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We prove that the moduli of U-convexity, introduced by Gao (1995), of the ultrapower
X̃ of a Banach space X and of X itself coincide whenever X is super-reflexive. As a con-
sequence, some known results have been proved and improved. More precisely, we prove
that uX(1) > 0 implies that both X and the dual space X∗ of X have uniform normal
structure and hence the “worth” property in Corollary 7 of Mazcuñán-Navarro (2003)
can be discarded.

1. Introduction

Let C be a nonempty bounded closed convex subset of a Banach space X . A mapping
T : C→ C is said to be nonexpansive provided the inequality

‖Tx−Ty‖� ‖x− y‖ (1.1)

for every x, y ∈ C. Now, a Banach space X is said to have the fixed point property if every
nonexpansive mapping T : C→ C, where C is a nonempty bounded closed convex subset
of a Banach space X , has a fixed point.

Many mathematicians have established that, under various geometric properties of the
Banach space X often measured by different moduli of convexity, the fixed point property
of X is guaranteed.

How the classical modulus of convexity δX(·) of a Banach space X , introduced by
J. A. Clarkson in 1936, relates to the fixed point property has been widely studied. It is
well known [8, Theorem 5.12, page 122] that if δX(1) > 0, then X and X∗ have the fixed
point property. Recently, Garcı́a-Falset proved that every weakly nearly uniformly smooth
space has the fixed point property. To prove this, he introduced the following coefficient:

R(X)= sup
{

liminf
n→∞

∥∥xn + x
∥∥}, (1.2)

where the supremum is taken over all weakly null sequences {xn} in BX(:= {x ∈ X : ‖x‖�
1}) and all x ∈ SX(:= {x ∈ X : ‖x‖ = 1}). Indeed, he proved that a reflexive Banach space
X with R(X) < 2 enjoys the fixed point property [7].
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On the other hand, in 1995, Gao defined the following modulus, for ε ∈ [0,2]:

uX(ε) := inf
{

1− 1
2
‖x+ y‖ : x, y ∈ SX , f (x− y) � ε for some f ∈∇x

}

= inf
{

1− 1
2
‖x+ y‖ : x ∈ SX , y ∈ BX \ {0}, f (x− y) � ε for some f ∈∇x

}
.

(1.3)

Here∇x denotes the set of all norm 1 supporting functionals f of x ∈ SX , that is, f (x)=
‖x‖ = 1. It is easy to see that uX(ε) � δX(ε) for all ε ∈ [0,2]. The inequality may be strict
even when X is a Hilbert space. In fact, uH(ε)= 1−√1− ε/2 for ε ∈ [0,2], where H is a
Hilbert space. Gao proved that if there exists δ > 0 such that uX(1/2− δ) > 0, then X has
uniform normal structure [4].

Mazcuñán-Navarro [10] proved a relationship between two of the above notions.
Namely, if there exists δ > 0 such that uX(1− δ) > 0, then R(X) < 2 [10, Theorem 5].

This paper is organized as follows: in Section 2 we prove some inequalities concerning
the modulus of U-convexity, introduced by Gao, and other constants. By these inequali-
ties, we immediately obtain some results proved by Gao [4] and Mazcuñán-Navarro [10].
Finally, in Section 3, we prove that if a Banach space X is super-reflexive, then the moduli
of U-convexity of the ultrapower X̃ of X and of X itself coincide. Using ultrapower meth-
ods we show, a Banach space X and its dual X∗ have uniform normal structure whenever
uX(1) > 0. The paper concludes with an example showing that such a condition is sharp.

2. The modulus of U-convexity

It was proved in [3] that uX(·) is continuous on [0,2). Hence we restate [10, Theorem 5]
the following.

Theorem 2.1. Let X be a Banach space with uX(1) > 0. Then R(X) < 2.

Furthermore, the above result follows directly from the following inequality and the
continuity of uX(·).

