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We are concerned with some existence and attractivity results of a coupled fractional Riemann-Liouville-Volterra-Stieltjes
multidelay partial integral system. We prove the existence of solutions using Schauder’s fixed point theorem; then we show that

the solutions are uniformly globally attractive.

1. Introduction

Fractional integral and fractional differential equations are
among the most fast growing field in mathematics. They
are used to describe many phenomena, especially the ones
with long memory. Examples include but are not limited to
viscoelasticity, viscoplasticity, biochemistry, control theory,
mathematical psychology, mechanics, modeling in complex
media (porous, etc.), and electromagnetism [1-4]. In recent
years, there has been a significant development in ordinary
and partial fractional integral equations; see, for instance, the
monographs of Abbas et al. [5-7], Agarwal et al. [8], Kilbas et
al. [9], Miller and Ross [10], Podlubny [11], Samko et al. [12],
and the papers [13-18] and the references therein.

In this paper we study the existence and attractivity of
solutions to the following coupled system of nonlinear frac-
tional Riemann-Liouville-Volterra-Stieltjes quadratic mul-
tidelay partial integral equations:
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where ] == R, x [0,b], b > 0, r,r, € (0,00), R, =
[0,00), 7,,& > 0, i = 1,...,m, T = max,_y__,{t;}, & =
max;_, &L o By i R, — R, g: R, xR, —

R,u; : ] — R, f;
given continuous functions, lim, |,  «(t)
are bounded, J' = {(t,x,s, y) € 2 s <t y < x},
() ;o T —R, j = 1,2, are continuous and bounded functions
with lim, _,,®;(f,x) =0, x € [=¢,b], pi(a(t),0) = @(t,0)
foreacht € R, and yj(oc(O),x) = (Dj(O, x), for each x € [0,b],
and T'(:) is the (Euler’s) Gamma function defined by

] xR — R,j = 1,2, are
=OO$ ”}’]z 1$2$

N LOO et dy (> 0. (3)

2. Preliminaries

In this section, we recall some notations, definitions, and
preliminary facts which will be used in this paper. L' ([0, p] x
[0,9]), p,q > O, will denote the space of all Lebesgue-
integrable functions u : [0, p] x [0,g] — R equipped with
the norm

P r4q
Iy = | | w0 et (4

BC = BC([-T,00) x [-&,b]) will denote the usual
Banach space of all bounded and continuous functions from
[-T, 00) x [-&,b] into R equipped with the standard norm

letllpc = sup
(t,x)€[~T,00)x[-&,b]

|u (2, x)] . (5)

It is clear that the product space € = BC x BC turns out to
be a Banach space if equipped with the norm

sl + 2l ac - (©)

Definition 1 (see [19]). Letr = (ry,1,) € (0,00) x (0,00), 0 =
(0,0) and u € LYo, pl x [0,q]). The left-sided mixed
Riemann-Liouville integral of order  of u is defined by

”(”1’”2)“%@ =

1

(st) () = 0Ty

L (7)
J J (t-1)"(x -9 u(r,s)dsdr,
0 Jo

provided the integral exists.

Example 2. Let A,w € (0,00) and r = (r,7,) € (0,00) X
(0, 00), then

FrA+M)T'(1+w) A7y
[
F(1+A+r)T(1+w+r,) 8)

[0,q] .

If u is a real-valued function defined on the interval [a, b],
then we will use the symbol \/Zu to denote the variation of u
on [a, b]. We say that u is of bounded variation on the interval

[a,b] x [c,d] — R,

r A w _
Iy =

for almost all (t,x) € [0, p] x

[a,b] whenever \/Zu is finite. If w :
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then the symbol \/'Z:Pw(t, s) indicates the variation of the
functiont — w(t, s) on the interval [p, q] C [a, b], where s is
arbitrarily fixed in the interval [c, d]. Analogously we define

7 pw(t,s). For more details on the properties of functions
of bounded variation we refer the reader to [20].

If u and ¢ are two real-valued functions defined on
the interval [a,b], then under some appropriate condi-
tions (see [20]) we can define the Stieltjes integral (in the
Riemann-Stieltjes sense)

b
j u () dop () )

of the function u with respect to ¢. In this case we say that
u is Stieltjes integrable on [a,b] with respect to ¢. Several
conditions are known to ensure Stieltjes integrability [20].
One of the most frequently used requires that u is continuous
and ¢ is of bounded variation on [a, b].

Now we recall a few properties of the Stieltjes integral
included in the lemmas below.

