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The Cauchy initial value problem of the modified coupled Hirota equation is studied in the framework of Riemann-Hilbert
approach.The N-soliton solutions are given in a compact form as a ratio of (�푁+ 1) × (�푁+1) determinant and�푁×�푁 determinant,
and the dynamical behaviors of the single-soliton solution are displayed graphically.

1. Introduction

TheHirota equation�푖�푢�푡 + 12�푢�푥�푥 + |�푢|2 �푢 − �푖�훼�푢�푥�푥�푥 − 6�푖�훼 |�푢|2 �푢�푥 = 0 (1)

is an important integrable model [1], where �훼 is a real
parameter. This equation was initially proposed by Hirota
[1] as a model for describing the ultrashort pulses sufferred
from higher-order dispersion and self-steepening effect [2].
This Hirota equation is an integrable generalization of the
well-known nonlinear Schrödinger equation (NLSE). Subse-
quently, the multisolitons, breathers, rogue waves, and high-
order rogue waves for the Hirota equation (1) were studied
bymany researchers via generalized Darboux transformation
method and other methods [2–6]. For the integrability and
other types of solutions of the Hirota model (1), we refer to
[7–9].

The aim of this paper is to study the modified coupled
Hirota equation in the following form [10]:�푖�푢�푡 + 12�푢�푥�푥 + (|�푢|2 + |V|2) �푢+ �푖�휖 [�푢�푥�푥�푥 + (6 |�푢|2 + 3 |V|2) �푢�푥 + 3�푢V∗V�푥] = 0,�푖V�푡 + 12V�푥�푥 + (|�푢|2 + |V|2) V+ �푖�휖 [V�푥�푥�푥 + (6 |V|2 + 3 |�푢|2) V�푥 + 3V�푢∗�푢�푥] = 0,

(2)

where �푢 = �푢(�푥, �푡), V = V(�푥, �푡) represent complex field
envelope, �휖 is a small dimensionless real parameter, and
“∗” denotes complex conjugation. The coupled higher-order
Hirota equationswere firstly studied in [11], where the authors
used them to describe electronmagnetic pulse propogation
in coupled optical waveguides and obtained soliton solutions
by the inverse scattering approach. For dark soliton solutions
and composite rogue waves for the coupled Hirota equation,
we refer to [10, 12–14]. In the present paper, we shall seek
the solutions �푢(�푥, �푡), V(�푥, �푡) at any later time �푡 for prescribed
initial conditions �푢(�푥, 0), V(�푥, 0). That is, we shall solve an
Cauchy problem for the modified coupled Hirota equation
(2); actually we are going to construct the multisoliton
solutions for this system with the aid of the Riemann-Hilbert
approach [15–20]. We mention that there exist many other
efficient methods to investigate the exact solition solutions
for the nonlinear evolution equations; for instance, the first
integral method is used to study the exact 1-soliton solutions
for a variety of Boussinesq-like equations [21], the �퐺�耠/�퐺−
expansion approach is utilized to investigate the dispersive
dark optical soliton for the Schrödinger-Hirota equation
[22], the extended trial equation method is used to study
the dispersive optical solitons for the Schrödinger-Hirota
equation [23], and the Bäcklund transformation method is
adopted to study the optical solitons for the Schrödinger-
Hirota equation with power law nonlinearity [24].

The structure of this paper is arranged as follows. In
Section 2, we start with the spectral analysis of the Lax pair of
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(2) and then we shall formulate the corresponding Riemann-
Hilbert problem for this equations. In Section 3, we shall
solve the Riemann-Hilbert problem and discuss the spatial
and temporal evolutions of scattering data. In Section 4, N-
soliton solutions of (2) will be constructed. In Section 5, we
graphically show the behavior of single-soliton solutions for
(2).

2. Riemann-Hilbert Formulation

In this section, we shall study the direct scattering problems
for (2) and establish the corresponding Riemann-Hilbert
problem.

2.1. Direct Scattering Process. The modified coupled Hirota
equation (2) is Lax integrable with the linear spectral problem�푌�푥 = �푈�푌 = ( �푖12�휖�휆�휎 + �̃푈)�푌, (3)�푌�푡 = �푉�푌 = ( �푖192�휖2 �푖 (�휆3 + 2�휆2) �휎 + �̃푉)�푌, (4)

where �휆 is a spectral parameter and �푌(�푥, �푡, �휆) is a matrix
function. The matrices �휎, �̃푈, �̃푉 are defined as follows:

�휎 = (−2 0 00 1 00 0 1) ,
�̃푈 = ( 0 −�푢 −V�푢∗ 0 0

V∗ 0 0 ) ,�푉 = 116�휖�휆2�̃푈 + �휆�푉1 + �푉2,
(5)

with

�푉1 = 14 ( �푖�푒 − �푢2�휖 − �푖�푢�푥 − V2�휖 − �푖V�푥�푢∗2�휖 − �푖�푢∗�푥 −�푖 |�푢|2 −�푖V�푢∗
V∗2�휖 − �푖V∗�푥 −�푖�푢V∗ −�푖 |V|2 ),