Proposition 2.2. Let X be a Banach space. Then

R(X) � inf
{

max
{
ε+ 1,2

(
1−uX(ε)

)}
: ε ∈ [0,1]

}
. (2.1)

Proof. Suppose the inequality does not hold. Then there exist ε ∈ [0,1), a weakly null
sequence {xn} in BX and x ∈ SX such that

liminf
n→∞

∥∥x+ xn
∥∥ > max

{
ε+ 1,2

(
1−uX(ε)

)}
. (2.2)

Take f ∈∇x. So f (xn)→ 0 as n→∞. Hence f (x− xn) � ε for all sufficiently large n and
we then have ‖x+ xn‖� 2(1−uX(ε)), which is a contradiction. �

The following example shows us that ε= 1 is the largest number such that

uX(ε) > 0=⇒ R(X) < 2. (2.3)
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Example 2.3. For p ∈ (1,∞), we consider the lp space equipped with the norm

‖x‖′ = ‖x+‖p +‖x−‖p, (2.4)

where x+ and x− are positive and negative parts of x ∈ lp, that is, (x+)n = max{xn,0}
and (x−)n = max{−xn,0}. We write lp,1 to denote the space (lp,‖ · ‖′). This space was
introduced and studied by Bynum (see [2]). It is not difficult to see that R(lp,1) = 2 and
hence ulp,1 (1)= 0. Moreover, it is well known that ulp,1 (ε) � δlp,1 (ε) > 0 for all ε > 21/p (see
[2]).

Now we let X = (⊕lpn,1)l2 , where {pn} ⊂ (1,∞) is a sequence tending to infinity. It is
easy to see that R(X)= 2 and uX(ε) > 0 for all ε > 1.

In an attempt to simplify Schäffer’s notion of girth and perimeter [12], the James con-
stant

J(X)= sup
{

min
{‖x+ y‖,‖x− y‖} : x, y ∈ BX

}
(2.5)

was introduced. It is easy to see that a Banach space X is uniformly nonsquare if and only
if J(X) < 2.

As we prove in Proposition 2.2, a relationship between the modulus of U-convexity
and the James constant is obtained.

Proposition 2.4. Let X be a Banach space. Then

J(X) � inf
{

max
{
ε+ 1,2

(
1−u(ε)

)}
: ε ∈ [0,1]

}
. (2.6)

In particular, if uX(1) > 0, then X is uniformly nonsquare [4, Theorem 2].

In order to extend this result (see Theorem 2.8), we need the following two lemmas.

Lemma 2.5 (Bishop-Phelps-Bollobás [1]). Let X be a Banach space, and let 0 < ε < 1.
Given z ∈ BX and h ∈ SX∗ with 1− h(z) < ε2/4, then there exist y ∈ SX and g ∈∇y such
that ‖y− z‖ < ε and ‖g −h‖ < ε.

Lemma 2.6. Let

u′X(ε)= inf
{

1− 1
2
‖x+ y‖ : x, y ∈ SX , f (x) > 1−η,

and f (x− y) � ε for some f ∈ SX∗ , η > 0
}
.

(2.7)

Then for each ε ∈ [0,2) and for each ξ > 0, there exists η > 0 such that

u′(ε) + ξ > u(ε−η)− η

2
. (2.8)

Proof. Let ξ > 0. Then there exist η > 0, x, y ∈ SX , and f ∈ SX∗ such that

1− 1
2
‖x+ y‖ < u′(ε) + ξ, f (x− y) � ε, f (x) > 1− η2

4
. (2.9)
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By the Bishop-Phelps-Bollobás theorem, there exist z ∈ SX and g ∈∇z such that

‖g − f ‖ < η, ‖z− x‖ < η. (2.10)

Hence, 1− 1/2‖x+ y‖� 1− 1/2‖z+ y‖−η/2. Furthermore,

g(z− y)= 1− g(y)= 1− (g − f )(y)− f (y) � 1−‖g − f ‖− 1 + ε > ε−η. (2.11)

Therefore, by the definition of u(·), u′(ε) + ξ > u(ε−η)−η/2. �

Now by the continuity of u(·) and the fact that u(·) � u′(·) on [0,2), we have the
following.