Lemma 3 (see [20, 21]). If u is Stieltjes integrable on the
interval [a, b] with respect to a function ¢ of bounded variation,
then

b
j u () do ()

b t
< j |u(t)|d<\/<p)- (10)

Lemma 4 (see [20, 21]). Let u and v be Stieltjes integrable
functions on the interval [a, b] with respect to a nondecreasing
function ¢ such that u(t) < v(t) for t € [a,b]. Then

b b
j u () do (1 sj v (t) dp (8) ()

From now on, we will also consider Stieltjes integrals of
the form

b
J u(t)dg(t,s) (12)

and Riemann-Liouville-Stieltjes integrals of fractional order
of the form

r—1
F(r) J (t-3s) u(s)dyg(t,s), (13)

where g : R, x R, — R,r € (0,00) and the symbol d,
indicates the integration with respect to s.

Let@ +# QO ¢ BC,and let G : Q — Q, and consider the
solutions of equation

(Gu) (t,x) =u(t,x). (14)

In light of the definition of the attractivity of solutions of
integral equations (for instance, [15]), we will introduce the
following concept of attractivity of solutions for (14).

Definition 5. A solutions of (14) is said to be locally attractive
if there exists a ball B(ug,7) in the space BC such that, for
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arbitrary solutions v = v(t,x) and w = w(t,x) of (14)
belonging to B(u,, 17) N Q, we have that, for each x € [0, b],

tlgréo (v(t,x) —w(t x)) =0. (15)

When the limit (15) is uniform with respect to B(uy,#) N Q,
solutions of (14) are said to be uniformly locally attractive (or
equivalently that solutions of (14) are locally asymptotically
stable).

Definition 6 (see [15]). The solution v = v(¢, x) of (14) is said
to be globally attractive if (15) holds for each solution w =
w(t,x) of (14). If condition (15) is satisfied uniformly with
respect to the set ), solutions of (14) are said to be globally
asymptotically stable (or uniformly globally attractive).

Lemma 7 (see [22], p. 62). Let D C BC. Then D is relatively
compact in BC if the following conditions hold:
(a) D is uniformly bounded in BC.

(b) The functions belonging to D are almost equicontinuous
on [-T,00) x [=&,b], ie., equicontinuous on every
compact subset of [T, 00) x [, b].

(¢) The functions from D are equiconvergent; that is, given
€ >0, x € [-&,b], there corresponds A(e, x) > 0 such
that |u(t, x) — lim,__, u(t, x)| < € for any t > A(e, x)
andu € D.

3. Existence and Attractivity Results

Definition 8. By a solution to problem (1)-(2), we mean every
coupled functions (1, v) € BE such that (u, v) satisfies (1) on
Jand (2) on J.

We will use the following assumptions in the sequel:

(H,) There exist positive functions pj€ BC; j=1,2such
that

(I+a®)|u(@®),0|<pjt,x); (Ex)e].  (16)

(H,) Forallt,,t, € R, suchthatt, <t,,the function s —
g(ty,s) — g(t,,s) is nondecreasing on R, .

(H;) The function s — g(0, s) is nondecreasing on R, .

(Hy) The functions s +— g(t,s) and t +— g(t,s) are
continuous on R, for each fixedt € R, ors € R,
respectively.

(H;) There exist continuous functions q;; : J 'S R,i=
1,...,m, j = 1,2 such that

(1 o+ |u2,~|>)

|f; (t’x’s’y’ull’uZI’""ulm’u2m)| 17)
m

< ) (qui (x5, ) |ugs] + i (8,5, ) [un)) 5
i

3
for (t,x,5,y) € J, upuy € Ryi = 1,...,m.
Moreover, assume that
B®) -
lim J (B@)=s)" q;(tx,s,y)dsg (t,5) = 0;
t—00 0 (18)

i=1,...,m j=12.

R;zmark 9. Set CD; = sup 7P ;(t x), p; = SUP(; ey Pyt
X)s

. 1 JM r( (t) - s
L= sup ——————— t)—s)!
G SR T b b P

(19)
(=) g5 (8 x5, y) dyd, (\/g (t k)) ;
k=0
fori=1,...,mand j = 1, 2. From the above assumptions, we

. * * * .
infer that @7, p;, g;; are finite.

Theorem 10. Assume that hypotheses (H,) — (Hs) hold. Then
problem (1)-(2) has at least one solution in the space BE.
Moreover, solutions to problem (1)-(2) are uniformly globally
attractive.

