operator U → [�(A∗1/2)]′, duality with respect to Y as a
pivot space; equivalently, Q ≡ A−1/2B ∈ �(U ;Y) and B∗A∗−1/2 ∈
�(Y ;U).

Under assumptions (a1) and (a2), we consider the operatorAF : Y⊃�(AF)→
Y defined by

AFx =
[
A−BB∗]x, x ∈�

(
AF
)= {x ∈ Y :

[
A−BB∗]x ∈ Y}. (2.6)

Proposition 2.1. Under assumptions (a1) and (a2) above, and, with reference to
(2.6),

(i) the domain of the operator AF is

�
(
AF
)= A−1/2[I − iQQ∗]−1

A−1/2Y ⊂�
(
A1/2)⊂�

(
B∗
)
, (2.7a)

A−1
F = A−1/2[I − iQQ∗]−1

A−1/2 ∈�(Y); (2.7b)

(ii) the operator AF is dissipative, in fact, maximal dissipative, and hence the
generator of a s.c. contraction semigroup eAFt on Y , t ≥ 0; (similarly, the Y-
adjoint A∗F is the generator of a s.c. contraction semigroup on Y , with A∗−1

F

given by the same expression (2.7b) with “+” sign rather than “−” sign for
the operator in the middle);

(iii) hence, the abstract first-order, closed-loop equation

ẏ = (A−BB∗)y, y(0)= y0 ∈ Y, (2.8a)
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(obtained from the open-loop equation

η̇ =Aη+Bu (2.8b)

with feedback u=−B∗y) admits the unique solution eAFt y0, t ≥ 0.

Proof. (i) Let x ∈�(AF). Then we can write

AFx =
[
A−BB∗]x

=A1/2[I − (A−1/2B
)(
B∗A−1/2)]A1/2x

=A1/2[I − iQQ∗]A1/2x

= f ∈ Y,

(2.9)

with Q ≡ A−1/2B ∈�(U ;Y) by assumption, and Q∗ ≡ B∗A∗−1/2 ∈�(Y ;U) its
dual or conjugate. Here, we have used (a.1): A∗ = −A so that A∗1/2 = iA1/2,
hence A∗−1/2 = −iA−1/2, finally B∗A−1/2 = iB∗A∗−1/2 = iQ∗. It is clear that the
operator [I − iQQ∗], where QQ∗ ∈ �(Y) is nonnegative, selfadjoint on Y , is
boundedly invertible on Y . Thus, (2.9) yields

x =A−1
F f =A−1/2[I − iQQ∗]−1

A−1/2 f ∈�
(
AF
)
, f ∈ Y, (2.10)

and (2.7a) and (2.7b) are proved. Then, the identity in (2.7a) plainly shows
that �(AF) ⊂�(A1/2), while �(A1/2) ⊂�(B∗) by assumption (a.2). Part (i) is
proved.

(ii) We next show that AF is dissipative. Let x ∈�(AF). Thus, x ∈�(A1/2)=
�(A∗1/2)⊂�(B∗) by part (i). Hence, we can write, if (·,·) is the Y-inner prod-
uct, then

Re
(
AFx,x

)= Re
([
A−BB∗]x,x)

= Re(x,x)−∥∥B∗x∥∥2

≤−∥∥B∗x∥∥2 ≤ 0 ∀x ∈�
(
AF
)
,

(2.11)

since Re(Ax,x)= Re{−i‖A1/2x‖2} = 0, where each term in (2.11) is well defined.
Thus, AF is dissipative.

Finally, since A−1
F ∈�(Y) by part (i), then (λ0 −AF)−1 ∈�(Y) as well for a

suitable small λ0 > 0, and then the range condition range(λ0−AF)= Y is satis-
fied, so that AF is maximal dissipative. By the Lumer-Phillips theorem [62, page
14], AF is the generator of a s.c. contraction semigroup on Y . The same argu-
ment shows that A∗F is maximal dissipative. �

Remark 2.2. One can, of course, extend the range of Proposition 2.1 by adding
to A a suitable perturbation P: either P ∈ �(Y) or else P relatively bounded
dissipative perturbations as in known results [62, Corollary 3.3, Theorem 3.4,
pages 82–83] for instance, and still obtain that [(A+P)−BB∗] is the generator
of a s.c. semigroup (of contractions in the last two cases).
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An extension of the key question in [12]. The question which follows was raised
in [12, Theorem 3] only in connection with the second-order system (2.1), (2.2),
subject to the assumptions (h1), (h2), that precede (2.1). However, in view of
Proposition 2.1, we may likewise extend the same question to the first-order
systems (2.8a) and (2.8b) subject to the assumptions (a.1), (a.2) that precede
Proposition 2.1. For both problems, we have A∗ = −A, the skew-adjoint prop-
erty of the free dynamics generator.

In [12], the following question has been asked with reference to system (2.1),
(2.2): is it true that exact controllability of (2.1) on the state spaceY =�(�1/2)×
H by means of L2(0,T ;U)-controls is equivalent to uniform stabilization of (2.2)
on the same space Y ? Here we will extend this question also in reference to sys-
tems (2.8a) and (2.8b) in order to include, for instance, also the Schrödinger
equation case of Section 4.2. Henceforth, {A,B,AF,Y,U} refers either to (2.5) or
to (2.8) indifferently. Quantitatively, we may reformulate the above question as
follows: is the continuous observability inequality (1.6) (which characterizes ex-
act controllability of (1.1) with A and B as in (2.4) or as in (2.6)) equivalent to
the inequality ∫ T

0

∥∥B∗eAFtx∥∥2
U dt ≥ cT

∥∥eAFTx∥∥2
Y ∀x ∈ Y, (2.12)

which characterizes the uniform stability of the w-problem (2.2) or the y-prob-
lem (2.8a)? In our case,A is skew-adjointA∗ = −A. Thus, exact controllability of
{A,B} (that is of (2.1) or (2.8a)) over [0,T] is equivalent to exact controllability
of {A∗,B} over [0,T]. In other words, in our case, inequality (1.6) is equivalent
to ∫ T

0

∥∥B∗eAtx∥∥2
U dt ≥ cT‖x‖2

Y ∀x ∈ Y. (2.13)

Thus, the present question is rephrased now as follows: is inequality (2.12) equiv-
alent to inequality (2.13)?

In one direction, the implication, uniform stabilization of (2.1) or (2.8b) (i.e.,
(2.12))→ exact controllability of (2.1) or (2.8b) (i.e., (2.13)) was shown by Rus-
sell [65, 66] some 30 years ago by virtue of a clean soft argument. This result is
what paper [12] labels Theorem 2. The proof in [12] is exactly the same as the
original well-known proof of Russell [65].

In the opposite direction, we have the following corollary.

Claim 2.3. With reference to the second-order equations (2.1), (2.2) (resp., the
first-order equations (2.8a) and (2.8b)), assume the preceding assumptions (h1),
(h2) (resp., (a1), (a2)). Then, the implication, exact controllability of (2.1) or (2.8b)
(i.e., (2.13))⇒ uniform stabilization of (2.2) or of (2.8a) (i.e., (2.12)) holds true if
one adds the assumption that the operator

B∗L : continuous L2(0,T ;U)−→ L2(0,T ;U). (2.14)
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This result, which is almost trivial (see a standard short proof in Section 3),
is stronger than what paper [12] labels Theorem 3, see Remark 2.4, even in con-
nection with the second-order equations (2.1), (2.2) considered in [12].

Remark 2.4. We remark that if B is, in particular, a bounded operator, B ∈
�(U ;Y), then (condition (1.3) and) condition (2.14) is, a fortiori, satisfied.
Thus, in this case, exact controllability of (2.1) or (2.8b) implies (and is im-
plied by [65, 66]) uniform stabilization. We recover (with the simple proof of
Section 3) a 30-years-old well-known result of [67] (based on the same finite-
dimensional proof of [59]). Yet, there are still contemporary papers (say on a
simply supported plate with internal velocity damping) on this topic!.

Remark 2.5. Actually [12, Theorem 3] assumes, instead of (2.14) for B∗L, a
property which amounts to a “frequency domain” reformulation of property
(2.12); the latter is less direct, less enlightening than the former and at any rate
unnecessary. Moreover, [12, Theorem 3] assumes, in addition, the regularity
property (1.3) for L or its dual equivalent version (1.4), which the subsequent
[12, Remark 3] states that it may be dispensed with, as learned via the review
process, but with no proof being presented. In the appendix, we provide a proof
that (2.14) for B∗L implies (1.4) or (1.3) for L; this is, in fact, a simple implica-
tion. Apparently, [12, Theorem 3] was also announced in [1, Proposition 3.3].

At any rate, the statement of Claim 2.3 is also known to specialized PDE cir-
cles, and we will provide several references below, where a result such as this,
or technically comparable and very close to it, is actually built-in into existing
proofs of regularity/exact controllability/uniform stabilization of some (surely
not all) Petrowski-type systems, rather than singled out per se and broadcast as
a “relevant” abstract result. There are very good reasons for this apparent lack of
an explicit statement, which is due to a sensible choice of exposition and treat-
ment in the literature of PDE boundary stabilization of the past 15 years. Here is
a first preview.

(1) Claim 2.3 is very simple to prove within standard energy method settings,
and thus its elevation to the rank of “theorem” is arguably unbecoming. See the
short proof given in Section 3, which should be compared with the lengthier,
more cumbersome time/frequency domain proof of [12, page 54].

(2) The key assumption of the abstract Claim 2.3 is, of course, assumption
(2.14) that B∗L∈�(L2(0,T ;U)). How general is it? And how can one verify it?
Only a one-dimensional Euler-Bernoulli beam is given in [12] as an illustrative
example where assumption (2.14) is satisfied, and this after 6 pages of breath-
less eigenfunction computations for diagonal semigroups. Such tour de force in
eigenfunction gimmickry can be spared, as we will show below in Section 3.2
that a few lines detailing a standard energy argument will do it. More to the
point, assumption (2.8) is, yes, satisfied in some serious multidimensional hy-
perbolic and Petrowski-type systems (identified in Section 4, by essentially mak-
ing reference to long-published PDE and PDE-control literature); though it is
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also restrictive, as it is not fulfilled in other hyperbolic/Petrowski problems, also
identified below in Sections 5, 6, 7, and 8. To add insult to injury, for these lat-
ter hyperbolic/Petrowski-type problems where assumption (2.14) fails, uniform
boundary stabilization has been known to hold true for more than 15 years. In
short, assumption (2.14) is far from being necessary, a further reason for de-
throning Claim 2.3 from the rank of “theorem.”

(3) We said above that assumption (2.14) is already known to hold true for
some cases of hyperbolic/Petrowski-type systems, and just by relying on long-
published literature. But then, how is it verified in this published literature?
Here is the “surprise”: the validity of assumption (2.14) on Claim 2.3 for some
hyperbolic/Petrowski-type systems is verified (see Section 4) by precisely the
same hard analysis PDE energy methods that are used to prove directly the fi-
nal sought-after result of regularity, exact controllability, and above all, uniform
stabilization for these systems, save for the case of first-order hyperbolic systems,
where the proof of regularity via pseudodifferential analysis is employed! Then,
why does one need to go around the circle and artificially separate the desired
conclusion on uniform stabilization into two sufficient building blocks—the
properties of exact controllability (which is also necessary [65]) and the property
(2.14) of regularity of B∗L (this second one, however, far from necessary)—if
then the hard analysis PDE machinery that allows one to verify the assumption
on B∗L is the very same that permits one to prove directly the sought-after uni-
form stabilization property in one shot?

No wonder that Claim 2.3 was not explicitly made in the PDE-control litera-
ture of the past 15 years! And no wonder if the actual proof of the soft Claim 2.3
is simple, the hard part to prove in order to reach the conclusion on uniform sta-
bilization is buried in the hypotheses; one being far from necessary, but at any
rate both verified by hard analysis energy methods. The lofty eyes of the traveller
through Banach spaces do not wish to be perturbed by the hard machinery on
the ground, where the serious computations take place.

3. The stabilization problem via B∗L revisited

3.1. A simple (alternative) proof to a nonlinear generalization of Claim 2.3

We provide below a simple alternative proof of Claim 2.3, which, in fact, at no
extra effort, yields a new nonlinear generalization of Claim 2.3. In place of (2.8a)
(hence (2.2)) we consider the following nonlinear version:

yt = Ay−B f
(
B∗y

)
, y(0)= y0 ∈ Y (3.1.1)

under the same assumptions (a1) for A and (a2) for B, where f is a monotone
increasing, continuous function on U . It is known [19, 21] that A− B f (B∗)
generates a nonlinear semigroup of contractions—say SF(t)—which yields the
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following variation of parameter formula for (3.1.1):

y(t)= SF(t)y0 = eAt y0−
{
L
(
f
(
B∗SF(·)y0

))}
(t) (3.1.2)

and obeys the energy identity

∥∥y(T)
∥∥2
Y =

∥∥y(0)
∥∥2
Y − 2

∫ T

0

(
f
(
B∗y

)
,B∗y

)
U dt. (3.1.3)

Proposition 3.1. In addition to the standing assumption, we assume that

(i) the operator B∗L is continuous L2(0,T ;U)→ L2(0,T ;U) as in (2.14);
(ii) m‖u‖2

U ≤ ( f (u),u)U ; ‖ f (u)‖U ≤M‖u‖U for all u∈U .

Then, exact controllability of (A,B) implies exponential stability of SF(t), that is,
there exist positive constants C,ω > 0 such that the solution of (3.1.1) satisfies

∥∥y(t)
∥∥2
Y ≤ Ce−ωt

∥∥y0
∥∥2
Y . (3.1.4)

Proof
Step 1. We first show that for any y0 ∈ Y , we have via assumptions (i) and (ii)
that

∥∥B∗eA·y0
∥∥
L2(0,T ;U) ≤

(
1 + kTM

)∥∥B∗SF(·)y0
∥∥
L2(0,T ;U), (3.1.5)

where kT = ‖|B∗L|‖ in the uniform operator norm of �(L2(0,T ;U)). Indeed,
(3.1.5) stems readily from (3.1.2), which yields

B∗eAt y0 = B∗SF(t)y0 +
{[
B∗L

]
f
(
B∗SF(·)y0

)}
(t). (3.1.6)

Hence, invoking assumption (2.14) on B∗L, we see that (3.1.6) along with the
bound on f in (ii) at once implies (3.1.5).
Step 2. The exact controllability assumption on the pair {A,B}, equivalently on
the pair {A∗,B}, guarantees characterization (2.13). This combined with (3.1.5)
yields then, for any y0 ∈ Y ,

∥∥y0
∥∥2
Y ≤ cT

∫ T

0

∥∥B∗eAt y0
∥∥2
U dt ≤ cT

(
1 + kTM

)∫ T

0

∥∥B∗SF(t)y0
∥∥2
U dt. (3.1.7)
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Step 3. The energy identity (3.1.3) when combined with (3.1.7) and (i) gives

∥∥SF(T)y0
∥∥2
Y ≤ cT

(
1 + kTM

)∫ T

0

∥∥B∗SF(t)y0
∥∥2
U dt

+ 2
∫ T

0

(
B∗SF(t)y0, f

(
B∗SF(t)y0

))
U dt

≤ (cT(1 + kTM
)
m−1 + 2

)∫ T

0

(
B∗SF(t)y0, f

(
B∗SF(t)y0

))
U dt

= (cT(1 + kTM
)
m−1 + 2

)(∥∥SF(0)
∥∥2
Y −

∥∥SF(T)
∥∥2
Y

)
.

(3.1.8)

The above identity implies that ‖SF(T)‖Y ≤ γ < 1 which, in turn, implies expo-
nential decays for the semigroup.

The proof of Proposition 3.1 is complete. �

3.2. Example 2 in [12] revisited. In this section, we consider the 1-dimensional
beam problem with boundary control, proposed by [12]. This reference
spends six tight pages of dreadful eigenfunction computations for diagonal semi-
groups to conclude that, in the beam example, property (2.14): B∗L ∈ L2(0,
T ;L2(Γ)) holds true. However, the issue of exact controllability of this control
problem is not addressed or even mentioned. Thus, [12] cannot actually invoke
Claim 2.3 or its (weaker) version [12, Theorem 3, page 53], and conclude, as it
does, that uniform stabilization holds true as well.

By contrast, we provide here an elementary, short, energy method proof that,
within the same unified setting, will readily yield in one shot the following prop-
erties: (i) B∗L ∈�(L2(0,T ;L2(Γ))), that is, property (2.14) (as well as the im-
plied L∈�(L2(0,T ;L2(Γ));C([0,T];Y)), that is, property (1.3) with Y the space
of finite energy defined below in (3.2.3)); (ii) uniform stabilization of the corre-
sponding boundary dissipative problem on the finite energy space Y . See Theo-
rem 3.3.

Dynamics. Let Ω= (0,1), Σi = (0,T]×{i}, i= 0,1; Q = (0,T]×Ω. We consider
the following 1-dimensional beam problem with “shear” boundary control at
x = 1 and its corresponding dissipative version:

vtt + vxxxx = 0, wtt +wxxxx = 0 in Q; (3.2.1a)

v(0,·)=v0, vt(0,·)=v1; w(0,·)=w0, wt(0,·)=w1 in Ω; (3.2.1b)

v|x=0 = vx|x=0 ≡ 0; w|x=0 =wx|x=0 ≡ 0 in Σ0; (3.2.1c)

vxx|x=1 ≡ 0, vxxx|x=1 = g; wxx|x=1 ≡ 0, wxxx|x=1 =wt|x=1 in Σ1.
(3.2.1d)
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Abstract model of v-problem. We introduce the operators

�ψ = ∆2ψ,

ψ ∈�(�)= {ψ ∈H4(Ω) : ψ|x=0 = ψx|x=0 = ψxx|x=1 =wxxx|x=1 = 0
}
,

ϕ=G2g ⇐⇒
{
∆2ϕ= 0 in Ω; ϕ|x=0 = ϕx|x=0 = ϕxx|x=1 = 0, ϕxxx|x=1 = g

}
.

(3.2.2)
The finite energy space of the above problems is

Y ≡�
(
�1/2)×L2(Ω)≡H2(Ω)×L2(Ω),

�
(
�1/2)= {ψ ∈H2(Ω) : ψ|x=0 = ψx|x=0 = 0

}
.

(3.2.3)

Then the abstract model of the v-problem is [44, 45]

vtt + �v =�G2g,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg; (3.2.4)

A=
[

0 I
−� 0

]
, Bg =

[
0

�G2g

]
, B∗

[
x1

x2

]
=G∗2 �x2, (3.2.5)

with obvious domains, where ∗ in B and G2 actually refers to different topolo-
gies. With B∗ defined by (Bg,x)Y = (g,B∗x)L2(Γ) with respect to the Y-topology
defined by (3.2.3), we readily find the expression in (3.2.5).

The operator B∗L. With y0 = {v0,v1} = 0, we have via (3.2.5) that

B∗Lg = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=G∗2 �vt
(
t; y0 = 0

)=−vt|x=1, (3.2.6)

recalling the usual property G∗2 �· = −·|x=1 via [44, 45], as well as the definition
of L in (1.2b).

Regularity of L, B∗L; uniform stabilization. We introduce the PDE problem
which is dual to the v-problem:

ψtt +ψxxxx = 0 in (0,T]×Ω; (3.2.7a)

ψ(0,·)= ψ0, ψt(0,·)= ψ1 in Ω= (0,1); (3.2.7b)

ψ|x=0 = ψx|x=0 = 0 in (0,T]×{0}; (3.2.7c)

ψxx|x=1 = ψxxx|x=1 = 0 in (0,T]×{1}; (3.2.7d)

[
ψ(t)
ψt(t)

]
= eAt

[
ψ0

ψ1

]
∈ C([0,T];Y

)
if
{
ψ0,ψ1

}∈ Y, (3.2.8)
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where eAt is a s.c. group on Y . (Actually, the dual problem requires initial con-
ditions at t = T , not t = 0; but, equivalently for what follows below, we may take
initial conditions at t = 0 since the ψ-problem is time reversible.) The above set-
ting readily yields the following preliminary result.

