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In this paper, we study the existence of infinitely many weak solutions for nonlocal elliptic equations with critical exponent driven
by the fractional 𝑝-Laplacian of order 𝑠. We show the above result when 𝜆 > 0 is small enough. We achieve our goal by making use
of variational methods, more specifically, the Nehari Manifold and Lusternik-Schnirelmann theory.

1. Introduction

This work is concerned with the existence of weak solutions
of the following critical fractional 𝑝-Laplacian problem:

(−Δ)𝑠𝑝 𝑢 = |𝑢|𝑝∗𝑠 −2 𝑢 + 𝜆 |𝑢|𝑟−2 𝑢 in Ω,
𝑢 = 0 on 𝜕Ω, (1)

where Ω is a smoothly bounded domain of R𝑁, 𝑁 ≥ 𝑠𝑝, 0 <𝑠 < 1, 1 < 𝑟 < 𝑝 < 𝑝∗𝑠 fl 𝑁𝑝/(𝑁 − 𝑠𝑝) is the fractional critical
Sobolev exponent, and 𝜆 is positive parameter.(−Δ)𝑠𝑝 denotes the fractional 𝑝-Laplacian operator
defined on smooth functions by

(−Δ)𝑠𝑝 𝑢 (𝑥)
= 2 lim
𝜀↘0

∫
R𝑁\𝐵𝜀(𝑥)

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑦,
𝑥 ∈ R

𝑁.
(2)

This definition is consistent, up to a normalization constant
depending on 𝑁 and 𝑠, with the usual definition of the linear

fractional Laplacian operator (−Δ)𝑠 when 𝑝 = 2. Let us recall
the weak formulation of problem (1). Let us set

[𝑢]𝑝,𝑠 fl (∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑥 𝑑𝑦)
1/𝑝

(3)

by the Gagliardo seminorm of the measurable function 𝑢 :
R𝑁 󳨀→ R, and let

𝑊𝑠,𝑝 (R𝑁) = {𝑢 ∈ 𝐿𝑝 (R𝑁) : [𝑢]𝑝,𝑠 < ∞} (4)

be the fractional Sobolev space endowed with the norm

‖𝑢‖𝑠,𝑝 = (|𝑢|𝑝𝑝 + [𝑢]𝑝𝑝,𝑠)1/𝑝 , (5)

where | ⋅ |𝑝 is the norm in 𝐿𝑝(R𝑁). We work in the closed
linear subspace

𝑋𝑠𝑝 (Ω) = {𝑢 ∈ 𝑊𝑠,𝑝 (R𝑁) : 𝑢 = 0 a.e. in R
𝑁 \ Ω} , (6)

equivalently renormed by setting ‖ ⋅ ‖𝑠,𝑝 = [⋅]𝑠,𝑝, which is
uniformly convex Banach space.We note that the embedding

𝑋𝑠𝑝 (Ω) 󳨅→ 𝐿𝑟 (Ω) (7)

is continuous for 𝑟 ∈ [1, 𝑝∗𝑠 ] and compact for 𝑟 ∈ [1, 𝑝∗𝑠 ),
where 𝑝∗𝑠 = 𝑝𝑁/(𝑁 − 𝑝𝑠) is the fractional critical Sobolev
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exponent (note that when 𝑠 = 1 the above exponent reduces
to the classical Sobolev exponent 2∗). As in the classical case
the technical problem posed by such an exponent is that the
Sobolev embedding is not compact. Denote by 𝑆𝑠,𝑝 the best
Sobolev constant of the immersion 𝑋𝑠𝑝(Ω) 󳨅→ 𝐿𝑝∗𝑠 (Ω), that
is,

𝑆𝑠,𝑝 fl inf {‖𝑢‖𝑝𝑠,𝑝 : |𝑢|𝑝∗
𝑠

= 1, 𝑢 ∈ 𝑋𝑠𝑝 (Ω)} . (8)

The dual space of 𝑋𝑠𝑝(Ω) is 𝑋𝑠𝑝(Ω)∗.
Recently, a great attention has been focused on the study

of the fractional Laplacian and nonlocal operators of elliptic;
this type arises in both pure mathematical research and
concrete applications, such as the thin obstacle problem [1, 2],
minimal surfaces [3], phase transitions [4], crystal dislocation
[5],Markov processes [6], and fractional quantummechanics
[7]. This is one of the reasons why nonlocal fractional
problems arewidely studied in the literature inmany different
contexts (see [8]).