�푉2
=(�휖 (�푒1 + �푒2) + �푖2�푒 �휖�푒3 − �푖2�푢�푥 �휖�푒4 − �푖2V�푥−�휖�푒∗3 − �푖2�푢∗�푥 −�휖�푒1 − �푖2 |�푢|2 �휖�푒5 − �푖2V�푢∗−�휖�푒∗4 − �푖2V∗�푥 −�휖�푒∗5 − �푖2�푢V∗ −�휖�푒2 − �푖2 |V|2),

(6)

in which �푒 = |�푢|2 + |V|2 ,�푒1 = �푢�푢∗�푥 − �푢∗�푢�푥,�푒2 = VV∗�푥 − V∗V�푥,

�푒3 = �푢�푥�푥 + 2�푒�푢,�푒4 = V�푥�푥 + 2�푒V,�푒5 = �푢∗V�푥 − V�푢∗�푥 .
(7)

Moreover, we mention that a nonlocal two-wave interaction
system associated with an easier 3×3matrix spectral problem
is investigated with the aid of the Riemann-Hilbert approach
by [25].

Let us study (2) for the localized solutions; we simply
suppose that the potentials u and v decay to zero sufficiently
fast as �푥 �㨀→ ±∞, and �휖 is taken to be positive without loss of
generality. It is convenient for us to introduce a new matrix
spectral function �퐽 (�푥, �푡, �휆) = �푌 (�푥, �푡, �휆) �퐸−11 , (8)

where �퐸1 = �푒(�푖/12�휖)�휆�휎�푥+(�푖/192�휖2)(�휆3+2�휆2)�휎�푡 (9)�퐸1 is a solution of the above spectral equations (3) and (4) at�푥 �㨀→ ±∞. Hence, (3) and (4) can be rewritten as�퐽�푥 = �푖�휆12�휖 [�휎, �퐽] + �̃푈�퐽, (10)�퐽�푡 = �푖192�휖2 (�휆3 + 2�휆2) [�휎, �퐽] + �̃푉�퐽, (11)

where [�휎, �퐽] = �휎�퐽 − �퐽�휎. We point out that the matrix �푄
possesses the symmetry condition, i.e.,�̃푈† = −�̃푈, (12)

where the superscript † denotes the Hermitian of a matrix.
In the scattering process, the Jost solutions �퐽±(�푥, �휆) of (10)

fulfill the following asymptotic condition:�퐽+ (�푥, �휆) �㨀→ I, �푥 �㨀→ +∞,�퐽− (�푥, �휆) �㨀→ I, �푥 �㨀→ −∞, (13)

where I denotes the 3 × 3 unit matrix and the subscripts in �퐽±
represent to which end of the x axis the boundary conditions
are set. With the aid of an identity from the matrix calculus,
i.e., (det �퐽)�푥 = det �퐽 ⋅ tr (�퐽�푥�퐽−1) , (14)

where det(�퐽) denotes the determinant of matrix �퐽 and tr(⋅)
represents the trace of a matrix, combined with the fact that
tr(�푄) = 0, it follows that

det �퐽± = 1 (15)

for all (�푥, �휆). Besides, it is easy to check that the matrix Jost
solutions �퐽± solve the following Volterra integral equations:�퐽+ (�푥, �휆)= �퐼− ∫+∞

�푥
�푒(�푖/12�휖)�휆�휎(�푥−�휁)�̃푈�퐽+ (�휁, �휆) �푒(−�푖/12�휖)�휆�휎(�푥−�휁)�푑�휁,
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−∞
�푒(�푖/12�휖)�휆�휎(�푥−�휁)�̃푈�퐽− (�휁, �휆) �푒(−�푖/12�휖)�휆�휎(�푥−�휁)�푑�휁.

(16)

Hence �퐽±(�푥, �휆) admit analytical continuations if the above
Volterra integrals converge. Let us split �퐽± into column
vectors, i.e., �퐽± = ([�퐽±]1, [�퐽±]2, [�퐽±]3), and then the column
vectors [�퐽−]1, [�퐽+]2, [�퐽+]3 can be analytically continued to
the upper half plane �휆 ∈ C+, while the column vectors[�퐽+]1, [�퐽−]2, [�퐽−]3 can be analytically continued to the lower
half plane �휆 ∈ C−.

Denoting �퐸 = �푒(�푖/12�휖)�휆�휎�푥, it is easy to show that both�퐽+�퐸 and �퐽−�퐸 are fundamental matrix solutions of the spectral
problem (3), which indicates that theymust be linearly related
by a matrix �푆(�휆)− the so-called scattering matrix. That is,�퐽−�퐸 = �퐽+�퐸�푆 (�휆) , �휆 ∈ R, (17)

with �푆(�휆) = (�푠�푖�푗(�휆))3×3. In view of (15) and (17), clearly one
obtains

det �푆 (�휆) = 1. (18)

From (17), one can easily deduce�푆 (�휆) = �퐸−1�퐽−1+ �퐽−�퐸, �휆 ∈ R, (19)

which implies that one has to study the analytic properties of�퐽−1+ before deriving the analytic property about the entries of�푆(�휆). Let us begin with the adjoint spectral equation of (10):�퐾�푥 = �푖12�휖�휆 [�휎, �퐾] − �퐾�̃푈 (20)

One can simply find that �퐽−1± satisfy the above equation (20),
where �퐽−1± is partitioned into rows in the following form:

�퐽−1+ = ([�퐽−1+ ]1[�퐽−1+ ]2[�퐽−1+ ]3),
�퐽−1− = ([�퐽−1− ]1[�퐽−1− ]2[�퐽−1− ]3).