Corollary 2.7. u(·)= u′(·) on [0,2).

Theorem 2.8. A Banach space X is uniformly nonsquare if and only if there exists δ > 0
such that uX(2− δ) > 0.

Proof. Necessity is trivially true, since uX(ε) � δX(ε) for all ε ∈ [0,2]. We now prove
sufficiency. Since there exists δ > 0 such that uX(2− δ) > 0, we choose η > 0 so that
uX(2− η) > η. Suppose that X is not uniformly nonsquare. Then there exists sequence
{xn},{yn} ⊂ SX such that

∣∣∥∥xn + yn
∥∥− 1

∣∣ < 1
n

,
∣∣∥∥xn− yn

∥∥− 1
∣∣ < 1

n
(2.12)

for all n ∈ N. Let fn ∈ ∇xn . Then fn(yn)→ 0. Indeed, | fn(yn)| < 1/n for all n ∈ N. For
each n∈N, we put

x′n =
xn + yn∥∥xn + yn

∥∥ , y′n =
−xn + yn∥∥− xn + yn

∥∥ . (2.13)

Hence fn(x′n) > (n− 1)/(n+ 1) and fn(x′n− y′n) > 2(n− 1)/(n+ 1) for all n∈N, and ‖x′n +
y′n‖ → 2 as n→∞. Taking n sufficiently large shows uX(2− η)≤ η, which is a contradic-
tion. In fact, we choose n so large that 1− 1/2‖x′n + y′n‖� η and 4/(n+ 1) � η. �

Recall that a bounded convex subset K of a Banach space X is said to have normal
structure if for every convex subset H of K that contains more than one point, there exists
a point x0 ∈H such that

sup
{∥∥x0− y

∥∥ : y ∈H
}
< sup

{‖x− y‖ : x, y ∈H
}
. (2.14)

A Banach space X is said to have weak normal structure if every weakly compact convex
subset of X that contains more than one point has normal structure. In reflexive spaces,
both notions coincide. A Banach space X is said to have uniform normal structure if there
exists 0 < c < 1 such that for any closed bounded convex subset K of X that contains more
than one point, there exists x0 ∈ K such that

sup
{∥∥x0− y

∥∥ : y ∈ K
}
< c sup

{‖x− y‖ : x, y ∈ K
}
. (2.15)
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It was proved by Kirk that every reflexive Banach space with normal structure has the
fixed point property (see [9]).

Combining Theorem 2.8 with the “worth” property, introduced by Sims [14], we have
the following.

Corollary 2.9. If there exists δ > 0 such that uX(2− δ) > 0 and X has the worth property,
then X has normal structure.

In particular, if uX(1) > 0 and X has the worth property, then X has normal structure
[10, Corollary 8]. In the next section, we will see that this conclusion still holds regardless
of whether or not X has the worth property. Recall that a Banach space is said to have the
worth property provided that limn |‖xn − x‖− ‖xn + x‖| = 0 whenever {xn} is a weakly
null sequence in X and x ∈ X (see [14]).

3. Normal structures and the modulus of U-convexity

The Banach space ultrapower of a Banach space has proved to be useful in many branches
of mathematics. Many results can be seen more easily when treated in this setting. First
we recall some basic facts about ultrapowers. Let � be a filter on an index set I and
let {xi}i∈I be a family of points in a Hausdorff topological space X . {xi}i∈I is said to
converge to x with respect to �, denoted by lim� xi = x, if for each neighborhood U of x,
{i∈ I : xi ∈U} ∈�. A filter � on I is called an ultrafilter if it is maximal with respect to
the set inclusion. An ultrafilter is called trivial if it is of the form {A : A ⊂ I , i0 ∈ A} for
some fixed i0 ∈ I , otherwise, it is called nontrivial. We will use the fact that

(i) � is an ultrafilter if and only if for any subset A⊂ I , either A∈� or I \A∈�,
(ii) if X is compact, then the lim� xi of a family {xi} in X always exists and is unique.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I ,Xi) denote the subspace of the
product space Πi∈IXi equipped with the norm ‖(xi)‖ := supi∈I ‖xi‖ <∞.