When 𝑠 = 1, our problem becomes a scalar quasilinear
elliptic equation as follows:

−Δ 𝑝 𝑢 = |𝑢|𝑝∗−2 𝑢 + 𝜆 |𝑢|𝑟−2 𝑢 in Ω,
𝑢 = 0 on 𝜕Ω. (9)

This has been widely studied by many authors. For example,
when Ω is bounded, the existence of nontrivial solution was
studied (see, e.g., [9, 10]).The typical difficulty in dealing with
(9) is that the Sobolev embedding 𝑊1,𝑝0 (Ω) 󳨅→ 𝐿𝑝∗(Ω) is not
compact, so the usual “Convex-Compact” method does not
apply directly. As for the existence of infinitelymany solutions
to (9), by using Lusternik-Schnirelmans theory, J. G. Azorero
and I. P. Aloson proved in [11] that if Ω is bounded,1 <𝑟 < 𝑝, and 𝜆 > 0 is small, then (9) has infinitely many
solutions. Also the main result of [11] was extended to the
equation driven by the operator −Δ𝑝𝑢 − Δ 𝑞𝑢 by G. Li and
X. Liang in [12]. G. M. Figueiredo in [13] generalized the
same result of [11] to the elliptic equation generated by the
operator −div(𝑎(|∇𝑢|𝑝)|∇𝑢|𝑝−2∇𝑢). Several works have been
devoted to study some existence and multiplicity results for
fractional problems involving the𝑝-Laplacian operator of the
type (1), generalizing therefore some classical results obtained
in the scalar case. The reader can find a lot of papers in the
literature involving this subject; we cite [14–17]. Our goal is
to generalize the results of Garcia Azorero and Peral in [11]
to the case of the fractional 𝑝-Laplacian (−Δ)𝑠𝑝 on a bounded
domain.

Twomajor difficulties arise which have to be dealt with in
order to reach the desirable conclusions.

First off, it is hard to prove the existence of infinitely
many negative energy solutions for our equation by using
the variational method because F𝜆 does not satisfy the (PS)
conditions, more precisely, because the problem in question
incorporates critical exponents.

Secondly, the functionalF𝜆 is not bounded from below,
so in order to comfortably follow through with our plan, we
have to introduce an appropriate truncation to the problem,
the choice of which is of utmost importance to the results we
get in this paper.

Theorem 1. Assume that 1 < 𝑟 < 𝑝 < 𝑝∗𝑠 . Then there exists𝜆0 ∈ R∗+ such that, for each 𝜆 ∈ (0, 𝜆0), problem (1) has
infinitely many solutions with negative energy.

Theorem 1 is new as far as we know and it generalizes
a similar result in [11] for the fractional 𝑝-Laplacian (−Δ)𝑠𝑝
type problem. We mainly follow the way in [11] to prove our
main result. The paper is organized as follows. In Section 2,
we show that the (𝑃𝑆)𝑐 conditions hold for the related
energy functional in certain critical levels. That is, we give
in a precise range of compactness for the energy functional
related. In Section 3, under the assumptions of Theorem 1
and by application of Ljusternik-Schnirelmann methods, we
establish the existence of infinitely many solutions with 𝜆 > 0
small enough.

2. The (𝑃𝑆)𝑐 Condition for
the Associated Functional

We recall that a weak solution for problem (1) is a function𝑢 : Ω 󳨀→ R, 𝑢 ∈ 𝑋𝑠𝑝(Ω) such that

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑥 𝑑𝑦
− 𝜆 ∫
Ω

|𝑢|𝑟−2 𝑢𝜑𝑑𝑥 − ∫
Ω

|𝑢|𝑝∗𝑠 −2 𝑢𝜑𝑑𝑥 = 0, ∀𝜑 ∈ 𝑋𝑠𝑝 (Ω) .
(10)

Now let us consider the functional F𝜆 : 𝑋𝑠𝑝(Ω) 󳨀→ R

defined by

F𝜆 (𝑢) = 1𝑝 ‖𝑢‖𝑝𝑠,𝑝 − 𝜆𝑟 |𝑢|𝑟𝑟 − 1𝑝∗𝑠 |𝑢|𝑝∗𝑠𝑝∗
𝑠

. (11)

Note that the functional F𝜆 ∈ 𝐶1(𝑋𝑠𝑝(Ω),R) and its
derivative at 𝑢 ∈ 𝑋𝑠𝑝(Ω) are given by