(21)

By similar discussions, we know that the row vectors[�퐽−1+ ]1, [�퐽−1− ]2, [�퐽−1− ]3 are analytic in �휆 ∈ C+, while other row
vectors [�퐽−1− ]1, [�퐽−1+ ]2, [�퐽−1+ ]3 are analytic for �휆 ∈ C−. Thanks
to the analytic property of �퐽−1+ and �퐽−, it follows that �푠11
admits analytic continuation to C+, and �푠22, �푠33, �푠23, �푠32 can
be analytically continued toC−, while �푠13, �푠31, �푠12, �푠21 are only
defined for�휆 ∈ R. Similarly we have that �푟11 admits analytic
continuation to C−, and �푟22, �푟33, �푟23, �푟32 can be analytically
continued to C+, while �푟13, �푟31, �푟12, �푟21 are only defined for�휆 ∈ R.

2.2. Riemann-Hilbert Problem. Next, we shall construct the
Riemann-Hilbert problem. To this end, we introduce the
following matrix function:�푃+ = �퐽−�퐻1 + �퐽+�퐻2 + �퐽+�퐻3= �퐽+ (�퐸�푆 (�휆) �퐸−1�퐻1 + �퐻2 + �퐻3)= �퐽+�퐸 (�푆 (�휆)�퐻1 + �퐻2 + �퐻3) �퐸−1

= �퐽+�퐸(�푠11 0 0�푠21 1 0�푠31 0 1)�퐸−1
(22)

where �퐻1 = diag (1, 0, 0) ,�퐻2 = diag (0, 1, 0) ,�퐻3 = diag (0, 0, 1) . (23)

Therefore det(�푃+) = �푠11. Moreover, in view of (16), it is
easy to verify that the large-�휆 asymptotics of these analytical
functions are �푃+ (�푥, �휆) �㨀→ �퐼, �휆 ∈ C+ �㨀→ ∞. (24)

From the analytic property of �퐽±, we get that �푃+ is analytic in�휆 ∈ C+. To obtain the analytic counterpart of �푃+ in C−, we
begin with the inverse matrix of �푆(�휆), that is,�푅 (�휆) = �푆−1 (�휆) = �퐸−1�퐽−1− �퐽+�퐸, (25)

where �푅(�휆) = (�푟�푖�푗)3×3.Thenwe shall investigate the following
matrix function:

�푃− = ([�퐽−1− ]1[�퐽−1+ ]2[�퐽−1+ ]3) = �퐻1 [�퐽−1− ] + �퐻2 [�퐽−1+ ] + �퐻3 [�퐽−1+ ]= (�퐻1�퐸�푅 (�휆) �퐸−1 + �퐻2 + �퐻3) �퐽−1+
= �퐸(�푟11 �푟12 �푟130 1 00 0 1 )�퐸−1�퐽−1+ ,

(26)

which is analytic for �휆 ∈ C−. Similarly, one has the following
asymptotics property:�푃− (�푥, �휆) �㨀→ ∞, �휆 ∈ C− �㨀→ ∞. (27)

By now, we have obtained two analytic matrix functions�푃+ and �푃−, which are analytic in C+ and C−, respectively. On
the axes, they are related by�푃− (�푥, �휆) �푃+ (�푥, �휆) = �퐺 (�푥, �휆) , �휆 ∈ R, (28)
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where�퐺 (�푥, �휆) = �퐸 (�퐻1�푅 (�휆) + �퐻2 + �퐻3)⋅ �퐸−1�퐽−1+ �퐽+�퐸 (�푆 (�휆)�퐻1 + �퐻2 + �퐻3) �퐸−1
= �퐸(�푟11�푠11 + �푟12�푠21 + �푟13�푠31 �푟12 �푟13�푠21 1 0�푠31 0 1 )�퐸−1
= ( 1 �푟12�푒−(�푖/4�휖)�휆�푥 �푟13�푒−(�푖/4�휖)�휆�푥�푠21�푒(�푖/4�휖)�휆�푥 1 0�푠31�푒(�푖/4�휖)�휆�푥 0 1 ) ,

(29)

where �푟11�푠11 + �푟12�푠21 + �푟13�푠31 = 1 is followed by the fact
that �푅(�휆)�푆(�휆) = I. Equation (28) is just the matrix Riemann-
Hilbert problem we needed, and the associated canonical
condition is as follows:�푃± (�푥, �휆) �㨀→ �퐼, �휆 �㨀→ ∞. (30)

2.3. Symmetric Properties. In the remaining subsection, we
shall investigate the symmetric properties which will be used
later. To this end, we firstly take the Hermitian transpose of
the spectral equation (10), that is,(�퐽†± (�푥, �휆∗))�푥 = − �푖�휆12�휖 (�퐽†± (�푥, �휆∗) �휎 − �휎�퐽†± (�푥, �휆∗))+ �퐽†± (�푥, �휆∗) �̃푈†= �푖�휆12�휖 [�휎, �퐽†± (�푥, �휆∗)] − �퐽†± (�푥, �휆∗) �̃푈,