Lemma 3.2. (i) With reference to the ψ-problem with {ψ0,ψ1} ∈ Y , property (1.4)
holds true, that is,

B∗eA
∗t : continuous Y−→L2(0,T)⇐⇒

∫ T
0

(
ψt|x=1

)2
dt≤cT

∥∥{ψ0,ψ1
}∥∥2

Y (3.2.9)

⇐⇒

L : g −→ Lg = {v,vt} : continuous L2(0,T)−→ C
(
[0,T];Y ≡H2(Ω)×L2(Ω)

)
,

(3.2.10)

where in (3.2.10), {v0,v1} = 0 for the v-problem (3.2.1).
(ii) With reference to the v-problem (3.2.1) again with y0 = {v0,v1} = 0,

B∗L : continuous L2(0,T)−→ L2(0,T) (3.2.11)

if and only if the v-problem in (3.2.1) satisfies∫ T

0

(
vt|x=1

)2
dt = �

(‖g‖2
L2(0,T)

)
. (3.2.12)

(iii) With reference to property (2.12) for the dissipative w-problem in (3.2.1),∫ T

0

∥∥B∗eAFtx∥∥2
U dt ≥ cT

∥∥eAFTx∥∥2
Y , x ∈ Y,

⇐⇒
∫ T

0

(
wt|x=1

)2
dt ≥ cT

∥∥{w(T),wt(T)
}∥∥2

Y=H2(Ω)×L2(Ω).

(3.2.13)

Theorem 3.3. (i) The regularity of L in (3.2.10) holds true.
(ii) The regularity of B∗L in (3.2.11) holds true.
(iii) With reference to the w-problem (3.2.1),

(iii1) the map {w0,w1} → {w(t),wt(t)} defines a s.c. contraction semigroup
eAFt on Y ≡�(A1/2)×L2(Ω), see (3.2.3);

(iii2) with reference to (3.2.1d),

wxxx|x=1 =wt|x=1 ∈ L2(0,∞) continuously in
{
w0,w1

}∈ Y ; (3.2.14)

(iii3) estimate (3.2.13) holds true, thus there exist constants M ≥ 1, δ > 0,
such that∥∥∥∥∥

[
w(t)
wt(t)

]∥∥∥∥∥
2

Y

=
∥∥∥∥∥eAFt

[
w0

w1

]∥∥∥∥∥
2

Y

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
2

Y

, t ≥ 0. (3.2.15)
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Proof. We will show, equivalently, inequalities (3.2.9) and (3.2.12).
Step 1. Assume, at first, smooth data {v0,v1, g}. We multiply the v-problem
(3.2.1) by the usual standard multiplier xvx and integrate by parts in t and x.
We obtain[∫ 1

0
vtxvx dx

]T
0
−
∫ T

0

∫ 1

0
vtxvxt dxdt+

∫ T

0

[
vxxxxvx

]x=1
x=0dt

−
∫ T

0

∫ 1

0
vxxx

(
vx + xvxx

)
dx = 0.

(3.2.16)

Using the identities

vtxvxt = 1
2
d

dx

(
v2
t x
)− 1

2
v2
t , vxxxxvxx = 1

2
d

dx

(
v2
xxx

)− 1
2
v2
xx,∫ 1

0
vxxxvx dx =�����[

vxxvx
]1

0−
∫ 1

0
v2
xx dx,

(3.2.17)

in (3.2.16) as well as the boundary conditions (3.2.1c) and (3.2.1d), we obtain
the preliminary desired identity

1
2

∫ T

0

(
vt|x=1

)2
dt = 1

2

∫ T

0

∫ 1

0

[
v2
t + 3v2

xx

]
dxdt+

[∫ 1

0
vtxvx dx

]T
0

+
∫ T

0
gvx|x=1dt.

(3.2.18)

Step 2 (proof of (i)). We take g = 0, that is, we consider the corresponding spe-
cialization of the v-problem given by the ψ-problem (3.2.7) with initial condi-
tion {ψ0,ψ1}∈ Y . Thus, specializing identity (3.2.18) to the ψ-problem (with
g = 0) and using the generation result (3.2.8), we obtain

1
2

∫ T

0

(
ψ2
t |x=1

)2
dt = 1

2

∫ T

0

∫ 1

0

[
ψ2
t + 3ψ2

xx

]
dxdt+

[∫ 1

0
ψtxψx dx

]T
0

= �
(∥∥{ψ0,ψ1

}∥∥)
Y=H2(Ω)×L2(Ω),

(3.2.19)

and (3.2.9) is proved. Thus, (3.2.10) for L is established.
Step 3 (proof of (ii)). Now we consider the v-problem (3.2.1) with {v0,v1} = 0
and regularity (3.2.10) for L just established. We return to identity (3.2.18) and
using (3.2.10) we obtain

1
2

∫ T

0

(
vt|x=1

)2
dt = �

(‖g‖2
L2(0,T)

)
+
∫ T

0
gvx|x=1dt. (3.2.20)

Next, we use here trace theory and again (3.2.10) to obtain∣∣vx|x=1
∣∣≤ C∥∥vx∥∥H1(Ω) ≤ C‖v‖H2(Ω) = �

(‖g‖L2(0,T)
)
. (3.2.21)

Finally, substituting (3.2.21) in (3.2.20) yields (3.2.12), as desired.
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Step 4 (proof of (iii3)). Parts (iii1) and (iii2) are very standard.
Then, returning to identity (3.2.18) as specialized to the w-problem, hence

with g =wt|x=1 as in (3.2.14) and thus with

E(t)= ∥∥{w(t),wt(t)
}∥∥2

Y ,∫ T

0
gwx|x=1dt ≥−cT

∫ T

0

(
wt|x=1

)2
dt,

(3.2.22)

recalling (3.2.21) with v replaced by w, and g =wt|x=1, we obtain∫ T

0

(
wt|x=1

)2
dt ≥ c1

∫ T

0
E(t)dt− c2

[
E(T) +E(0)

]
(3.2.23)

≥ c̃1

∫ T

0
E(t)dt− c̃2E(T) (3.2.24)

≥ [c̃1T − c̃2
]
E(T), (3.2.25)

and (3.2.25) is nothing but a rewriting of (3.2.13) with cT = c̃1T − c̃2 > 0 for T
sufficiently large. To go from (3.2.23) to (3.2.24) and to (3.2.25), we have used
the usual dissipativity identity. �

4. Classes of PDE satisfying the regularity property (2.14):
B∗L∈�(L2(0,T ;U))

Documenting and reinforcing the content of Section 1, our goal in the present
paper is now twofold.

(i) First, we provide (in the present section) several, multidimensional non-
trivial hyperbolic and Petrowski-type mixed problems that indeed satisfy the
regularity property (2.14) on B∗L. In this respect, our message is, in turn, that
for each of the illustrations given below, the fact that B∗L fulfills property (2.14)
was either already noted explicitly in the literature or else is a built-in block in
the proof of optimal regularity, exact controllability, and particularly, uniform
stabilization of such systems—which is the ultimate goal in Claim 2.3.

(ii) Second, we document in Sections 5, 6, 7, and 8 that property (2.14) fails
to hold true for B∗L in the case of several other hyperbolic Petrowski-type PDE
systems where, however, uniform stabilization has long been proved, by PDE en-
ergy methods, in the literature. This says that property (2.14) for B∗L is far from
being necessary in Claim 2.3. That is to say, property (2.14) is not a precondition
for either controllability or stabilization of these problems.

Points (i) and (ii) call into question the “usefulness” of a result such as Claim
2.3, as elaborated before.

Remark 4.1. Due to constraints on the overall length of the paper, to make our
main point of the present section (Section 4)—singling out relevant classes of
PDEs where the regularity (2.14) for B∗L holds true—it will be expedient to
de-emphasize generality. Thus, in our results below, we will deal primarily with
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canonical PDEs and with control acting, possibly, on the whole boundary, even
though a much greater degree of generality is well known. In particular, we will
not necessarily insist on the case of variable coefficients PDEs, and refer instead
to [3, 11, 47, 68, 80, 81], and so forth.

4.1. First-order hyperbolic systems with boundary control. This section con-
siders a general first-order hyperbolic system, which may be nonsymmetric and
nondissipative, and is defined on a sufficiently smooth bounded domain of ar-
bitrary dimension. The control function acts through the boundary conditions.
The treatment below follows closely [45, Chapter 10, Section 10.6].

The dynamics. Let Ω⊂Rm be an open bounded domain with smooth boundary
Γ. In Ω, we consider a differential operator of the form

A(x,∂)y ≡
m∑
j=1

Aj(x)∂j y +A0(x)y, (4.1.1)

where y(x) is a k-vector and ∂j = ∂/∂xj . The coefficients Aj , A0 are smooth k×
k matrix-valued functions defined on the open bounded domain Ω ⊂ Rm. We
assume the following hypotheses throughout:

(h1) A(x,∂) is strictly hyperbolic; that is, the matrix
∑m

j=1Aj(x)ξj has k dis-
tinct real eigenvalues for all ξ = [ξ1, . . . , ξm]∈Rm \ {0} and x ∈ Ω̄;

(h2) the boundary Γ is noncharacteristic; that is, detAν(x) �= 0 for x ∈ Γ,
where Aν(x)≡∑m

j=1Ajν j(x); ν= (ν1, . . . ,νm) the inward unit normal.

It follows from (h1) and (h2) that after a smooth change of coordinates, we
may assume that Aν is of the following form:

Aν =
[
A−ν 0
0 A+

ν

]
, A−ν =


a1 ··· 0
... a2

...
. . .

0 ··· a�

 < 0,

A+
ν =


a�+1 ··· 0

...
. . .

...
0 ··· ak

 > 0.

(4.1.2)

Accordingly, any vector v ∈Rk will be split consistently as v = [v−,v+] with v− =
[v1, . . . ,v�] and v+ = [v�+1, . . . ,vk].

Boundary conditions are imposed with the aid of a boundary operator M(x),
which is a smooth �× k matrix-valued function, where � stands for the number
of negative eigenvalues of Aν. We assume further the following hypotheses:
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(h3) rankM(x)= �, x ∈ Γ;
(h4) (Kreiss condition) the frozen (at the boundary point) mixed problem

has no eigenvalues or generalized eigenvalues with nonnegative real
parts.

More specifically (h4) means that after making a local change of coordinates
which maps Ω into the half-space {x ∈ Rm; x1 > 0}, the constant coefficient
problem that arises by freezing Aj , j = 1, . . . ,m, and M at the boundary point
and setting A0 = 0, that is,

yt −A1yx1 −
m∑
j=2

Aj yxj = 0, x1 > 0, (4.1.3a)

My = 0 at x1 = 0, (4.1.3b)

has no eigenvalues or generalized eigenvalues with nonnegative real parts.
For the half-space problem (4.1.3), we have Aν = A1, thus A1 is invertible by

(h2). For a more detailed description of this condition we refer the reader to the
fundamental papers [16, 64].

Convention. To streamline the notation, we will write L2(Γ) and L2(Ω) to mean,
respectively, L2(Γ;R�) and L2(Ω;Rk), and so forth, and L2(Σ) and L2(Q) to mean,
respectively, L2(0,T ;L2(Γ;R�)) and L2(0,T ;L2

(
Ω;Rk)), without further men-

tion, where Σ= (0,T]×Γ, Q = (0,T]×Ω, for a fixed 0 < T <∞.
The mixed problem for the first-order hyperbolic system which we consider

is then

yt =A(x,∂)y in Q ≡ (0,T]×Ω, (4.1.4a)

y(0,·)= y0(x) in Ω, (4.1.4b)[
M(x)

]
y = g in Σ≡ (0,T]×Γ, (4.1.4c)

where the boundary control g ∈ L2(Σ)= L2(0,T ;L2(Γ;R�)).

Regularity theory for problem (4.1.4) with g ∈ L2(Σ). A complete well-posedness
theory for nonsymmetric, noncharacteristic first-order hyperbolic systems as in
(6.1.5) has been provided in [16], augmented by a note in [63], and completed
in [64].

Theorem 4.2 [64, page 272]. Under hypotheses (h1), (h2), (h3), and (h4), for any
T > 0, assume

y0 ∈ L2(Ω), g ∈ L2
(
0,T ;L2(Γ)

)
. (4.1.5)

Then, the unique solution of problem (4.1.4) satisfies

y ∈ C([0,T];L2(Ω)
)
, y|Γ ∈ L2

(
0,T ;L2(Γ)

)
(4.1.6)

continuously.
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Next, we single out the result of the homogeneous case g ≡ 0 for problem
(4.1.4) in a form which will be useful in the sequel. To this end, we introduce the
operator A, by setting

Ah= A(x,∂)h : L2(Ω)⊃�(A)−→ L2(Ω), (4.1.7a)

�(A)= {h∈ L2(Ω) :A(x,∂)h∈ L2(Ω); Mh|Γ = 0
}
, (4.1.7b)

where A(x,∂) is the differential operator in (4.1.1).

Corollary 4.3. Under the above hypotheses (h1), (h2), (h3), and (h4), the oper-
ator A in (4.1.7), corresponding to problem (4.1.4) with g ≡ 0, is the generator of a
s.c. semigroup eAt on L2(Ω), t ≥ 0.

Abstract setting for problem (4.1.4). To put problem (4.1.4), (4.1.5) into the ab-
stract model (1.1), we need the following operators and spaces.

First, we need the operator A defined by (4.1.7), which generates a s.c. semi-
group eAt on the space

Y = L2(Ω). (4.1.8)

Second, we introduce the “Dirichlet” map (natural extension from the
boundary Γ into the interior Ω, which uniquely solves (a suitable translation
of) the corresponding static problem), defined by

Dλg = v⇐⇒
A(x,∂)v− λv = 0 in Ω,

Mv|Γ = g in Γ,
(4.1.9)

for a suitably large constant λ≥ 0, as justified by the following result.

Lemma 4.4. With reference to problem (4.1.9), there exists a constant λ ≥ 0,
henceforth kept fixed, such that problem (4.1.9) admits a unique solution v =Dλg ∈
L2(Ω) for g ∈ L2(Γ). Moreover, the following estimate holds true: there is a constant
Cλ > 0 depending on λ such that

∥∥Dλg
∥∥
L2(Ω) +

∥∥Dλg|Γ
∥∥
L2(Γ) ≤ Cλ‖g‖L2(Γ). (4.1.10)

Thus,

Dλ : continuous L2(Γ)−→ L2(Ω), (4.1.11)

D∗λ : continuous L2(Ω)−→ L2(Γ), (4.1.12)

where D∗λ is the adjoint (Dλg,v)L2(Ω) = (g,D∗λ v)L2(Γ).



I. Lasiecka and R. Triggiani 1083

Third, we return to problem (4.1.4), and by virtue of definition (4.1.9) of Dλ,
λ henceforth as in Lemma 4.4, we rewrite it as

yt =
(
A(x,∂)− λ)(y−Dλg

)
+ λy in (0,T]×Ω, (4.1.13a)

y(0,x)= y0(x) in Ω, (4.1.13b)

M
(
y−Dλg

)∣∣
Γ = 0 in (0,T]×Γ, (4.1.13c)

or abstractly, by (4.1.7), as

yt = (A− λI)(y−Dλg
)

+ λy in L2(Ω),

y(0)= y0 ∈ L2(Ω).
(4.1.14)

Moreover, extending the original operator A in (4.1.7) by A : L2(Ω) →
[�(A∗)]′, that is, extending the original A in (4.1.7) to its double adjoint A∗∗,
we obtain, from (4.1.14),

yt = Ay− (A− λI)Dλg in
[
�
(
A∗
)]′
,

y(0)= y0 ∈ L2(Ω),
(4.1.15)

which is precisely the abstract model (1.1), with A as in (4.1.7), and

B =−(A− λI)Dλ : continuous U = L2(Γ)−→ [
�
(
A∗ − λI)]′, (4.1.16a)

or equivalently,

(A− λI)−1B =−Dλ : continuous L2(Γ)−→ L2(Ω), (4.1.16b)

as guaranteed by (4.1.11).
Finally, with B ∈�(U ; [�(A∗ − λI)]′) and so B∗ ∈�(�(A∗);U) after iden-

tifying [�(A∗ − λI)]′′ with �(A∗), we compute B∗ as

B∗ = −D∗λ
(
A∗ − λI) : continuous �

(
A∗
)−→U. (4.1.17)

A more explicit representation of B∗ is given by the next result.

Lemma 4.5. With reference to (4.1.17),

B∗y =−D∗λ
(
A∗ − λI)y = [A−ν y−]Γ, y ∈�

(
A∗
)
, (4.1.18)

where A−ν is defined in (4.1.2) and the component y− of y consisting of the first �
coordinates is likewise defined below (4.1.2).

The main result of the present section is the following theorem.
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Theorem 4.6. With reference to the mixed problem (4.1.4) with y0 = 0, (recall the
definition of L in (1.2b))

B∗Lg = B∗y(t; y0 = 0
)= [A−ν y−(t; y0 = 0

)]
Σ ∈ L2

(
0,T ;L2(Γ)

)
continuously in g ∈ L2

(
0,T ;L2(Γ)

)
.

(4.1.19)

Proof. The regularity in (4.1.19) stems from (4.1.17) and (4.1.6) of Theorem 4.2.
�

4.2. Schrödinger equation with Dirichlet boundary control. The present sec-
tion deals with the (multidimensional) Schrödinger equation with Dirichlet-
boundary control. The main goal is threefold:

(i) to recall from the literature of 1992 the main results of (optimal) regu-
larity, exact controllability, and uniform stabilization;

(ii) to point out that such literature also essentially contains the result that
the operator B∗L satisfies the required regularity assumption (2.14)
which is, in fact, a built-in block into the process of studying the three
related problems mentioned in point (i);

(iii) to conclude, accordingly, that the use of Claim 2.3—based on exact con-
trollability of {A,B} and regularity of B∗L—to obtain uniform stabi-
lization of {A,B} is neither enlightening nor technically and conceptu-
ally convenient.

Open-loop and closed-loop feedback dissipative systems. Let Ω be an open bound-
ed domain in Rn with sufficiently smooth C1-boundary Γ. We consider the fol-
lowing open-loop problem of the Schrödinger equation defined on Ω, with
Dirichlet-control u ∈ L2(0,T ;L2(Γ)) ≡ L2(Σ) and its corresponding boundary
dissipative version:

yt =−i∆y, wt =−i∆w in Q, (4.2.1a)

y(0,·)= y0, w(0,·)=w0 in Ω, (4.2.1b)

y|Σ = u∈ L2(Σ), w|Σ = i ∂
(
A−1w

)
∂ν

in Σ, (4.2.1c)

with Q ≡ (0,T]×Ω, Σ ≡ (0,T]× Γ. Moreover, the operator A is defined below
in (4.2.4) as Aw =−∆w, �(A)=H2(Ω)∩H1

0 (Ω).

Regularity, exact controllability of the y-problem, and uniform stability of the w-
problem. Paper [39] gives a full account of the (optimal) regularity and exact
controllability of the open-loop y-problem in (4.2.1) as well as the uniform sta-
bilization of the corresponding closed-loop w-problem. Regularity issues of in-
terest here are also contained in [20, pages 175–177] and [45, Chapter 10].
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Theorem 4.7 (regularity [39, Theorem 1.2]). Regarding the y-problem (4.2.1)
with y0 = 0, for each T > 0, the following interior regularity holds true (recall the
definition of L in (1.2b)):

the map L : u−→ Lu= y is continuous L2(Σ)−→ C
(
[0,T];H−1(Ω)

)
. (4.2.2)

Theorem 4.8 (exact controllability [39, Theorem 1.3]). Let T > 0. Given y0 ∈
H−1(Ω), there exists u∈ L2(0,T ;L2(Γ)) such that the corresponding solution to the
y-problem (4.2.1) satisfies y(T)= 0.

Theorem 4.9 (uniform stabilization [39, Theorems 1.4 and 1.5]). With reference
to the w-problem in (4.2.1),

(i) the map w0 ∈ H−1(Ω) → w(t) defines a s.c. contraction semigroup on
[�(A1/2)]′ ≡H−1(Ω);

(ii) w|Σ ∈ L2(0,∞;L2(Γ)) continuously for w0 ∈H−1(Ω);
(iii) there exist constants M ≥ 1, δ > 0 such that∥∥w(t)

∥∥≤Me−δt
∥∥w0

∥∥, t ≥ 0, (4.2.3)

with ‖ · ‖ the H−1(Ω)-norm.

Needless to say, in line with the content of Section 1, all three theorems above
(as well as their generalizations alluded to in Remark 4.1) are obtained by PDE
hard analysis energy methods (not by soft analysis methods). The most chal-
lenging result to prove is Theorem 4.9 on uniform stabilization; this, in addi-
tion, requires a shift of topology from H−1(Ω) (the space of the final result) to
H1

0 (Ω) (the space where the energy method works). This shift of topology is
implemented by a change of variable; this is the same change of variable that is
noted below in (4.2.8), and that is needed to establish the desired regularity of
B∗L.

Abstract model of y-problem. We let

Aψ =−∆ψ, �(A)=H2(Ω)∩H1
0 (Ω);

ϕ≡Dg ⇐⇒ {
∆ϕ= 0 in Ω; ϕ|Γ = g on Γ

}
.