⟨F󸀠𝜆 (𝑢) , 𝜑⟩
= ∫

R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑥 𝑑𝑦
− 𝜆 ∫
Ω

|𝑢|𝑟−2 𝑢𝜑𝑑𝑥 − ∫
Ω

|𝑢|𝑝∗𝑠 −2 𝑢𝜑𝑑𝑥,
(12)

for every 𝜑 ∈ 𝑋𝑠𝑝(Ω). Thus, the weak solutions of problem
(1) are precisely the critical points of the energy functional
F𝜆. Since problem (1) has a variational structure, the proof
of the main result (Theorem 1 and its consequences) reduces
to finding critical points of the functional by using suitable
abstract approaches. As usual in the critical case, the difficulty
related to the variational formulation of (1) is the lack of
compactness of the injection of the fractional Sobolev space𝑋𝑠𝑝(Ω) in 𝐿𝑝∗𝑠 (Ω). To overcome this difficulty in treating
problem (1), we show that even if the functional F𝜆 does
not verify globally the Palais-Smale condition, it satisfies such
a condition in a suitable range related to the best fractional
critical Sobolev constant 𝑆𝑠,𝑝 noted in (8).
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The Nehari manifold associated withF𝜆 is given by

N𝜆 fl {𝑢 ∈ 𝑋𝑠𝑝 (Ω) \ {0} : ⟨F󸀠𝜆 (𝑢) , 𝑢⟩ = 0} , (13)

whereF󸀠𝜆 denotes the Gâteaux derivative ofF𝜆.
Definition 2.

(i) For 𝑐 ∈ R, a sequence {𝑢𝑛} ⊂ 𝑋𝑠𝑝(Ω) is a (𝑃𝑆)𝑐 forF𝜆
if F𝜆(𝑢𝑛) = 𝑐 + 𝑜(1) and F󸀠𝜆(𝑢𝑛) = 𝑜(1) strongly in𝑋𝑠𝑝(Ω)∗ as 𝑛 󳨀→ +∞, where 𝑋𝑠𝑝(Ω)∗ is the dual of𝑋𝑠𝑝(Ω).

(ii) F𝜆 satisfies the (𝑃𝑆)𝑐 condition in 𝑋𝑠𝑝(Ω) if any (𝑃𝑆)𝑐
sequence forF𝜆 contains a convergent subsequence.

The first step for the (𝑃𝑆)𝑐 sequence to hold is bounded.

Lemma 3. Let 𝑐 ∈ R. If {𝑢𝑛} is (𝑃𝑆)𝑐- sequence for F𝜆, then{𝑢𝑛} is bounded in 𝑋𝑠𝑝(Ω).
Proposition 4. There exists a 𝐾 > 0 such that, for any 𝜆 > 0
and

𝑐 ≤ 𝑠𝑁 𝑆𝑁/𝑠𝑝𝑠,𝑝 − 𝐾𝜆𝑝∗𝑠 /𝑝∗𝑠 −𝑟, (14)

the functionalF𝜆 satisfies (𝑃𝑆)𝑐 condition.
Proof. Let {𝑢𝑛} be a sequence in 𝑋𝑠𝑝(Ω) such that

F𝜆 (𝑢𝑛) = 1𝑝 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 − 𝜆𝑟 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑟𝑟 − 1𝑝∗𝑠
󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗

𝑠

= 𝑐 + 𝑜 (1) , (15)

⟨F󸀠𝜆 (𝑢𝑛) , V⟩
= ∫

R2𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) (V (𝑥) − V (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑥𝑑𝑦
− 𝜆 ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑟−2 𝑢𝑛V𝑑𝑥 − ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠 −2 𝑢𝑛V𝑑𝑥 = 𝑜 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑠,𝑝) ,
(16)

as 𝑛 󳨀→ ∞, for all V ∈ 𝑋𝑠𝑝(Ω). Then

𝑠𝑁 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗
𝑠

− 1𝜆 ( 1𝑟 − 1𝑝 ) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑟𝑟
= F𝜆 (𝑢𝑛) − 1𝑝 ⟨F󸀠𝜆 (𝑢𝑛) , 𝑢𝑛⟩
= 𝑜 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑠,𝑝) + 𝑂 (1) .

