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We give necessary and sufficient conditions for an operator on the space C(T ,X)

to be (r,p)-absolutely summing. Also we prove that the injective tensor product
of an integral operator and an (r,p)-absolutely summing operator is an (r,p)-
absolutely summing operator.

For X and Y Banach spaces we denote by L(X,Y ) the Banach space of all
linear and continuous operators from X to Y equipped with the operator norm,
and by X⊗ε Y the injective tensor product of X and Y , that is, the completion
of the algebraic tensor product X⊗Y with respect to the injective cross-norm
ε(u) = sup{〈x∗ ⊗y∗,u〉 | ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1}, u ∈ X ⊗Y . If T is a compact
Hausdorff space and X is a Banach space, we denote by C(T ,X) the Banach
space of all continuous X-valued functions defined on T , equipped with the
supremum norm and by C(T ) = C(T ,X) for X = R or C. It is well known that
C(T ,X) = C(T )⊗ε X. Also if T is a compact space and X is a Banach space,
we denote by � the σ -field of Borel subsets of T , S(�,X) the space of X-valued
�-simple functions on T , and by B(�,X) we denote the uniform closure of the
space S(�,X); B(�) for X = R or C. We also use that B(�,X) ↪→ C(T ,X)∗∗.
For the representing theorems of the linear and continuous operators on the space
C(T ,X), see [1, 3]. Recall only that to each U ∈ L(C(T ,X),Y ) correspond a
representing measure G : � → L(X,Y ∗∗) and G(E)x = U∗∗(χEx). Also if
U ∈ L(X,Y ), V ∈ L(X1,Y1), by U ⊗ε V : X⊗ε Y → X1 ⊗ε Y1 we denote the
injective tensor product of the operators U and V . If U ∈ L(X⊗ε Y,Z), for each
x ∈ X we consider the operator U#x : Y → Z, (U#x)(y) = U(x ⊗y), y ∈ Y ,
and evidently U# : X → L(Y,Z) is linear and continuous. For 1 ≤ r < ∞ and
x1, . . . ,xn ∈ X we write, lr (xi | i = 1,n) = (

∑n
i=1 ‖xi‖r )1/r and wr(xi | i =

1,n) = sup{(∑n
i=1 |x∗(xi)|r )1/r | x∗ ∈ X∗, ‖x∗‖ ≤ 1}. Let 1 ≤ p ≤ r < ∞,
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U ∈ L(X,Y ) is called (r,p)-absolutely summing if there is some C > 0 such
that if x1, . . . ,xn ∈ X then lr (Uxi | i = 1,n) ≤ Cwp(xi | i = 1,n). The (r,p)-
absolutely summing norm of U is ‖U‖r,p = inf C. We observe that, ‖U‖r,p =
sup{lr (Uxi | i = 1,n) | x1, . . . ,xn ∈ X, wp(xi | i = 1,n) ≤ 1}. We denote by
Asr,p(X,Y ) the Banach space of all (r,p)-absolutely summing operators from X

into Y equipped with the (r,p)-absolutely summing norm. The (1,1)-absolutely
summing operators we call absolutely summing and As(X,Y ) = As1,1(X,Y ),
‖ ‖as = ‖ ‖1,1. For other notions used and not defined we refer the reader to
[3, 6].

The following theorem is an extension of [1, Proposition 2.2(ii)], [8, Theorem
2.1], and [5, Theorem 3.1].

Theorem 1. If U ∈ Asr,p(X⊗ε Y,Z), then U#x ∈ Asr,p(Y,Z) for each x ∈ X

and U# : X → Asr,p(Y,Z) is an (r,p)-absolutely summing operator with
respect to the (r,p)-absolutely summing norm on Asr,p(Y,Z). In addition,
‖U#‖r,p ≤ ‖U‖r,p.

Proof. For x ∈ X, let Vx : Y → X⊗ε Y , Vx(y) = x⊗y. Then by the hypothesis
and the ideal property of the (r,p)-absolutely summing operators it follows that
U#x = UVx is an (r,p)-absolutely summing operator. Now let x1, . . . ,xn ∈ X

with ‖U#xi‖r,p > 0 and 0 < ε < ‖U#xi‖r,p, for each i = 1,n. By the definition
of the (r,p)-absolutely summing norm it follows that there is (yij )j∈σi

, σi finite,
σi ⊂ N such that ‖U#xi‖r,p −ε < lr(U

#xi(yij ) | j ∈ σi) and wp(yij | j ∈ σi) ≤
1 for each i = 1,n. Hence lr (‖U#xi‖r,p − ε | i = 1,n) < lr(U(xi ⊗ yij ) | j ∈
σi, i = 1,n). As U is an (r,p)-absolutely summing operator we obtain

lr
(
U

(
xi ⊗yij

) | j ∈ σi, i = 1,n
) ≤ ‖U‖r,pwp

(
xi ⊗yij | j ∈ σi, i = 1,n

)
. (1)