(31)

where the symmetric condition �̃푈† = −�̃푈 is used. It is easy to
verify from (31) that �퐽†±(�푥, �휆∗)) also fulfills the adjoint spectral
equation (20). As discussed above, we know that �퐽−1± (�푥, �휆)
solves (20) and the boundary conditons (30); thus we have�퐽†± (�푥, �휆∗) = �퐽−1± (�푥, �휆) . (32)

Moreover, in view of (22), (26), and (32), one gets

(�푃+)† (�푥, �휆∗) = �퐸(�푠∗11 �푠∗21 �푠∗310 1 00 0 1 )�퐸−1�퐽†+ (�푥, �휆∗)
= �퐸(�푠∗11 �푠∗21 �푠∗310 1 00 0 1 )�퐸−1�퐽−1+ (�푥, �휆) .

(33)

On the other hand, one simply finds�푆† (�휆∗) = �퐸−1�퐽†− (�퐽−1+ )† �퐸 = �퐸−1�퐽−1− �퐽+�퐸 = �푅 (�휆) . (34)

Using (33) and (34), one has the following symmetric prop-
erty:

(�푃+)† (�푥, �휆∗) = �퐸(�푠∗11 �푠∗21 �푠∗310 1 00 0 1 )�퐸−1�퐽−1+ (�푥, �휆)
= �퐸(�푟11 �푟12 �푟130 1 00 0 1 )�퐸−1�퐽−1+ (�푥, �휆)= �푃− (�푥, �휆) .

(35)

Next, we are going to investigate the property of �푠11 , which
matters a lot in later analysis. From (34), one has the following
relations: �푠∗11 (�휆∗) = �푟11 (�휆) ,�푠∗�푗�푗 (�휆∗) = �푟�푗�푗 (�휆) , �푗 = 2, 3�푠∗�푘�푙 (�휆∗) = �푟�푙�푘 (�휆) , �푘, �푙 = 1, 2, 3, �푘 ̸= �푙. (36)

By (36), we know that if �휆1 ∈ C+ is a zero of �푠11, then �휆∗1 ∈ C−
is also a zero of �푟11.
3. Solutions to Riemann-Hilbert Problem

In this section, we shall solve the Riemann-Hilbert problem
(28) in both regular and nonreguluar case. Before this, from
(15) and (22), we simply see that

det�푃+ (�휆) = �푠11 (�휆) , (37)

and, similarly, we also have

det�푃− (�휆) = �푟11 (�휆) . (38)

Now we firstly consider the regular Riemann-Hilbert
problem (28), i.e., det�푃+ = �푠11 ̸= 0 and det�푃− = �푟11 ̸= 0
in their analytic domain. Equation (28) can be rewritten as(�푃+)−1 (�휆) − �푃− (�휆) = �퐺 (�휆) (�푃+)−1 (�휆) , �휆 ∈ R, (39)

where�퐺 = �퐼−�퐺.By Plemelj’s formula [26], we simply get that
the solution to the regular Riemann-Hilbert problem (28)
under condition (30) takes the following form:(�푃+)−1 (�휆) = �퐼 + 12�휋�푖 ∫+∞−∞ �퐺 (�휉) (�푃+)−1 (�휉)�휉 − �휆 �푑�휉,�휆 ∈ C+. (40)

Next, we turn to investigate the nonregular Riemann-
Hilbert problem (28); that is, det�푃+(�휆) = �푠11(�휆) and
det�푃−(�휆) = �푟11(�휆) possess simple zeros. From the discussion
in the last section, we can assume that {�휆�푘 ∈ C+, 1 ≤ �푘 ≤ �푁}
are simple zeros of �푠11(�휆); thenwe can simply denote the zeros
of �푟11(�휆) by {�휆∗�푘 ∈ C−, 1 ≤ �푘 ≤ �푁}. Under this circumstance,
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since all the zeros are simple ones, then the kernal of �푃+(�휆�푘)
is one-dimensional and can be spanned by a single column
vector V�푘; therefore one has�푃+ (�휆�푘) V�푘 = 0, 1 ≤ �푘 ≤ �푁, (41)

By taking the Hermitian conjugate to (41), one simply
deduces that

V†�푘�푃†+ (�휆�푘) = 0, 1 ≤ �푘 ≤ �푁. (42)

Taking account of (35), one arrives at

V†�푘�푃− (�휆∗�푘) = 0, 1 ≤ �푘 ≤ �푁. (43)

For simplicity, we denote

V̂�푘 fl V†�푘, 1 ≤ �푘 ≤ �푁. (44)

Moreover, we can derive the explicit expressions for V�푘. To
this end, let us start from the fact that �퐽+ satisfies the spectral
equation (10), that is,�퐽+,�푥 = �푖�휆12�휖 [�휎, �퐽+] + �̃푈�퐽+. (45)

By taking the x-derivative to (22), one simply has

�푃+,�푥 = �퐽+,�푥�퐸(�푠11 0 0�푠21 1 0�푠31 0 1)�퐸−1
+ �퐽+ ( �푖�휆12�휖) �휎�퐸(�푠11 0 0�푠21 1 0�푠31 0 1)�퐸−1
+ �퐽+�퐸(�푠11 0 0�푠21 1 0�푠31 0 1)�퐸−1 (− �푖�휆12�휖)�휎,

