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We give necessary and sufficient conditions for an operator on the space C (T, X)
to be (r, p)-absolutely summing. Also we prove that the injective tensor product
of an integral operator and an (r, p)-absolutely summing operator is an (r, p)-
absolutely summing operator.

For X and Y Banach spaces we denote by L(X,Y) the Banach space of all
linear and continuous operators from X to Y equipped with the operator norm,
and by X ®, Y the injective tensor product of X and Y, that is, the completion
of the algebraic tensor product X ® Y with respect to the injective cross-norm
e(w) =sup{(x*@y*,u) | |x*|| <1, |y <1}, ue XQY.If T is a compact
Hausdorff space and X is a Banach space, we denote by C(7, X) the Banach
space of all continuous X-valued functions defined on T, equipped with the
supremum norm and by C(7') = C(T, X) for X = R or C. It is well known that
C(T,X)=C(T)®:X. Also if T is a compact space and X is a Banach space,
we denote by X the o-field of Borel subsets of 7', S(X, X) the space of X-valued
Y.-simple functions on 7', and by B(X, X) we denote the uniform closure of the
space S(X, X); B(X) for X =R or C. We also use that B(X, X) — C(T, X)**.
For the representing theorems of the linear and continuous operators on the space
C(T, X), see [1, 3]. Recall only that to each U € L(C(T, X), Y) correspond a
representing measure G : X — L(X,Y™) and G(E)x = U**(xgx). Also if
UeL(X,Y),VelL(X1,Y1),byU®,V :XR®.Y — X|®, Y we denote the
injective tensor product of the operators U and V. If U € L(X ®, Y, Z), for each
x € X we consider the operator Ubx Y - Z, Ux)(y») =Ux®y), ye Y,
and evidently U #.X — L(Y, Z) is linear and continuous. For 1 < r < oo and
Xl,..on Xy € X we write, L(x; | i =1,n) = (X1, i 1Y and w,(x; | i =
1,n) = sup{(QF_; Ix* ()Y | x* € X*, x| < 1}. Let 1 < p <r < oo,
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U e L(X,Y) is called (r, p)-absolutely summing if there is some C > 0 such
that if x1,...,x, € X then [, (Ux; |i =1,n) < Cw,(x; | i = 1,n). The (r, p)-
absolutely summing norm of U is ||U]||,,, = inf C. We observe that, ||U]|, , =
sup{l, Ux; i =1,n)|x1,....,xp € X, wp(x; |7 =1,n) < 1}. We denote by
As, (X, Y) the Banach space of all (r, p)-absolutely summing operators from X
into Y equipped with the (r, p)-absolutely summing norm. The (1, 1)-absolutely
summing operators we call absolutely summing and As(X,Y) = As; 1(X,Y),
Il llas = Il Il1,1. For other notions used and not defined we refer the reader to
[3, 6].

The following theorem is an extension of [1, Proposition 2.2(ii)], [8, Theorem
2.1], and [5, Theorem 3.1].

THEOREM 1. IfU € As, ,(X®; Y, Z), then U*x € As,, ,(Y, Z) for each x € X
and U* : X — As, (Y, Z) is an (r, p)-absolutely summing operator with
respect to the (r, p)-absolutely summing norm on As; ,(Y,Z). In addition,
1O p < U1 p-

Proof. Forx e X,letVy:Y - X®,Y, Vy(y) =x®y. Then by the hypothesis
and the ideal property of the (r, p)-absolutely summing operators it follows that
U*x = UV, is an (r, p)-absolutely summing operator. Now let x1,...,x, € X
with ||U*x; ]|, > 0and 0 < & < |[U*x;]|,. », for each i = 1, n. By the definition
of the (r, p)-absolutely summing norm it follows that there is (y;;) jes; , 0; finite,
o; C N such that |U*x; |, p—e < 1, (U*x;(yij) | j € 0;) and w,(yij | j € 07) <
1 for each i = 1, n. Hence lr(||U#x,-||r’p—e li=1,n) <LL,(Ux®yij)|Jje
oi, i =1,n). As U is an (r, p)-absolutely summing operator we obtain

LU@xi®yij)ljeoi, i=1n)<|Ul,pwp(xi®yij | jeoi, i=1,n). (1)

But we claim that w,(x; ® yij | j € 0i, i =1,n) < wp,(x; | i =1,n) and thus
we obtain

1,(||U#x,- |, ,—eli= 1,n> <NUypwp(xi |i = 1,n), )

thatis,lr(||U#x,~||r,p li=1,n) <|Ul,pwp(x;|i=1,n).Now forxi,...,x, €
X, if we denote by I = {i =1,n| ||U#x,-||r,p > 0}, then from (2) we have