(4.2.4)

Then, the abstract model (in additive form) of the y-problem (4.2.1) is [39,
equation (1.2.2)]

ẏ = iAy− iADu,
y(0)= y0 ∈ Y ≡

[
�
(
A1/2)]′ ≡H−1(Ω).

(4.2.5)

Comparing with (1.1), we have

B =−iAD hence B∗ = iD∗, (4.2.6)
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where the ∗ for B and D refer actually to different topologies, as the following
computation yielding B∗ in (4.2.6) shows: let u, y ∈ Y , then

(Bu, y)Y =−i(ADu, y)[�(A1/2)]′ = −i(Du, y)L2(Ω) =−i
(
u,D∗y

)
L2(Γ)

= (u,B∗y)L2(Γ).
(4.2.7)

The operator B∗L. With reference to the y-problem in (4.2.1), we will show
that

B∗Lu= B∗y(t; y0 = 0
)=−i ∂z

∂ν

∣∣∣∣
Γ
, (4.2.8a)

z(t)≡A−1y
(
t; y0 = 0

)∈ C([0,T];�
(
A1/2)≡H1

0 (Ω)
)
, (4.2.8b)

where z satisfies the following dynamics—abstract equation and corresponding
PDE-mixed problem:

zt =−i∆z− iDu in Q; (4.2.9a)

ż = iAz− iDu, z(0,·)= z0 = 0 in Ω; (4.2.9b)

z|Σ ≡ 0 in Σ. (4.2.9c)

Indeed, to obtain (4.2.8) and (4.2.9), one uses the definitions in (4.2.8) and
(4.2.6),

B∗Lu≡ B∗y(t; y0 = 0
)= iD∗AA−1y

(
t; y0 = 0

)= iD∗Az(t)=−i ∂z
∂ν
,

(4.2.10)

as well as the usual propertyD∗A=−∂/∂ν on �(A1/2)=H1
0 (Ω) from [39, equa-

tion (1.21)]. The abstract z-equation in (4.2.9) follows from the abstract y-
equation in (4.2.5) after applyingA−1 and using the definition of z(t) in (4.2.8b).
Since u(t) ∈ H1

0 (Ω), then the abstract z-equation yields its PDE version in
(4.2.9b).

Theorem 4.10. With reference to (4.2.8),

B∗L : continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
; (4.2.11a)

equivalently, with reference to (4.2.10),

the map u−→ ∂z

∂ν
is continuous L2

(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
. (4.2.11b)

This result (4.2.11) is explicitly stated and proved in [20, Proposition 4.2 and
page 175ff.], where the regularity (4.2.8) for z is established in [20, equation
(4.14)] by energy methods (via the multiplier h ·∇z̄,h|Γ = ν) without first es-
tablishing the y-regularity (4.2.2) in Theorem 4.7. This result (4.2.11) also fol-
lows from [39, identity (2.1), Lemma 2.1] (built with the multiplier h · ∇z̄)
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with f = −iDu ∈ L2(0,T ;�(A1/4−ε)) and the a priori regularity z ∈ C([0,T];
H1

0 (Ω)) in (4.2.8) for z; the latter uses, by contrast, the y-regularity (4.2.2) in
Theorem 4.7. The two avenues chosen in [20, 39] are very closely related and
based on the same energy method and duality. The expression “double duality”
was used in [20] as duality was used twice.

Comparison between establishing Theorem 4.9(iii)—uniform stabilization—di-
rectly or else via Claim 2.3. (1) According to [39], in order to establish the expo-
nential energy decay (4.2.3) directly, one needs the following ingredients:

(1a) (easier step) the properties of generation and feedback regularity
listed in Theorem 4.9(i) and (ii); this is a readily accomplished ap-
plication of the Lumer-Phillips theorem;

(1b) (harder step) application of energy methods by use of multipliers h ·
∇ p̄ and p̄divh to the p-problem, defined by p ≡ A−1w ∈ C([0,T],
H1

0 (Ω)) [39, equation (4.6)], to obtain—in the end—the estimate
[39, equation (4.16)]

∫ T

0

∫
Γ

∣∣∣∣∂p∂ν

∣∣∣∣2

dΣ≥ cTEp(T), (4.2.12)

with Ep(·) being the “energy” (square of H1(Ω)-norm) of p.

(2) In order to establish the exponential decay (4.2.3) by virtue of Claim 2.3,
one needs the following ingredients:

(2a) proof of the regularity property (2.8) for B∗L. According to [39] or
[20], this is accomplished as follows:
(2aI) [20] either by applying energy methods (multiplier h · ∇z̄)

to the z problem (4.2.9) to obtain first the a priori regularity
z ∈ C([0,T];H1

0 (Ω)) and then the regularity trace inequality
(specialization of (1.4))

∫ T

0

∫
Γ

∣∣∣∣∂z∂ν

∣∣∣∣2

dΣ≤ cTEz(0), (4.2.13)

(2aII) or else [39] by applying energy methods (multipliers h ·∇φ̄,
φ̄divh) to the dual homogeneous φ-problem

iφt = ∆φ in Q;

φ(0,·)= φ0 ∈H1
0 (Ω), φ|Σ ≡ 0,

(4.2.14)

to obtain the same inequality (4.2.13) this time for φ, hence by
duality y ∈ C([0,T];H−1(Ω)) and hence z(t) = A−1y(t; y0 =
0)∈ C([0,T];H1

0 (Ω)) (as in (2aI)); and then read off inequal-
ity (4.2.13) from identity [39, equation (2.1)] in z, where one
exploits the a priori regularity of z;
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(2b) establishing exact controllability of the y-problem, that is, contin-
uous observability of the dual φ-problem (4.2.14), again by energy
methods, to obtain∫ T

0

∫
Γ

∣∣∣∣∂φ∂ν

∣∣∣∣2

dΣ≥ cTEφ(T), (4.2.15)

(specialization of (1.6)), where Eφ(·) is the energy (square ofH1(Ω)-
norm) of φ.

Conclusion. We submit that the direct approach in [39] is surely more desirable
and amenable than the application of Claim 2.3.

4.3. Euler-Bernoulli plate with clamped boundary controls. Case 1: Neumann
control. The present subsection deals with the Euler-Bernoulli plate equation
with “clamped” boundary controls (in any dimension), while “hinged” bound-
ary controls will be considered in Section 4.4. In either case, the corresponding
results of optimal regularity, exact controllability, and uniform stabilization—all
obtained by PDE energy methods—have been known for over 10 years. More-
over, we claim that the regularity result B∗L ∈ �(L2(0,T ;U)) is also true for
each of the aforementioned E-B mixed problems. This result is contained in the
treatments of the literature cited as a built-in block, rather than singled out in
an explicit statement. Below we will extract the necessary details from the litera-
ture. Ultimately, the message of the present as well as of the next subsection is the
same as that of Section 4.2 dealing with the Schrödinger equation: that verify-
ing the key assumptions of Claim 2.3—the regularity B∗L∈�(L2(0,T ;U)) and
the exact controllability of {A,B}—is not any easier—on the contrary!—than
establishing uniform stabilization of {A,B} directly. Thus, it pays off, possibly by
much, to tackle uniform stabilization of {A,B} directly, rather than attempting
to apply the tortuous route of Claim 2.3. At any rate, in all of these results, PDE
(hard analysis) energy methods are the key and critical tools, not soft methods.

For lack of space, and to limit repetitions, we will state the three fundamen-
tal results of optimal regularity, exact controllability, and uniform stabilization,
and next establish the sought-after regularity of B∗L within the context of the
treatments of the three aforementioned problems.

Open-loop and closed-loop feedback dissipative systems. Let Ω be an open bound-
ed domain in Rn (n= 2, in the physical case of plates) with sufficiently smooth
boundary Γ. We consider the following open-loop problem of the Euler-
Bernoulli equation defined on Ω, with Neumann boundary control g2 ∈ L2(0,T ;
L2(Γ))≡ L2(Σ), as well as its corresponding boundary dissipative version:

vtt +∆2v = 0; wtt +∆2w = 0 in Q; (4.3.1a)

v(0,·)= v0, vt(0,·)= v1; w(0,·)=w0, wt(0,·)=w1 in Ω;
(4.3.1b)
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v|Σ ≡ 0; w|Σ ≡ 0 in Σ; (4.3.1c)

∂v

∂ν

∣∣∣∣
Σ
= g2;

∂w

∂ν

∣∣∣∣
Σ
= [∆(�−1wt

)]
Σ in Σ, (4.3.1d)

with Q = (0,T]×Ω, Σ= (0,T]× Γ. Moreover, the operator � is defined below
in (4.3.6) as �w = ∆2w, �(�)≡H4(Ω)∩H2

0 (Ω).

Regularity, exact controllability of the v-problem, and uniform stabilization of the
w-problem. References for this subsection include [29, 53, 54] for the v-problem
and [61] for the w-problem. These references give a full account of these three
problems. We begin by introducing the (state) space (of optimal regularity)

X ≡ L2(Ω)× [�(�1/2)]′,[
�
(
�1/2)]′ ≡H−2(Ω),

�
(
�1/2)≡H2

0 (Ω).

(4.3.2)

Theorem 4.11 (regularity [53, 54]). Regarding the v-problem (4.3.1), with y0 =
{v0,v1} = 0, the following regularity result holds true for each T > 0 (recall the
definition of L in (1.2b)): the map

L : g2 −→ Lg2 =
{
v,vt

}
is continuous L2(Σ)

−→ C
(
[0,T];X ≡ L2(Ω)×H−2(Ω)

)
.

(4.3.3)

Theorem 4.12 (exact controllability [54, 55, 61]). Given any initial condition
{v0,v1} ∈ X and T > 0, there exists a g2 ∈ L2(Σ) such that the corresponding solu-
tion of the v-problem (4.3.1) satisfies {v(T),vt(T)} = 0.

Theorem 4.13 (uniform stabilization [61]). With reference to the w-problem
(4.3.1),

(i) the map {w0,w1} ∈ X = L2(Ω)× [�(�1/2)]′ → {w(t),wt(t)} defines a s.c.
contraction semigroup eAt on X ;

(ii) its Neumann trace satisfies

∂w

∂ν

∣∣∣∣
Σ
= [∆(�−1wt

)]
Σ ∈ L2

(
0,∞;L2(Γ)

)
continuously in

{
w0,w1

}∈ X ;

(4.3.4)

(iii) there exist constants M ≥ 1, δ > 0 such that

∥∥∥∥∥
[
w(t)
wt(t)

]∥∥∥∥∥
X

=
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥
X

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
X

, t ≥ 0. (4.3.5)
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Again, needless to say, in line with the content of Section 1, all the three theo-
rems above are obtained by PDE hard analysis energy methods (not by soft anal-
ysis methods). As usual, the most challenging result to prove is Theorem 4.13
on uniform stabilization; this problem, in addition, requires a shift of topology
from X ≡ L2(Ω)×H−2(Ω) (the space of the final result) to H2

0 (Ω)×L2(Ω) (the
space where the energy method works). This shift of topology is implemented by
a change of variable: this is the same change of variable noted below in (4.3.10),
that is needed to establish the desired regularity of B∗L.

Abstract model of v-problem. We let

�ψ=∆2ψ, �(�)=H4(Ω)∩H2
0 (Ω), G2 :Hs(Γ)−→Hs+3/2(Ω), s∈R,

(4.3.6a)

ϕ=G2g2 ⇐⇒
{
∆2ϕ= 0 in Ω; ϕ|Γ = 0,

∂ϕ

∂ν

∣∣∣∣
Γ
= g2

}
. (4.3.6b)

Then, the second-order, respectively, first-order, abstract models (in additive
form) of the v-problem (4.3.1) are [29, 61]

vtt + �v =�G2g2,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg2, (4.3.7)

A=
[

0 I
−� 0

]
, Bg2 =

[
0

�G2g2

]
, B∗

[
x1

x2

]
=G∗2 x2, (4.3.8)

where ∗ for B and G2 refers actually to different topologies. With B∗ defined
by (Bg2,x)X = (g2,B∗x)L2(Γ) with respect to the X-topology, we readily find the
expression in (4.3.8) since the second component of the space X is [�(�1/2)]′.

The operator B∗L. With y0 = {v0,v1} = 0, we will show that

B∗Lg2 = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=G∗2 vt(t; y0 = 0
)=−[∆z(t)

]
Γ, (4.3.9)

z(t)≡�−1vt
(
t; y0 = 0

)∈ C([0,T];�
(
�1/2)≡H2

0 (Ω)
)

continuously in g2 ∈ L2(Σ).
(4.3.10)

The new variable z(t) defined in (4.3.10) satisfies the following dynamics: ab-
stract equation and corresponding PDE-mixed problem

ztt + �z =G2g2t , (4.3.11a)

ztt +∆2z =G2g2t in Q, (4.3.11b)

z(0,·)= z0 = 0, zt(0,·)= z1 in Ω, (4.3.11c)

z|Σ ≡ 0,
∂z

∂ν

∣∣∣∣
Σ
≡ 0 in Σ. (4.3.11d)
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Indeed, to establish (4.3.9) (right), (4.3.10), one uses the definition in (4.3.9)
(left), followed by (4.3.8) for B∗, to obtain

B∗Lg2 =G∗2 vt
(
t; y0 = 0

)=G∗2 ��−1,

vt
(
t; y0 = 0

)=G∗2 �z(t)=−∆z(t)|Γ,
(4.3.12)

where, in the last step, we have recalled the usual property G∗2 � = −∆·|Γ on
�(�1/2) ≡H2

0 (Ω) [61, equation (1.11)], [4, equation (1.20), page 49]. The ab-
stract z-equation is readily obtained from the abstract v-equation after apply-
ing throughout �−1 and d/dt to it and using the definition of z(t) in (4.3.10),
whose a priori regularity in (4.3.10) follows from (4.3.3) and (4.3.2). Since z(t)∈
H2

0 (Ω), both boundary conditions are satisfied and the abstract z-equation
leads to its corresponding PDE version. By (4.3.19) below, and within the class
(4.3.20), we can take z1 = 0.

Remark 4.14. As already noted, the change of variable vt → z in (4.3.10) and the
resulting z-problems in (4.3.11a) are precisely the same that were used in [61,
Section 2.1] in obtaining the uniform stabilization, Theorem 4.13, directly; the
only difference is the specific form of the right-hand side term (thus, the letter
p was used in [61, equation (2.11)], while the letter z is used now for a closely
related, yet not identical system). In both cases, however, a time-derivative term
occurs (in our case G2g2t), which will require—in [61] as well as in Step 6 in the
proof of Lemma 4.16 below—an integration by parts in t to obtain the sought-
after estimate.

Theorem 4.15. With reference to (4.3.9),

B∗L : continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
; (4.3.13a)

equivalently, with reference to (4.3.11a), the map

g2 −→ ∆z|Σ is continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
. (4.3.13b)

We will see below in the proof that this result, though not explicitly stated, is
built-in in the treatments of [61] to prove Theorem 4.13.

Proof
Step 1 (basic energy identity). We return to the basic identity of the energy
methods [61, equation (2.24), page 287], which we use with a vector field h
satisfying (as usual in obtaining trace regularity results [22]) the additional con-
dition h|Γ = ν. Thus, with h · ν= 1 on Γ, for the solution z of a priori regularity
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z ∈ C([0,T];H2
0 (Ω)) as in (4.3.10), we have

1
2

∫
Σ

(∆z)2dΣ= RHS1 + RHS2 + b0,T , (4.3.14)

RHS1 =
∫
Q
∆zdiv

[(
H +HT

)∇z]dQ+
1
2

∫
Q
z∆z∆(divh)dQ, (4.3.15)

RHS2 =−
∫
Q
G2g2th ·∇zdQ− 1

2

∫
Q
G2g2tzdivhdQ, (4.3.16)

b0,T =
[(
zt,h ·∇z

)
Ω

]T
0

+
1
2

[(
zt,zdivh

)
Ω

]T
0
. (4.3.17)

Step 2 (estimate for RHS1). From the a priori regularity (4.3.10) for z, we im-
mediately find that

RHS1 = �
(∥∥g2

∥∥2
L2(Σ)

)
∀g2 ∈ L2(Σ). (4.3.18)

Step 3 (regularity of zt). To handle RHS2 (by integration by parts in t, precisely as
in the proof of the uniform stabilization theorem (Theorem 4.13) given in [61,
pages 283–289]), we need the regularity of zt. By (4.3.10) and the v-equation
(4.3.7), we obtain

zt(t)=�−1vtt =�−1[−�v+ �G2g2
]

=−v+G2g2 ∈ L2
(
0,T ;L2(Ω)

)
continuously in g2 ∈ L2(Σ),

(4.3.19)

by recalling that v∈C([0,T];L2(Ω)) (see (4.3.3)) and thatG2g2∈L2(0,T ;H3/2(Ω)),
by virtue of (4.3.6a) with s= 0 on G2 and g2 ∈ L2(Σ).
Step 4 (estimates for RHS2 and b0,T for smoother g2). Henceforth, to estimate
both RHS2 and b0,T , we will at first take g2 within the smoother class

g2 ∈ C
(
[0,T];L2(Γ)

)
, g2(0)= g2(T)= 0. (4.3.20)

This initial restriction is dictated by the fact that zt in (4.3.19) is only in L2 in
time.

Lemma 4.16. In the present setting,

RHS2 = �
(∥∥g2

∥∥2
L2(Σ)

)
, b0,T = �

(∥∥g2
∥∥2
L2(Σ)

)
, (4.3.21)

for all g2 in the class (4.3.20).

Step 5 (proof of (4.3.21) for b0,T). First from (4.3.10), (4.3.3), and (4.3.2), we
have, since vt(0)= v1 = 0,

z(0)= 0, z(T)=�−1vt
(
T ; y0 = 0

)∈�
(
�1/2)≡H2

0 (Ω)

continuously in g2 ∈ L2(Σ).
(4.3.22)
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Next, for g2 in the class (4.3.20) used in (4.3.19), we compute, since v(0) =
v0 = 0,

zt(0)= 0, zt(T)=−v(T)∈ L2(Ω) continuously in g2 ∈ L2(Σ), (4.3.23)

where the regularity follows from (4.3.3). Using (4.3.22) and (4.3.23) in (4.3.17),
we readily obtain, as desired,

b0,T =
(
zt(T),h ·∇z(T)

)
Ω +

1
2

(
zt(T), z(T)divh

)
Ω = �

(∥∥g2
∥∥2
L2(Σ)

)
(4.3.24)

for all g2 in the class (4.3.20). Thus, (4.3.21) (right) is proved.
Step 6 (proof of (4.3.21) for RHS2). The most critical term of RHS2 to estimate
is the first term in (4.3.16). As in the direct proof of the uniform stabilization
theorem (Theorem 4.13) given in [61, page 287], we integrate by parts in t, with
g2 in the class (4.3.20), thus obtaining

∫
Q
G2g2th ·∇zdQ =

[∫
Ω
G2g2����h ·∇zdΩ

]T
0
−
∫
Q
G2g2h ·∇zt dQ, (4.3.25)

where the first term on the right-hand side vanishes since g2(0) = g2(T) = 0.
Moreover, the usual divergence theorem [61, equation (2.31), page 288] yields,
with h · ν= 1,∫ T

0

∫
Ω
G2g2h ·∇ztdΩdt

=
∫ T

0

∫
Γ
G2�����g2zth · νdΓdt−

∫ T

0

∫
Ω
zth ·∇

(
G2g2

)
dΩdt

−
∫ T

0

∫
Ω
G2g2zt divhdΩdt = �

(∥∥g2
∥∥2
L2(Σ)

)
(4.3.26)

for all g2 in the class (4.3.20). The indicated estimate in terms of g2 in (4.3.26)
follows by virtue of zt ∈ L2(0,T ;L2(Ω)) (see (4.3.19)), G2g2 ∈ L2(0,T ;H3/2(Ω))
by (4.3.6a) with s= 0 onG2 and thus |∇(G2g2)| ∈ L2(0,T ;H1/2(Ω)), all bounded
by the L2(Σ)-norm of g2. A similar estimate as (4.3.26) holds true, a fortiori, for
the more regular second term in the definition of RHS2 in (4.3.16). Accordingly,
we obtain (4.3.21) for RHS2.
Step 7. We can then extend estimates (4.3.21) for RHS2 and b0,T to all g2 ∈ L2(Σ),
by density, starting from the class (4.3.20). Using these extended estimates as well
as (4.3.18) in (4.3.14), we finally obtain∫

Σ
(∆z)2dΣ= �

(∥∥g2
∥∥2
L2(Σ)

)
∀g2 ∈ L2(Σ), (4.3.27)

and (4.3.13b) is proved. The proof of Theorem 4.15 is complete. �
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4.4. Euler-Bernoulli plate with clamped boundary controls. Case 2: Dirichlet
control

Open-loop and closed-loop feedback dissipative systems. In the notation of Case
1 above, we consider the Euler-Bernoulli equation defined on Ω, with Dirichlet
boundary control g1 ∈ L2(0,T ;L2(Γ)), in both open-loop and closed-loop dissi-
pative form:

vtt +∆2v = 0; wtt +∆2w = 0 in Q, (4.4.1a)

v(0,·)=v0, vt(0,·)=v1; w(0,·)=w0, wt(0,·)=w1 in Ω, (4.4.1b)

v|Σ = g1; w|Σ =−∂∆
(
�−3/2wt

)
∂ν

∣∣∣∣
Σ

in Σ, (4.4.1c)

∂v

∂ν

∣∣∣∣
Σ
= 0;

∂w

∂ν

∣∣∣∣
Σ
= 0 in Σ. (4.4.1d)

Here the operator � is the same as in Section 4.3, (4.3.6).