(46)

and, inserting (45) into (46), we have�푃+,�푥 = �푖�휆12�휖 [�휎, �푃+] + �̃푈�푃+. (47)

Taking the x-derivative to (41), in view of (47), one has�푃+ (�휆�푘) (V�푘,�푥 − �푖�휆�푘12�휖�휎V�푘) = 0. (48)

By similar procedure, we have

�푃+ (�휆�푘)(V�푘,�푡 − �푖 (�휆3�푘 + 2�휆2�푘)192�휖2 �휎V�푘) = 0. (49)

Taking account of (48) and (49), it is easy to obtain that

V�푘 = �푒(�푖�휆𝑘/12�휖)�휎�푥+(�푖(�휆3𝑘+2�휆2𝑘)/192�휖2)�휎�푡V�푘0, 1 ≤ �푘 ≤ �푁. (50)

where V�푘0 is a constant vector. By (44), we conclude that

V̂�푘 = V†�푘0�푒−(�푖�휆∗𝑘/12�휖)�휎�푥−�푖(�휆∗3𝑘 +2�휆∗2𝑘 )�휎�푡/192�휖2 , 1 ≤ �푘 ≤ �푁. (51)

In the remaining subsection, we shall construct a matrix
function Υ(�푥, �푡; �휆) which could cancel all the zeros of �푃±.
Firstly, we define a matrix functionΥ1 (�휆) = �퐼 + �휆∗1 − �휆1�휆 − �휆∗1 V1V̂1V̂1V1

. (52)

It turns out that Υ1(�휆) only admits a simple pole singularity
at �휆 = �휆∗1 ∈ C−.Moreover, it can be shown easily thatΥ−11 (�휆) = �퐼 − �휆∗1 − �휆1�휆 − �휆1 V1V̂1V̂1V1

,Υ1 (�휆1) V1 = 0,
V̂1Υ−11 (�휆∗1) = 0, (53)

and

detΥ1 (�휆) = �휆 − �휆1�휆 − �휆∗1 ,
det (�푃+ (�휆) Υ−11 (�휆))�儨�儨�儨�儨�儨�휆=�휆1 ̸= 0,
det (Υ (�휆) �푃− (�휆))�儨�儨�儨�儨�휆=�휆∗1 ̸= 0.

(54)

Hence, we can construct the following two matrix functions:Υ (�휆) = Υ�푁 (�휆) Υ�푁−1 (�휆) ⋅ ⋅ ⋅ Υ1 (�휆) ,Υ−1 (�휆) = Υ−11 (�휆) Υ−12 (�휆) ⋅ ⋅ ⋅ Υ−1�푁 (�휆) , (55)

in which Υ�푗 (�휆) = �퐼 + �휆∗�푗 − �휆�푗�휆 − �휆∗�푗 �푤�푗�푤�푗�푤�푗�푤�푗 ,Υ−1�푗 (�휆) = �퐼 − �휆∗�푗 − �휆�푗�휆 − �휆�푗 �푤�푗�푤�푗�푤�푗�푤�푗 ,�푗 = 2, . . . , �푁,
(56)

with�푤�푗 = Υ�푗−1 (�휆�푗) Υ�푗−2 (�휆�푗) ⋅ ⋅ ⋅ Υ1 (�휆�푗) V�푗,�푤�푗 = Υ−11 (�휆∗�푗)Υ−12 (�휆∗�푗) ⋅ ⋅ ⋅ Υ−1�푗−1 (�휆∗�푗) V̂�푗,�푗 = 2, . . . , �푁. (57)

From the above discussions, we could define�푃+ (�휆) = �푃+ (�휆) Υ−1 (�휆) ,�푃− (�휆) = Υ (�휆) �푃− (�휆) (58)

It follows easily that the functions �푃± are analytic in C±,
respectively; moreover, det�푃± are nonzero in their corre-
sponding analytic zones and �푃±(�휆) �㨀→ �퐼 as �휆 �㨀→ ∞.
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Therefore, the nonregular Riemann-Hilbert problem (28)
turns into regular one�푃− (�휆) �푃+ (�휆) = Υ (�휆)�퐺 (�휆)Υ−1 (�휆) , �휆 ∈ R, (59)

and the normalization condition�푃± (�휆) �㨀→ �퐼, �휆 �㨀→ ∞. (60)

4. The Inverse Problem

In this section, with the aid of large-�휆 expansion of the
solutions to the Riemann-Hilbert problem (28), we shall
reconstruct the potentials �푢 and V. To this end, we firstly
investigate the following asymptotic expansion:�푃+ = �푃+,0 + 1�휆�푃+,1 + 1�휆2�푃+,2 + �푂( 1�휆3) . (61)

Inserting (61) into (10) and comparing the coefficients of the
powers of �휆, we find �푖 [�휎, �푃+,0] = 0,�푖 [�휎, �푃+,1] + �̃푈�푃+,0 = 0, (62)

from which we can deduce�푃+,0 = �퐼,�̃푈 = − �푖12�휖 [�휎, �푃+,1] . (63)