But we claim that wp(xi ⊗yij | j ∈ σi, i = 1,n) ≤ wp(xi | i = 1,n) and thus
we obtain

lr

(∥∥U#xi

∥∥
r,p

−ε | i = 1,n
)

< ‖U‖r,pwp

(
xi | i = 1,n

)
, (2)

that is, lr (‖U#xi‖r,p | i = 1,n) ≤ ‖U‖r,pwp(xi | i = 1,n). Now for x1, . . . ,xn ∈
X, if we denote by I = {i = 1,n | ‖U#xi‖r,p > 0}, then from (2) we have

lr

(∥∥U#xi

∥∥
r,p

| i = 1,n
)

= lr

(∥∥U#xi

∥∥
r,p

| i ∈ I
)

≤ ‖U‖r,pwp

(
xi | i ∈ I

)
≤ ‖U‖r,pwp

(
xi | i = 1,n

) (3)

and the proof of the theorem will be finished. Now let ψ ∈ (X⊗ε Y )∗, ‖ψ‖ ≤ 1.
Then, as it is well known, there is a regular Borel measure µ on UX∗ ×UY ∗ = T
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such that for x ∈ X and y ∈ Y , ψ(x,y) = ∫
T

x∗(x)y∗(y)dµ(x∗,y∗), ‖ψ‖ =
|µ|(T ) ≤ 1 (see [2] or [3]). Then using the Hölder inequality and the fact that
‖ψ‖ = |µ|(T ) ≤ 1 we have

∣∣〈x ⊗y,ψ〉∣∣≤(∫
T

∣∣x∗(x)
∣∣p∣∣y∗(y)

∣∣pd|µ|(x∗,y∗))1/p

, for x ∈X, y ∈Y. (4)

Thus
n∑

i=1

∑
j∈σi

∣∣〈xi ⊗yij ,ψ
〉∣∣p ≤

∫
T

n∑
i=1

∣∣x∗(xi

)∣∣p ∑
j∈σi

∣∣y∗(yij

)∣∣pd|µ|(x∗,y∗)

≤
∫

T

n∑
i=1

∣∣x∗(xi

)∣∣pd|µ|(x∗,y∗)

≤ [
wp

(
xi | i = 1,n

)]p|µ|(T ),

(5)

since wp(yij | j ∈ σi) ≤ 1, for each i = 1,n. Hence wp(xi ⊗yij | j ∈ σi, i =
1,n) ≤ wp(xi | i = 1,n) and the claim is proved. �

In [5, 7], examples of operators are given which show that the converse of
Theorem 1 is not true.

The next theorem is an extension of [1, Theorem 2.5] and the result of
Swartz [8, Theorem 2].

Theorem 2. Let U : C(T ,X) → Y be a linear and continuous operator,
G its representing measure. If U is an (r,p)-absolutely summing operator,
then G(E) ∈ Asr,p(X,Y ), for each E ∈ � and G : � → Asr,p(X,Y ) has
the property that ‖G‖r,p(T ) = sup{(∑n

i=1 ‖G(Ei)‖r
r,p)1/r | {E1, . . . ,En} ⊂ �

a finite partition of T } ≤ ‖U‖r,p.

Proof. As it is well known, if V is an (r,p)-absolutely summing operator
then its bidual V ∗∗ is also (r,p)-absolutely summing (see [6]). As U is an
(r,p)-absolutely summing operator we obtain, using Theorem 1, that V = U# :
C(T ) → Asr,p(X,Y ) is (r,p)-absolutely summing and hence V ∗∗ is also (r,p)-
absolutely summing. But on C(T ), (r,p)-absolutely summing operators are
weakly compact. This follows easily using [3, Theorem 15, page 159]. Hence
the representing measure G of U which coincides with that of V = U# takes
its values in Asr,p(X,Y ). Because V ∗∗ : B(

∑
) → Asr,p(X,Y ) is an (r,p)-

absolutely summing we have

lr
(
V

(
χEi

) | i =1,n
) ≤ ∥∥V ∗∗∥∥

r,p
wp

(
χEi

| i =1,n
)=∥∥V ∗∗∥∥

r,p
=∥∥U#

∥∥
r,p

(6)

for each partition {E1, . . . ,En} ⊂ ∑
of T . Using Theorem 1, we have∥∥U#

∥∥
r,p

≤ ‖U‖r,p. (7)

As G(E)=V ∗∗(χE), from (6) and (7) we obtain the theorem. �
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The following lemmas show that in the inequality from Theorem 2, we can
have both equality and strict inequality.

