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Consider the initial boundary value problem for the equation ut =−L(t)u, u(1)= w on
an interval [0,1] for t > 0, where w(x) is a given function in L2(Ω) and Ω is a bounded
domain in Rn with a smooth boundary ∂Ω. L is the unbounded, nonnegative opera-
tor in L2(Ω) corresponding to a selfadjoint, elliptic boundary value problem in Ω with
zero Dirichlet data on ∂Ω. The coefficients of L are assumed to be smooth and depen-
dent of time. It is well known that this problem is ill-posed in the sense that the so-
lution does not depend continuously on the data. We impose a bound on the solution
at t = 0 and at the same time allow for some imprecision in the data. Thus we are led
to the constrained problem. There is built an approximation solution, found error es-
timate for the applied method, given preliminary error estimates for the approximate
method.

1. Introduction

Consider the problem of solving a parabolic partial differential equation with variable op-
erator backwards in time. For convenience we write the equation in the following abstract
form

ut =−L(t)u, 0≤ t ≤ 1,

u(1)=w. (1.1)

Here w(x) is a given function in L2(Ω), and Ω is a bounded domain in Rn with a smooth
boundary ∂Ω. L is the unbounded, nonnegative operator in L2(Ω) corresponding to a
selfadjoint, elliptic boundary value problem in Ω with zero Dirichlet data on ∂Ω. The
coefficients of L are assumed to be smooth and dependent of time.

The system (1.1) is ill-posed because the solution does not depend continuously on
the data. We impose a bound on the solution at t = 0 and at the same time allow for some
imprecision in the data. Now we are led to the constrained problem.
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Get any solution of

ut =−L(t)u, 0≤ t ≤ 1,∥∥u(1)−w∥∥≤ δ,∥∥u(0)
∥∥≤M,

(1.2)

where the norm is the L2(Ω)-norm, and δ and M are given positive constants, δ�M.
Using logarithmic convexity (see [1], [7, page 11]), we have that any two solutions of
(1.2), u1 and u2, satisfy

∥∥u1(t)−u2(t)
∥∥≤ 2δtM1−t . (1.3)

Write down system

ut =−L(t)u, 0≤ t ≤ 1,

w = u(0)e−
∫ 1

0 L(τ)dτ +ψ,

‖ψ‖ ≤ δ,∥∥u(0)
∥∥≤M ≤ δ.

(1.4)

Thus for 0 < t ≤ 1 we have continuous dependence on the data.
It is difficult to solve (1.2), because solutions are not unique. There are some methods

for approximating solutions of (1.2), which are optimal in the sense that Hölder type
error estimates (1.3) can be obtained for them.

We consider a method related to the regularization method of Tikhonov [5] and
Phillips. This method for parabolic equation with operator L independent of time is
learned in [4]. Now we consider more generalized case: parabolic equation with variable
coefficients.

An approximate solution of (1.2) is given by

v(t)= e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)
w, µ(t)= (δ/M)(1− t)/t. (1.5)

Let u be any solution of (1.2). Then, for 0≤ t ≤ 1,

∥∥u(t)− v(t)
∥∥≤ δtM1−t,

‖u− v‖ =
∥∥∥∥∥u0e

−∫ t0 L(τ)dτ − e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

(
u0e

−∫ 1
0 L(τ)dτ)+ψ

∥∥∥∥∥
=
∥∥∥∥∥e−

∫ t
0 L(τ)dτ − e−

∫ t
0 L(τ)dτ−∫ 1

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

∥∥∥∥∥
∥∥u0

∥∥+

∥∥∥∥∥ e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

∥∥∥∥∥‖ψ‖.
(1.6)
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We now raise the following question. Can we discretize (1.5) in such a way that for the
discrete approximation va we get an error estimate of type (1.6)

∥∥u(t)− v(t)
∥∥≤ CδtM1−t (1.7)

for some constant C?
The answer to this question will have significance for the possibilities of solving nu-

merically problems in two (or more) space dimensions, with nonrectangular geometry or
nonconstant coefficients, since for such problems we must discretize in time and space.