(|0, , = 1) =t (Ut 1ie )
<NUlrpwp(xi i €1) G)
=< ”U”r,pwp(xi li= 1»")

and the proof of the theorem will be finished. Now let ¢ € (X ®. Y)*, |¥] < 1.
Then, as it is well known, there is a regular Borel measure i on Ux+ x Uy =T
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such that for x € X and y € ¥, ¥ (x,y) = [ x*()y*(Wdux*, y*), ¥l =
|1|(T) < 1 (see [2] or [3]). Then using the Holder inequality and the fact that
¥l = |ul(T) <1 we have

l/p
|(x®y,1//)|5</T|x*(x)|p|y*(y)|pd|pc|(x*,y*)) , forxeX, yeY. (4)
Thus

Xn: D@y v’ < /Ti o (e ) [P Y 1 (i) | Pl (%, %)

i=1 jeo; Jjeoi
" 5
SfTZ|X*(Xf)\”dIMI(X*7y*) ©
i=1
< [wp(xi 1i=1,n)]"|ul(T),

since w,(yij | j € 0;) <1, foreachi =1,n. Hence w,(xi®y;j | j €0i, i =
1,n) <wp(x; | i =1,n) and the claim is proved.

O

In [5, 7], examples of operators are given which show that the converse of
Theorem 1 is not true.

The next theorem is an extension of [1, Theorem 2.5] and the result of
Swartz [8, Theorem 2].

THEOREM 2. Let U : C(T,X) — Y be a linear and continuous operator,
G its representing measure. If U is an (r, p)-absolutely summing operator,
then G(E) € As, ,(X,Y), for each E € ¥ and G : ¥ — As, ,(X,Y) has
the property that |Gl p(T) = sup{(Xj_, I G(EDI; )" [{EL, ..., Ex} C B
a finite partition of T} < U]l p.

Proof. As it is well known, if V is an (r, p)-absolutely summing operator
then its bidual V** is also (r, p)-absolutely summing (see [6]). As U is an
(r, p)-absolutely summing operator we obtain, using Theorem 1, that V = U* :
C(T) — As, p(X,Y)is (r, p)-absolutely summing and hence V** is also (r, p)-
absolutely summing. But on C(T), (r, p)-absolutely summing operators are
weakly compact. This follows easily using [3, Theorem 15, page 159]. Hence
the representing measure G of U which coincides with that of V = U* takes
its values in As, ,(X,Y). Because V** : B(} ') — As, ,(X,Y) is an (r, p)-
absolutely summing we have

LV () ti=1om) < [V, wp(ce L= L) = |V, =[], ©
for each partition {E1, ..., E,} C >_ of T. Using Theorem 1, we have

[U*],., < IVl %)

As G(E)=V**(xg), from (6) and (7) we obtain the theorem. O

r,p



312 (r, p)-absolutely summing operators

The following lemmas show that in the inequality from Theorem 2, we can
have both equality and strict inequality.

LEmMMA 3. For 1 <p<r<oo, X and Y Banach spaces, there is U : C([0, 1], X)
— Y an (r, p)-absolutely summing operator whose representing measure has
the properties |G|, p([0,1]) = (2" + Hlr, Ullr,p = 3 and hence if r # 1,
1G I, p(10, 1D < [1U]ly,p-

Proof. Let x* € X* with ||x*|| =1,y €Y, |yl = 1. For ¢t € [0, 1], ¢ fixed,
we denote v = 26, — u, where §; is the Dirac measure and p is the Lebesgue
measure. Let U : C([0,1], X)) - Y, U(f) = (folx*fdv)y. Evidently G(E) =
(x*® y)v(E) is the representing measure of U and ||G(E) |, , = [v(E)|, from
where

IG1,(10,11)

n 1/r
- (2 ||G<Ei>||:,,,)
i=1

{El, e, En} C ¥ a finite partition of T

{El, e En} C ¥ a finite partition of T

n 1/r
~nf (S vtz

=@ +1)"".
(®)
On the other hand,
n 1 r 1/r
lr(Ufl-lizl,n)=< fx*f,-dv )
2.|J,
)

<w,(fi Ii=1,n)|([0,1])
=3w,(fili=1,n)
hence, ||U ||;,p < 3. Also, 3 = [v|([0, 1]) < ||U]||;,p and the lemma is proved. [

LEMMA 4. For 1 <r < oo, X and Y Banach spaces, T a compact Hausdorff
space, | a regular positive finite Borel measure on T, there is U : C(T, X) —
L.(u,Y), an r-absolutely summing operator, whose representing measure G
has the property |Gl (T) = U ..