Let � be an ultrafilter on I and let

N� =
{(
xi
)∈ l∞

(
I ,Xi

)
: lim

�

∥∥xi∥∥= 0
}
. (3.1)

The ultraproduct of {Xi} is the quotient space l∞(I ,Xi)/N� equipped with the quotient
norm. Write (xi)� to denote the elements of the ultraproduct. It follows easily from (ii)
and the definition of the quotient norm that

∥∥(xi)�

∥∥= lim
�

∥∥xi∥∥. (3.2)

In the following, we will restrict our index set I to be N, and let Xi = X , i∈N, for some
Banach space X . For an ultrafilter � on N, we write X̃ for the ultraproduct which will be
called an ultrapower of X . Note that if � is nontrivial, then X can be embedded into X̃
isometrically. For more details see [13].

The main result in this paper is the following.

Theorem 3.1. Suppose that X is super-reflexive. Then uX̃(·) = uX(·) for all ε ∈ [0,2). In
particular, if uX(ε) > 0 for some ε ∈ (0,2), then uX̃(ε)= uX(ε).
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Proof. It is easy to see that uX̃(ε) � uX(ε) for all ε∈ [0,2). It suffices to prove that uX̃(ε) �
u′X(ε) for all ε ∈ [0,2), where u′X(·) is defined in Lemma 2.6. Let x̃, ỹ ∈ SX̃ and f̃ ∈∇x̃ be

such that f̃ (x̃− ỹ) � ε. We write x̃ = (xn)� and ỹ = (yn)�, where xn, yn ∈ X for all n∈N.

By the super-reflexivity of X , we also write f̃ = ( fn)�, where fn ∈ X∗ for all n ∈N (see
[13]). Then, we have

lim
�

∥∥xn∥∥= lim
�

∥∥yn∥∥= lim
�

fn
(
xn
)= 1, lim

�
fn
(
yn
)
� 1− ε. (3.3)

Discarding some terms of the above sequences, we may assume that no xn, yn or fn is 0.
Then put x′n = xn/‖xn‖, y′n = yn/‖yn‖, and f ′n = fn/‖ fn‖. Given η > 0, we have {n ∈N :
f ′n (x′n) > 1−η} ∈� and {n∈N : 1− 1/2‖x′n + y′n‖ > u′X(ε)−η} ∈�. It follows that

1− 1
2
‖x̃+ ỹ‖ = 1− 1

2
lim

�

∥∥xn + yn
∥∥� u′X(ε)−η. (3.4)

This implies that uX̃(ε) � u′X(ε) and the proof is complete. �

Recall that a Banach space X is said to be a U-space if uX(ε) > 0 for all ε ∈ (0,2). In
order to prove that being a U-space is a super-property, that is, every Banach space finitely
representable in a U-space is a U-space, Gao and Lau used some equivalent formulations
of U-spaces proved through the properties of Asplund spaces (see [6, Theorem 3.7]). We
obtain this through a new approach, as a consequence of Theorem 3.1.

Corollary 3.2 [6, Theorem 4.3]. A Banach space X is a U-space if and only if X̃ is a
U-space.

Proposition 3.3. If uX(1) > 0, then X and X∗ have uniform normal structure.