(17)

From (17) and the Hölder inequality, it is implied that (𝑢𝑛)
is bounded in 𝑋𝑠𝑝(Ω). Up to a subsequence, this implies the
following:

𝑢𝑛 ⇀ 𝑢 𝑖𝑛 𝑋𝑠𝑝(Ω),
𝑢𝑛(𝑥) 󳨀→ 𝑢(𝑥) 𝑎.𝑒 𝑖𝑛 Ω,
|𝑢𝑛(𝑥) − 𝑢𝑛(𝑦)|𝑝−2(𝑢𝑛(𝑥) − 𝑢𝑛(𝑦))/|𝑥 −
𝑦|𝑁+𝑠𝑝/𝑝󸀠 is bounded in 𝐿𝑝󸀠(R2𝑁),
𝑢𝑛 󳨀→ 𝑢 𝑖𝑛 𝐿𝑟(Ω), 1 ≤ 𝑟 < 𝑝∗𝑠 ,

|𝑢𝑛(𝑥) − 𝑢𝑛(𝑦)|𝑝−2(𝑢𝑛(𝑥) − 𝑢𝑛(𝑦))/|𝑥 −
𝑦|𝑁+𝑠𝑝/𝑝󸀠 is bounded in 𝐿𝑝󸀠(R2𝑁) and converges to|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))/|𝑥 −
𝑦|𝑁+𝑠𝑝/𝑝󸀠 , 𝑎.𝑒 𝑖𝑛 R2𝑁.

So

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) (V (𝑥) − V (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑥 𝑑𝑦

󳨀→ ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑁+𝑠𝑝 𝑑𝑥 𝑑𝑦
(18)

as 𝑛 󳨀→ ∞.
Moreover

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑟−2 𝑢𝑛V𝑑𝑥 󳨀→ ∫
Ω

|𝑢|𝑟−2 𝑢V𝑑𝑥
and ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠 −2 𝑢𝑛V𝑑𝑥 󳨀→ ∫
Ω

|𝑢|𝑝∗𝑠 −2 𝑢V𝑑𝑥
(19)

So passing to the limit in (16) shows that 𝑢 ∈ 𝑋𝑠𝑝(Ω) is a weak
solution of (1). Setting V𝑛 = 𝑢𝑛 − 𝑢, we have

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 = 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 − ‖𝑢‖𝑝𝑠,𝑝 + 𝑜 (1) (20)

By Brezis-Lieb’s Lemma [18], we get

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗
𝑠

= 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗
𝑠

− |𝑢|𝑝∗𝑠𝑝∗
𝑠

+ 𝑜 (1) . (21)

𝑐 + 𝑜 (1) = 1𝑝 󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 + 1𝑝 ‖𝑢‖𝑝𝑠,𝑝 − 1𝑝∗𝑠
󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗

𝑠

− 1𝑝∗𝑠 |𝑢|𝑝∗𝑠𝑝∗
𝑠

− 𝜆𝑟 |𝑢|𝑟𝑟 ,
(22)

as 𝑛 󳨀→ +∞. Taking V = 𝑢𝑛 in (16) and Brezis-Liebs Lemma
again, we have

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 = 𝜆 |𝑢|𝑟𝑟 + 󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗
𝑠

+ |𝑢|𝑝∗𝑠𝑝∗
𝑠

+ 𝑜 (1) (23)

Since 𝑢𝑛 is bounded in 𝑋𝑠𝑝(Ω) and converges to 𝑢 in 𝐿𝑝(Ω),
testing (16) with V = 𝑢 gives

‖𝑢‖𝑝𝑠,𝑝 = 𝜆 |𝑢|𝑟𝑟 + |𝑢|𝑝∗𝑠𝑝∗
𝑠

. (24)

It follows from (23) and (24) that

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 = 󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗
𝑠

+ 𝑜 (1) (25)

We suppose that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 = 𝑙 = lim
𝑛󳨀→∞

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠𝑝∗
𝑠

(26)

By the definition of the best constant 𝑆𝑠,𝑝 given in (8), we have
󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑝𝑠,𝑝 ≥ 𝑆𝑠,𝑝 󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨𝑝𝑝∗

𝑠

, (27)
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so

𝑙 ≥ 𝑆𝑠,𝑝𝑙𝑝/𝑝∗𝑠 . (28)

If 𝑙 = 0, then the lemma is proved. If 𝑙 > 0, then (28) implies
that

𝑙 ≥ 𝑆𝑁/𝑠𝑝𝑠,𝑝 . (29)