Regularity, exact controllability of the v-problem, and uniform stabilization of the
w-problem. References for this subsection are [4, 29, 54, 55]. These references
give a full account of these three problems. We begin by introducing the (state)
space (of optimal regularity)

Y ≡ [�(�1/4)]′ × [�(�3/4)]′ ≡H−1(Ω)×V ′,

V =
{
f ∈H3(Ω) : f |Γ = ∂ f

∂ν

∣∣∣∣
Γ
= 0

}
.

(4.4.2)

Theorem 4.17 (regularity [54] and [29, Theorem 1.0, page 331]). Regarding the
v-problem (4.4.1), with y0 = {v0,v1} = 0, the following regularity result holds true
for each T > 0 (recall the definition of L in (1.2b)):

the map L : g1 −→ Lg1 =
{
v,vt

}
is continuous L2(Σ)

−→ C
(
[0,T];Y ≡H−1(Ω)×V ′). (4.4.3)

Theorem 4.18 (exact controllability [29, Theorems 1.1 and 1.4], [4, Theorem
1.3, Remark 1.1]). Assume that there exists a coercive vector field h(x)∈ [C2(Ω)]n

(in particular, a radial vector field h(x)= x− x0, for some x0 ∈Rn), such that

h · ν≥ 0 on Γ. (4.4.4)

Given any initial condition {v0,v1} ∈ Y and T > 0, there exists a g1 ∈ L2(Σ) such
that the corresponding solution of the v-problem (4.4.1) satisfies {v(T),vt(T)} = 0.

Theorem 4.19 (uniform stabilization [4, Theorem 1.3, page 51]). With reference
to the w-problem (4.4.1),

(i) the map {w0,w1} ∈ Y ≡ H−1(Ω)×V ′ → {w(t),wt(t)} defines a s.c. con-
traction semigroup eAt on Y ;
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(ii) the following trace result holds true:

w|Σ =−∂∆
(
�−3/2wt

)
∂ν

∣∣∣∣
Σ
∈ L2

(
0,∞;L2(Γ)

)
continuously in

{
w0,w1

}∈ Y ;

(4.4.5)

(iii) moreover, assume the geometrical condition of Theorem 4.18. Then, there
exist constants M ≥ 1, δ > 0 such that

∥∥∥∥∥
[
w(t)
wt(t)

]∥∥∥∥∥
Y

=
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥
Y

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
Y

, t ≥ 0. (4.4.6)

We stress again, in line with the content of Section 1, that all three theorems
above are obtained by PDE hard analysis energy methods (not by soft analy-
sis methods). As usual, the most challenging result to prove is Theorem 4.19
on uniform stabilization; this problem, in addition, requires a shift of topology
from Y ≡H−1(Ω)×V ′ ≡ [�(�1/4)]′ × [�(�3/4)]′ (the space of the final result)
to �(�3/4)×�(�1/4) (the space where the energy method works). This shift of
topology is implemented by a change of variable; this is the same change of vari-
able noted below in (4.4.10b), that is needed to establish the desired regularity
of B∗L.

Abstract model of v-problem. We let

�ψ=∆2ψ, �(�)=H4(Ω)∩H2
0 (Ω), G1 :Hs(Γ)−→Hs+1/2(Ω), s∈R,

(4.4.7a)

ϕ=G1g1 ⇐⇒
{
∆2ϕ= 0 in Ω; ϕ|Γ = g1,

∂ϕ

∂ν

∣∣∣∣
Γ
= 0

}
. (4.4.7b)

Then, the second-order, respectively, first-order abstract models (in additive
form) of the v-problem (4.4.1) are [4, 29]

vtt + �v =�G1g1,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg1, (4.4.8)

A=
[

0 I
−� 0

]
, Bg1 =

[
0

�G1g1

]
, B∗

[
x1

x2

]
=G∗1 �−1/2x2, (4.4.9)

where∗ for B andG1 refers to different topologies. With B∗ defined by (Bg1,x)Y
= (g1,B∗x)L2(Γ) with respect to the Y-topology, we readily find the expression in
(4.4.9) since the second component of the space Y is [�(�3/4)]′.



1096 Regularity of B∗L

The operator B∗L. With y0 = {v0,v1} = 0, we will show that

B∗Lg1 = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=G∗1 �−1/2vt
(
t; y0 = 0

)= ∂∆z(t)
∂ν

∣∣∣∣
Γ
, (4.4.10a)

z(t)≡�−3/2vt
(
t; y0 = 0

)∈ C([0,T];�
(
�3/4)≡V) continuously in g1∈L2(Σ).

(4.4.10b)

The new variable z(t) defined in (4.4.10) satisfies the following dynamics: ab-
stract equation and corresponding PDE-mixed problem

ztt +∆2z =�−1/2G1g1t in Q, (4.4.11a)

ztt+�z=�−1/2G1g1t z(0,·)=z0=0, zt(0,·)=z1 in Ω, (4.4.11b)

z|Σ ≡ 0,
∂z

∂ν

∣∣∣∣
Σ
≡ 0 in Σ. (4.4.11c)

Indeed, to obtain (4.4.10a) (right) and (4.4.11), one uses the definition in (4.4.9)
(left), followed by (4.4.8) for B∗, to obtain

B∗Lg1 =G∗1 �−1/2vt
(
t; y0 = 0

)=G∗1 ��−3/2vt
(
t; y0 = 0

)
=G∗1 �z(t)= ∂∆z(t)

∂ν

∣∣∣∣
Γ
,

(4.4.12)

where, in the last step, we have recalled the usual property G∗1 � = ∂∆/∂ν|Γ on
V [4, equation (1.19), page 49], [29, equation (2.4)]. The abstract z-equation is
readily obtained from the abstract v-equation after applying throughout �−3/2

and d/dt to it and using the definition of z(t) in (4.4.10b), whose a priori reg-
ularity in (4.4.10b) follows from (4.4.3) and (4.4.2). Since z(t) ∈�(�3/4) = V
(see (4.4.2)), both boundary conditions are satisfied and the abstract z-equation
leads to its corresponding PDE-version. By (4.4.19) below, and within the class
(4.4.20), we can take z1 = 0.

Remark 4.20. As already noted, the change of variable vt → z in (4.4.10) and the
resulting z-problems in (4.4.11) are precisely the same that were used in [4] in
obtaining the uniform stabilization, Theorem 4.21, directly; the only difference
is the specific form of the right-hand side term (thus, the letter p was used in [4,
equation (3.12), page 55], while the letter z is used now for a closely related, yet
not identical system). In both cases, however, a time-derivative term occurs (in
our case �−1/2G1g1t), which will require—in [4] as well as in Step 3 below—an
integration by parts in t to obtain the sought-after estimate.

Theorem 4.21. With reference to (4.4.10),

B∗L : continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
; (4.4.13a)
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equivalently, with reference to (4.4.11), the map

g1 −→ ∂∆z

∂ν

∣∣∣∣
Γ

is continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
. (4.4.13b)

We will see below in the proof that this result, though not explicitly stated,
is built-in in the treatments of [4, 29, 54] of Theorems 4.17, 4.18, and 4.19.
This situation is the exact counterpart of what was noted in Section 4.3, in the
paragraph just below Theorem 4.15.

Proof
Step 1 (basic energy identity). We return to the basic identity of the energy
method [29, equation (2.24), page 340], [4, equation (3.31), page 58, with β = 0
and values at t = T], which we use with a vector field h satisfying (as usual in ob-
taining trace regularity results [22]) the additional condition h|Γ = ν. Thus, with
h · ν= 1 on Γ, for the solution z of a priori regularity z ∈ C([0,T];�(�3/4)≡V)
as in (4.4.10),∫

Σ

∂∆z

∂ν
h ·∇(∆z)dΣ− 1

2

∫
Σ

∣∣∇(∆z)
∣∣2
h · νdΣ+

1
2

∫
Σ

∂∆z

∂ν
∆zdivhdΣ

= RHS1 + RHS2 +β0,T ,
(4.4.14)

RHS1 =
∫
Q
H∇(∆z) ·∇(∆z)dQ+

∫
Q
H∇zt ·∇zt dQ, (4.4.15)

RHS2 =
∫
Q

�−1/2G1g1th ·∇(∆z)dQ+
∫
Q

�−1/2G1g1t∆zdivhdQ, (4.4.16)

βo,T =
[

1
2

∫
Ω

divh∇z ·∇zt dΩ
]T

0
−
[∫

Ω
zth ·∇(∆z)dΩ

]T
0
. (4.4.17)

Step 2 (estimate for RHS1). From the a priori regularity (4.4.10) for z and V as
in (4.4.2), we immediately find that

RHS1 = �
(∥∥g1

∥∥2
L2(Σ)

)
∀g1 ∈ L2(Σ). (4.4.18)

Step 3 (regularity of zt). To handle RHS2 (by integration by parts in t, precisely
as in the proof of the uniform stabilization theorem (Theorem 4.19) given in [4,
page 59]), we need the regularity of zt. By (4.4.10b) and the v-equation (4.4.8),
we obtain

zt(t)=�−3/2vtt

=�−3/2[−�v+ �G1g1
]=−�−1/2v+ �−1/2G1g1

∈ L2
(
0,T ;�

(
�1/4)≡H1

0 (Ω)
)

continuously in g1 ∈ L2(Σ),

(4.4.19)

by recalling that v ∈ C([0,T];[�(�1/4)]′) (see (4.4.3), (4.4.2)) and that G1g1 ∈
L2(0,T ;H1/2(Ω)), by virtue of (4.4.7a) with s= 0 on G1, hence (conservatively)
�−1/2G1g1 ∈ L2(0,T ;�(�1/2)≡H2

0 (Ω)) for g1 ∈ L2(Σ).
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Step 4 (estimates for RHS2 and b0,T for smoother g1). Henceforth, to estimate
both RHS1 and β0,T , we will at first take g1 within the smoother class

g1 ∈ C
(
[0,T];L2(Γ)

)
, g1(0)= g1(T)= 0. (4.4.20)

This initial restriction is dictated by the fact that zt in (4.4.19) is only in L2 in
time.

Lemma 4.22. In the present setting,

RHS2 = �
(∥∥g1

∥∥2
L2(Σ)

)
, β0,T = �

(∥∥g1
∥∥2
L2(Σ)

)
, (4.4.21)

for all g1 in the class (4.4.20).

Step 5 (proof of (4.4.21) for β0,T). First from (4.4.10), (4.4.3), and (4.4.2), we
have, since vt(0)= v1 = 0,

z(0)= 0, z(T)=�−3/2vt
(
T ; y0 = 0

)∈�
(
�3/4)≡V

continuously in g1 ∈ L2(Σ).
(4.4.22)

Next, for g1 in the class (4.4.20) used in (4.4.19), we compute, since vt(0) =
v1 = 0,

zt(0)= 0, zt(T)=−�−1/2vt
(
T ; y0 = 0

)∈�
(
�1/4)≡H1

0 (Ω)

continuously in g1 ∈ L2(Σ),
(4.4.23)

where the regularity follows from (4.4.3) and (4.4.2). Using (4.4.22) and (4.4.23)
in (4.4.17), we readily obtain, as desired,

β0,T = 1
2

∫
Ω

divh∇z(T) ·∇zt(T)dΩ−
∫
Ω
zt(T)h ·∇(∆z(T)

)
dΩ

= �
(∥∥g1

∥∥2
L2(Σ)

) (4.4.24)

for all g1 in the class (4.4.20). Thus, (4.4.21) (right) is proved.
Step 6 (proof of (4.4.21) for RHS2). The most critical term of RHS2 to estimate
is the first term in (4.4.16). As in the direct proof of the uniform stabilization
theorem (Theorem 4.19) in [4, page 59], we integrate by parts in t, with g1 in the
class (4.4.20), thus obtaining

∫
Q

�−1/2G1g1th ·∇∆zdQ

=
[∫

Ω
�−1/2G1

�����g1h ·∇∆zdΩ
]T

0
−
∫
Q

�−1/2G1g1h ·∇∆zt dQ,
(4.4.25)
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where the first term on the right-hand side of (4.4.25) vanishes since g1(0) =
g1(T)= 0. Moreover, we will see that

∫
Q

�−1/2G1g1h ·∇∆zt dQ =
∫ T

0

(
G1g1,�−1/2h ·∇(∆zt))Ωdt = �

(∥∥g1
∥∥2
L2(Σ)

)
.

(4.4.26)

In fact, by [4, Lemma 3.5, page 50], the second term in the inner product
satisfies (as �(�1/2)≡H2

0 (Ω))∥∥�−1/2h ·∇∆zt
∥∥
L2(Ω) =

∥∥h ·∇∆zt∥∥[�(�1/2)]′ ≤ C1
∥∥h ·∇∆zt∥∥H−2(Ω)

≤ Ch
∥∥∇(∆zt)∥∥H−2(Ω) ≤ Ch

∥∥zt∥∥H1(Ω)

= Ch
∥∥�1/4zt

∥∥
L2(Ω),

(4.4.27)

where, in the last step, we have used zt|Γ = 0. Recalling (4.4.19),

∥∥�1/4zt
∥∥
L2(0,T ;L2(Ω)) = �

(∥∥g1
∥∥
L2(Σ)

)
; (4.4.28)

we then see that (4.4.27) and (4.4.28), used in the integral term of (4.4.26), pro-
duce the indicated estimate. From (4.4.26) used in (4.4.25), we conclude that∫

Q
�−1/2G1g1th ·∇∆zdQ = �

(∥∥g1
∥∥2
L2(Σ)

)
(4.4.29)

for all g1 in the class (4.4.20), as desired. A similar estimate as the one in (4.4.29)
holds true, a fortiori for the more regular second term in the definition of RHS2

in (4.4.16). Accordingly, we obtain (4.4.21) for RHS2.
Step 7. We can then extend estimates (4.4.21) for RHS2 and β0,T to all g1 ∈ L2(Σ),
by density, starting from the class (4.4.20). Using these extended estimates as well
as (4.4.18) in (4.4.14), we obtain for the right-hand side of (4.4.14),

RHS1 + RHS2 +β0,T = �
(∥∥g1

∥∥2
L2(Σ)

)
∀g1 ∈ L2(Σ). (4.4.30)

Step 8. It remains to handle the left-hand side (boundary terms) of identity
(4.4.14). We first note that since h|Γ = ν⊥ Γ, then as usual,

on Γ : h ·∇(∆z)= ∂∆z

∂ν
,

∣∣∇(∆z)
∣∣2 =

∣∣∣∣∂∆z∂ν

∣∣∣∣2

+
∣∣∇σ(∆z)

∣∣2
, (4.4.31)

where ∇σ denotes the tangential gradient on Γ. Hence, regarding the first two
terms on the left-hand side of (4.4.14), we have by (4.4.31), on Γ,

∂∆z

∂ν
h ·∇(∆z)− 1

2

∣∣∇(∆z)
∣∣2
h · ν= 1

2

∣∣∣∣∂∆z∂ν

∣∣∣∣2

− 1
2

∣∣∇σ(∆z)
∣∣2
. (4.4.32)



1100 Regularity of B∗L

Hence, (4.4.32) yields for the left-hand side of (4.4.14),

LHS of (4.4.14)= 1
2

∫
Σ

∣∣∣∣∂∆z∂ν

∣∣∣∣2

dΣ− 1
2

∣∣∇σ(∆z)
∣∣2

+
1
2

∫
Σ

∂∆z

∂ν
∆zdivhdΣ

(4.4.33)

≥
(

1
2
− ε

4

)∫
Σ

∣∣∣∣∂∆z∂ν

∣∣∣∣2

dΣ− Ch
4ε

∫
Σ
|∆z|2dΣ

−1
2

∫
Σ

∣∣∇σ(∆z)
∣∣2
dΣ,

(4.4.34)

∫ T

0

∫
Γ
|∆z|2dΣ≤ C

∫ T

0
‖z‖2

H3(Ω)dt = �
(‖z‖2

L2(0,T ;V)

)
(4.4.35)

= �
(∥∥g1

∥∥2
L2(Σ)

) (
by (4.4.10)

)
.

(4.4.36)

In the last step in (4.4.35) we have recalled that z satisfies the two boundary con-
ditions (4.4.11c) as well as the spaceV in (4.4.2). To go from (4.4.35) to (4.4.36),
we have invoked (4.4.10). Finally, substituting estimate (4.4.36) in (4.4.34) and
recalling (4.4.30), we obtain

(
1
2
− ε

4

)∫
Σ

∣∣∣∣∂∆z∂ν

∣∣∣∣2

dΣ= �ε
(∥∥g1

∥∥2
L2(Σ)

)
+

1
2

∫
Σ

∣∣∇σ(∆z)
∣∣2
dΣ. (4.4.37)

Step 9. We now estimate in terms of g1 ∈ L2(Σ) the last integral term in the
right-hand side of (4.4.37).

Lemma 4.23. With reference to problem (4.4.11) and to (4.4.37),∫
Σ

∣∣∇σ(∆z)
∣∣2
dΣ= �

(∥∥g1
∥∥2
L2(Σ)

)
, g1 ∈ L2(Σ). (4.4.38)

Proof. As in [22, 29] and [45, page 970], we introduce the following operator:

�≡ first-order differential operator on Ω, tangential to Γ (i.e., without

transversal derivatives to Γ, when expressed in local coordinates)

and with smooth coefficients on Ω.
(4.4.39)

We next define a new variable

y ≡�z ∈ C([0,T];H2(Ω)
)
, yt ≡�zt ∈ L2

(
0,T ;L2(Ω)

)
continuously in g1 ∈ L2(Σ),

(4.4.40a)

yt ∈ C
(
[0,T];L2(Ω)

)
for g1 in the class (4.4.20)

continuously in the L2(Σ)-norm of g1,
(4.4.40b)
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where the indicated regularity of {y, yt} in (4.4.40a) stems from (4.4.10b) and
(4.4.19), respectively. Moreover, (4.4.19) yields (4.4.40b) if g1 belongs to the class
(4.4.20).

Thus, applying � to the PDE z-problem (4.4.11) yields the corresponding
y-problem

ytt +∆2y = F in (0,T]×Ω≡Q, (4.4.41a)

y(0,·)= 0, y1(0,·)= y1 =�z1 in Ω, (4.4.41b)

y|Σ ≡ 0,
∂y

∂ν

∣∣∣∣
Σ
= u in (0,T]×Γ≡ Σ, (4.4.41c)

where

F≡[∆2,�
]
z+�−1/2G1g1t , KIz≡

[
∆2,�

]
z∈C([0,T];H−1(Ω)

)
, (4.4.42)

u≡
[
∂

∂ν
,�
]
z
∣∣∣∣
Γ
∈ C([0,T];H3/2(Γ)

)
. (4.4.43)

Both regularity properties in (4.4.42) and (4.4.43) are continuous in g1 ∈ L2(Σ).
Moreover, if g1 is in the class (4.4.20), we can take y1 = 0. The regularity of
the fourth-order commutator in (4.4.42) and of the first-order commutator in
(4.4.43) follows from the regularity of z in (4.4.10b) as well as trace theory in the
former case. Further, we notice that by (4.4.39) and (4.4.40a), we have∫

Γ

∣∣∇σ
(
∆z|Γ

)∣∣2
dΓ=

∫
Γ

∣∣�
(
∆z|Γ

)∣∣2
dΓ

=
∫
Γ

∣∣∣[∆(�z)
]
Γ

∣∣∣2
dΓ+ l.o.t.