Proof. Let J : C(T) — L,(u) be the canonical inclusion. As it is well known
and easy to prove (cf. [2, 6]), J is an r-absolutely summing operator with
11, = [u(T)]'/". Also, F(E) = xg is the representing measure of J and
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IEEr.r = [w(E)Y7, thus ||F||,.-(T) = [w(T)]"/". Now let x* € X* with
Ix*=1yeY, |yl =land U : C(T,X) = L,(n,Y), U(f) = J(x* f)y.
Then G(E) = (x*® y)F(E) is the representing measure of U and it is clear
that [, (Ufi |i=1,n) < | ll,wp(x* fi |i = Ln) < [(D]"w,(fi | = 1,n),
that is, U is an r-absolutely summing operator with ||G||,.(T) = |U||,, =
[w(D]Y". O

The following theorem is an extension of a result from [1, Proposition 3].

THEOREM 5. Let U : C(T, X) — Y be a linear and continuous operator, G its
representing measure. If G(E) € As, ,(X,Y) for each E € ) and G : ) —
As, ,(X,Y) has finite variation with respect to the (r, p)-absolutely summing
norm on As,. ,(X,Y), then U is an (r, p)-absolutely summing operator.

Proof. We consider U : B(Y.,X) — Y, U(f) = [r fdG, f € B(3_, X). Since
U is an extension of U to B(>_,X)and SO, X) isdense in B(>_, X) it suffices

to prove that U is (r, p)-absolutely summing on S(}_, X). Let fi,..., fu €
S(3_, X). Then there is {E, ..., Ex} C Y, a finite partition of 7 and x;; € X

such that f; = Zl;=1 XE;Xijs foreachi =1,...,n. Then

k
L(Ofili=1n)=1 > G(Ej)xjli=1n
j=1

k
< Zl,(G(Ej)x,-j | i = l,n) (10)

j=1
k
=2 NG(EN], wplij 1i=1.n),
j=1

since G takes its values in As, ,(X,Y). But w,(f; | i =1,n) > max;—; rw)
x (xjj |i =1,n) (becauseif |x*|| <1,t € Ej, j=1,kthenw,(f; |i =1,n) >

Qi (i x*®@8)1)VP = (i 1x* i) P = (], 1x*(xij)|)'/P) thus,

k
LOfili=1n) < | Y IG(E)], , | wolfili=1.n)
= ’ (1)

<I|Glrp(Twy(fi i =1,n),

since G has finite variation with respect to the (r, p)-absolutely summing norm
on As; ,(X,Y) (here, |G|, ,(T) is the variation of G with respect to the (r, p)-
absolutely summing norm on As,, ,(X,Y)). This shows that U is (r, p)-absolutely
summing and |U||,,p < |G|y, (T) and the proof is finished. O



314  (r, p)-absolutely summing operators
In the next theorems we give two applications of the results of Theorem 5.

THEOREM 6. Let U : C(T) — Y be an absolutely summing operator, V €
Asy ,(X,Z). Then the injective tensor product U@,V is an element of
As, ,(C(T,X),Y Q. 2).

Proof. Let F € rcabv(}_, Y) be the representing measure of U, (see [3]). Then
G(E)x=F(E)QV(x),x € X, E € ) istherepresenting measure of U ), V.
In addition, G(E) € As, ,(X,Y Q. Z) and |G(E)l.,p < IF(E)IVI,, for
E € .Indeed, for E€ ) ,let Sg: Z - Y, Z, SE(z) = F(E)Qz. Then
G(E) = SgV, hence, because (As;. p, || [I,p) is a normed ideal of operators and
V € As, (X, Z), we obtain that G(E) € As, ,(X,Y Q. Z) and |G(E)|,,, <
ISENNV Iy, p- But [[SEll < [IF(E)| and hence [|G(E) |y, < IF(E)IIV Iy, p-
Now F has bounded variation and hence G satisfies the properties from
Theorem 6. Thus, U Q). V € As, ,(C(T, X),Y Q. Z). O

In [2, Chapter 34], various results concerning tensor stability and tensor
instability of some operator ideals are given. In the next theorem, we prove a

result of the same type.

THEOREM 7. Let U : X — X be an integral operator, V € As,; ,(Y,Y1). Then
UR.VeAs ,(XQ. Y. X1 QY1) and [UQRVrp < 1Ulincl VIl p-

Proof. As U is an integral operator, we have the factorization

U J
X X1
\ /

C(T)

X7 12)

where S is an absolutely summing operator (7 being a compact Hausdorff
space), (see [2, 3]).
Hence we have the following factorization of U ), V

UV
XQR Y —X1Q. Y XPQ Y —= (X®.¥)™

S®V
C(T,Y)
(13)
(For the inclusion X{* @, Y1 — (X1, Y1)™, see [4, Lemma 1].) Us-
ing Theorem 6 it follows that S,V € As, ,(C(T,Y), X{*&), Y1), hence
by the ideal property of As, , we obtain that J(UQ), V) € As, ,(XQ. Y,
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X1 @, Y1)™, where J is the canonical embedding into the bidual, and hence

U®€V EASr,p(X®€ Y, Xy ®€ Y.
The inequality |[U Q. Vllr,p < IUllincllV Il p is also clear. O
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