From (29) and (22), we have

𝑐 = 1𝑝 𝑙 + 1𝑝 ‖𝑢‖𝑝𝑠,𝑝 − 1𝑝∗𝑠 𝑙 − 1𝑝∗𝑠 |𝑢|𝑝∗𝑠𝑝∗
𝑠

− 𝜆𝑟 |𝑢|𝑟𝑟
= 𝑠𝑁 𝑙 + ( 1𝑝 − 1𝑝∗𝑠 ) |𝑢|𝑝∗𝑠𝑝∗

𝑠

+ 𝜆 ( 1𝑝 − 1𝑟 ) |𝑢|𝑟𝑟
≥ 𝑠𝑁 𝑆𝑁/𝑠𝑝𝑠,𝑝 + 𝑠𝑁 |𝑢|𝑝∗𝑠𝑝∗

𝑠

+ 𝜆 ( 1𝑝 − 1𝑟 ) |𝑢|𝑟𝑟
≥ 𝑠𝑁 𝑆𝑁/𝑠𝑝𝑠,𝑝 + 𝑠𝑁 |𝑢|𝑝∗𝑠𝑝∗

𝑠

+ 𝜆 ( 1𝑝 − 1𝑟 ) |Ω|𝑝∗𝑠 −𝑟/𝑝∗𝑠 |𝑢|𝑟𝑝∗
𝑠

.

(30)

We consider the following function 𝑓(𝑥) =(𝑠/𝑁)𝑥𝑝∗𝑠 − 𝜆(1/𝑟 − 1/𝑝)|Ω|𝑝∗𝑠 −𝑟/𝑝∗𝑠 𝑥𝑟. This function
obtains this absolute minimum for 𝑥 > 0 at point
𝑥0 = (𝜆((𝑝 − 𝑟)/(𝑝∗𝑠 − 𝑝))|Ω|𝑝∗𝑠 −𝑟/𝑝∗𝑠 )1/𝑝∗𝑠 −𝑟, that is,

𝑓 (𝑥) ≥ 𝑓 (𝑥0) = −𝜆𝑝∗𝑠 /𝑝∗𝑠 −𝑟 |Ω| ( 𝑝 − 𝑟𝑝∗𝑠 − 𝑝 )𝑟/(𝑝
∗

𝑠
−𝑟)

⋅ ( 𝑝 − 𝑟𝑝 ) ( 𝑝∗𝑠 − 𝑟
𝑟𝑝∗𝑠 ) ,

(31)

and let the constant 𝐾 = |Ω|((𝑝 − 𝑟)/(𝑝∗𝑠 − 𝑝))𝑟/(𝑝∗𝑠 −𝑟)((𝑝 −𝑟)/𝑝)((𝑝∗𝑠 − 𝑟)/𝑟𝑝∗𝑠 ) be strictly positive because 1 < 𝑟 < 𝑝 <𝑝∗𝑠 .
𝑐 ≥ 𝑠𝑁 𝑆𝑁/𝑠𝑝𝑠,𝑝 + 𝑠𝑁 |𝑢|𝑝∗𝑠𝑝∗

𝑠

+ 𝜆 ( 1𝑝 − 1𝑟 ) |Ω|𝑝∗𝑠 −𝑟/𝑝∗𝑠 |𝑢|𝑟𝑝∗
𝑠

,
≥ 𝑠𝑁 𝑆𝑁/𝑠𝑝𝑠,𝑝 − 𝐾𝜆𝑝∗𝑠 /𝑝∗𝑠 −𝑟.

(32)

This leads to a contradiction with (9).Therefore 𝑙 = 0 and the
proof is complete.

3. Proof of the Main Result

Under the hypothesis 1 < 𝑟 < 𝑝 < 𝑁, using Sobolev’s
inequality we obtain

F𝜆 (𝑢) ≥ ℎ (‖𝑢‖𝑠,𝑝) (33)

where

ℎ (𝑥) = 1𝑝 𝑥𝑝 − 1
𝑝∗𝑠 𝑆𝑝∗𝑠 /𝑝𝑠,𝑝 𝑥𝑝∗𝑠 − 𝜆𝑟 𝐶𝑝,𝑟𝑥𝑟 (34)

and where 𝐶𝑟,𝑝 is a positive constant independent of 𝑢 ∈𝑋𝑠𝑝(Ω). An easy computation shows that, for all 0 < 𝜆 < 𝜆0 =
𝐶−1𝑝,𝑟((𝑝∗𝑠 − 𝑝)/(𝑝∗𝑠 − 𝑟)) [((𝑝 − 𝑟)/(𝑝∗𝑠 − 𝑟))𝑆𝑝∗𝑠 /𝑝𝑠,𝑝 ](𝑝−𝑟)/(𝑝∗𝑠 −𝑝),
the real valued function 𝑥 󳨃󳨀→ ℎ(𝑥) has exactly two positive
zeros denoted by𝑅0 and𝑅1, and the point𝑅 is where ℎ attains
its nonnegative maximum and verifies 𝑅0 < 𝑅 < 𝑅1.