Proof. Define the operators N; : BC — BC; j = 1,2 by

(Nju;) (t,x) = ®; (t,x); (6x) €],

(Nju;) (8,5) = i (@ (1), %) + - 1

(r) T (ry)

O r—1 =1
1 [ 6O-97" =0 g s,
0 0 (20)

w (Y@ -1py=8) () -1,y-§),...,
u (P =T ¥ = &)
w,(Y() =Ty = &) dydig (£,5);

(t,x) €],

and consider the operator N : B€ — BE such that, for
any (uy,u,) € BE,

(N (up,uy)) (6, x) = (Nyuy) (£,%), (Nyu,) (8, x)) . (21)

From the hypotheses above, we deduce that N(u) is continu-
ous on [T, 00) x [-&,b]. Now let us prove that N(u,u,) €



SBE foranyu; € BC;
we have

1
|(Nju)) (&, x)| = ’y(oc(t),x) + NECN)

.Lﬁ(oj (B —s)"" (x— )"

x fi(t.x 8y (y(5) =7,y = &)1, (Y () — 71y

&)ty (Y() =T ¥y = &) sty (Y () = T ¥

pj (£, x)
1+al(t)

i Lo

x 3 (qui (62,5, 9) |uy (v () =7y = &)

i=1

-&,))dydg(t,s)| <

+

(22)

+ay (6%,5, ) [uy (v () -7y = &)|) dy d,

I B
g t,9)| < p; (h@*'m L L (B®

INGE!

=) =) ) Y (@ (635, 9)

Il
—

+ a5 (%5, y)) dy d (\/g (t, k))

k=0

m
* * *
<p;t § Qi t 9>

i-1
and for all (¢, x) € J and each uj € BC, j=1,2,wehave
|(Nju)) (&, %)| = |0, (t, x)| < @} (23)
Thus,
m
[N ()] 5 < max {q)j’pj + ;qﬁ} =15

j=1,2.

(24)

Hence

IN (1, 105) | g < 11+ 112 5= 1 (25)

Therefore N(u) € BC. The problem of finding the
solutions of the coupled system (1)-(2) is reduced to finding
the solutions of the operator equation N(u,u,) = (u,u,).
From (25), we infer that N transforms the ball B, :=
{(u, uy) € BE : (uy, u,)llge <yt into itself. Now we will
show that N : B, — B, satisfies the Schauder’s fixed point

j = 1,2. For arbitrarily fixed (¢, x) € ],
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theorem [23]. The proof will be presented in several steps and
cases.

Step 1 (N is continuous). Let {(u,,, v,,)},cn be a sequence such
that u, — wandv, — vin Bq. Then, for each (t,x) €
[-T, 00) x [-&,b], we have

|(N1”n)(t, x) — (N;u) (t,x)| <

T b0 e

v
T(r)T(ry)

1
<[ (b x5y,

u, () =1y =8): v, (v () -1y = &)

y (Y () =T Y =) Y (y () =Ty = &,))  (20)
~htbxs yuly©) -my-4§),

vy () =ty —&)s s u(y ()~ Ty — &),

V(Y () = Ty = &) dy dy <\/g (t,k)>-

k=0

Case 1. Assume that (f,x) € J U ([0,a] x [0,b]); a > 0,
then, since (u,,v,) — (u,v) asn — oo and f}, g,y are
continuous, (26) implies

[N (4,) =N W) 4y — 0 asn— oo. (27)

Case 2. Let (t,x) € (a,00) x [0,b]; a > 0, then from (H;)
and (26) we obtain

|(N1un) (t> X) - (Nlu) (f, X)l <

2z

()T (ry)
OB | et

7] o= =y

X

INgE

(91 (t. 2,5, y) + @5 (£, x,5, y)) dy d

Il
=

i

-<\7g(t,k)> i (28)
k=0 i=1 r

Tz)
Bt) rx
|| o= -y
0 0
X (qu; (%5, y) + @y (£, x5, y)) dy d

~<ngm>.
k=0

Since t — 00, then (28) gives

[Ny (4,) = Ny @)||go — 0 as n — o0. (29)
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Let us show that N, is continuous in the same way as
continuity of N;.

Step 2 (N (B,]) is uniformly bounded). This fact is obvious
because N (B”) C B, and B, isa bounded set.

Step 3 (N(B,) is equicontinuous on every compact subset
[0,a] x [0,b] of ], a > 0). Let (t,, x;), (¢,, x,) € [0,a] x [0,b],

t, < tp X < X, and let (u,v) € B,. Without loss of
generality, let us assume that 3(t,) < 5(t,). Then we obtain

|(Nyu) (£, x5) = (Nyu) (81, %0)| < [y (e (£2) 5 x5)

