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Given a graph, its 2-core is the maximal subgraph of 𝐺 without vertices of degree 1. A 2-path in a connected graph is a simple path
in its 2-core such that all vertices in the path have degree 2, except the endpoints which have degree ⩾ 3. Consider the Erdős-Rényi
random graph G(𝑛,𝑀) built with 𝑛 vertices and𝑀 edges uniformly randomly chosen from the set of ( 𝑛2 ) edges. Let 𝜉𝑛,𝑀 be the
maximum 2-path length of G(𝑛,𝑀). In this paper, we determine that there exists a constant 𝑐(𝜆) such that E(𝜉𝑛,(𝑛/2)(1+𝜆𝑛−1/3)) ∼𝑐(𝜆)𝑛1/3, for any real 𝜆.This parameter is studied through the use of generating functions and complex analysis.

1. Preliminaries

Let us recall that an undirected graph𝐺 is a couple (𝑉, 𝐸),
where 𝑉 is the set of vertices and 𝐸 the set of edges, and
an edge is an unordered pair of vertices. If we allow an
edge between a vertex and itself (loop) or multiple edges
between two vertices, we obtain amultigraph. An undirected
graph without loops or multiple edges is known as a simple
graph. A path in graph 𝐺 = (𝑉, 𝐸) is sequence of vertices⟨V0, V1, . . . , V𝑘⟩, where {V𝑖, V𝑖+1} ∈ 𝐸 for 𝑖 ∈ ⟦0, 𝑘 − 1⟧ and
V𝑖 ̸= V𝑗 for 𝑖 ̸= 𝑗 except that its first vertex V0 might be the
same as its last V𝑘. When any two vertices of 𝐺 are connected
by a path 𝐺 is called connected.

A connected graph has excess if it has more edges than
vertices. A connected component of excess ℓ is also calledℓ-component. A tree or acyclic component is a connected
component of excess −1, an unicyclic component in a
connected component of excess 0. If ℓ ⩾ 1, ℓ-components
are called complex. A graph (not necessarily connected) is
called complexwhen all its components are complex.The total
excess𝑟 of a graph is the number of edges plus the number of
acyclic components, minus the number of vertices. In other
words, the total excess of a graph is the sum of the excess of

its complex components. Note that the total excess of a tree
component is equal to 0 whereas its excess is equal to −1 and
the total excess of a graph is nonnegative.

Given a graph 𝐺, its 2-core is obtained by deleting
recursively all nodes of degree 1. A 3-core or kernel of a
complex graph is the graph obtained from its 2-core by
repeating the following process on any vertex of degree two:
for a vertex of degree two, we can remove it and splice
together the two edges that it formerly touched. We observe
that𝐺, its 2-core, and its kernel have the same excess. A graph
is said cubic or 3-regular if all of its vertices are of degree 3. A
graph is called clean if its 3-core is 3-regular (see [1]).

A random graph G(𝑛,𝑀 = 𝑐𝑛) is called critical if the
density 𝑐 = 1/2 ± O(𝑛−1/3). Such a graph contains a complex
component with nonzero probability [2, 3]. Janson et al. [1]
proved these graphs are clean (its complex components are
clean) with high probability when the size of graph goes to
infinity.

Theorem 1. The maximum 2-path length 𝜉𝑛,𝑀 of G(𝑛,𝑀)
satisfies

E (𝜉𝑛,(𝑛/2)(1+𝜆𝑛−1/3)) ∼ 𝑐 (𝜆) 𝑛1/3, (1)
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where

𝑐 (𝜆) = 1𝛼 ∫
+∞

0
(1

− ∑
𝑟⩾0

√2𝜋𝑒𝑟𝐴 (3𝑟 + 1/2, 𝜆) (1 − 𝑒−𝑥)3𝑟)𝑑𝑥,
(2)

where 𝛼 is the positive solution of

𝜆 = 𝛼−1 − 𝛼, (3)

𝑒𝑟 is given by

𝑒𝑟 = (6𝑟)!25𝑟32𝑟 (3𝑟)! (2𝑟)! , (4)

and the function 𝐴 is defined by

𝐴 (𝑦, 𝜆) = 𝑒−𝜆3/63(𝑦+1)/3∑
𝑘⩾0

((1/2) 32/3𝜆)𝑘𝑘!Γ ((𝑦 + 1 − 2𝑘) /3) . (5)