=
∫
Γ

∣∣∆y|Γ∣∣2
dΓ+ l.o.t.,

(4.4.44)

where l.o.t stands for “lower-order terms.” Thus, by (4.4.44), instead of estab-
lishing (4.4.38), we seek to prove equivalently that∫

Σ

∣∣∆y|Γ∣∣2
dΣ= �

(∥∥g1
∥∥2
L2(Σ)

)
, g1 ∈ L2(Σ). (4.4.45)

Furthermore, since u in (4.4.41c) is smooth, see (4.4.43), we replace the y-
problem (4.4.41) with the following boundary homogeneous η-problem:

ηtt +∆2η = F in Q, (4.4.46a)

η(0,·)= 0, ηt(0,·)= y1 in Ω, (4.4.46b)

w|Σ ≡ 0,
∂η

∂ν

∣∣∣∣
Σ
≡ 0 in Σ, (4.4.46c)
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where F is defined by (4.4.42) and where η is subject to the same a priori regu-
larity as y (compare with (4.4.40)):

η ∈ C([0,T];H2
0 (Ω)

)
, ηt ∈ L2

(
0,T ;L2(Ω)

)
continuously in g1 ∈ L2(Σ),

(4.4.47a)

ηt ∈ C
(
[0,T];L2(Ω)

)
for g1 in the class (4.4.20) continuously in the

L2(Σ)-norm of g1, in which case we can take y1 = 0.
(4.4.47b)

Accordingly, we now seek to establish that

∫
Σ

∣∣∆η|Γ∣∣2
dΣ= �

(∥∥g1
∥∥2
L2(Σ)

)
, g1 ∈ L2(Σ), (4.4.48)

which is equivalent to (4.4.45), hence to the original sought-after estimate
(4.4.38).

Proof of (4.4.48). We take, at first, g1 in the class (4.4.20), prove estimate (4.4.48),
and then extend it to all g1 ∈ L2(Σ). Thus, below, we may assume the regularity
(4.4.47b). To establish (4.4.48), we recall the energy method based on the mul-
tiplier h · ∇η for problem (4.4.46), where h is a smooth vector field such that
h= ν on Γ, and hence h · ν= 1 on Γ. We can thus invoke the usual identity, see,
for example, [61, equation (2.20), page 286], for the η-problem (4.4.46):

1
2

∫
Σ

(∆η)2h · νdΣ= RHS1 + RHS2 + b0,T ,

RHS1 = 1
2

∫
Q

[
η2
t − (∆η)2]divhdQ+

∫
Q
∆ηdiv

[(
H +HT

)∇η]dQ
−
∫
Q
∆η∇η ·∇(divh)dQ,

RHS2 =−
∫
Q
Fh ·∇ηdQ, b0,T =

[(
ηt(t),h ·∇η(t)

)
Ω

]T
0
.

(4.4.49)

From the a priori regularity of {η,ηt} in (4.4.47), we have

RHS1 = �
(∥∥g1

∥∥2
L2(Σ)

)
∀g1 ∈ L2(Σ),

b0,T = �
(∥∥g1

∥∥2
L2(Σ)

)
for g1 in the class (4.4.40).

(4.4.50)

(We are taking g1 in the class (4.4.40) since b0,T requires continuity in time of
ηt as in (4.4.47b), which is not available in (4.4.47a). Alternatively, as in [22],
we could apply the multiplier (T − t)h ·∇η to problem (4.4.46) to eliminate the
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terms in [·]T0 .) It remains to show that

RHS2 =−
∫
Q
Fh ·∇ηdQ≡ �

(∥∥g1
∥∥2
L2(Σ)

)
, g1 ∈ L2(Σ). (4.4.51)

We now establish (4.4.51). Since F = KIz + �−1/2G1g1t by (4.4.42), where KI is
the interior commutator in (4.4.42), we proceed for each term separately. We
have ∫

Q
KIzh ·∇ηdQ = �

(∥∥g1
∥∥2
L2(Σ)

)
, g1 ∈ L2(Σ). (4.4.52)

This is so for the following reasons. First, we have KIz ∈ C([0,T];H−1(Ω)) con-
tinuously in g1∈L2(Σ) by (4.4.42), while preliminarily |∇η|∈C([0,T];H1(Ω)).
Next, the latter combined with η|Σ = 0, hence ∇η ⊥ Γ and ∂η/∂ν =∇η · ν = 0
on Σ, hence |∇η| = 0 on Σ, yields finally |∇η| ∈ C([0,T];H1

0 (Ω)) continuously
in g1 ∈ L2(Σ), and (4.4.52) is proved. (We could also use the divergence theorem
[61, equation (2.3.1), page 288] to reach the same conclusion.) Similarly,

∫
Ω

∫ T

0
�−1/2G1g1th ·∇ηdtdΩ

=
[∫

Ω
�−1/2

�����
G1g1h ·∇ηdΩ

]T
0
−
∫
Q

�−1/2G1g1h ·∇ηt dQ = �
(∥∥g1

∥∥2
L2(Σ)

)
(4.4.53)

since �−1/2G1g1 ∈ L2(0,T ;�(�1/2) ≡ H2
0 (Ω)) for g1 ∈ L2(Σ) as noted below

(4.4.19) and |∇ηt| ∈ L2(0,T ;H−1(Ω)) for g1 ∈ L2(Σ) by (4.4.47a). Thus, (4.4.53)
is proved. Then, estimates (4.4.52) and (4.4.53) as well as F ≡ KIz+ �−1/2G1g1t

yield estimate (4.4.51), as desired. Thus, estimate (4.4.48) is proved. Equiva-
lently, estimate (4.4.45) and the sought-after estimate (4.4.38) are established
as well. �

Step 10. We use (4.4.38) in (4.4.37) and obtain

∫
Σ

∣∣∣∣∂∆z∂ν

∣∣∣∣2

dΣ= �
(∥∥g1

∥∥2
L2(Σ)

)
∀g1 ∈ L2(Σ), (4.4.54)

and Theorem 4.21 is finally proved. �

4.5. Euler-Bernoulli plate with hinged boundary controls. Case 1: control in
the “moment” boundary condition

Open-loop and closed-loop feedback dissipative systems. We let, again, Ω be an
open bounded domain in Rn (n = 2 in the physical case of plates) with suffi-
ciently smooth C2-boundary Γ. We consider the following open-loop problem
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of the Euler-Bernoulli equation defined on Ω, with boundary control g2 ∈ L2(0,
T ;L2(Γ)) ≡ L2(Σ), in the “moment” boundary condition as well as its corre-
sponding boundary dissipative version:

vtt +∆2v = 0; wtt +∆2w = 0 in Q, (4.5.1a)

v(0,·)= v0, vt(0,·)= v1; w(0,·)=w0, wt(0,·)=w1 in Ω, (4.5.1b)

v|Σ ≡ 0; w|Σ ≡ 0 in Σ, (4.5.1c)

∆v|Σ = g2; ∆w|Σ = ∂

∂ν

(
�−1wt

)
in Σ, (4.5.1d)

with Q = (0,T]×Ω; Σ= (0,T]× Γ. Moreover, the operator � is defined below
in (4.5.6) as � f =−∆ f ; �(�)=H2(Ω)∩H1

0 (Ω).

Regularity, exact controllability of the v-problem, and uniform stabilization of the
w-problem. References for this subsection include [20, 31, 33, 36, 50, 54, 55].
We begin by introducing the (state) space of optimal regularity

Y ≡�
(
�1/2)× [�(�1/2)]′ ≡H1

0 (Ω)×H−1(Ω). (4.5.2)

Theorem 4.24 (regularity [31, Theorem 1.3, equations (1.22), (1.23), page
203]). Regarding the v-problem (4.5.1) with y0 = {v0,v1} = 0, the following regu-
larity result holds true for each T > 0 (recall the definition of L in (1.2b)):

the map L : g2 −→ Lg2 =
{
v,vt

}
is continuous L2(Σ)

−→ C
(
[0,T]H1

0 (Ω)×H−1(Ω)
) (4.5.3a)

−→vtt continuous L2(Σ)−→L2
(
0,T ;

[
�
(
�3/2)]′ ≡V ′), (4.5.3b)

V =�
(
�3/2)= {h∈H3(Ω) : h|Γ = ∆h|Γ = 0

}
. (4.5.4)

(Note that the operator A in [31, Theorem 1.3] is A=�2 in our present notation
for �, see [31, equations (1.5), (1.6)]).

Theorem 4.25 (exact controllability [20, 50]). Given any initial condition {v0,
v1} ∈ Y and T > 0, there exists a g2 ∈ L2(Σ) such that the corresponding solution
of the v-problem (4.5.1) satisfies {v(T),vt(T)} = 0.

Remark 4.26. Exact controllability of the v-problem (4.5.1) with two bound-
ary controls v|Σ = g1 and ∆v|Σ = g2, g1 ∈H1

0 (0,T ;L2(Γ)), g2 ∈ L2(Σ), was previ-
ously obtained in [33, Theorem 1.2], [54, 55]. A different exact boundary con-
trollability result with g1 = 0 and g2 ∈ L2(0,T ;H1/2(Γ)), however, in the space
[H2(Ω)∩H1

0 (Ω)]×L2(Ω) was obtained in [36, Theorem 1.1].

Theorem 4.27 (uniform stabilization [20]). With reference to the w-problem
(4.5.1),

(i) the map {w0,w1} ∈ Y =�(�1/2)× [�(�1/2)]′ → {w(t),wt(t)} defines a
s.c. contraction semigroup eAt on Y ;
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(ii) the following trace result holds true:

∆w|Σ = ∂�−1wt

∂ν
∈ L2

(
0,∞;L2(Γ)

)
(4.5.5)

continuously in {w0,w1} ∈ Y .
(iii) there exist constants M ≥ 1, δ > 0, such that

∥∥∥∥∥
[
w(t)
wt(t)

]∥∥∥∥∥
Y

=
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥
Y

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
Y

, t ≥ 0. (4.5.6)

As in Sections 4.1, 4.2, 4.3, and 4.4 and in line with the content of Section
1, we stress once more that all three theorems above are obtained by PDE hard-
analysis energy methods (not by soft analysis methods). As usual, the most chal-
lenging result to prove is Theorem 4.27 on uniform stabilization.

Abstract model of v-problem. We let

�ψ=−∆ψ, �(�)=H2(Ω)∩H1
0 (Ω), G2 :Hs(Γ)−→Hs+5/2(Ω), s∈R,

(4.5.7)

ϕ=G2g2 ⇐⇒
{
∆2ϕ= 0 in Ω; ϕ|Γ = 0, ∆ϕ|Γ = g2 on Γ

}
(4.5.8)

and we recall the Dirichlet map D :Hs(Γ)→Hs+1/2(Ω) defined in (4.2.4):

ϕ=Dg2 ⇐⇒
{
∆ϕ= 0 in Ω; ϕ|Γ = g2 on Γ

}
, G2 =−�−1D, (4.5.9)

where the last relationship is taken from [31, Remark 3.2, page 211]. Then, the
second-order, respectively, first-order abstract models (in additive form) of the
v-problem (4.5.1) are [31, 33]

vtt + �2v =�2G2g2 =−�Dg2,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg2, (4.5.10)

A=
[

0 I
−�2 0

]
, Bg2 =

[
0

�2G2g2

]
, B∗

[
x1

x2

]
=G∗2 �x2 =−D∗x2,

(4.5.11)

where ∗ for B, and G2 and D, refer to different topologies. With B∗ defined by
(Bg2,x)Y = (g2,B∗x)L2(Γ) with respect to the Y-topology defined in (4.5.2), we
readily find the expression in (4.5.11) also by virtue of G2 =−�−1D.
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The operator B∗L. With y0 = {v0,v1} = 0, we will show that

B∗Lg2 = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=G∗2 �vt
(
t; y0 = 0

)=−D∗vt(t; y0
)

= ∂

∂ν
�−1vt

(
t; y0 = 0

)= ∂

∂ν
zt(t),

(4.5.12)

z(t)=�−1v
(
t; y0 = 0

)∈ C([0,T];�
(
�3/2)≡V) continuously in g2 ∈ L2(Σ).

(4.5.13)

Indeed, to obtain (4.5.12), one uses the definition in (4.5.11) for B∗, followed
by the usual property that G∗2 �2 = ∂/∂ν on �(�1/2) [31, Lemma 3.1, equation
(3.7), page 212] or D∗�=−∂/∂ν on �(�1/2)=H1

0 (Ω) [39, equation (1.21)].
The regularity of z(t) noted in (4.5.13) follows from (4.5.3a) for v, and

�(�1/2)≡H1
0 (Ω). The new variable z(t) defined in (4.5.13) satisfies the follow-

ing dynamics: abstract equation and the corresponding PDE-mixed problem

ztt + �2z =�G2g2 =−Dg2, (4.5.14a)

ztt +∆2z =�G2g2 =−Dg2 in Q; (4.5.14b)

z(0,·)= 0, zt(0,·)= 0 in Ω; (4.5.14c)

z|Σ ≡ 0, ∆z|Σ ≡ 0 in Σ. (4.5.14d)

The abstract z-equation in (4.5.14) (left) is readily obtained from the abstract
v-equation in (4.5.10) after applying �−1 and using the definition of z(t) in
(4.5.13). Since z(t) ∈�(�3/2) ≡ V (see (4.5.4)), both boundary conditions are
satisfied and the abstract z-equation leads to its corresponding PDE-version.

Remark 4.28. As already noted, the change of variable v→ z in (4.5.13) and the
resulting z-problems in (4.5.14) are precisely the same that were used in [20,
equations (2.7), (2.8), and (4.3)] in obtaining there the uniform stabilization,
Theorem 4.27, directly; the only difference is that in [20, equations (2.8), (4.3)]
g2 is expressed in feedback form: g2 = D∗�pt = (∂/∂ν)pt ∈ L2(0,∞;L2(Γ)) in
the notation of [20]. Thus, the letter p was used in [20], while the letter z is
used now. Thus, the techniques in the proof of the next sought-after result are
contained in [20] and indeed in [33, 54].

Theorem 4.29. With reference to (4.5.12),

B∗L : continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
; (4.5.15)

equivalently, with reference to (4.5.14),

the map g2 −→ ∂zt
∂ν

∣∣∣∣
Σ

is continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
.

(4.5.16)
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We will see below in the proof that this result, though not explicitly stated, is
built-in in the treatments of [20, 31, 33, 54, 55] to prove Theorem 4.24.

Proof
Step 1 (basic energy identity). We return to the basic identity of the energy
method [20, 31, 33, 54], which we use with a vector field h satisfying (as usual
in obtaining trace regularity results [22]) the additional condition h|Γ = ν. Thus,
with h · ν= 1 on Γ, for the solution z of a priori regularity z ∈ C([0,T];�(�3/2)
≡ V) as in (4.5.13), we have (see, e.g., [33, equations (2.29), (2.32)], [31, equa-
tions (2.1), (2.4)])

1
2

∫
Σ

[(
∂∆z

∂ν

)2

+
(
∂zt
∂ν

)2
]
dΣ= RHS1 + RHS2 + b0,T , (4.5.17)

RHS1 =
∫
Q
H∇∆z ·∇∆zdQ+

∫
Q
H∇zt ·∇zt dQ

+
1
2

∫
Q

(∣∣∇zt∣∣2−|∇∆z|2
)

divhdQ+
∫
Q
zt∇(divh) ·∇zt dQ,

(4.5.18)

RHS2 =−
∫
Q
Dg2∇∆zdQ, (4.5.19)

b0,T =−
[(
zt,h ·∇∆z

)
L2(Ω)

]T
0
. (4.5.20)

Step 2 (regularity of zt). To handle RHS1, we need the a priori regularity of zt,

zt=�−1vt
(
t; y0=0

)∈C([0,T];�
(
�1/2)≡H1

0 (Ω)
)

continuously in g2∈L2(Σ),

(4.5.21)

as it follows from (4.5.13), (4.5.3a), and H−1(Ω)= [�(�1/2)]′, see (4.5.2).
Step 3 (estimate of RHS1). By (4.5.13) for z and (4.5.21) for zt, we obtain

|∇∆z|,∣∣∇zt∣∣∈ C([0,T];L2(Ω)
)

continuously in g2 ∈ L2(Σ). (4.5.22)

Using (4.5.22) in (4.5.18) readily yields

RHS1 = �
(∥∥g2

∥∥2
L2(Σ)

)
∀g2 ∈ L2(Σ). (4.5.23)

Step 4 (estimates of RHS2 and b0,T). From (4.5.19) and (4.5.20), by virtue of
(4.5.21) and (4.5.22), we readily obtain

RHS2 + b0,T = �
(∥∥g2

∥∥2
L2(Σ)

)
∀g2 ∈ L2(Σ). (4.5.24)

Step 5 (final estimate). Using (4.5.23) and (4.5.24) in (4.5.17) yields

1
2

∫
Σ

[(
∂∆z

∂ν

)2

+
(
∂zt
∂ν

)2
]
dΣ= �

(∥∥g2
∥∥2
L2(Σ)

)
∀g2 ∈ L2(Σ), (4.5.25)
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and (4.5.25) a fortiori proves (4.5.16), as desired. The proof of Theorem 4.29 is
complete. �

Remark 4.30. In this case, the proof of Theorem 4.29 is easier than the proof of
uniform stabilization in [20]. But Claim 2.3 requires also exact controllability.

4.6. Euler-Bernoulli plate with hinged boundary controls. Case 2: control in
the Dirichlet boundary condition

Open-loop and closed-loop feedback dissipative systems. In the notation for Ω,
Γ, � of Section 4.5, we consider now the following open-loop problem of the
Euler-Bernoulli equation with boundary control g1 ∈ L2(0,T ;L2(Γ)) ≡ L2(Σ)
and its corresponding boundary dissipative version:

vtt +∆2v = 0; wtt +∆2w = 0 in Q, (4.6.1a)

v(0,·)=v0, vt(0,·)=v1; w(0,·)=w0, wt(0,·)=w1 in Ω, (4.6.1b)

v|Σ = g1; w|Σ = ∂

∂ν

(
�−2wt

)
in Σ, (4.6.1c)

∆v|Σ = 0; ∆w|Σ ≡ 0 in Σ. (4.6.1d)

Regularity, exact controllability of the v-problem, and uniform stabilization of the
w-problem. References for this subsection include [20, 31, 33]. We begin by in-
troducing the (state) space of optimal regularity

X ≡ [�(�1/2)]′×[�(�3/2)]′ ≡H−1(Ω)×V ′, (4.6.2)

with the space V defined in (4.5.4).

Theorem 4.31 (regularity [31, Theorem 1.3, equations (1.20), (1.21), page
203]). Regarding the v-problem (4.6.1) with y0 = {v0,v1} = 0, the following regu-
larity result holds true for each T > 0 (recall (1.2b)):

the map L : g1 −→ Lg1 =
{
v,vt

}
is continuous L2(Σ)

−→ C
(
[0,T];X ≡H−1(Ω)×V ′). (4.6.3)

Theorem 4.32 (exact controllability [20]). Given any initial condition {v0,v1} ∈
X and T > 0, there exists a g1 ∈ L2(Σ) such that the corresponding solution of the
v-problem (4.6.1) satisfies {v(T),vt(T)} = 0.

Remark 4.33. Exact controllability of the v-problem (4.6.1) with two bound-
ary controls v|Σ = g1 ∈ L2(Σ) and ∆v|Σ = g2 ∈ [H1(0,T ;L2(Γ))]′ was previously
obtained in [33, Theorem 1.1], [54].

Theorem 4.34 (uniform stabilization [20]). With reference to the w-problem
(4.6.1),
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(i) the map {w0,w1} ∈ X ≡ [�(�1/2)]′ × [�(�3/2)]′ → {w(t),wt(t)} defines
a s.c. contraction semigroup eAt on X ;

(ii) the following trace result holds true

w|Σ = ∂�−2wt

∂ν
∈ L2

(
0,∞;L2(Γ)

)
(4.6.4)

continuously in {w0,w1} ∈ X ;
(iii) there exist constants M ≥ 1, δ > 0 such that∥∥∥∥∥

[
w(t)
wt(t)

]∥∥∥∥∥
X

≡
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥
X

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
X

, t ≥ 0. (4.6.5)

Abstract model of the v-problem. In addition to the operator � in (4.5.7), we
need now the Green map

G1 :Hs(Γ)−→Hs+1/2(Ω), s∈R,

ϕ=G1g1 ⇐⇒
{
∆2ϕ= 0 in Ω, ϕ|Γ = g1, ∆ϕ|Γ = 0 on Γ

}
,

(4.6.6a)

G1 =D, where D is defined by (4.5.9) [31, Remark 3.1, page 211]. (4.6.6b)

Then, the second-order, respectively, the first-order, abstract models (in additive
form) of the v-problem (4.6.1) are [31]

vtt + �2v =�2G1g1 =�2Dg1,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg1, (4.6.7)

A=
[

0 I
−�2 0

]
, Bg1 =

[
0

�2G1g1

]
=
[

0
�2Dg1

]
, B∗

[
x1

x2

]
=D∗�−1x2,

(4.6.8)

where∗ for B andD refers to different topologies. With B∗ defined by (Bg1,x)X=
(g1,B∗x)L2(Γ) with respect to the X-topology defined in (4.6.2), we readily find
the expression in (4.6.8).