Lemma 3. For 1≤p≤r <∞, X and Y Banach spaces, there is U : C([0,1],X)

→ Y an (r,p)-absolutely summing operator whose representing measure has
the properties ‖G‖r,p([0,1]) = (2r + 1)1/r , ‖U‖r,p = 3 and hence if r �= 1,
‖G‖r,p([0,1]) < ‖U‖r,p.

Proof. Let x∗ ∈ X∗ with ‖x∗‖ = 1, y ∈ Y , ‖y‖ = 1. For t ∈ [0,1], t fixed,
we denote ν = 2δt −µ, where δt is the Dirac measure and µ is the Lebesgue
measure. Let U : C([0,1],X) → Y , U(f ) = (

∫ 1
0 x∗f dν)y. Evidently G(E) =

(x∗ ⊗y)ν(E) is the representing measure of U and ‖G(E)‖r,p = |ν(E)|, from
where

‖G‖r,p

([0,1])
=sup



(

n∑
i=1

∥∥G(
Ei

)∥∥r

r,p

)1/r ∣∣∣∣{E1, . . . ,En

}⊂� a finite partition of T




=sup




(
n∑

i=1

∥∥ν
(
Ei

)∥∥r

)1/r ∣∣∣∣{E1, . . . ,En

}⊂� a finite partition of T




= (
2r +1

)1/r
.

(8)

On the other hand,

lr
(
Ufi | i = 1,n

) =
(

n∑
i=1

∣∣∣∣
∫ 1

0
x∗fi dν

∣∣∣∣
r
)1/r

≤ wp

(
fi | i = 1,n

)|ν|([0,1])
= 3wp

(
fi | i = 1,n

)
(9)

hence, ‖U‖r,p ≤ 3. Also, 3 = |ν|([0,1]) ≤ ‖U‖r,p and the lemma is proved. �

Lemma 4. For 1 ≤ r < ∞, X and Y Banach spaces, T a compact Hausdorff
space, µ a regular positive finite Borel measure on T , there is U : C(T ,X) →
Lr(µ,Y ), an r-absolutely summing operator, whose representing measure G

has the property ‖G‖r,r (T ) = ‖U‖r,r .

Proof. Let J : C(T ) → Lr(µ) be the canonical inclusion. As it is well known
and easy to prove (cf. [2, 6]), J is an r-absolutely summing operator with
‖J‖r = [µ(T )]1/r . Also, F(E) = χE is the representing measure of J and
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‖F(E)‖r,r = [µ(E)]1/r , thus ‖F‖r,r (T ) = [µ(T )]1/r . Now let x∗ ∈ X∗ with
‖x∗‖ = 1, y ∈ Y , ‖y‖ = 1 and U : C(T ,X) → Lr(µ,Y ), U(f ) = J (x∗f )y.
Then G(E) = (x∗ ⊗ y)F (E) is the representing measure of U and it is clear
that lr (Ufi | i = 1,n) ≤ ‖J‖rwp(x∗fi | i = 1,n) ≤ [µ(T )]1/rwp(fi | i = 1,n),
that is, U is an r-absolutely summing operator with ‖G‖r,r (T ) = ‖U‖r,r =
[µ(T )]1/r . �

The following theorem is an extension of a result from [1, Proposition 3].

Theorem 5. Let U : C(T ,X) → Y be a linear and continuous operator, G its
representing measure. If G(E) ∈ Asr,p(X,Y ) for each E ∈ ∑

and G : ∑ →
Asr,p(X,Y ) has finite variation with respect to the (r,p)-absolutely summing
norm on Asr,p(X,Y ), then U is an (r,p)-absolutely summing operator.

Proof. We consider Û : B(
∑

,X) → Y , Û (f ) = ∫
T

f dG, f ∈ B(
∑

,X). Since

Û is an extension of U to B(
∑

,X) and S(
∑

,X) is dense in B(
∑

,X) it suffices
to prove that Û is (r,p)-absolutely summing on S(

∑
,X). Let f1, . . . ,fn ∈

S(
∑

,X). Then there is {E1, . . . ,Ek} ⊂ ∑
, a finite partition of T and xij ∈ X

such that fi = ∑k
j=1 χEj

xij , for each i = 1, . . . ,n. Then

lr
(
Ûfi | i = 1,n

) = lr


 k∑

j=1

G
(
Ej

)
xij | i = 1,n




≤
k∑

j=1

lr
(
G

(
Ej

)
xij | i = 1,n

)