In this paper, we give a partial answer to the above question. We consider approximat-
ing the exponential function in (1.5) in a way which corresponds to a time discretization.
In Section 3, we show that if exp(−λ) is approximated well enough for 0≤ λ≤ log(M/δ),
we can get error estimates of the form (1.7) with C = 2.

2. The regularization method for parabolic equation with variable coefficients

We show that the estimate (1.6) holds for the regularization method (1.5). The proof is
quite simple and we use the same method in connection with discretization of (1.5). We
also show that the same error estimate is valid if we use (1.5) in a step-by-step manner.

We assume that δ and M have been chosen so that there exist solutions of (1.2).

Theorem 2.1. Let u(t) denote an arbitrary solution of (1.2), and for 0 ≤ t ≤ 1 let v(t) be
defined by (1.5). Then

∥∥u(t)− v(t)
∥∥≤ δtM1−t . (2.1)

Proof. The assumption about the existence of solutions of (1.2) is equivalent to there
being functions u0 and ψ such that

∥∥u0
∥∥≤M, ‖ψ‖ ≤ δ, w = exp(−L)u0 +ψ. (2.2)

Putting u(t)= u0e−
∫ t

0 L(τ)dτ we get

‖u− v‖ =
∥∥∥∥∥u0e

−∫ t0 L(τ)dτ − e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

(
u0e

−∫ 1
0 L(τ)dτ)+ψ

∥∥∥∥∥
=
∥∥∥∥∥e−

∫ t
0 L(τ)dτ − e−

∫ t
0 L(τ)dτ−∫ 1

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

∥∥∥∥∥
∥∥u0

∥∥+

∥∥∥∥∥ e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

∥∥∥∥∥‖ψ‖,

(2.3)

where the operator norm is defined such way ‖A‖ = sup{‖Au‖ : ‖u‖ = 1}. We now use
(2.2) and the fact that L is selfadjoint and nonnegative to get

∥∥u(t)− v(t)
∥∥≤ sup

λ≥0
A(λ)M + sup

λ≥0
B(λ)δ, (2.4)
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where

A(λ)=
∣∣∣∣∣e−

∫ t
0 L(τ)dτ − e−

∫ t
0 L(τ)dτ−∫ 1

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

∣∣∣∣∣,

B(λ)= e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)
.

(2.5)

We have A= µ(t)e−
∫ t

0 L(τ)dτ/(e−
∫ 1

0 L(τ)dτ +µ(t))= µ(t)B.

Let p = e−
∫ 1

0 L(τ)dτ/(e−
∫ 1

0 L(τ)dτ + µ(t)), 1− p = µ(t)/(e−
∫ 1

0 L(τ)dτ + µ(t)). We use the fact
from [4]. We have for 0≤ p, t ≤ 1 the inequality

pt(1− p)1−t ≤ tt(1− t)1−t (2.6)

is valid, we obtain

B(λ)= e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)
≤ e−t

∫ t
0 χL(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

=
(

e−
∫ t

0 χL(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)

)t(
µ(t)

e−
∫ 1

0 L(τ)dτ +µ(t)

)1−t
µt−1(t)

≤ tt(1− t)1−t
(
δ

M

)t−1(1− t
t

)t−1

= t
(
M

δ

)1−t
,

A≤ δ

M

1− t
t

t
(
M

δ

)1−t
=
(
δ

M

)t
(1− t)

(2.7)

(look at the definition (1.5) of µ(t)). Therefore we can estimate (2.4)

∥∥u(t)− v(t)
∥∥≤ ( δ

M

)t
(1− t)M + t

(
M

δ

)1−t
δ = δtM1−t . (2.8)

�

The numerical of a forward parabolic problem is usually computed by a marching pro-
cedure, that is, a procedure which is recursive in time. We show that the method (1.5) for
the backward problem can be generalized to a recursive formula in such a way that the
procedure remains optimal in the above sense. Make a (possibly nonuniform) partition-
ing of the interval [0,1]

0 < t1 < t2 < ··· < ts < 1, (2.9)

and let the recursion be

vs = v
(
ts
)
, vi−1 = e−

∫ ti−1
0 L(τ)dτ

e−
∫ ti

0 L(τ)dτ +µi
vi, i= s,s− 1, . . . ,2, (2.10)
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where v(ts) is given by (1.5) and