Therefore, we have �푢 = − �푖4�휖 (�푃+,1)12 ,
V = − �푖4�휖 (�푃+,1)13 , (64)

where (�푃+,1)�푖�푗 denotes the (i,j)-th entry of the matrix �푃+,1.
To present concise expressions for �푢 and V, we need to

find �푃+,1. To do this, we begin to simplify the expressions ofΥ(�휆) and Υ−1(�휆). Since Υ(�휆) has simple pole singularities at�휆∗�푗 ∈ C−, �푗 = 1, 2, . . . , �푁, one can simply set

Υ (�휆) = �퐼 + �푁∑
�푗=1

�푧�푗V̂�푗�휆 − �휆∗�푗 ,Υ−1 (�휆) = �퐼 − �푁∑
�푗=1

V�푗�̂푧�푗�휆 − �휆�푗 , (65)

where �푧�푗, �̂푧�푗 are columnvector and row vector related to V�푗 , V̂�푗.
In view of Υ(�휆)Υ−1(�휆) = �퐼, one has

Res�휆=�휆𝑗Υ (�휆)Υ−1 (�휆) = Υ (�휆�푗) V�푗 = 0, 1 ≤ �푗 ≤ �푁. (66)

Inserting (65) into (66), one simply gets(�푧1, �푧2, . . . , �푧�푁)�푀 = (V1, V2, . . . , V�푁) , (67)

where �푀 = (�푀�푖�푗)�푁×�푁 = ( V̂�푖V�푗�휆∗�푖 − �휆�푗)�푁×�푁 . (68)

By solving the linear equations (67), Υ(�휆) and Υ−1(�휆) can be
rewritten as Υ (�휆) = �퐼 + �푁∑

�푖,�푗=1

V�푖V̂�푗 (�푀−1)�푖�푗�휆 − �휆∗�푗 ,
Υ−1 (�휆) = �퐼 − �푁∑

�푖,�푗=1

V�푖V̂�푗 (�푀−1)�푖�푗�휆 − �휆�푗 . (69)

Now we are in a position to reconstruct the potentials.
By Plemelj’s formula [26], the nonregular Riemann-Hilbert
problem (59) can be solved as follows:(�푃+)−1 (�휆)= �퐼 + 12�휋�푖 ∫+∞−∞ Υ (�휁)�퐺 (�휁) Υ−1 (�휁) (�푃+)−1 (�휁)�휁 − �휆 �푑�휁, (70)

where �퐺 = �퐼 − �퐺. As �휆 �㨀→ ∞, one has(�푃+)−1 (�휆)�㨀→ �퐼− 12�휋�푖�휆 ∫+∞−∞ Υ (�휁) �퐺 (�휁) Υ−1 (�휁) (�푃+)−1 (�휁) �푑�휁, (71)

hence�푃+ (�휆)�㨀→ �퐼+ 12�휋�푖�휆 ∫+∞−∞ Υ (�휁)�퐺 (�휁) Υ−1 (�휁) (�푃+)−1 (�휁) �푑�휁. (72)

It follows from (69) thatΥ (�휆) �㨀→ �퐼 + 1�휆 �푁∑�푖,�푗=1V�푖V̂�푗 (�푀−1)�푖�푗 , �휆 �㨀→ ∞. (73)

In view of (58), (72), and (73), one finds�푃+,1 (�푥, �푡)= �푁∑
�푖,�푗=1

V�푖V̂�푗 (�푀−1)�푖�푗
+ 12�휋�푖 ∫+∞−∞ Υ (�휁)�퐺 (�휁) Υ−1 (�휁) (�푃+)−1 (�휁) �푑�휁,

(74)

where�퐺 (�푥, �푡; �휆) = �퐼 − �퐺
= −�퐸( 0 �푟12 (�푡, �휆) �푟13 (�푡, �휆)�푠21 (�푡, �휆) 0 0�푠31 (�푡, �휆) 0 0 )�퐸−1. (75)
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At the end of the section, we shall establish the temporal
evolution of scattering data �푠21, �푠31, �푟12, �푟13. Let us firstly
study the evolution of �푠21(�휆), �푠31(�휆), since �퐽(�푥, �휆) fulfills (11),
i.e., �퐽−,�푡 = �푖192�휖2 (�휆3 + 2�휆2) [�휎, �퐽−] + �̃푈�퐽−, (76)

and then we have(�퐽−�퐸)�푡 = �푖192�휖2 (�휆3 + 2�휆2) [�휎, �퐽−�퐸] + �̃푈�퐽−�퐸 (77)

In view of (17), one simply has�퐽−�퐸 = �퐽+�퐸�푆 (78)

Then by (77) and (78), we have(�퐽+�퐸�푆)�푡 = �푖192�휖2 (�휆3 + 2�휆2) [�휎, �퐽+�퐸�푆] + �̃푈�퐽+�퐸�푆. (79)

Since the potentials �푢 and V decay to zero sufficiently fast as�푥 �㨀→ ∞, then we know that �̃푈 tends to zero matrix as �푥 �㨀→∞. Thus by taking the limit �푥 �㨀→ ∞ to (79), one has�푆�푡 = �푖192�휖2 (�휆3 + 2�휆2) [�휎, �푆] . (80)