The operator B∗L. With y0 = {v0,v1} = 0, we will show that

B∗Lg1 = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=D∗�−1vt
(
t; y0 = 0

)
=D∗��−2vt

(
t; y0 = 0

)=− ∂

∂ν
zt(t),

(4.6.9)

z(t)=�−2v
(
t; y0 = 0

)∈ C([0,T];�
(
�3/2)≡V) continuously in g1 ∈ L2(Σ).

(4.6.10)

Indeed, to obtain (4.6.9), one uses the definition in (4.6.8) for B∗, followed by
the usual property that D∗�=−∂/∂ν on �(�1/2)=H1

0 (Ω) [as below (4.2.10)].
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The regularity of z(t) noted in (4.6.10) follows from (4.6.3) with [�(�1/2)]′ =
H−1(Ω) with V defined by (4.5.4). The new variable z(t) defined in (4.6.10)
satisfies the following dynamics: abstract equation and the corresponding PDE-
mixed problem

ztt + �2z =G1g1 =Dg1, (4.6.11a)

ztt +∆2z =Dg1 in Q, (4.6.11b)

z(0,·)= 0, zt(0,·)= 0 in Ω, (4.6.11c)

z|Σ ≡ 0, ∆z|Σ ≡ 0 in Σ, (4.6.11d)

which is essentially the same as problem (4.5.14). Since now g1 ∈ L2(Σ) (while in
(4.5.14), g2 ∈ L2(Σ)), Theorem 4.29 yields at once the following theorem.

Theorem 4.35. With reference to (4.6.9),

B∗L : continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
; (4.6.12)

equivalently, with reference to (4.6.11),

the map g1 −→ ∂zt
∂ν

is continuous L2
(
0,T ;L2(Γ)

)−→ L2
(
0,T ;L2(Γ)

)
. (4.6.13)

4.7. Wave equation with Dirichlet boundary control: the 1-dimensional case.
In this section, let Ω= (0,1). Consider the 1-dimensional wave equation

vtt = vxx in (0,T]×Ω, (4.7.1a)

v(0,·)= 0, vt(0,·)= 0 in Ω, (4.7.1b)

v|x=0 = g(t), w|x=1 ≡ 0 in (0,T], (4.7.1c)

with Dirichlet boundary control g ∈ L2(0,T). We extend g to vanish for t < 0.
Then, the well-known solution of problem (4.7.1) is [24, page 52], [45, page
966]

(Lg)(t,x)= v(t,x)=
K∑
k=0
k even

g(t− k− x)−
K∑
k=1
kodd

g
(
t− (k+ 1) + x

)
a.e. in t, K ≤ t ≤ (K + 1),

(4.7.2)

in agreement with the physical fact that the input g applied at x = 0 travels with
speed equal to 1 and is reflected at x = 1 in such a way as to satisfy the zero
boundary condition. It is shown in Section 5, see (5.1.8)—in the multidimen-
sional case—that for problem (4.7.1) we have

B∗Lg =D∗vt, (4.7.3)
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whereD is the Dirichlet map defined in (4.5.9) andD∗ its adjoint. In our present
1-dimensional problem (4.7.1), we have

(Dg)(x)=−gx+ g, g ∈R,

D∗ϕ=
∫ π

0
(1− x)ϕ(x)dx, ϕ∈ L2(0,1).

(4.7.4)

Goal. With reference to (4.7.3), our goal is to show that

B∗L : L2(0,T)−→ L2(0,T), (4.7.5a)

or equivalently, that

D∗vt ∈ L2(0,T) continuously in g ∈ L2(0,T). (4.7.5b)

Because of the solution formula (4.7.2), it will suffice to take

v(t,x)= g(t− x), vt(t,x)= ġ(t− x), 0≤ t ≤ 1, (4.7.6)

and, in view of (4.7.4), show that

D∗vt =D∗ġ(t−·)=
∫ 1

0
(1− x)ġ(t− x)dx ∈ L2(0,T) (4.7.7)

for g ∈ L2(0,T), T ≤ 1. We obtain

D∗vt =D∗ġ(t−·)
= (1 + t)

[
g(t)− g(t− 1)

]
+ (t− 1)g(t− 1)

− tg(t)−
∫ t−π

t
g(r)dr ∈ L2(0,T),

(4.7.8)

and thus (4.7.7) is established in this case. The proof is similar for the other terms
of (4.7.2) for a general T fixed. Thus, the regularity property (4.7.5) is proved for
problem (4.7.1).

4.8. Wave equation with Neumann boundary control: the 1-dimensional case.
In this section, let Ω= (0,1). Consider the 1-dimensional wave equation

vtt = vxx in (0,T]×Ω, (4.8.1a)

v(0,·)= 0, vt(0,·)= 0 in Ω, (4.8.1b)

vx|x=0 = g(t), v|x=1 = 0 in (0,T], (4.8.1c)

with Neumann boundary control g ∈ L2(0,T). Define the function

U(r)=
−

∫ r

0
g(σ)dσ, r ≥ 0,

0, r < 0.
(4.8.2)
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Then, the solution of problem (4.8.1) is [45, page 882]

(Lg)(t,x)= v(t,x)=
K∑
k=0
k even

akU(t− k− x)−
K∑
k=1
kodd

akU
(
t− (k+ 1) + x

)
,

ak ≡ 1 for k = 0,3,4,7,8, . . . ,

ak ≡−1 for k = 1,2,5,6,9,10, . . . , K ≤ t ≤ K + 1.

(4.8.3)

It is shown in Section 6, (6.1.9) below—in the multidimensional case—that for
problem (4.8.1) we have

B∗Lg = vt|Σ0 , Σ0 = (0,T]×Γ0, (4.8.4)

with Γ0 being the controlled portion of the boundary Γ. In our present 1-dimen-
sional case (4.8.1), we have Γ0 = {x = 0}, the point x = 0.

Goal. With reference to (4.8.4), our goal is to show that

B∗L : L2(0,T)−→ L2(0,T); (4.8.5a)

equivalently that

vt|x=0 ∈ L2(0,T) continuously in g ∈ L2(0,T). (4.8.5b)

Because of the solution formula (4.8.3), it will suffice to take

v(t,x)=U(t− x)=
−

∫ t−x
0

g(σ)dσ, 1≥ t ≥ x,
0, 0≤ t < x.

(4.8.6)

Therefore (4.8.6) yields

vt(t,x)|x=0 = U̇(t− x)|x=0 =
−g(t), 1≥ t ≥ x,

0, 0≤ t < x, (4.8.7)

and (4.8.5b) is trivially verified in this case. The proof can be repeated for the
other terms in (4.8.3) for a general T fixed. Thus, the regularity property (4.8.5)
is proved for problem (4.8.1).

4.9. One-dimensional Kirchhoff equation with “moments” boundary control.
Let Ω= (0,1). Consider the open-loop Kirchhoff equation in Ω, with boundary
control acting in the “moments” boundary condition,

vtt − γvxxtt + vxxxx = 0 in (0,T]×Ω, (4.9.1a)

v(0,·)= v0, vt(0,·)= v1 in Ω, (4.9.1b)

v|x=0 = v|x=1 ≡ 0 in (0,T]×{0}, (4.9.1c)

vxx|x=0 = 0, vxx|x=1 = g in (0,T]×{1}. (4.9.1d)
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We will see in Section 7 that the Kirchhoff equation in any dimension with
boundary controls in the “moments” boundary condition can be reduced,
modulo lower-order terms, to the wave equation with Dirichlet boundary con-
trol, treated in Section 4.7. Accordingly, the results of this section imply the fol-
lowing theorem.

Theorem 4.36. With reference to problem (4.9.1) with v0 = v1 = 0, the corre-
sponding B∗L operator is defined, via (7.1.10) of Section 7, by

B∗Lg = vtx|x=1 (4.9.2)

and satisfies

B∗L : continuous L2(0,T)−→ L2(0,T). (4.9.3)

Remark 4.37. By contrast, Section 7 will show that the regularity property (4.9.3)
for B∗L is false in the multidimensional version (dimΩ≥ 2) of problem (4.9.1).

5. First hyperbolic class where (2.14) fails: B∗L �∈�(L2(0,T ;U)). The multidi-
mensional wave equation with Dirichlet boundary control

The present section complements Section 4.7. In the latter, we showed that B∗L
∈ �(L2(0,T ;L2(Γ))) in the 1-dimensional wave equation case with Dirichlet
boundary control. In the present section, we show that this result is false if dimΩ
≥ 2. Thus, Claim 2.3 in Section 2—the key theoretical result in [12]—is not ap-
plicable. Yet, uniform stabilization of the multidimensional wave equation with
suitable (dissipative) feedback in the Dirichlet boundary condition does hold
true, see Theorem 5.3. It was first established, for strictly convex domains Ω,
in [27]. This geometrical restriction was later removed in [40]. These results
show that the assumption B∗L∈�(L2(0,T ;U)) in Claim 2.3 in [12] is far from
necessary in critical PDE problems.

This negative fact, combined with the considerations made throughout this
paper, that proving uniform stabilization directly is preferable, conceptually and
technically, over proving exact controllability and B∗L∈�2(0,T ;U), documents
that Claim 2.3 is not the right tool, or approach, to seek uniform stabilization of
physically significant PDE problems. This program was emphasized in Section 1.

5.1. Preliminaries. The operator B∗L

Open-loop and closed-loop dissipative systems. In this section, let Ω be an open
bounded domain in Rn, n ≥ 1, with sufficiently smooth boundary Γ. We
consider the open loop wave equation on Ω with Dirichlet boundary control
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g ∈ L2(0,T ;L2(Γ))≡ L2(Σ) and its corresponding closed loop dissipative system

vtt = ∆v; wtt = ∆w in Q, (5.1.1a)

v(0,·)=v0, vt(0,·)=v1; w(0,·)=w0, wt(0,·)=w1 in Ω, (5.1.1b)

v|Σ = g; w|Σ = ∂
(
�−1wt

)
∂ν

in Σ, (5.1.1c)

with Q = (0,T]×Ω, Σ = (0,T]× Γ. Moreover, the operator � is defined by
(5.1.6): �ψ =−∆ψ, �(�)=H2(Ω)∩H1

0 (Ω).

Regularity, exact controllability of the v-problem, and uniform stabilization of the
w-problem. References for this subsection include [14, 22, 24, 25, 27, 40, 54, 55].

We begin by introducing the (state) space of optimal regularity

Y ≡ L2(Ω)× [�(�1/2)]′ ≡ L2(Ω)×H−1(Ω). (5.1.2)

Theorem 5.1 (regularity [22, 24, 25]). Regarding the v-problem (5.1.1), with y0

= {v0,v1} = 0, the following regularity result holds true for each T > 0 (recall the
definition of L in (1.2b)):

the map L : g −→ Lg ≡ {v,vt} is continuous L2(Σ)

−→ C
(
[0,T];Y ≡ L2(Ω)×H−1(Ω)

)
.

(5.1.3)

Theorem 5.2 (exact controllability [14, 27, 54, 74]). Given any initial condition
{v0,v1} ∈ Y and T > 0 sufficiently large, there exists a g ∈ L2(Σ) such that the
corresponding solution of the v-problem (5.1.1) satisfies {v(T),vt(T)} = 0.

Theorem 5.3 (uniform stabilization [27, 37]). With reference to the w-problem
(5.1.1),

(i) the map {w0,w1} ∈ Y ≡ L2(Ω)× [�(�1/2)]′ → {w(t),wt(t)} defines a s.c.
contraction semigroup eAt on Y ;

(ii) the following trace result holds true

w|Σ = ∂
(
�−1wt

)
∂ν

∈ L2
(
0,∞;L2(Γ)

)
(5.1.4)

continuously in {w0,w1} ∈ Y ;
(iii) there exist constants M ≥ 1, δ > 0 such that

∥∥∥∥∥
[
w(t)
wt(t)

]∥∥∥∥∥
Y

=
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥
Y

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
Y

, t ≥ 0. (5.1.5)
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Again, needless to say, in line with the content of Section 1, all three theorems
above are obtained by PDE hard analysis energy methods (not by soft analy-
sis methods). As usual, the most challenging result to prove is Theorem 4.13
on uniform stabilization; this, in addition, requires a shift of topology from
L2(Ω)×H−1(Ω) (the space of the final result) to H1

0 (Ω)× L2(Ω) (the space
where the energy method works). This shift of topology is implemented by a
change of variable; this is the same change of variable that is noted below in
(5.1.10).

Abstract model of v-problem. We let

� f =−∆ f , �(�)=H2(Ω)∩H1
0 (Ω), D :Hs(Γ)−→Hs+1/2(Ω), s∈R,

ϕ=Dg ⇐⇒ {
∆ϕ= 0 in Ω; ϕ|Γ = g in Γ

}
,

(5.1.6)

as in (4.5.7), (4.5.9). The abstract model for the v-problem in (5.1.1) is [24, 25,
27, 73]

vtt =−�v+ �Dg,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg, (5.1.7a)

A=
[

0 I
−� 0

]
, Bg =

[
0

�Dg

]
, B∗

[
x1

x2

]
=D∗x2, (5.1.7b)

where∗ for B andD refers to different topologies and where the Dirichlet mapD
is defined in (5.1.6). Moreover, with B∗ defined by (Bg,x)Y = (g,B∗x)L2(Γ), with
respect to the Y-topology in (5.1.2), we readily find the expression in (5.1.7).

The operator B∗L. With y0 = {v0,v1} = 0, we will show that

B∗Lg = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=D∗vt(t; y0 = 0
)=D∗��−1vt

(
t; y0 = 0

)
(5.1.8)

=− ∂

∂ν
�−1vt

(
t; y0 = 0

)=−∂z(t)
∂ν

, (5.1.9)

z(t)≡�−1vt
(
t; y0 = 0

)∈ C([0,T];�
(
�1/2)≡H1

0 (Ω)
)

continuously in g ∈ L2(Σ).
(5.1.10)

Indeed, to obtain (5.1.8) and (5.1.9), one uses the definition of L in (5.1.3) fol-
lowed by the definition of B∗ in (5.1.7) and the usual property D∗� = −∂/∂ν
on H1

0 (Ω) [27, equation (1.10)]. Finally, the regularity of z in (5.1.10) follows
from the regularity (5.1.3) on vt with H−1(Ω) = [�(�1/2)]′. The new variable
z(t) defined in (5.1.10) satisfies the following dynamics: abstract equation and
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the corresponding PDE-mixed problem

ztt =−�z+Dgt, (5.1.11a)

ztt = ∆z+Dgtin Q, (5.1.11b)

z(0,·)= 0, zt(0,·)= z1 in Ω, (5.1.11c)

z|Σ ≡ 0in Σ. (5.1.11d)

Indeed, the abstract z-equation in (5.1.11) (left) is readily obtained from the ab-
stract v-equation in (5.1.7) after applying throughout �−1 and d/dt to it and us-
ing the definition of z(t) in (5.1.10). Moreover, since z(t)∈H1

0 (Ω) from (5.1.10),
then z satisfies the Dirichlet boundary condition in (5.1.11d). For g in the class
(5.1.15), we can take z1 = 0, see (5.1.13).

The energy method on the mixed PDE problem (5.1.11) fails to show that ∂z/∂ν∈
L2(0,T ;L2(Γ)), continuously in g ∈ L2(0,T ;L2(Γ)), except in the 1-dimensional
case. As in [22], multiplying the PDE problem (5.1.11) by h ·∇z, with h a C2-
vector field on Ω, with h|Γ = ν on Γ, and using the boundary condition (5.1.11d),
we obtain the identity [22, equation (2.27), page 157]

1
2

∫
Σ

(T − t)
(
∂z

∂ν

)2

dΣ

=
∫
Q

(T − t)H∇z ·∇zdQ+
1
2

∫
Q

(T − t)[z2
t −|∇z|2

]
divhdQ

+
∫
Q
zth ·∇zdQ−

∫
Q

(T − t)Dgth ·∇zdQ.

(5.1.12)

Moreover, in addition to the a priori regularity for z in (5.1.10), we also have
that, for zt,

zt =�−1vtt =�−1[−�v+ �Dg]=−v+Dg ∈ L2
(
0,T ;L2(Ω)

)
continuously in g ∈ L2(Σ),

(5.1.13)

as it follows from v ∈ C([0,T];L2(Ω)) by (5.1.3) and Dg ∈ L2(0,T ;H1/2(Ω))
by (5.1.6) with s = 0. (Since zt is only L2 in time, we have used the multiplier
(T − t)h · ∇z to eliminate the terms at t = 0 and t = T . Otherwise, one takes
preliminarily g in the class (5.1.15) below and uses just the multiplier h ·∇z.)
Thus, the a priori regularity of {z,zt} in (5.1.10) and (5.1.13) guarantees that
all first three integral terms on the right-hand side of (5.1.12) are well defined
continuously in g ∈ L2(Σ). Hence, we obtain from (5.1.12)

1
2

∫
Σ

(T − t)
(
∂z

∂ν

)2

dΣ= �
(‖g‖2

L2(Σ)

)−∫
Q

(T − t)Dgth ·∇zdQ. (5.1.14)

Letting now g be (temporarily) in the class

g ∈ C([0,T];L2(Γ)
)
, g(T)= g(0)= 0, (5.1.15)
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dense in L2(Σ), we see by integration by parts in t with the use of (5.1.15), fol-
lowed by the usual divergence theorem, that

−
∫
Q

(T − t)Dgth ·∇zdQ =
∫ T

0

∫
Ω
Dgh ·∇zt dΩdt+ l.o.t. (5.1.16)

=
∫ T

0

∫
Γ�����Dgzth · νdΓdt−

∫ T

0

∫
Ω
zth ·∇(Dg)dΩdt

−
∫ T

0

∫
Ω
Dgzt divhdΩdt+ l.o.t.

(5.1.17)

in view of zt|Γ = 0 by (5.1.11d). The last integral term in the right-hand side of
(5.1.17) is well defined continuously in g ∈ L2(Σ) by (5.1.13) on zt and Dg ∈
L2(0,T ;H1/2(Ω)). Thus, from (5.1.14) we obtain via (5.1.17)

∫
Σ

(
∂z

∂ν

)2

dΣ= �
(‖g‖2

L2(Σ)

)
+
∫ T

0

∫
Ω
zth ·∇(Dg)dΩdt. (5.1.18)

One-dimensional case. In the one-dimensional case, (Dg)(x) is a linear function
of x, see (4.7.4); thus∇(Dg)≡ 0 and we get

∫
Σ

(
∂z

∂ν

)2

dΣ= �
(‖g‖2

L2(Σ)

)
, (5.1.19)

thus reproving—in a more complicated way!—the result of Section 4.7.

Multidimensional case: dimΩ ≥ 2. In this case, the a priori regularity of zt ∈
L2(0,T ;L2(Ω)) and Dg ∈ L2(0,T ;H1/2(Ω)), hence |∇(Dg)| ∈ L2(0,T ; (H1/2

00 (Ω))′)
[57, page 85] show that, roughly speaking, “1/2” space derivative is apparently
missing in order to have the integral term on the right-hand side of (5.1.18) well
defined. This will be confirmed by the actual counterexample in Section 5.2.

5.2. Counterexample to (2.14): B∗L �∈�(L2(0,T ;U)). Wave equation with
Dirichlet boundary control in dimension greater than or equal to 2. It will
suffice to consider the wave equation defined on a 2-dimensional half-space with
Dirichlet boundary control. So let

Ω≡R
+
2 =

{
(x, y) : x ≥ 0, y ∈R

}
, Γ= {(0, y) : y ∈R

}=Ω|x=0. (5.2.1)

On Ω we consider the wave equation with Dirichlet boundary control

vtt = vxx + vyy in Q ≡ (0,∞]×Ω, (5.2.2a)

v(0,·)= 0, vt(0,·)= 0 in Ω, (5.2.2b)

v|Σ = g in Σ≡ (0,∞)×Γ, (5.2.2c)
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where g ∈ L2(0,∞;L2(Γ)). We have seen in Section 5.1, (5.1.8), that for problem
(5.2.2) we have

B∗Lg =D∗vt. (5.2.3)

Goal. We want to show that given T > 0, there exists some g ∈ L2(0,T ;L2(Γ))
such that

B∗Lg �∈ L2
(
0,T ;L2(Γ)

)
. (5.2.4)

To this end, it will suffice to show that there exists g ∈ L2(0,∞;L2(Γ)) such that

e−γt
(
B∗Lg

)
(t) �∈ L2

(
0,∞;L2(Γ)

)
, (5.2.5)

no matter which constant γ > 0 we choose.