µi =
(
δi/M

)(
ti− ti−1

)
/ti−1, δi = δtiM1−ti . (2.11)

Corollary 2.2. Let u(t) denote an arbitrary solution of (1.2), and let (vi)si=1 be defined by
(2.10). Then

∥∥u(ti)− vi∥∥≤ δtiM1−ti . (2.12)

Proof. The result is obviously true for i = s. Then assume that it is true for i = k, and
consider

ut =−L(t)u for 0 < t ≤ tk,
∥∥u(tk)− vk∥∥≤ δk,

∥∥u(0)
∥∥≤M. (2.13)

The recursion formula (2.10) is a straightforward generalization of (1.5) to the interval
[0, tk], and, putting τk = tk−1/tk, we obtain

∥∥u(tk−1vk−1
)∥∥≤ δτkM1−τk = δtk−1M1−tk−1 = δk−1. (2.14)

�

3. Preliminary error estimation

We get now error estimates for

v = e−
∫ t

0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)
≤ e−t

∫ 1
0 L(τ)dτ

e−
∫ 1

0 L(τ)dτ +µ(t)
. (3.1)

Let

va(t)= gt

g +µ(t)
w, g ≈ e−

∫ 1
0 L(τ)dτ , (3.2)

which is (1.5) with the exponential function replaced by an approximation f , such that
f (λ) ≈ e−λ. In the next section f (λ) will depend on N , where k = 1/N is a step length
parameter, but here this dependence is suppressed. There we will be dealing explicitly
with the class of approximations defined by exp−λ≈ (Q(λ/N)/P(λ/N))N (see [1, p. 54]),
but in this section it will be sufficient to distinguish between two subclasses characterized
by the following inequalities:

e−
∫ t

0 λ(τ)dτ ≤ g(λ)≤ 1, λ≥ 0, (3.3)

0 < g(λ)≤ e−
∫ t

0 λ(τ)dτ , 0≤ e
∫ t

0 λ(τ)dτ ≤ ln(M/δ),

0≤ g(λ)≤ 1, e
∫ t

0 λ(τ)dτ ≥ ln(M/δ).
(3.4)

First we give an error estimate for approximations satisfying (3.3).
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Theorem 3.1. Let u(t) denote an arbitrary solution of (1.2), let va(t) be defined by (3.2),
and assume that f satisfies (3.3). If

λ+ lng(λ)≤ (δ/M)
1
t
eλt for 0≤ λ≤ ln(M/δ), (3.5)

then

∥∥u(t)− va(t)
∥∥≤ (t+ max

(
1,2(1− t)))δtM1−t . (3.6)

Proof. As in Theorem 2.1 we have

∥∥u(t)− va(t)
∥∥≤ sup

λ≥0
A(λ)M + sup

λ≥0
B(λ)δ. (3.7)

Look at it in details

∥∥u(t)− va(t)
∥∥=

∥∥∥∥∥u0e
−∫ t0 L(τ)dτ − gt

g +µ(t)

(
e−

∫ 1
0 L(τ)dτ +ψ

)∥∥∥∥∥
≤
∥∥∥∥∥e−

∫ t
0 L(τ)dτ − gt

g +µ(t)
e−

∫ 1
0 L(τ)dτ

∥∥∥∥∥
∥∥u0

∥∥+
∥∥∥∥ gt

g +µ(t)

∥∥∥∥‖ψ‖.
(3.8)

Here

A=
∥∥∥∥∥e−

∫ t
0 λ(τ)dτ − gt

g +µ(t)
e−

∫ 1
0 λ(τ)dτ

∥∥∥∥∥,

B = gt

g +µ(t)
.