Proof. It suffices to prove that X has weak normal structure whenever uX̃(1) > 0 or
uX̃∗(1) > 0, since uX(ε) > 0 implies that X is super-reflexive, and then uX̃(1)= uX(1) > 0.
Now suppose that X fails to have weak normal structure. Then, by the classical argument,
there exists a weakly null sequence {xn}∞n=1 such that

lim
n

∥∥x− xn
∥∥= 1 ∀x ∈ co

{
xn
}∞
n=1. (3.5)

We choose a subsequence of {xn}∞n=1, denoted again by {xn}∞n=1, such that

lim
n

∥∥xn− xn+1
∥∥= 1,

∣∣ fn+1
(
xn
)∣∣ < 1

n
,

∣∣ fn(xn+1
)∣∣ < 1

n
(3.6)

for all n∈N, where fn ∈∇xn . Put x̃ = (xn− xn+1), ỹ = (xn), and f̃ = (− fn+1). Then ‖ f̃ ‖ =
f̃ (x̃)= f̃ (x̃− ỹ)= ‖x̃‖ = ‖ ỹ‖ = 1. Furthermore,

2 � ‖x̃+ ỹ‖ = lim
�

∥∥2xn− xn+1
∥∥� lim

�
fn
(
2xn− xn+1

)= 2. (3.7)

Hence, uX̃(1)= 0.
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Next, let g̃ = ( fn). Hence

2 �
∥∥ f̃ + g̃

∥∥�
(
f̃ + g̃

)
(x̃)= lim

�

(− fn+1 + fn
)(
xn− xn+1

)= 2. (3.8)

Moreover, g̃( ỹ)= 1 and f̃ ( ỹ)= 0. This implies that

uX∗(1)= uX̃∗(1)= u(X̃)∗(1)= 0. (3.9)

The proof is finished. �

Theorem 3.4. If uX(ε) > max{0,(ε− 1)/2} for some ε ∈ (0,2), then X has uniform normal
structure. Furthermore, if uX(ε) > max{0,ε− 1} for some ε ∈ (0,2), then both X and X∗

have uniform normal structure.

Proof. Let t ∈ [0,1] and follow the proof of Proposition 3.3, but now put x̃ = (xn− xn+1),

ỹ=((1− t)xn + txn+1), and f̃ = (− fn+1). Then ‖ f̃ ‖= f̃ (x̃)=‖x̃‖ = 1 and 1/2 � max{t,1−
t}� ‖ ỹ‖� 1. Furthermore, we have

f̃ (x̃− ỹ)= lim
�

(− fn+1
)(
txn− (1 + t)xn+1

)= 1 + t,

‖x̃+ ỹ‖ = lim
�

∥∥(2− t)xn− (1− t)xn+1
∥∥� lim

�
fn
(
(2− t)xn− (1− t)xn+1

)= 2− t.

(3.10)

Hence uX̃(1 + t) � t/2 and this implies that uX(ε) � max{0,(ε− 1)/2} for all ε ∈ (0,2),
which is a contradiction.

Next, we put g̃ = (t fn+1 + (1− t) fn) and z̃ = (−xn+1). It is easy to see that f̃ (z̃) = 1,

( f̃ − g̃)(z̃)= 1 + t, and 1/2 � max{t,1− t}� ‖g̃‖� 1. Moreover, we have

∥∥ f̃ + g̃
∥∥= lim

�

∥∥− (1− t) fn+1 + (1− t) fn
∥∥

� lim
�

(− (1− t) fn+1 + (1− t) fn
)(− xn+1 + xn

)
= 2(1− t).

(3.11)

Therefore uX∗(1 + t) � t or uX∗(ε) � max{0,ε− 1} for all ε ∈ (0,2). Hence if uX∗(ε) >
max{0,ε− 1} for some ε ∈ (0,2), then X has normal structure. �

Corollary 3.5 (see [5, Theorem 8] and [11, Corollary 3]). If δX(ε) > max{(ε− 1)/2,0}
for some ε ∈ (0,2), then X has uniform normal structure.

Example 3.6. For p ∈ (1,∞), we denoted by lp,∞ the lp space with the norm

‖x‖ =max
{‖x+‖p,‖x−‖p

}
. (3.12)

It is known that lp,∞ is a super-reflexive space that fails normal structure [2]. Hence
ulp,∞(1) = 0 while ulp,∞(ε) � δlp,∞(ε) > 0 for all ε > 1. This example shows that the con-
dition in Proposition 3.3 is the best possible.
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