Proof of (5.2.5). Our proof is inspired by [34, Counterexample, page 294] for a
result of different type.
Step 1. Let v̂(τ,x,η) denote the Laplace-Fourier transform of v(t,x, y): Laplace
in time t→ τ = γ+ iσ , γ > 0, σ ∈R, and Fourier in y→ iη, η ∈R, leaving x ≥ 0
as a parameter. We then obtain for the solution of (5.2.2) vanishing at x =∞

τ2v̂ = v̂xx −η2v̂, or v̂(τ,x,η)= ĝ(τ,η)e−
√
τ2+η2x, x ≥ 0,

τ2 +η2 = (γ2 +η2− σ2)+ 2iγσ.
(5.2.6)

Step 2. Let ϕ ∈ L2(0,∞;L2(Γ)). We consider the Laplace equation in Ω, with
Dirichlet boundary condition on Γ given by ϕ a.e. in t, that is, in the notation
for D in (5.1.6)

u=Dϕ, where uxx +uyy = 0 in Ω, u|Γ = ϕ in Γ. (5.2.7)

The solution u = Dϕ of problem (5.2.7) is given by the well-known formula in
the transformed variables [13, Section 9.7.3, page 375]

û(τ,x,η)= D̂ϕ(τ,x,η)= ϕ̂(τ,η)e−|η|x ∀τ,η ∈R, x ≥ 0. (5.2.8)

Step 3. To establish the negative result expressed in (5.2.5), it suffices to show
that there exists g ∈ L2(0,∞;L2(Γ)) such that

(
e−2γtB∗Lg,g

)
L2(0,∞;L2(Γ)) =∞. (5.2.9)

We prove (5.2.9) in a few steps.
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Step 3(i). First, we establish that for all g ∈ L2(0,∞;L2(Γ)), we have

(
e−2γtB∗Lg,g

)
L2(0,∞;L2(Γ)) =

1
2π

∫∫
R2
ση

τ
∣∣ĝ(τ,η)

∣∣2
∫∞

0
e−
√
τ2+η2xe−|η|x|dxdσ dη,

(5.2.10)

where R2
ση denotes the 2-dimensional Euclidean space in the variables σ and η.

Proof of (5.2.10). Recalling (5.2.3), the Parseval identity for Laplace transforms
[8, Theorem 31.8, page 212] and (5.2.6), (5.2.8), we compute (∼ indicates the
Laplace transform in (5.2.13)), where τ = γ+ iσ ,

(
e−2γt(B∗Lg)(t), g(t)

)
L2(0,∞;L2(Γ)) =

∫∞
0
e−2γt(B∗Lg,g)L2(Γ)dt (5.2.11)

=
∫∞

0
e−2γt(D∗vt,g)L2(Γ)dt

=
∫∞

0
e−2γt(vt,Dg)L2(Ω)dt

(
by (5.2.3)

)
(5.2.12)

= 1
2π

∫∞
−∞

(
ṽt(τ,x, y), D̃g(τ,x, y)

)
L2(Ω)dσ(

by [8, page 212]
)

(5.2.13)

= 1
2π

∫∫
R2
ση

∫∞
0
τv̂(τ,x,η)D̂g(τ,x,η)dxdσ dη

(5.2.14)

= 1
2π

∫∫
R2
ση

∫∞
0
τĝ(τ,η)e−

√
τ2+η2xĝ(τ,η)e−|η|x

×dxdσ dη (
by (5.2.6), (5.2.8)

)
(5.2.15)

= 1
2π

∫∫
R2
ση

τ
∣∣ĝ(τ,η)

∣∣2
∫∞

0
e−
√
τ2+η2xe−|η|x

×dxdσ dη,
(5.2.16)

and (5.2.16) establishes (5.2.10), as desired. In (5.2.13), (5.2.14), we have in-
voked Parseval formula for Laplace t → τ [8, page 212] and Fourier transform
y→ iη, while in (5.2.15), we have recalled (5.2.6) and (5.2.8) with ϕ= g.
Step 3(ii). Define the (bad) region in the (σ,η)-plane by

�ση =
{
σ > 0, η > 0, σ2 +η2 ≥ 1; η2 ≤ σ ≤ 4η2}, (5.2.17)

so that �ση is the set in the first quadrant comprised between two parabolas.
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In view of identity (5.2.10), in order to establish the negative result (5.2.9), it
is sufficient to show that there exists g ∈ L2(0,∞;L2(Γ)) such that∫∫

�ση

σ
∣∣ĝ(σ,η)

∣∣2
∫∞

0
e−Re

√
τ2+η2xe−|η|x dxdσ dη =∞. (5.2.18)

Proof of (5.2.18). First, we write, recalling τ2 +η2 below (5.2.6),

z ≡ τ2 +η2,
√
z = A+ iB, A= Re

√
z = Re

√
τ2 +η2; (5.2.19a)

A2−B2 = γ2 +η2− σ2, AB = 2γσ. (5.2.19b)

Solving the system in (5.2.19b) by elementary computations, we obtain

A2 = 8γ2σ2{(
σ2−η2− γ2

)2
+ 16γ2σ2

}1/2
+
(
σ2−η2− γ2

) . (5.2.20)

Next, restricting to (σ,η)∈�ση where σ ∼ η2, we obtain, in �ση,

A2 ∼ σ2

η4
∼ 1, A= Re

√
τ2 +η2 ∼ 1, Re

√
τ2 +η2 > 0. (5.2.21)

By use of (5.2.17), (5.2.21), we then have, for (σ,η)∈�ση,∫∞
0
e−Re

√
τ2+η2xe−|η|x dx = 1

Re
√
τ2 +η2 +η

∼ 1
η
. (5.2.22)

Using (5.2.22) in (5.2.18) yields∫∫
�ση

σ
∣∣ĝ(σ,η)

∣∣2
∫∞

0
e−Re

√
τ2+η2xe−|η|x dxdσ dη =

∫∫
�ση

σ

η

∣∣ĝ(σ,η)
∣∣2
dσ dη

(5.2.23)

∼
∫∫

�ση

η
∣∣ĝ(σ,η)

∣∣2
dσ dη ∼

∫∫
�ση

σ1/2
∣∣ĝ(σ,η)

∣∣2
dσ dη,

(
by (5.2.17)

)
(5.2.24)

where in (5.2.24) we have invoked (5.2.17). Thus, it suffices to take a function
ĝ(σ,η) which is L2(�ση), and no better, on �ση and zero elsewhere to obtain the
sought-after function producing the negative conclusion (5.2.9). Thus, (5.2.5) is
established. �

6. Second hyperbolic class where (2.14) fails: B∗L �∈�(L2(0,T ;U)). The mul-
tidimensional wave equation with Neumann boundary control

The present section complements Section 4.8. In the latter, we showed that B∗L
∈ �(L2(0,T ;L2(Γ))) in the 1-dimensional wave equation case with Neumann
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boundary control. In the present section, we show that this result is false if
dimΩ≥ 2.

Remark 6.1. In all the hyperbolic or Petrowski-type PDE problems considered
in the present paper, we always have that the generator A in (1.1) is skew-adjoint
modulo a scalar multiplication of the identity; that A = iS+ kI , S selfadjoint in
Y , and k a real constant (equal to zero in the conservative case). In this case, in
view of Proposition A.1, the following result holds true:

B∗L∈�
(
L2(0,T ;U)

)=⇒ L∈�
(
L2(0,T ;U);C

(
[0,T];Y

))
, (6.1)

that is, property (2.14)⇒ property (1.3); equivalent to property (1.4), where B∗

is defined with respect to the Y-topology. Several PDE hyperbolic/Petrowski-
type are known [41, Section 1.2], where

(i) property (6.1) (right) for L fails to be true when Y is the desirable space
of finite energy in dimΩ≥ 2; a fortiori, property (6.1) (left) for B∗L also
fails to be true;

(ii) yet, uniform stabilization with boundary dissipation, say, active on the
whole boundary (or a portion of the boundary, under suitable geometric
conditions) does hold true in the space of finite energy: a fact that has been
known for over 20 years. We list two physically significant cases in the
following examples.

Example 6.2. The wave equations with Neumann boundary control in dimΩ≥
2, as in (6.1.1) of Section 6.1 below.

Example 6.3. The Euler-Bernoulli plate model in dimΩ= 2, with free boundary
condition,

vtt +∆2v+ v = 0 in (0,T]×Ω≡Q, (6.2a)

v(0,·)= v0, vt(0,·)= v1 in Ω, (6.2b)[
∆v+ (1−η)B1v

]
Σ = 0 in (0,T]×Γ≡ Σ, (6.2c)[

∂∆v

∂ν
+ (1−η)B2v

]
Σ
= g in Σ, (6.2d)

where 0 < η < 1 is the Poisson’s modulus and B1 and B2 are the usual boundary
operators, defined, say, in [18, 17], [44, Volume I, page 249].

Regarding Example 6.2. Here, with reference to problem (6.1.1), the space of
finite energy is Y ≡ H1(Ω)× L2(Ω) as in (6.1.2). Yet, for dimΩ ≥ 2, the map:
g → Lg ≡ {v,vt} defined by problem (6.1.1) is not continuous: L2(Σ)→ C([0,T];
H1(Ω)× L2(Ω)). See [34, Counterexample, page 294]. Nevertheless, uniform
stabilization of the multidimensional wave equation with suitable (dissipative)
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feedback in the Neumann boundary condition does hold true in the finite energy
space, see Theorem 6.5. It was first established with progressively more relaxed
geometrical conditions in [7, 17]. Geometrical conditions were later further re-
laxed [3, 40].

Regarding Example 6.3. Here, with reference to problem (6.2), the space of fi-
nite energy is Y ≡H2(Ω)×L2(Ω). Yet, for dimΩ≥ 2, the map g → Lg = {v,vt}
defined by problem (6.2) is not continuous L2(Σ)→ C([0,T];H2(Ω)× L2(Ω)).
Nevertheless, exact controllability/uniform stabilization results for the corre-
sponding dissipative problem on such space H2(Ω)×L2(Ω) of finite energy are
given in [17, 18] with geometrical conditions relaxed or eliminated by virtue of
the sharp trace results in [42].

Thus, Claim 2.3 in Section 2—a stronger result than the key theoretical result
in [12]—is not applicable. This shows that the assumption B∗L∈�(L2(0,T ;U))
in Claim 2.3 and in [12] is, once more, far from necessary in critical PDE prob-
lems. These negative facts, combined with the considerations above, document
that Claim 2.3 is not the right tool, or approach, to seek uniform stabilization of
physically significant PDE problems.

Notwithstanding the considerations made above in Example 6.2 (via Proposi-
tion A.1), in Section 6.1 we are going to show directly, by means of an explicit
counterexample in dimΩ ≥ 2, that B∗L �∈ �(L2(0,T ;U)). The analysis of the
present counterexample for B∗L is a modification of that in [34, page 294] for L.

6.1. Preliminaries. The operator B∗L

Open-loop and closed-loop feedback dissipative systems. In this section, let Ω be
an open bounded domain in Rn, n ≥ 1, with sufficiently smooth boundary Γ.
We consider the open-loop wave equation in Ω with Neumann boundary con-
trol g ∈ L2(0,T ;L2(Γ1)) ≡ L2(Σ1) and its corresponding closed-loop dissipative
system:

vtt = ∆v; wtt = ∆w in Q, (6.1.1a)

v(0,·)= v0, vt(0,·)= v1; w(0,·)=w0, wt(0,·)=w1 in Ω, (6.1.1b)

v|Σ0 = 0; w|Σ0 = 0, (6.1.1c)

∂v

∂ν

∣∣∣∣
Σ1

= g;
∂w

∂ν

∣∣∣∣
Σ1

=−wt in Σ, (6.1.1d)

with Q = (0,T]×Ω, Σi = (0,T]× Γi, i = 0,1; Γ = Γ0 ∪ Γ1, Γ0 �= φ, Γ̄0 ∩ Γ̄1 = φ;
h · ν≤ 0 on Γ0 for a coercive smooth vector field h on Ω.

For the treatment of the present section, we will not need to invoke the theory
of sharp/optimal regularity of the mixed v-problem, for which we refer to [32,
34, 38, 43], [45, Section 9.4, page 857 for dimΩ= 1], [69].
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Exact controllability of the v-problem; uniform stabilization of the w-problem. We
begin by introducing the finite energy (state) space (which is not, however, the
space of optimal regularity [34, Counterexample, page 294 in dimΩ≥ 2]):

Y ≡�
(
�1/2)×L2(Ω)≡H1(Ω)×L2(Ω), (6.1.2)

� f = ∆ f , �(�)=
{
f ∈H2(Ω) : f |Γ0 = 0;

∂ f

∂ν

∣∣∣∣
Γ1

= 0
}
. (6.1.3)

Theorem 6.4 (exact controllability [3, 30, 46, 47, 54, 55, 68]). Given any finite
energy initial condition {v0,v1} ∈ Y and T > 0 sufficiently large, there exists a
g ∈ L2(Σ) such that the corresponding solution of the v-problem (6.1.1) satisfies
{v(T),vt(T)} = 0.

Theorem 6.5 (uniform stabilization [3, 7, 17, 40, 46, 47, 68]). With reference to
the w-problem in (6.1.1),

(i) the map {w0,w1} ∈ Y = �(�1/2)× L2(Ω) → {w(t),wt(t)} defines a s.c.
contraction semigroup eAt on Y ;

(ii) the Neumann trace satisfies

∂w

∂ν

∣∣∣∣
Σ1

≡−wt ∈ L2
(
0,∞;L2

(
Γ1
))

(6.1.4)

continuously in {w0,w1} ∈ Y ;
(iii) there exist constants M ≥ 1, δ > 0 such that

∥∥∥∥∥
[
w(t)
wt(t)

]∥∥∥∥∥
2

Y

=
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
Y

, t ≥ 0. (6.1.5)

Remark 6.6. (i) Let Γ0 = φ. Then, instead of Y = H1
Γ0

(Ω)× L2(Ω), one has to
take the proper subspace Y0 = {[u1,u2]∈ Y :

∫
Γ1
u1dΓ+

∫
Ωu2dΩ= 0} [46, page

32] for uniform stabilization.
(ii) We also refer to [74, Section 5], [49, 81] for the more demanding case

of the purely Neumann boundary condition, that is, with ∂w/∂ν|Σ0 in (6.1.1c)
including the variable coefficient case.

Again, in line with the content of Section 1, both theorems above are obtained
by PDE hard analysis, possibly pseudodifferential, methods (not by soft analysis
methods).

Abstract model of v-problem. The abstract model for the v-problem in (6.1.1) is
[24, 25, 71]

vtt =−�v+ �Ng,
d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg, (6.1.6)
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A=
[

0 I
−� 0

]
, Bg =

[
0

�Ng

]
, B∗

[
x1

x2

]
=N∗�x2 = x2|Γ1 , (6.1.7)

N :Hs(Γ)−→H3/2(Ω), s∈R,

u=Ng ⇐⇒
{
∆u= 0 in Ω, u|Γ0 = 0,

∂u

∂ν

∣∣∣∣
Γ1

= g
}
,

(6.1.8)

where∗ of B andN refers to different topologies. With B∗ defined by (Bg,x)Y =
(g,B∗x)L2(Γ) with respect to the Y-topology in (6.1.2), we readily find the expres-
sion in (6.1.7).

The operator B∗L. With y0 = {v0,v1} = 0, we will show that

B∗Lg = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=N∗�vt
(
t; y0 = 0

)= vt|Σ1 , (6.1.9)

recalling N∗�= ·|Γ [30, 44].

6.2. Counterexample to (2.14):B∗L �∈�(L2(0,T ;U)). Wave equation with Neu-
mann boundary control in dimension greater than or equal to 2. It will suffice
to consider the 2-dimensional half-space setting of Section 5.2; however, now
with Neumann boundary control,

vtt = vxx + vyy in Q ≡ (0,∞)×Ω, (6.2.1a)

v(0,·)= 0, vt(0,·)= 0 in Ω, (6.2.1b)

vx|x=0 = g in Σ≡ (0,∞)×Γ, (6.2.1c)

where g ∈ L2(0,∞;L2(Γ)), see [34, Counterexample, page 294]. We have seen in
(6.1.9) that

B∗Lg = vt|Σ. (6.2.2)

Goal. We want to show that given T > 0, there exists some g ∈ L2(0,T ;L2(Γ))
such that

B∗Lg /∈ L2
(
0,T ;L2(Γ)

)
. (6.2.3)

To this end, it will suffice to show that there exists g ∈ L2(0,∞;L2(Γ)) such that

e−γt
(
B∗Lg

)
(t) /∈ L2

(
0,∞;L2(Γ)

)
, (6.2.4)

no matter which constant γ > 0 we choose.

Proof of (6.2.4). We follow closely [34, pages 294–295].
Step 1. Let v̂(τ,x,η) denote the Laplace-Fourier transform of v(t,x, y): Laplace
in time t→ τ = γ+ iσ , γ > 0, σ ∈R, and Fourier in y→ iη, η ∈R, leaving x ≥ 0
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as a parameter. We then obtain for the solution of (6.2.1),

τ2v̂ = v̂xx −η2v̂, v̂x(τ,0,η)= ĝ(τ,η) or v̂(τ,x,η)=−e
−
√
τ2+η2x√

τ2 +η2
ĝ(τ,η),

(6.2.5)
τ2 + γ2 = (γ2 +η2− σ2) + 2iγσ as in (5.2.6).
Step 2. We will show that∫∞

0
e−2γt

∥∥(B∗Lg)(t)∥∥2
L2(Γ)dt =

∫∞
0
e−2γt

∥∥vt(t,0,·)∥∥2
L2(Ry)dt

= 1
2π

∫∫
R2
ση

|τ|2
∣∣ĝ(τ,η)

∣∣2∣∣τ2 +η2
∣∣ dσ dη,

(6.2.6)

where R2
ση is the 2-dimensional Euclidean space in the variables σ and η. In fact,

recalling (6.2.2), the Parseval identity for Laplace transforms t→ τ [8, Theorem
31.8, page 212] and for the Fourier transform y→ iη, as well as (6.2.5) for x = 0,
we compute (∼ denotes the Laplace transform in (6.2.8))∫∞

0
e−2γt

∥∥(B∗Lg)(t)∥∥2
L2(Γ)dt =

∫∞
0
e−2γt

∥∥vt(t,0,·)∥∥2
L2(Γ)dt (6.2.7)

=
∫∞
−∞

∫∞
0
e−2γt

∣∣vt(t,0, y)
∣∣2
dtdy

= 1
2π

∫∞
−∞

∫∞
−∞

∣∣ṽt(τ,0, y)
∣∣2
dσ dy

(
by [8, page 212]

)
= 1

2π

∫∞
−∞

∫∞
−∞
|τ|2∣∣ṽ(τ,0, y)

∣∣2
dσ dy

(6.2.8)

= 1
2π

∫∞
−∞

∫∞
−∞
|τ|2∣∣v̂(τ,0,η)

∣∣2
dσ dη (6.2.9)

= 1
2π

∫∞
−∞

∫∞
−∞
|τ|2

∣∣ĝ(τ,η)
∣∣2∣∣∣√τ2 +η2
∣∣∣2 dσ dη

(
by (6.2.5)

)
(6.2.10)

= 1
2π

∫∞
−∞

∫∞
−∞
|τ|2

∣∣ĝ(τ,η)
∣∣2∣∣τ2 +η2
∣∣ dσ dη, (6.2.11)

and (6.2.11) establishes (6.2.6). In (6.2.8) and (6.2.9) we have invoked the Par-
seval identity for the Laplace transform t→ τ [8, page 212] and for the Fourier
transform y→ iη, while in (6.2.10), we have recalled v̂(τ,0,η) from (6.2.5) with
x = 0.
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Step 3. For fixed γ > 0, we define, as in [34, equation (2.18)], the (bad) region
�

γ
ση of the first quadrant of the (σ,η)-plane by

�
γ
ση ≡ {(σ,η)∈R

2 : 2γσ ≥ 1, η ≥ 0 :
∣∣γ2 +η2− σ2

∣∣≤ 1
}

(6.2.12)

comprised between the equilateral hyperbolas γ2 + η2 − σ2 = ±1 around the
equilateral hyperbola Re(τ2 + η2 − σ2) = 0 for σ ≥ 1/2γ. We note that in �

γ
ση

we have that

in �
γ
ση : σ ∼ η, ∣∣τ2 +η2

∣∣∼ σ ∼ η. (6.2.13)

In view of identity (6.2.6), in order to establish the negative result (6.2.4), it is
sufficient to show that there exists g ∈ L2(0,∞;L2(Γ)) such that∫∫

�
γ
ση

σ2

∣∣ĝ(τ,η)
∣∣2∣∣τ2 +η2
∣∣ dσ dη =∞. (6.2.14)

Indeed, (6.2.14) holds true since by (6.2.13) we have∫∫
�
γ
ση

σ2
∣∣ĝ(τ,η)

∣∣2∣∣τ2 +η2
∣∣ dσ dη ∼

∫∫
�
γ
ση

σ
∣∣ĝ(τ,η)

∣∣2
dσ dη. (6.2.15)

Thus, it suffices to take a function ĝ(σ,η) which is in L2(�
γ
ση) and no better

on �
γ
ση and zero elsewhere to obtain the sought-after function producing the

negative conclusion (6.2.14). �

7. A third hyperbolic class where (2.14) fails: B∗L �∈�(L2(0,T ;U)). The mul-
tidimensional Kirchhoff equation with “moments” boundary control

Section 4.9 stated that, when dimΩ= 1, the Kirchhoff equation with moments
boundary control does satisfy property (2.14) on B∗L by reducing this prob-
lem to the one-dimensional wave equation with Dirichlet-boundary control.
The same reduction shows that, when dimΩ ≥ 2, the Kirchhoff equation with
moments controls fails to satisfy property (2.14) on B∗L.