(3.9)

By (2.6) we have

B ≤ t
(
M

δ

)1−t
. (3.10)

We have then A = |A1 − A2|, A1 = e−
∫ t

0 λ(τ)dτ , A2 = (gt/(g + µ(t)))e−
∫ 1

0 λ(τ)dτ . Let∫ 1
0 λ(τ)dτ ≥ k, then, for A1 ≥ A2 we have A≤ e−

∫ t
0 λ(τ)dτ ≤ e−t

∫ 1
0 λ(τ)dτ ≤ e−kt; and for A1 ≤

A2 we have A≤ (gt/(g +µ(t)))e−
∫ 1

0 λ(τ)dτ ≤ t(M/δ)1−te−k = tek(1−t)e−k = te−kt, therefore

A≤ e−kt. (3.11)

Consider now case
∫ 1

0 λ(τ)dτ ≤ k.
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Let at first A1 ≥ A2, then A=A1−A2. We have then

A
(
g +µ(t)

)= µ(t)e−
∫ t

0 λ(τ)dτ + ge−
∫ t

0 λ(τ)dτ − gte−
∫ 1

0 λ(τ)dτ

≤ µ(t)e−t
∫ 1

0 λ(τ)dτ + ge−t
∫ 1

0 λ(τ)dτ − gte−
∫ 1

0 λ(τ)dτ

= µ(t)e−t
∫ 1

0 λ(τ)dτ + ge−t
∫ 1

0 λ(τ)dτ
(
g1−t − e−(1−t)∫ 1

0 λ(τ)dτ
)

≤ µ(t)e−t
∫ 1

0 λ(τ)dτ + ge−t
∫ 1

0 λ(τ)dτ

(
lng +

∫ 1

0
λ(τ)dτ

)
(1− t)

≤ µ(t)e−t
∫ 1

0 λ(τ)dτ + ge−t
∫ 1

0 λ(τ)dτ δ

M

1
t
e−t

∫ 1
0 λ(τ)dτ(1− t)

= µ(t)e−t
∫ 1

0 λ(τ)dτ + gtµ(t)0= µ(t)
(
e−t

∫ 1
0 λ(τ)dτ + gt

)≤ 2µ(t)gt,

A≤ 2µ(t)
gt

g +µ(t)
≤ 2

δ

M

1− t
t

t
(
M

δ

)1−t
= 2

(
δ

M

)t
(1− t)= 2(1− t)e−kt.

(3.12)

Let now A1 ≤A2, then A= A2−A1. We have then

A
(
g +µ(t)

)= gte−∫ 1
0 λ(τ)dτ − ge−

∫ t
0 λ(τ)dτµ(t)e−

∫ t
0 λ(τ)dτ

= gte−
∫ t

0 λ(τ)dτ(e−∫ 1
t λ(τ)dτ − g1−t)−µ(t)e−

∫ t
0 λ(τ)dτ

= gte−
∫ t

0 λ(τ)dτ(e−λ(ξ)(1−τ)− g1−t)−µ(t)e−
∫ t

0 λ(τ)dτ

≤ gte−
∫ t

0 λ(τ)dτ(−λ)
(− λ(ξ)− lng

)
(1− t)−µ(t)e−

∫ t
0 λ(τ)dτ .

(3.13)

Here if −λ(ξ)− lng < 0, then A < 0 and A1 ≥A2, that is, we have earlier observed case.

Let −λ(ξ)− lng ≤ (δ/M)(1/t)e
∫ t

0 λ(τ)dτ ,
∫ 1

0 λ(τ)dτ ≤ k = ln(M/δ), t ≤ ξ ≤ 1. Then

A
(
g +µ(t)

)= gte−∫ 1
0 λ(τ)dτ ≤ δ

M

1
t
e
∫ t

0 λ(τ)dτ(1− t)−µ(t)e−
∫ t

0 λ(τ)dτ ≤ gtµ(t),

A≤ gt

g +µ(t)
µ(t)= (1− t)e−kt.

(3.14)

Thus,

A≤ 2(1− t)
(
δ

M

)t
,

∥∥u(t)− va(t)
∥∥≤ 2(1− t)(δM)tM + t

(
Mδ

)1−t
δ = (t+ max

(
1,2(1− t)))δtM1−t .