We now introduce the following truncation of the func-
tionalF𝜆. Take the nonincreasing function 𝜏 : R+ 󳨀→ [0, 1]
and 𝐶∞(R+) such that

𝜏 (𝑥) = 1 if 𝑥 ≤ 𝑅0,
𝜏 (𝑥) = 0 if 𝑥 ≥ 𝑅1. (35)

Let 𝜑(𝑢) = 𝜏(‖𝑢‖𝑠,𝑝). We consider the truncated functional

F̃𝜆 (𝑢) = 1𝑝 ‖𝑢‖𝑝𝑠,𝑝 − 𝜆𝑟 ∫
Ω

|𝑢|𝑟 𝑑𝑥
− 1𝑝∗𝑠 ∫

Ω
|𝑢|𝑝∗𝑠 𝜑 (𝑢) 𝑑𝑥.

(36)

Similar to (33), we have

F̃𝜆 (𝑢) ≥ ℎ (‖𝑢‖𝑠,𝑝) (37)

where

ℎ (𝑥) = 1𝑝 𝑥𝑝 − 1
𝑝∗𝑠 𝑆𝑝∗𝑠 /𝑝𝑠,𝑝 𝑥𝑝∗𝑠 𝜏 (𝑥) − 𝜆𝑟 𝐶𝑝,𝑟𝑥𝑟 (38)

Clearly,

ℎ (𝑥) ≥ ℎ (𝑥) (39)

for 𝑥 ≥ 0 and ℎ(𝑥) = ℎ(𝑥) if 0 ≤ 𝑥 ≤ 𝑅0, ℎ(𝑥) ≥ 0, if 𝑅0 < 𝑥 ≤𝑅1 and if 𝑥 > 𝑅1, ℎ(𝑥) = 𝑥𝑟((1/𝑝)𝑥𝑝−𝑟 − (𝜆/𝑟)𝐶𝑝,𝑟) is strictly
increasing and so ℎ(𝑥) > 0, if 𝑥 > 𝑅1. Consequently

ℎ (𝑥) ≥ 0 for 𝑥 ≥ 𝑅0. (40)

We have the following result.

Lemma 5. This lemma can be expressed as three assertions:

(1) F̃𝜆 ∈ C1(𝑋𝑠𝑝(Ω),R) is even.
(2) If F̃𝜆(𝑢0) ≤ 0 then ‖𝑢0‖𝑠,𝑝 < 𝑅0. Moreover,

F̃𝜆(𝑢) = F𝜆(𝑢) for all 𝑢 in a small enough neighbor-
hood of 𝑢0.

(3) There exists 𝜆0 > 0, such that if 0 < 𝜆 < 𝜆0, then F̃𝜆
verifies a local Palais-Smale condition for 𝑐 ≤ 0.

Proof. Since 𝜑 ∈ C∞ and 𝜑(𝑢) = 1 for 𝑢 near 0, F̃𝜆 ∈
C1(𝑋𝑠𝑝(Ω),R) and assertion (1) holds.

By taking F̃𝜆(𝑢0) ≤ 0, we can deduce from (37) that

ℎ (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩𝑠,𝑝) ≤ 0, (41)
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and by (40) and (41) we have
󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩𝑠,𝑝 < 𝑅0, (42)

and (2) holds.
For the proof of (3), let {𝑢𝑛} ⊂ 𝑋𝑠𝑝(Ω) be a (𝑃𝑆)𝑐 sequence

F̃𝜆, with 𝑐 < 0. Then we may assume that F̃𝜆(𝑢𝑛) < 0,
F̃󸀠𝜆(𝑢𝑛) 󳨀→ 0. By (8) in Lemma 5 there exists 𝜆0 > 0 such
that 0 < 𝜆 < 𝜆0, ‖𝑢𝑛‖𝑠,𝑝 < 𝑅0, so F̃𝜆(𝑢𝑛) = F𝜆(𝑢𝑛)
and F̃󸀠𝜆(𝑢𝑛) = F󸀠𝜆(𝑢𝑛). By Proposition 4, F𝜆 satisfies (𝑃𝑆)𝑐
condition for 𝑐 < 0, so there is a subsequence {𝑢𝑛} such that𝑢𝑛 󳨀→ 𝑢 in 𝑋𝑠𝑝(Ω). Thus F̃𝜆 satisfies (𝑃𝑆)𝑐 condition for𝑐 < 0.