We remark that for Erdős-Rényi random graph G(𝑛, 𝑝 =(1 + 𝜀)/𝑛), Ding et al. [4] and Ding et al. [5] provided
a complete characterisation of the structure of the giant
component when 𝜀 = 𝑜(1) but 𝜀3𝑛 → ∞. Using our notation,𝜀 = 𝜆𝑛−1/3 but 𝜆 → ∞ as 𝑛 → ∞. They describe that the 2-
core of a graph is obtained by “stretching” the edges into paths
of lengths i.i.d. geometric with mean 1/𝜀 = 𝜆−1𝑛1/3. Next, in
order to reconstruct the graph, they attached trees to vertices
i.i.d. Poisson(1 − 𝜀)-Galton-Watson.

2. Enumerative Tools

As shown in [1, 3], exponential generating functions (EGFs)
can lead to stringent results about the main characteristics of
random graphs when they apply. Let us recall briefly themain
EGFs involved in our proofs. We refer the reader to Harary
and Palmer [6] for EGFs related to graphical enumeration.

For 𝑛 ⩾ 0 and −1 ⩽ ℓ ⩽ ( 𝑛2 ), let 𝑐(𝑛, 𝑛 + ℓ) be the number
of connected graphs of excess ℓ and

𝑊ℓ (𝑧) = +∞∑
𝑛=0

𝑐 (𝑛, 𝑛 + ℓ) 𝑧𝑛𝑛! , (6)

the associated EGF. We know from [7] that 𝑐(𝑛, 𝑛 − 1) = 𝑛𝑛−2
and

𝑊−1 (𝑧) = +∞∑
𝑛=1

𝑛𝑛−2 𝑧𝑛𝑛! = 𝑇 (𝑧)2 − 12𝑇 (𝑧)2 , (7)

where 𝑇(𝑧) is the EGF of rooted Cayley trees given by

𝑇 (𝑧) = 𝑧𝑒𝑇(𝑧) = +∞∑
𝑛=1

𝑛𝑛−1 𝑧𝑛𝑛! . (8)

We also have (see, e.g., [1, Equation (3.5)])

𝑊0 (𝑧) = 12 log 11 − 𝑇 (𝑧) − 𝑇 (𝑧)2 − 𝑇 (𝑧)24 . (9)

Wright [8] has shown that the EGFs (𝑊ℓ)ℓ⩾1 can be expressed
in terms of 𝑇(𝑧). More precisely, Wright proved that for eachℓ ⩾ 1 there exist rational coefficients 𝑤ℓ,𝑑, 𝑑 ∈ {0, . . . , 3ℓ + 2}
such that

𝑊ℓ (𝑧) = 3ℓ+2∑
𝑑=0

𝑤ℓ,𝑑(1 − 𝑇 (𝑧))3ℓ−𝑑 . (10)

The coefficients 𝑏ℓ fl 𝑤ℓ,0 are known asWright’s constants
(see [9]). For complex graphs, denote by 𝐸𝑟(𝑧) the EGF of
these graphs of excess 𝑟. Then we have 𝐸0(𝑧) = 1 (empty
graphs) and 𝐸1(𝑧) = 𝑊1(𝑧). More generally, as detailed in
[1, Section 8], the EGF 𝐸𝑟(𝑧) satisfies

+∞∑
𝑟=0

𝐸𝑟 (𝑧) = exp(+∞∑
𝑟=1

𝑊ℓ (𝑧)) . (11)

Following [1], the EGF 𝐸𝑟(𝑧) can also be expressed as a
rational function of 𝑇(𝑧)
𝐸𝑟 (𝑧) = ∑

𝑑⩾0

𝑒𝑟,𝑑 𝑇 (𝑧)5𝑟−𝑑(1 − 𝑇 (𝑧))3𝑟−𝑑 = ∑𝑑⩾0
𝑒󸀠𝑟,𝑑(1 − 𝑇 (𝑧))3𝑟−𝑑 , (12)

where 𝑒𝑟 fl 𝑒𝑟,0 = 𝑒󸀠𝑟,0.The coefficients (𝑒𝑟) and (𝑏𝑟) are related
by

𝑒0 = 1,
𝑟𝑒𝑟 = 𝑟𝑏𝑟 + 𝑟−1∑

𝑗=1

𝑗𝑏𝑗𝑒𝑟−𝑗 as 𝑟 ⩾ 1. (13)