≤
k∑

j=1

∥∥G
(
Ej

)∥∥
r,p

wp

(
xij | i = 1,n

)
,

(10)

since G takes its values in Asr,p(X,Y ). But wp(fi | i = 1,n) ≥ maxj=1,k wp

×(xij | i = 1,n) (because if ‖x∗‖ ≤ 1, t ∈ Ej , j = 1,k then wp(fi | i = 1,n) ≥
(
∑n

i=1 |〈fi,x
∗⊗δt 〉|p)1/p =(

∑n
i=1 |x∗fi(t)|p)1/p =(

∑n
i=1 |x∗(xij )|p)1/p) thus,

lr
(
Ûfi | i = 1,n

) ≤

 k∑

j=1

∥∥G
(
Ej

)∥∥
r,p


wp

(
fi | i = 1,n

)

≤ |G|r,p(T )wp

(
fi | i = 1,n

)
,

(11)

since G has finite variation with respect to the (r,p)-absolutely summing norm
on Asr,p(X,Y ) (here, |G|r,p(T ) is the variation of G with respect to the (r,p)-
absolutely summing norm on Asr,p(X,Y )). This shows that U is (r,p)-absolutely
summing and ‖U‖r,p ≤ |G|r,p(T ) and the proof is finished. �
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In the next theorems we give two applications of the results of Theorem 5.

Theorem 6. Let U : C(T ) → Y be an absolutely summing operator, V ∈
Asr,p(X,Z). Then the injective tensor product U

⊗
ε V is an element of

Asr,p(C(T ,X),Y
⊗

ε Z).

Proof. Let F ∈ rcabv(
∑

,Y ) be the representing measure of U , (see [3]). Then
G(E)x = F(E)

⊗
V (x), x ∈ X, E ∈ ∑

is the representing measure of U
⊗

ε V .
In addition, G(E) ∈ Asr,p(X,Y

⊗
ε Z) and ‖G(E)‖r,p ≤ ‖F(E)‖‖V ‖r,p for

E ∈ ∑
. Indeed, for E ∈ ∑

, let SE : Z → Y
⊗

ε Z, SE(z) = F(E)
⊗

z. Then
G(E) = SEV , hence, because (Asr,p,‖ ‖r,p) is a normed ideal of operators and
V ∈ Asr,p(X,Z), we obtain that G(E) ∈ Asr,p(X,Y

⊗
ε Z) and ‖G(E)‖r,p ≤

‖SE‖‖V ‖r,p. But ‖SE‖ ≤ ‖F(E)‖ and hence ‖G(E)‖r,p ≤ ‖F(E)‖‖V ‖r,p.
Now F has bounded variation and hence G satisfies the properties from
Theorem 6. Thus, U

⊗
ε V ∈ Asr,p(C(T ,X),Y

⊗
ε Z). �

In [2, Chapter 34], various results concerning tensor stability and tensor
instability of some operator ideals are given. In the next theorem, we prove a
result of the same type.

Theorem 7. Let U : X → X1 be an integral operator, V ∈ Asr,p(Y,Y1). Then
U

⊗
ε V ∈ Asr,p(X

⊗
ε Y,X1

⊗
ε Y1) and ‖U ⊗

ε V ‖r,p ≤ ‖U‖int‖V ‖r,p.

Proof. As U is an integral operator, we have the factorization

X
U

X1
J

X∗∗
1

C(T )

S

(12)

where S is an absolutely summing operator (T being a compact Hausdorff
space), (see [2, 3]).

Hence we have the following factorization of U
⊗

ε V

X
⊗

ε Y
U⊗εV

X1
⊗

ε Y1 X∗∗
1

⊗
ε Y

(
X

⊗
ε Y

)∗∗

C(T ,Y )

S⊗εV

(13)

(For the inclusion X∗∗
1

⊗
ε Y1 ↪→ (X1

⊗
ε Y1)

∗∗, see [4, Lemma 1].) Us-
ing Theorem 6 it follows that S

⊗
ε V ∈ Asr,p(C(T ,Y ),X∗∗

1

⊗
ε Y1), hence

by the ideal property of Asr,p we obtain that J (U
⊗

ε V ) ∈ Asr,p(X
⊗

ε Y,
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X1
⊗

ε Y1)
∗∗, where J is the canonical embedding into the bidual, and hence

U
⊗

ε V ∈ Asr,p(X
⊗

ε Y,X1
⊗

ε Y1).
The inequality ‖U ⊗

ε V ‖r,p ≤ ‖U‖int‖V ‖r,p is also clear. �
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