We will use the genus of symmetric set in 𝑋𝑠𝑝(Ω), where
the genus 𝛾(𝐴) is the smallest integer 𝑚, such that there exists
an odd map

𝜙 ∈ C (𝐴,R𝑚 \ {0}) , (43)

where 𝐴 is a closed symmetric set in 𝑋 that does not contain
zero (see [19]).

It is possible to prove the existence of level sets of 𝐼𝜆 with
arbitrarily large genus, more precisely,

Lemma 6. ∀𝑛 ∈ N ∃𝜖(𝑛) > 0 such that

𝛾 ({𝑢 ∈ 𝑋𝑠𝑝 (Ω) : F̃𝜆 (𝑢) ≤ −𝜖 (𝑛)}) ≥ 𝑛. (44)

Proof. Let 𝑛 ∈ N. we consider 𝐸𝑛 to be subspaces of 𝑋𝑠𝑝(Ω)
with 𝐸𝑛 being an n-dimensional subspace of 𝑋𝑠𝑝(Ω). Let
{𝑢𝑛} ∈ 𝐸𝑛 with norm ‖𝑢𝑛‖𝑠,𝑝 = 1. For 0 < 𝜌 < 𝑅0

F̃𝜆 (𝜌𝑢𝑛) ≤ 1𝑝 𝜌𝑝 − 𝜌𝑝∗𝑠𝑝∗𝑠 ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠 𝑑𝑥
− 𝜆𝑟 𝜌𝑟 ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑟 𝑑𝑥
(45)

we define

𝛼𝑛 fl inf {∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑝∗𝑠 𝑑𝑥 : 𝑢𝑛 ∈ 𝐸𝑛, 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑠,𝑝 = 1} > 0, (46)

and

𝛽𝑛 fl inf {∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨𝑟 : 𝑢𝑛 ∈ 𝐸𝑛, 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑠,𝑝 = 1} > 0. (47)

By using the definitions of 𝛼𝑛, 𝛽𝑛, and inequality (45), we
obtain

F̃𝜆 (𝜌𝑢𝑛) ≤ 1𝑝 𝜌𝑝 − 𝛼𝑛𝑝∗𝑠 𝜌𝑝∗𝑠 − 𝜆𝛽𝑛𝑟 𝜌𝑟. (48)

Then, there exists 𝜖(𝑛) > 0 and 0 < 𝜌 < 𝑅0 such that

F̃𝜆 (𝜌𝑢) ≤ −𝜖 (𝑛) (49)

for 𝑢 ∈ 𝐸𝑛 and ‖𝑢𝑛‖ = 1.

Let 𝑆𝜂 = {𝑢 ∈ 𝑋𝑠𝑝(Ω)/‖𝑢‖ = 𝜂}, so
𝑆𝜂 ∩ 𝐸𝑛 ⊂ {𝑢 ∈ 𝑋𝑠𝑝 (Ω) /F̃𝜆 (𝑢) ≤ −𝜖 (𝑛)} , (50)

therefore, by the properties of the genus (see [19])

𝛾 ({𝑢 ∈ 𝑋𝑠𝑝 (Ω) /F̃𝜆 (𝑢) ≤ −𝜖}) ≥ 𝛾 (𝑆𝜂 ∩ 𝐸𝑛) ≥ 𝑛. (51)

We are now in a position to prove our main result.

Proof of Theorem 1. For 𝑛 ∈ N, we define

Γ𝑛 = {𝐴 ⊂ 𝑋𝑠𝑝 (Ω) − {0} /𝐴 is close, 𝐴 = −𝐴, 𝛾 (𝐴)
≥ 𝑛} . (52)

Let us set

𝑐𝑛 = min
𝐴∈Γ𝑛

max
𝑢∈𝐴

𝐼𝜆 (𝑢) , (53)

and

𝐾𝑐 = {𝑢 ∈ 𝑋𝑠𝑝 (Ω) : F̃󸀠𝜆 (𝑢) = 0, F̃𝜆 (𝑢) = 𝑐} , (54)

and suppose 0 < 𝜆 < 𝜆𝑜, where 𝜆0 is the constant given by
Lemma 5.