(3.15)
�

We next give the corresponding theorem for approximations satisfying (3.4).
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Theorem 3.2. Let u(t) denote an arbitrary solution of (1.2), let va(t) be defined by (3.2),
and assume that f satisfies (3.4). If

−
∫ 1

0
λ(τ)dτ − lng(λ)≤ δ

M

ln2
t
e
∫ 1

0 λ(τ)dτ for 0≤ λ≤ ln
M

δ
, (3.16)

then

∥∥u(t)− va(t)
∥∥≤ (t+ max

(
1,2(1− t)))δtM1−t . (3.17)

Remark 3.3. The assumption (3.4) implies that −λ− log f (λ) is nonnegative.

Proof. As in proof of Theorem 3.1 we get

∥∥u(t)− va(t)
∥∥≤ sup

λ≥0
A(λ)M + sup

λ≥0
B(λ)δ, (3.18)

where A(λ) and B(λ) are the same.

B ≤ t
(
M

δ

)1−t
. (3.19)

If
∫ 1

0 λ(τ)dτ ≥ k, then A≤ e−kt = (δ/M)t.
If
∫ 1

0 λ(τ)dτ ≥ k, then let at first A= A1−A2, and so we have

A
(
g +µ(t)

)= µ(t)e−
∫ t

0 λ(τ)dτ + ge−
∫ t

0 λ(τ)dτ − gte−
∫ 1

0 λ(τ)dτ

≤ µ(t)e−t
∫ 1

0 λ(τ)dτ + gte−t
∫ 1

0 λ(τ)dτ
(
g1−t − e−(1−t)∫ 1

0 λ(τ)dτ
)

≤ µ(t)e−t
∫ t

0 λ(τ)dτ .

(3.20)

As we have

0≤
∫ 1

0
λ(τ)dτ ≤ ln

M

δ
= k, (3.21)

so e
∫ 1

0 λ(τ)dτ(δ/M)≤ 1, and accounting condition of theorem

−
∫ 1

0
λ(τ)dτ − lng(λ)≤ δ

M

ln2
t
e
∫ 1

0 λ(τ)dτ (3.22)

for
∫ 1

0 λ(τ)dτ ≤ k we have −∫ 1
0 λ(τ)dτ − lng(λ)≤ ln2/t, therefore

−t
∫ 1

0
λ(τ)dτ − t lng(λ)≤ ln2, −t

∫ 1

0
λ(τ)dτ ≤ ln2 + t lng, e−t

∫ 1
0 λ(τ)dτ ≤ 2gt,

(3.23)
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and, hence,

A
(
g +µ(t)

)≤ µ(t) · 2gt, A≤ 2µ(t)
gt

g +µ(t)
≤ 2(1− t)

(
δ

m

)t
. (3.24)

Let now A= A2−A1. Then

A
(
g +µ(t)

)= gte−∫ 1
0 λ(τ)dτ − ge−

∫ t
0 λ(τ)dτ −µ(t)e−

∫ t
0 λ(τ)dτ

= gte−
∫ 1

0 λ(τ)dτ(e−∫ 1
t λ(τ)dτ − g1−t)

−µ(t)e−
∫ t

0 λ(τ)dτgte−
∫ 1

0 λ(τ)dτ(e−∫ 1
t λ(ξ)dτ − g1−t)−µ(t)e−

∫ t
0 λ(τ)dτ

≤ gte−
∫ 1

0 λ(τ)dτ(− λ(ξ)− lng
)−µ(t)e−

∫ t
0 λ(τ)dτ

= gte−
∫ 1

0 λ(τ)dτ δ

M

1
t
e
∫ 1

0 λ(τ)dτ(1− t)−µ(t)e−
∫ t

0 λ(τ)dτ

= µ(t)
(
gt − e−

∫ t
0 λ(τ)dτ)≤ µtgt,

(3.25)

then A≤ µ(t)(gt/(g +µ(t)))≤ (1− t)(δ/M)t.
So, we have A≤ 2(1− t)(δ/M)t and

∥∥u− va∥∥≤ 2(1− t)
(
δ

M

)t
M + t

(
M

δ

)1−t
δ = (t+ max1,2(1− t))δtM1−t . (3.26)

�

Thus we obtain the same error estimate as for case with operator independent of time
[4]. It means that the method can be applied for more wide field of problems.
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