As shown in [1, 10], we remark that the dominant
asymptotic behavior of [𝑧𝑛]𝑊ℓ(𝑧) and [𝑧𝑛]𝐸𝑟(𝑧) (for any
power series 𝐴(𝑧) = ∑𝑎𝑛𝑧𝑛, [𝑧𝑛]𝐴(𝑧) denotes the 𝑛th
coefficient of 𝐴(𝑧), namely, [𝑧𝑛]𝐴(𝑧) = 𝑎𝑛.) is governed by
the leading coefficients 𝑏ℓ and 𝑒𝑟. In particular, if ℓ and 𝑟 are
about 𝑜(𝑛1/3), these EGFs satisfy

𝑊ℓ (𝑧) ≍ℓ 𝑏ℓ(1 − 𝑇 (𝑧))3ℓ ,
𝐸𝑟 (𝑧) ≍𝑟 𝑒𝑟(1 − 𝑇 (𝑧))3𝑟 ,

(14)

where 𝐴(𝑧) ≍ℓ 𝐵(𝑧) if and only if [𝑧𝑛]𝐴(𝑧) ∼ [𝑧𝑛]𝐵(𝑧) as 𝑛 →+∞ and ℓ = 𝑜(𝑛1/3).
The EGF 𝑏ℓ/(1 − 𝑇(𝑧))3ℓ (resp., 𝑒𝑟/(1 − 𝑇(𝑧))3𝑟) can

be interpreted as EGF of connected graphs (resp., complex
graphs) whose kernels are 3-regular. Such a graph has exactly3ℓ (resp., 3𝑟) 2-paths. A 2-path in the 2-core is enumerated
by 1/(1 − 𝑧). Substituting 𝑧 by 𝑇(𝑧) to obtain 1/(1 − 𝑇(𝑧))
means attaching tree to each vertex of the 2-core. Since a 3-
regular graph of excess 𝑟 has exactly 3𝑟 edges, the associated
graph has 3𝑟 2-paths. Note that, in the stated range, complex
graphs and multigraphs of excess 𝑟 are both enumerated by𝑒𝑟/(1 −𝑇(𝑧))3𝑟 and for large 𝑟, 𝑒𝑟 ∼ 𝑏𝑟 (see [1, Equation (7.16)]
and [9, Section 7]).

In our case, we need to control the length of each 2-path to
a graph.We restrict our attention to complex graphs whose 2-
paths are of length at most 𝑘. So, instead of allowing 2-path of
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any length (1/(1−𝑇(𝑧)) = 1+𝑇(𝑧)+𝑇(𝑧)2+⋅ ⋅ ⋅+𝑇(𝑧)𝑘+⋅ ⋅ ⋅ ), we
use a 2-path of length at most 𝑘 (1+𝑇(𝑧)+𝑇(𝑧)2+⋅ ⋅ ⋅+𝑇(𝑧)𝑘).
The associated EGF is

𝑒𝑟 (1 + 𝑇 (𝑧) + 𝑇 (𝑧)2 + ⋅ ⋅ ⋅ + 𝑇 (𝑧)𝑘)3𝑟
= 𝑒𝑟 (1 − 𝑇 (𝑧)𝑘+1)

3𝑟

(1 − 𝑇 (𝑧))3𝑟 .
(15)

3. Proof of Theorem 1

Consider a graph with 𝑛 vertices,𝑀 edges, and a total excess𝑟. Such a graph contains exactly 𝑛 − 𝑀 + 𝑟 tree components.
They are enumerated by the following EGF:

𝑊−1 (𝑧)𝑛−𝑀+𝑟(𝑛 −𝑀 + 𝑟)! exp (𝑊0 (𝑧)) 𝐸𝑟 (𝑧) . (16)

Since the total number of graphs with 𝑛 vertices and𝑀
edges is ( ( 𝑛2 )

𝑀
), the probability that a random (𝑛,𝑀)-graph

(graphs with 𝑛 vertices and𝑀 edges) is of total excess 𝑟 is
𝑛!( ( 𝑛2 )
𝑀
) [𝑧𝑛] 𝑊−1 (𝑧)