F̃
−𝜖
𝜆 = {𝑢 ∈ 𝑋𝑠𝑝 (Ω) /F̃𝜆 (𝑢) ≤ −𝜖} . (55)

By Lemma 6 there exists 𝜖(𝑛) > 0 such that 𝛾(F̃−𝜖𝜆 ) ≥ 𝑛, for
all 𝑛 ∈ N. Because F̃𝜆(𝑢) is continuous and even, F̃−𝜖𝜆 ∈ Γ𝑛,
then 𝑐𝑛 ≤ −𝜖(𝑛) < 0 for all n in N. But F̃𝜆 is bounded from
below; hence 𝑐𝑛 > −∞ for all n in N.

Let us assume that 𝑐 = 𝑐𝑛 = 𝑐𝑛+1 = ⋅ ⋅ ⋅ = 𝑐𝑛+𝑟. Note that𝑐 < 0; therefore, F̃𝜆 verifies the Plais-Smale condition in 𝑐,
and it is easy to see that 𝐾𝑐 is a compact set.

If 𝛾(𝐾𝑐) ≤ 𝑟, there exists a closed and symmetric set U
verifying 𝐾𝑐 ⊂ 𝑈, such that 𝛾(𝑈) ≤ 𝑟. By the deformation
lemma (see [20]), we have an odd homeomorphism 𝜂 : 𝑋 󳨀→𝑋, such that 𝜂(F̃𝑐+𝛿𝜆 − 𝑈) ⊂ F̃𝑐−𝛿𝜆 , for some 𝛿 > 0. By
definition,

𝑐 = 𝑐𝑛 = inf
𝐴∈Γ𝑛+𝑟

sup
𝑢∈𝐴

F̃𝜆 (𝑢) . (56)

There exists then 𝐴 ∈ Γ𝑛+𝑟, such that sup𝑢∈𝐴 F̃𝜆(𝑢) < 𝑐 + 𝛿,
i.e., 𝐴 ⊂ F̃𝑐+𝛿𝜆 ,

𝜂 (𝐴 − 𝑈) ⊂ 𝜂 (F̃𝑐+𝛿𝜆 − 𝑈) ⊂ F̃
𝑐−𝛿
𝜆 . (57)

But 𝛾(𝐴 − 𝑈) ≥ 𝛾(𝐴) − 𝛾(𝑈) ≥ 𝑛, and 𝛾(𝜂(𝐴 − 𝑈)) ≥𝛾(𝐴 − 𝑈)) ≥ 𝑛.
Then, 𝜂(𝐴 − 𝑈) ∈ Γ𝑛. And this is a contradiction; in fact,𝜂(𝐴 − 𝑈) ∈ Γ𝑛 implies sup𝑢∈𝜂(𝐴−𝑈)F̃𝜆(𝑢) ≥ 𝑐𝑛 = 𝑐.
So we have proved that 𝛾(𝐾𝑐) ≥ 𝑟 + 1. We are now

ready to show that F𝜆 has infinitely many critical point
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solutions. Note that 𝑐𝑛 is nondecreasing and strictly negative.
We distinguish two cases.
Case 1. Suppose that there are 1 < 𝑛1 < ⋅ ⋅ ⋅ 𝑛𝑖 < ⋅ ⋅ ⋅ , satisfying

𝑐𝑛1 < ⋅ ⋅ ⋅ < 𝑐𝑛𝑖 < ⋅ ⋅ ⋅ . (58)

In this case, we have infinitely many distinct critical points.
Case 2. We assume in this case that, for some positive integer𝑛0, there is 𝑟 ≥ 1 such that 𝑐 = 𝑐𝑛0 = 𝑐𝑛0+1 = ⋅ ⋅ ⋅ = 𝑐𝑛0+𝑟;
then 𝛾(𝐾𝑐𝑛0 ) ≥ 𝑟 + 1 which shows that 𝐾𝑐𝑛0 contains infinitely
many distinct elements. Since F̃𝜆(𝑢) = F𝜆(𝑢) if F̃𝜆(𝑢) < 0,
we see that there are infinitely many critical points ofF𝜆(𝑢).
The theorem is proved.
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