From (80) we have�푠21 (�푡; �휆) = �푠21 (0; �휆) exp ( �푖64�휖2 (�휆3 + 2�휆2) �푡) ,�푠31 (�푡; �휆) = �푠31 (0; �휆) exp ( �푖64�휖2 (�휆3 + 2�휆2) �푡) . (81)

Similarly, one can derive�푟12 (�푡; �휆) = �푟12 (0; �휆) exp ( −�푖64�휖2 (�휆3 + 2�휆2) �푡) ,�푟13 (�푡; �휆) = �푟13 (0; �휆) exp ( −�푖64�휖2 (�휆3 + 2�휆2) �푡) . (82)

Notice that the initial data �푟12(0, �휆), �푟13(0, �휆) and �푠21(0, �휆),�푠31(0, �휆) are determined by the initial values �푢(0, �푥), V(0, �푥).
5. Soliton Solutions

In this section, we shall construct a explicit formula of the N-
soliton solutions for the modified coupled Hirota equation.
As is known to all, the soliton solutions correspond to the
vanishing scattering coefficients, i.e., �푠21 = �푠31 = �푟12 = �푟13 =0. In this case, �퐺 = 0, thus�푃+,1 = �푁∑

�푖,�푗=1

V�푖V̂�푗 (�푀−1)�푖�푗 . (83)

Taking account of (64), one has�푢 = − �푖4�휖 �푁∑�푖,�푗=1 (V�푖V̂�푗)12 (�푀−1)�푖�푗 ,
V = − �푖4�휖 �푁∑�푖,�푗=1 (V�푖V̂�푗)13 (�푀−1)�푖�푗 .

(84)

Denote V�푘0 = (�훼�푘, �훽�푘, �훾�푘)�푇, �휃�푘 = (�푖�휆�푘/12�휖)�푥 + (�푖/192�휖2)(�휆3�푘 +2�휆2�푘)�푡, then we have

V�푘 = (�훼�푘�푒−2�휃𝑘 , �훽�푘�푒�휃𝑘 , �훾�푘�푒�휃𝑘)�푇 , (85)

and, therefore, we have�푢 = − �푖4�휖 �푁∑�푖,�푗=1�훼�푖�훽∗�푗 �푒−2�휃𝑖+�휃∗𝑗 (�푀−1)�푖�푗 ,
V = − �푖4�휖 �푁∑�푖,�푗=1�훼�푖�훾∗�푗 �푒−2�휃𝑖+�휃∗𝑗 (�푀−1)�푖�푗 .

(86)

5.1. Single-Soliton Solutions. When�푁 = 1, the single-soliton
solutions for the modified coupled Hirota equations (2) take
the following form:

�푢 = −�휆1�퐼�훼1�훽∗12�휖
⋅ exp (−�휆1�퐼�푥/4�휖 + ((�휆21�퐼 − 3�휆21�푅 − 4�휆1�푅) /64�휖2) �휆1�퐼�푡) exp (−�푖�휆1�푅�푥/4�휖 − �푖�푡 [�휆31�푅 − 3�휆1�푅�휆21�퐼 + 2�휆21�푅 − 2�휆21�퐼] /64�휖2)�儨�儨�儨�儨�훼1�儨�儨�儨�儨2 + (�儨�儨�儨�儨�훽1�儨�儨�儨�儨2 + �儨�儨�儨�儨�훾1�儨�儨�儨�儨2) exp (−�휆1�퐼�푥/2�휖 − ((3�휆21�푅 − �휆21�퐼 + 4�휆1�푅) /32�휖2) �휆1�퐼�푡)

V = −�휆1�퐼�훼1�훾∗12�휖
⋅ exp (−�휆1�퐼�푥/4�휖 + ((�휆21�퐼 − 3�휆21�푅 − 4�휆1�푅) /64�휖2) �휆1�퐼�푡) exp (−�푖�휆1�푅�푥/4�휖 − �푖�푡 [�휆31�푅 − 3�휆1�푅�휆21�퐼 + 2�휆21�푅 − 2�휆21�퐼] /64�휖2)�儨�儨�儨�儨�훼1�儨�儨�儨�儨2 + (�儨�儨�儨�儨�훽1�儨�儨�儨�儨2 + �儨�儨�儨�儨�훾1�儨�儨�儨�儨2) exp (−�휆1�퐼�푥/2�휖 − ((3�휆21�푅 − �휆21�퐼 + 4�휆1�푅) /32�휖2) �휆1�퐼�푡)

(87)
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with �휆1 = �휆1�푅 + �푖�휆1�퐼, (�휆1�퐼) > 0. Denote�푥0 = 4�휖�휆1�퐼 ln �儨�儨�儨�儨�훼1�儨�儨�儨�儨√�儨�儨�儨�儨�훽1�儨�儨�儨�儨2 + �儨�儨�儨�儨�훾1�儨�儨�儨�儨2 ,�휎0 = �휆1�푅96�휖2 (�휆21�푅 − 3�휆21�퐼) , (88)

and then the above single-soliton solutions can be rewritten
as follows:�푢 (�푥, �푡)= −�휆1�퐼4�휖 �훼1�훽1�儨�儨�儨�儨�훼1�儨�儨�儨�儨 √�儨�儨�儨�儨�훽1�儨�儨�儨�儨2 + �儨�儨�儨�儨�훾1�儨�儨�儨�儨2⋅ sech [−�휆1�퐼4�휖 (�푥 + 3�휆21�푅 + 4�휆1�푅 − �휆21�퐼16�휖 �푡 + �푥0)]