𝑛−𝑀+𝑟

(𝑛 −𝑀 + 𝑟)! exp (𝑊0 (𝑧)) 𝐸𝑟 (𝑧) . (17)

Similarly, the probability that a random (𝑛,𝑀)-graph is
of total excess 𝑟 and has no 2-path of length greater than 𝑘 is

𝑛!( ( 𝑛2 )
𝑀
) [𝑧𝑛] 𝑊−1 (𝑧)

𝑛−𝑀+𝑟

(𝑛 −𝑀 + 𝑟)! exp (𝑊0 (𝑧)) 𝐸[𝑘]𝑟 (𝑧) , (18)

where 𝐸[𝑘]𝑟 (𝑧) denotes the EGF of all complex components
of total excess 𝑟 whose 2-paths are of length at most 𝑘, 𝑘 ⩾1. Then summing over 𝑟, we get that the probability that a
random (𝑛,𝑀)-graph has no 2-path of length greater than 𝑘
is

P (𝜉𝑛,𝑀 ⩽ 𝑘)
= ∑
𝑟⩾0

𝑛!( ( 𝑛2 )
𝑀
) [𝑧𝑛] 𝑊−1 (𝑧)

𝑛−𝑀+𝑟

(𝑛 −𝑀 + 𝑟)! exp (𝑊0 (𝑧)) 𝐸[𝑘]𝑟 (𝑧) . (19)

Following discussion in the previous section and using
(15), the probability of a random P(𝜉𝑛,𝑀 ⩽ 𝑘) is asymptoti-
cally equivalent to

P (𝜉𝑛,𝑀 ⩽ 𝑘) ∼ ∑
𝑟⩾0

𝑛!( ( 𝑛2 )
𝑀
) [𝑧𝑛] 𝑊−1 (𝑧)

𝑛−𝑀+𝑟

(𝑛 −𝑀 + 𝑟)!
⋅ exp (𝑊0 (𝑧)) 𝑒𝑟 (1 − 𝑇 (𝑧)𝑘+1)

3𝑟

(1 − 𝑇 (𝑧))3𝑟 .
(20)

As in [11, Section 4] where Flajolet et al. described gener-
ating functions based methods to study extremal statistics on
randommappings, we characterize the expectation of 𝜉𝑛,𝑀 by

means of truncated generating functions aforementioned. In
fact, the mean value of 𝜉𝑛,𝑀 is given by

E (𝜉𝑛,𝑀) = ∑
𝑘⩾0

𝑘P [𝜉𝑛,𝑀 = 𝑘] = ∑
𝑘⩾0

(1 − P [𝑋 ⩽ 𝑘]) . (21)

Then, combining (19), (20), and (21), we have

E (𝜉𝑛,𝑀) ∼ ∑
𝑘⩾0

(1 − ∑
𝑟⩾0

𝑛!( ( 𝑛2 )
𝑀
) [𝑧𝑛] 𝑊−1 (𝑧)

𝑛−𝑀+𝑟

(𝑛 −𝑀 + 𝑟)!
⋅ exp (𝑊0 (𝑧)) 𝑒𝑟 (1 − 𝑇 (𝑧)𝑘+1)

3𝑟

(1 − 𝑇 (𝑧))3𝑟 ) .
(22)

To compute 𝐸(𝜉𝑛,𝑀), we use the following lemma.

Lemma 2. Let𝑀 = (𝑛/2)(1+𝜆𝑛−1/3). For any natural integers𝑟 and 𝑘, one has
𝑝𝑟,𝑘 (𝑛,𝑀) fl 𝑛!( ( 𝑛2 )

𝑀
) [𝑧𝑛] 𝑊−1 (𝑧)

𝑛−𝑀+𝑟

(𝑛 −𝑀 + 𝑟)! exp (𝑊0 (𝑧))

⋅ (1 − 𝑇 (𝑧)𝑘)3𝑟(1 − 𝑇 (𝑧))3𝑟 = √2𝜋𝐴(3𝑟 + 12 , 𝜆)
⋅ (1 − 𝑒𝑘𝛼𝑛−1/3)3𝑟 (1 + O( 𝜆4𝑛1/3)) .