In this section we consider the hyperbolic Kirchhoff equation on an open
bounded domain Ω, dimΩ≥ 2, with boundary control acting on the “moment”
boundary conditions. Because of the special nature of the boundary conditions,
this mixed PDE problem can be converted into a wave equation problem—more
precisely, the z-problem (5.1.11) in Section 5.1—modulo lower-order terms.
Thus, the results of Section 5.1 can be invoked, in particular, the counterexam-
ple in Section 5.2. As a result, we likewise obtain that B∗L �∈�(L2(0,T ;U)) for
the present class of Kirchhoff equations.

7.1. Preliminaries. The operator B∗L

Open-loop and closed-loop dissipative systems. In this section we let Ω be an
open bounded domain in Rn, n ≥ 2, with sufficiently smooth boundary Γ. We
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consider the open-loop Kirchhoff equation in Ω, with boundary control act-
ing in the “moment” boundary condition (actually, the physical moment, in
dimΩ ≥ 2, is a slight modification of our boundary condition), and its corre-
sponding closed-loop dissipative system:

vtt − γ∆vtt +∆2v = 0; wtt − γ∆wtt +∆2w = 0 in Q, (7.1.1a)

v(0,·)=v0, vt(0,·)=v1; w(0,·)=w0, wt(0,·)=w1 in Ω, (7.1.1b)

v|Σ ≡ 0, ∆v|Σ = g; w|Σ ≡ 0, ∆w|Σ =−∂wt

∂ν
in Σ, (7.1.1c)

with Q ≡ (0,T]×Ω, Σ ≡ (0,T]× Γ. In (7.1.1a), γ is a positive constant, γ > 0
(this is critical to make (7.1.1) hyperbolic).

Regularity, exact controllability of the y-problem, and uniform stabilization of the
w-problem. References for this subsection include [15, 37]. We begin by intro-
ducing the (state) space of optimal regularity

Y ≡�(�)×�
(
�1/2)≡ [H2(Ω)∩H1

0 (Ω)
]×H1

0 (Ω), (7.1.2)

where �ψ =−∆ψ as in (5.1.6). For the stabilization result, we will topologize Y
with an equivalent norm, in which case we use the notation

Yγ ≡�(�)×�
(
�1/2

γ

)
,(

f1, f2
)

�(�1/2
γ ) =

((
I + γ�1/2) f1, f2)L2(Ω), f1, f2 ∈�

(
�1/2)=H1

0 (Ω).
(7.1.3)

Theorem 7.1 (regularity [37]). Regarding the v-problem (7.1.1), with y0 = {v0,
v1} = 0, the following regularity result holds true for each T > 0 (recall (1.2b)):

the map L : g −→ Lg ≡ {v,vt} is continuous L2(Σ)

−→ C
(
[0,T];Y ≡ [H2(Ω)∩H1

0 (Ω)
]×H1

0 (Ω)
)
.

(7.1.4)

Theorem 7.2 (exact controllability [15, 37]). Given any initial condition {v0,
v1} ∈ Y and T > 0 sufficiently large, then there exists a g ∈ L2(Σ) such that the
corresponding solution of the v-problem (7.1.1) satisfies {v(T),vt(T)} = 0.

Theorem 7.3 (uniform stabilization [15, 37]). With reference to the w-problem
(7.1.1),

(i) the map

{
w0,w1

}∈ Yγ ≡�(�)×�
(
�1/2

γ

)−→ {
w(t),wt(t)

}
(7.1.5)

defines a s.c. contraction semigroup eAt on Yγ;
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(ii) the following trace result holds true:

∆w|Σ =−∂wt

∂ν
∈ L2

(
0,∞;L2(Γ)

)
(7.1.6)

continuously in {w0,w1} ∈ Yγ;
(iii) there exist constants M ≥ 1, δ > 0 such that

∥∥∥∥∥
[
w(t)
wt(t)

]∥∥∥∥∥
Yγ

=
∥∥∥∥∥eAt

[
w0

w1

]∥∥∥∥∥
Yγ

≤Me−δt
∥∥∥∥∥
[
w0

w1

]∥∥∥∥∥
Yγ

, t ≥ 0. (7.1.7)

This result was first shown in [37] for Ω strictly convex. Then this geometrical
condition was eliminated in [15].

Again, in line with the content of Section 1, all three theorems above are ob-
tained by PDE hard analysis energy methods (not by soft analysis methods). As
usual, the most challenging result to prove is Theorem 7.3 on uniform stabiliza-
tion.

Abstract model of v-problem [37]. We let � and D be the operators in (5.1.6).
Then, the abstract model for the v-problem in (7.1.1) is [37, equations (2.7),
(2.9), page 70]

vtt =−(I + γ�)−1�2[v+ �−1Dg
]
,

d

dt

[
v
vt

]
= A

[
v
vt

]
+Bg, (7.1.8)

A=
[

0 I
−(I + γ�)−1�2 0

]
, Bg =

[
0

−(I + γ�)−1�Dg

]
,

B∗
[
x1

x2

]
=D∗�x2.

(7.1.9)

With B∗ defined by (Bg2,x)Yγ = (g2,B∗x)L2(Γ) with respect to the Yγ-topology in
(7.1.3), we readily find the expression in (7.1.9).

Reduction of v-model to a wave equation model modulo lower-order terms

The operator B∗L. With y0 = {v0,v1} = 0, we see that

B∗Lg2 = B∗
[
v
(
t; y0 = 0

)
vt
(
t; y0 = 0

)]=−D∗�vt
(
t; y0 = 0

)= ∂vt
∂ν

(
t; y0 = 0

)
, (7.1.10)

recalling the standard property that D∗�=−∂/∂ν on H1
0 (Ω).

Goal. Our goal in this section is to show that for the v-problem (7.1.1), we have

B∗L �∈�
(
L2
(
0,T ;L2(Γ)

))
. (7.1.11)
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Reduction of v-model to a wave model. Using [37, Appendix C (C.3), page 100]

(I + γ�)−1�2 = �
γ
− 1
γ2
I +

1
γ2

(I + γ�)−1 on �(�), (7.1.12)

in the v-equation (7.1.8), yields

vtt =−�v

γ
− Dg

γ
+

[
I

γ2
− (I + γ�)−1

γ2

](
v+ �−1Dg

)
, (7.1.13)

where v|Σ ≡ 0 by (7.1.4). Motivated by (7.1.13), we then introduce the abstract
equation

utt =−�u

γ
− Dg

γ
(7.1.14)

or

utt = 1
γ
∆u− 1

γ
Dg in Q,

u(0,·)= 0, ut(0,·)= 0 in Ω,

u|Σ = 0 in Σ.

(7.1.15)

We note that the u-problem in (7.1.14) and (7.1.15) differs from the v-problem
in (7.1.13) only by lower-order terms in v and smoother terms in g. Thus, the
u-problem and the v-problem possess the same regularity. In particular, recalling
(7.1.4), we have{
u,ut

}∈ C([0,T];
[
H2(Ω)∩H1

0 (Ω)
]×H1

0 (Ω)
)

continuously in g ∈ L2(Σ).
(7.1.16)

Thus, in light of (7.1.10), in order to prove (7.1.11), we will equivalently establish
that with reference to the u-problem (7.1.14) and (7.1.15), we have that the map

g −→ ∂ut
∂ν

is not continuous L2(Σ)−→ L2(Σ). (7.1.17)

Indeed, statement (7.1.17) follows at once if we introduce the new variable z =
ut ∈ C([0,T];H1

0 (Ω)) continuously in g ∈ L2(Σ). Then, the u-PDE problem in
(7.1.14) and (7.1.15) becomes essentially the z-PDE problem in (5.1.11) with the
same a priori regularity as in (5.1.10). For this z-problem, the statement

the map g −→ ∂z

∂ν
is not continuous L2(Σ)−→ L2(Σ) (7.1.18)

equivalent to (7.1.17) has been proved by virtue of the counterexample in Section
5.2. Hence, the desired conclusion (7.1.11) is established.
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8. A fourth Petrowski’s class where (2.14) fails:B∗L �∈�(L2(0,T ;U)). The mul-
tidimensional Schrödinger equation with Neumann boundary control

8.1. Exact controllability/uniform stabilization inH1(Ω), dimΩ≥ 1. Here, to
make our point, it suffices to consider the canonical case of the multidimensional
Schrödinger equation

iyt −∆y = 0; iwt −∆w = 0 in Q, (8.1.1a)

y(0,·)= y0; w(0,·)=w0 in Ω, (8.1.1b)

y|Σ0 ≡ 0; w|Σ0 ≡ 0 in Σ0, (8.1.1c)

∂y

∂ν

∣∣∣∣
Σ1

= u∈ L2
(
Σ1
)
;

∂w

∂ν

∣∣∣∣
Σ1

=−wt in Σ1, (8.1.1d)

where Γ= Γ0∪ Γ1, Γ̄0∩ Γ̄1 = φ, Γ0 �= 0, h · ν≤ 0 in Γ0 for a coercive smooth vec-
tor field h(x) on Ω. We then leave more general situations (variable coefficients
in the principal part, energy levelH1(Ω)-terms with variable coefficients, and so
forth) to the literature [79, 80], and so forth. We will focus on the exact control-
lability/uniform stabilization results.

Theorem 8.1 (exact controllability [50, 60, 79, 80]). Let T > 0 be arbitrary. Then,
the y-problem in (8.1.1) is exactly controllable on the state space H1

Γ0
(Ω) with

L2(Σ1)-controls, Σ1 = (0,T]×Γ1.

Theorem 8.2 (uniform stabilization [50, 60, 79, 80]). (i) The w-problem in
(8.1.1) is well posed in the semigroup sense on the space H1

Γ0
(Ω); that is, the map

w0 →w(t)= eAFtw0 defines a s.c. semigroup eAFt on H1
Γ0

(Ω), which is a contraction
semigroup in the equivalent norm of �((−AF)1/2).

(ii) Moreover, thew-problem is uniformly stable onH1
Γ0

(Ω); there exist constants
M ≥ 1, δ > 0 such that ‖eAFt‖ ≤Me−δt, t ≥ 0, in the uniform operator norm.

Remark 8.3. First, [50] shows the result under more general “geometric optics”
conditions. Next, the case where ·|Σ0 = 0 is replaced by ∂·/∂ν|Σ0 = 0 for both
the y and the w-problem is much more challenging; it requires an additional
geometrical condition [48].

The regularity result is considered (at least in the negative sense for dimΩ≥
2) in Section 8.2.

8.2. Counterexample for the multidimensional Schrödinger equation with
Neumann boundary control: L �∈�(L2(0,T ;U);Hε(Ω)), ε > 0. A fortiori, B∗L
�∈�(L2(0,T ;U)). The present section complements Section 8.1. Here, the focus
will be on the multidimensional case dimΩ ≥ 2. Two main results of negative
character are given, the second being implied by the first by virtue of Proposition
A.1 in the appendix.
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(1) With reference to the boundary → interior map L defined in (1.3), we
will show by means of a counterexample that L �∈ �(L2(Σ);L2(0,T ;H1(Ω))),
though H1(Ω) is the space of exact controllability/uniform stabilization, as seen
in Section 8.1. Even more drastically, we will show that

L �∈�
(
L2(Σ);L2

(
0,T ;Hε(Ω)

)) ∀ε > 0. (8.2.1)

This negative result is the counterpart of the negative result for wave equations
with L2(Σ)-Neumann control given in [34, Counterexample, page 294], which
was already invoked in Section 6. The present proof is an adaptation of that given
in [34].

(2) As a consequence of Proposition A.1(i) (see also the implication (6.1)),
we deduce that B∗L∈�(L2(0,T ;U)) in the present case.

Counterexample. It will suffice to consider the Schrödinger equation on a 2-
dimensional half-space, the setting in Sections 5.2 and 6.2, with Neumann
boundary control. Hereafter, we let Ω ≡ R

+
2 and Γ =Ω|x=0 as in (5.2.1). On Ω

we consider the problem

ivt = vxx + vyy in Q ≡ (0,∞)×Ω, (8.2.2a)

v(0,·)= 0 in Ω, (8.2.2b)

vx|x=0 = g in Σ≡ (0,∞)×Γ. (8.2.2c)

Goal. We want to show that given T > 0, there exists some g ∈ L2(0,T ;L2(Γ))
such that

Lg = v /∈ L2
(
0,T ;Hε(Ω)

) ∀ε > 0. (8.2.3)

To this end, it will suffice to show that there exists g ∈ L2(0,∞;L2(Γ)) such that

e−γt(Lg)(t)= e−γtv(t) /∈ L2
(
0,∞;Hε(Ω)

)
, (8.2.4)

no matter which constant γ > 0 we choose.

Proof of (8.2.4)
Step 1. Let v̂(τ,x,η) be the Laplace-Fourier transform of v(t,x, y): Laplace in
time t→ τ = γ+ iσ , γ > 0, σ ∈R, and Fourier in y→ iη, η ∈R, leaving x ≥ 0 as a
parameter. We then obtain for the solution of (8.2.9), where η2 + iτ = (η2− σ) +
iγ,

iτv̂ = v̂xx −η2v̂, v̂x(τ,0,η)= ĝ(τ,η) (8.2.5)

or

v̂(τ,x,η)=− ĝ(τ,η)√(
η2− σ)+ iγ

e−
√

(η2−σ)+iγx. (8.2.6)
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Step 2. For fixed γ > 0, we define (by adaptation of [34, equation (2.18)] or
(6.2.12)) the (bad) region �

γ
ση of the first quadrant of the (σ,η)-plane by

�
γ
ση ≡ {(σ,η)∈R

2 : σ ≥ 1, η ≥ 0 :
∣∣η2− σ∣∣≤ 1

}
(8.2.7)

comprised between the two parabolas η2− σ =±1 in the first quadrant around
the parabola η2 = σ . We note that in �

γ
ση we have that

in �
γ
ση : σ ∼ η2,

∣∣(η2− σ)+ iγ
∣∣∼ 1, γ ≤ ∣∣(η2− σ)+ iγ

∣∣≤ √1 + γ2,

Re
√(
η2− σ)+ iγ ∼ 1.

(8.2.8)
Step 3. In order to establish the negative result (8.2.4), it is sufficient to prove
that there exists g ∈ L2(0,∞;L2(Γ)) such that, recalling (8.2.5) and (8.2.6), we
have

|η|ε|v̂| = |η|ε
∣∣ĝ(τ,η)

∣∣∣∣∣√(η2− σ)+ iγ
∣∣∣e−Re

√
(η2−σ)+iγx /∈ L2

(
0,∞;L2(Ω)

)
. (8.2.9)

To this end, we compute

∫∫
�
γ
ση

∫∞
0
|η|2ε

∣∣ĝ(τ,η)
∣∣2∣∣(η2− σ)+ iγ

∣∣e−Re
√

(η2−σ)+iγx dxdσ dη

=
∫∫

�
γ
ση

|η|2ε
∣∣ĝ(σ,η)

∣∣2∣∣(η2− σ)+ iγ
∣∣ 1

Re
√(
η2− σ)+ iγ

dσ dη

∼
∫∫

�
γ
ση

|η|2ε∣∣ĝ(σ,η)
∣∣2
dσ dη

(
by (8.2.8)

)
,

(8.2.10)

where in the last step we have invoked (8.2.8). Thus, it suffices to take a function
ĝ(σ,η) which is in L2(�

γ
ση) and no better on �

γ
ση and zero elsewhere to obtain

the sought-after function producing the negative conclusion (8.2.4). �

Appendix

From the regularity (2.14) of B∗L to the regularity of (1.3) L

Proposition A.1. Consider system (1.1) under the assumptions stated there in (i)
and (ii) on A and B. Assume further

(i) property (2.8); that is,

B∗L∈�
(
L2(0,T ;U)

)
, (A.1)

(ii) A is of the form A= iS+ kI , with S a selfadjoint operator on Y and k ∈R,
so that A∗ = −A+ 2kI , and

eA
∗s = e−Ase2ks, s∈R. (A.2)
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Then, with reference to (1.2b),

L : continuous L2(0,T ;U)−→ C
(
[0,T];Y

)
. (A.3)

Proof. First, sinceA is the generator of a s.c. group onY , we can invoke the lifting
theorem from [28], [45, Chapter 7]; accordingly, in order to establish (A.3), it is
sufficient (and necessary) to prove that

L : continuous L2(0,T ;U)−→ L2(0,T ;Y). (A.4)

We thus show (A.4). To this end, let u ∈ L2(0,T ;U). Then, the following inner
product on L2(0,T ;U) is well defined:

∫ T

0

({
B∗Lu

}
(t),

∫ 2t

t
e−k(t−τ)u(2t− τ)dτ

)
U
dt =well-defined (A.5)

=
∫ T

0

(
B∗

∫ t

0
eA(t−τ)Bu(τ)dτ,

∫ 2t

t
e−k(t−τ)u(2t− τ)dτ

)
U
dt (A.6)

=
∫ T

0

(∫ t

0
eA((t−τ)/2)Bu(τ)dτ,

∫ 2t

t
eA

∗((t−τ)/2)e−k(t−τ)Bu(2t− τ)dτ
)
Y
dt

(A.7)

(use (A.2) with s= (t− τ)/2)

=
∫ T

0

(∫ t

0
eA((t−τ)/2)Bu(τ)dτ,

∫ 2t

t
eA((τ−t)/2)Bu(2t− τ)dτ

)
Y
dt (A.8)

(change of variable τ − t = t− σ or σ = 2t− τ)

=
∫ T

0

(∫ t

0
eA((t−τ)/2)Bu(τ)dτ,

∫ t

0
eA((t−σ)/2)B(σ)dσ

)
Y
dt (A.9)

=
∫ T

0

∥∥∥∥∫ t

0
eA((t−τ)/2)Bu(τ)dτ

∥∥∥∥2

Y
dt (A.10)

=
∫ T/2

0

∥∥∥∥∫ r

0
eA(r−ξ)Bu(2ξ)2dξ

∥∥∥∥2

Y
2dr (A.11)

= 8
∫ T/2

0

∥∥{Lµ}(r)∥∥2
Y dr (A.12)

after setting t/2= r, τ/2= ξ in going from (A.10) to (A.11), and after recalling L
in (1.2b) and setting µ(·)= u(2·) in going from (A.11) to (A.12). Next, making
(A.5) more precise by virtue of assumption (A.1), the identity from (A.5) to
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(A.12) yields via Schwarz inequality

∫ T/2

0

∥∥{Lµ}(r)∥∥2
Y dr ≤

∥∥B∗Lu∥∥L2(0,T ;U)

∥∥∥∥∫ 2t

t
e−k(t−τ)u(2t− τ)dτ

∥∥∥∥
L2(0,T ;U)

(A.13)(
invoking (A.1) and using the change of variable 2t− τ = s)

≤ ∥∥∣∣B∗L∣∣∥∥‖u‖L2(0,T ;U)

∥∥∥∥ekt ∫ t

0
u(σ)dσ

∥∥∥∥
L2(0,T ;U)

, (A.14)

where ‖| · |‖ denotes the norm in �(L2(0,T ;U)). Thus, since ‖µ‖L2(0,T/2;U) =
‖u‖L2(0,T ;U), then (A.14) leads to

‖Lµ‖L2(0,T/2;U) ≤ cT
∥∥∣∣B∗L∣∣∥∥‖µ‖L2(0,T/2;U), (A.15)

for example, with cT = e2kT
√
T , and (A.15) proves (A.3) since T is arbitrary.

�

Corollary A.2. Proposition A.1 applies to the v-system (2.1), with A and B de-
fined in (2.4), A∗ = −A (hence k = 0), on Y =�(�1/2)×H .
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