⋅ exp{−�푖�휆1�푅6�휖 �푥 − �푖 (�휆21�푅 − �휆21�퐼) �푡48�휖2 − �푖�휎0} ,
V (�푥, �푡)= −�휆1�퐼4�휖 �훼1�훾1�儨�儨�儨�儨�훼1�儨�儨�儨�儨 √�儨�儨�儨�儨�훽1�儨�儨�儨�儨2 + �儨�儨�儨�儨�훾1�儨�儨�儨�儨2⋅ sech [−�휆1�퐼4�휖 (�푥 + 3�휆21�푅 + 4�휆1�푅 − �휆21�퐼16�휖 �푡 + �푥0)]

⋅ exp{−�푖�휆1�푅6�휖 �푥 − �푖 (�휆21�푅 − �휆21�퐼) �푡48�휖2 − �푖�휎0} .

(89)

The amplitude functions |�푢| and |V| both admit the shape of
a hyperbolic secant with peak amplitude �휆1�퐼/4|�휖|, and their
velocities are −(3�휆21�푅 + 4�휆1�푅 − �휆21�퐼)/16�휖. The phases of the
single-soliton solutions �푢(�푥, �푡) and V(�푥, �푡) depend linearly on
both space �푥 and time �푡, and parameters �푥0 and �휎0 are the
initial location and phase of the solitary waves.

Setting �훼1 = �훽1 = �푖, �훾1 = −�푖, �휆1�푅 = �휆1�퐼 = 1, �휖 = 1/12, we
plot the graphics of single-soliton solutions for the modified
coupled Hirota equations (2) in Figures 1 and 2.

When the data are chosen as before, as displayed in
Figures 1 and 2, both the peak amplitudes of |�푢| and |V| are3√2/2, the velocities are equal to−4.5, and the initial location
and phase are determined, respectively, by �푥0 = − ln 2/6 and�휎0 = −3. Moreover, the solitary waves propagate from the left
to the right.

5.2. N-Soliton Solutions. When �푁 ≥ 2, the N-soliton
solutions for the modified coupled Hirota equations (2) can
be rewritten as �푢 = �푖4�휖 det�퐹1det�푀,

V = �푖4�휖 det�퐹2det�푀, (90)
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Figure 1: The modula of single-soliton, solution �푢 in 3D plot.
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Figure 2: The modula of single-soliton, solution V in 3D plot.

where the two (�푁 + 1) × (�푁 + 1) matrices �퐹1, �퐹2 are defined
as follows:

�퐹1 =((((
(

0 �훽∗1 �푒�휃∗1 �훽∗2 �푒�휃∗2 ⋅ ⋅ ⋅ �훽∗�푁�푒�휃∗𝑁�훼1�푒−2�휃1 �푀11 �푀12 ⋅ ⋅ ⋅ �푀1�푁�훼2�푒−2�휃2 �푀21 �푀22 ⋅ ⋅ ⋅ �푀2�푁... ... ... ... ...�훼�푁�푒−2�휃𝑁 �푀�푁1 �푀�푁2 ⋅ ⋅ ⋅ �푀�푁�푁
))))
)
, (91)



Abstract and Applied Analysis 9

�퐹2 =((((
(

0 �훾∗1 �푒�휃∗1 �훾∗2 �푒�휃∗2 ⋅ ⋅ ⋅ �훾∗�푁�푒�휃∗𝑁�훼1�푒−2�휃1 �푀11 �푀12 ⋅ ⋅ ⋅ �푀1�푁�훼2�푒−2�휃2 �푀21 �푀22 ⋅ ⋅ ⋅ �푀2�푁... ... ... ... ...�훼�푁�푒−2�휃𝑁 �푀�푁1 �푀�푁2 ⋅ ⋅ ⋅ �푀�푁�푁
))))
)
. (92)

6. Conclusions

Starting from the spectral analysis of the Lax pair of the
modified coupled Hirota equation (2), we managed to con-
struct the corresponding matrix Riemann-Hilbert problem.
We mainly discussed the solutions to the general nonregular
matrix Riemann-Hilbert problem; after a regularization pro-
cedure, we constructed twomatrix functionsΥ(�휆) andΥ−1 (�휆)
to eliminate the zeros, which transformed the nonregular
Riemann-Hilbert problem into regular one, which could
be solved directly by applying the Plemeljs formula [26].
Subsequently, theN-soliton solutions to themodified coupled
Hirota equation (2) were obtained by the reconstruction of
potentials, which was displayed in a compact form as a ratio
of (�푁 + 1) × (�푁 + 1) determinant and �푁 × �푁 determinant.
In addition, the dynamical behaviors of the single-soliton
solutions were shown graphically. We point out that in the
present paper we only treat the case when the potentials fulfill
the vanishing boundary conditions; for the general case when
the potentials do not vanish at the infinity, more general
solutions could be obtained, which may be studied in the
future.
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