(23)

Proof. We set

St (𝑛,𝑀, 𝑟) = 𝑛!( ( 𝑛2 )
𝑀
) (𝑛 −𝑀 + 𝑟)! ,

Ca (𝑛,𝑀, 𝑟)
= [𝑧𝑛]𝑊−1 (𝑧)𝑛−𝑀+𝑟 𝑒𝑊0(𝑧) (1 − 𝑇 (𝑧)𝑘)

3𝑟

(1 − 𝑇 (𝑧))3𝑟 .
(24)

First, using Stirling’s formula, we obtain

St (𝑀, 𝑛) = √2𝜋𝑛2𝑛−𝑀+𝑟𝑛𝑟 exp(−𝜆36 + 34 − 𝑛)
⋅ (1 + 𝑂( 𝜆4𝑛1/3)) .

(25)

Next, using Cauchy integral’s formula and substituting 𝑧
by 𝑧𝑒−𝑧, we obtain
Ca (𝑀, 𝑛) = 12𝜋𝑖 ∮(𝑇 (𝑧) − 𝑇 (𝑧)

2

2 )𝑛−𝑀+𝑟

⋅ 𝑒−𝑇(𝑧)/2−𝑇(𝑧)2/4 (1 − 𝑇 (𝑧)𝑘)3𝑟(1 − 𝑇 (𝑧))3𝑟+1/2 𝑑𝑧𝑧𝑛+1 = 2
𝑀−𝑛−𝑟𝑒𝑛2𝜋𝑖

⋅ ∮𝑔 (𝑧) exp (𝑛ℎ (𝑧)) 𝑑𝑧𝑧 ,
(26)
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where

𝑔 (𝑧) = (2𝑧 − 𝑧2)𝑟 𝑒−𝑧/2−𝑧2/4 (1 − 𝑧𝑘)3𝑟(1 − 𝑧)3𝑟−1/2 ,
ℎ (𝑧) = 𝑧 − 1 − log 𝑧 − (1 − 𝑀𝑛 ) log 11 − (𝑧 − 1)2 .

(27)

The contour in (26) should keep |𝑧| < 1. At the critical
value𝑀 = 𝑛/2, we also have ℎ(1) = ℎ󸀠(1) = ℎ󸀠󸀠(1) = 0. This
triple zero occurs in the procedure Janson et al. [1] used when
investigating the value of the integral for large 𝑛. Let ] = 𝑛−1/3,
and let 𝛼 be the positive solution of (3). Following the proof of
[1, Lemma 3], we will evaluate (26) on the path 𝑧 = 𝑒−(𝛼+𝑖𝑡)],
where 𝑡 runs from −𝜋𝑛1/3 to 𝜋𝑛1/3:

∮𝑓 (𝑧) 𝑑𝑧𝑧 = 𝑖]∫𝜋𝑛1/3
−𝜋𝑛1/3

𝑓 (𝑒−(𝛼+𝑖𝑡)]) 𝑑𝑡. (28)

The main contribution to the value of this integral comes
from the vicinity of 𝑡 = 0. The magnitude of 𝑒ℎ(𝑧) depends on
the real part of ℎ(𝑧), namely, Re ℎ(𝑧). Re ℎ(𝑒−(𝛼+𝑖𝑡)]) decreases
as |𝑡| increases and |𝑒𝑛ℎ(𝑧)| has its maximum on the circle 𝑧 =𝑒−(𝛼+𝑖𝑡)] when 𝑡 = 0.

We have for 𝑛ℎ(𝑒−𝑠])
𝑛ℎ (𝑒−𝑠]) = 13𝑠3 + 12𝜆𝑠2 + 𝑂 ((𝜆2𝑠2 + 𝑠4) ]) , (29)

uniformly in any region such that |𝑠]| < log 2. In [1, equation
(10.7)], the authors define

𝐴 (𝑦, 𝜇) = 12𝜋𝑖 ∫Π(1) 𝑠1−𝑦𝑒𝐾(𝜇,𝑠)𝑑𝑠, (30)

where𝐾(𝜇, 𝑠) is the polynomial

𝐾(𝜇, 𝑠) = (𝑠 + 𝜇)2 (2𝑠 − 𝜇)6 = 𝑠33 + 𝜇𝑠
2

2 − 𝜇36 (31)

and Π(𝛼) is a path in the complex plane that consists of the
following three straight line segments:

𝑠 (𝑡) =
{{{{{{{{{

−𝑒−𝜋𝑖/3𝑡, for −∞ < 𝑡 ⩽ −2𝛼;
𝛼 + 𝑖𝑡 sin 𝜋3 , for − 2𝛼 ⩽ 𝑡 ⩽ +2𝛼;
𝑒+𝜋𝑖/3𝑡, for + 2𝛼 ⩽ 𝑡 < +∞.

(32)

In particular, they proved that 𝐴(𝑦, 𝜇) can be expressed
as (5).

For the function 𝑔(𝑧), we have
𝑔 (𝑒−𝑠]) = (2𝑒−𝑠] − 𝑒−2𝑠])𝑟(1 − 𝑒−𝑠])3𝑟−1/2 𝑒−𝑒−𝑠]/2−𝑒−2𝑠]/4 (1 − 𝑒−𝑘𝑠])3𝑟

= (𝑠])1/2−3𝑟 𝑒−3/4 (1 − 𝑒−𝑘𝑠])3𝑟 (1 + 𝑂 (𝑠])) .
(33)

For 𝑔(𝑧)𝑒𝑛ℎ(𝑧) in the integrand of (26), we have

𝑒−𝜆3/6𝑓 (𝑒−𝑠]) = 𝑒−3/4]1/2−3𝑟 (1 − 𝑒−𝑘𝑠])3𝑟
⋅ 𝑠1−(3𝑟+1/2)𝑒𝐾(𝜆,𝑠) (1 + 𝑂 (𝑠]) + 𝑂 (𝜆2𝑠2])
+ 𝑂 (𝑠4]))

(34)

when 𝑠 = 𝑂(𝑛1/12). Next,
𝑒−𝜆3/62𝜋𝑖 ∮𝑔 (𝑧) 𝑒𝑛ℎ(𝑧) 𝑑𝑧𝑧
= 𝑒−3/4 (1 − 𝑒−𝑘𝛼])3𝑟 ]3/2−3𝑟𝐴(3𝑟 + 12 , 𝜆)
+ 𝑂(]5/2−3𝑟𝑒−𝜆3/6𝜆3𝑟/2+1/4) ,

(35)

where the error term has been derived from those already in
[1]. The proof of the lemma is completed by multiplying (25),
(26), and 𝑒𝑟.

Now, to complete the proof of the theorem, we use first
Lemma 2 to get

P (𝜉𝑛,𝑀 ⩽ 𝑘)
∼ ∑
𝑟⩾0

√2𝜋𝑒𝑟𝐴(3𝑟 + 12 , 𝜆) (1 − 𝑒−(𝑘+1)𝛼𝑛−1/3)3𝑟 . (36)

Next, using Euler-Maclaurin summation, and after a
change of variable (𝑥 = (𝑘 + 1)𝛼𝑛−1/3 so 𝑑𝑥/𝑑𝑘 = 𝛼𝑛−1/3
and 𝑑𝑘 = 𝛼−1𝑛1/3𝑑𝑥), we get

E (𝜉𝑛,𝑀) = +∞∑
𝑘=0

(1 − P (𝜉𝑛,𝑀 ⩽ 𝑘)) ,
∼ +∞∑
𝑘=0

(1
− ∑
𝑟⩾0

√2𝜋𝑒𝑟𝐴(3𝑟 + 12 , 𝜆) (1 − 𝑒−(𝑘+1)𝛼𝑛−1/3)3𝑟)
∼ ∫+∞
0

(1
− ∑
𝑟⩾0

√2𝜋𝑒𝑟𝐴(3𝑟 + 12 , 𝜆) (1 − 𝑒−𝑥)3𝑟)𝑑𝑘
∼ 𝛼−1𝑛1/3 ∫+∞

0
(1

− ∑
𝑟⩾0

√2𝜋𝑒𝑟𝐴(3𝑟 + 12 , 𝜆) (1 − 𝑒−𝑥)3𝑟)𝑑𝑥.

(37)

4. Conclusion

In this paper, we have studied the expectation of the maximal
length of 2-path in random critical graph by means of
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enumerative and analytic combinatorics approaches when
the size of the graph goes to infinity. Our analysis gives a
precise description of the parameter near the critical point.
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