)l s [ 6

0 0

- S)rl_l (%, = Y)Tz_l x |f1 (ty x5 y,u(y (s) =71,y

&) vy -ty =) u(y () - Ty
_Em)’v(y(s) _Tm’y_fm))_fl (tl’xl’s’y’
u(y(s) -ty -8&)v(y® -1,y -&),...,

u(y(s) =Ty =) v (Y () = T ¥
-&,))|dyd; <\/g (ts) k))
k=0

1 Bty x; r-1
W irnd M R ORDANC
- Y)Tz_l X lfl (tpxp s yuly(s) -1,y -§),

vy ) =ty =&) s u(Y(8) = Ty = &4

V(Y () =1,y = §,))| dyd, (\i/g (tz’k)>

N 1
T(r)T ()

. Jﬁ(tl) J»xl '(ﬁ (t,) - S)rl—l (x, - y)rz—l

0 0
~(B(t) =) (x, =)
u(y(s) -ty -&),v(y® -1,y -&),...,

X |f1 (ty, X158, y,

u(y(s) =Ty =) v (Y () = 1,0 ¥

—sm»ldyds(k\S/g (mk))

N 1
I (r)T(ry)

. J'ﬁ(tl) J'xz (B(5,) - 5)71—1 (x, - y)rz—l

0 X,

x| fi (£,

x5Sy u(y () =1,y =&) . v(y6) -1,y =&) 5.y
Uy () =Ty =) v (Y () = Ty y

—s,n))ldm(\i/g(tl,k)).

(30)

Thus

|(Nyu) (5, ;) = (Nyue) (81,,)| < [y (e (22), x,)

) )l [ [ e

TTET b b
=) (= ) x| f (x5 o (Y () =Ty
&) vy -ty =&) . u(y () = 1y
=&n) v (Y () = Ty = &) — f1 (b1 X159,
u(y@-my=8).vy &) -1y-8),...,
u(y () =Ty = &) v (¥ () = Ty

- Em))| dyd, <\5/g (tz)k))

k=0

B -

+ —_—
F(rl)l"(rz) Bty Jo

ry—1

=) %) (qui(txs,y) +ay(tx,s, y))dyd,

Mz

§ 1
' <Vf’ “””) T ()

. Joﬁ(tl) J:l '(ﬁ (t;) - s)rr1 (x, - y)rz—l

I
—_

(31)

CBE) - - ) xS (@ (605 )

+q2i<t,x,s,y)>dyds(k\}g<t1,k))
JO N
F(rl)l"(rz)
Bt 2 -1 -1
T ) = =)

x ) (@ (tx,5) + qy (6 x5, y)) dy d,

1

-(\b(mk))

k=0

Il
—_

Using continuity of the functions yy, &, 5, v, f1, 9, h.q;> i =
1,...m, and since t; — t, and x; — x,, the right-hand
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side of the above inequality tends to zero. The equicontinuity Step 4 (N (B,]) is equiconvergent). Let (f,x) € Jand u € B,
of N, for the casest; <t, < 0,x; <x, <Oandt, <0<t,,  thenweget
x; €0 < x, is immediate.

We can also prove that (N (1) (6] < |y (@ (0)., )] + e )1r o
(N 16,9) (t,25) = (N 14,9) (81,1 v
: 1 @O0 e s
—|.‘/‘2(0‘(t2)rx2)_P‘z(“(tl)»xlﬂ+m o o Y 1\bLX S, ),
' LM sz (B(t:)=9)"" (5= )" x| fo (b T ny =B @ m8)
%8 u(y() =1y =&),v(y () -1,y = &), “© =ty =Ln),
u(y () =Ty = &) v (¥ () = T y = §1)) v(y(s)=1,,y—£,)) dyd.g(ts)
- fH(tuxnsyu(y) -1,y -&),v(y(s) -1,y
_ _ B _ 1
&)sons u(y (SS) T ¥V =) v (Y (8) = T, y +|uy (e (1), )| + T T
- Em))l dyds (\/g (tl’k)> B x r— r—
S BO-9 T a x fxs

rer e [ P ) -9

[(r)T(ry) Jpen Jo ”(V(S)_Tl’y—fl)’v()’(s)—71))/—51) -----
S xS (@ (b5 ) + aw (6505, ) dyd, w(y () =Ty = &)
k) 1 (32) v(y(S) =T y = &) dy dog (£, 5)
. t,, P
<k\/o“”’2 >+r<n>r(rz> .
Pl (t>x) 1 x r—1
ﬁ(t1) X1 _
1[I -9 -0 “Tra@) T)I(0) J, ], eo-9 e
CBE) - ) Y (g (b ) =) % Y (qy (B x5, y)
i=1 i=1
+ @i (%5, ) dy d <k\=/0g (fpk)> + gy (8%, y)) dyd, (\S/g *, k)>
k=0
1
R SETEEY Bt) rx
[(r)T(r,) p, () 1 e
2 e T () J, ], eo-9

m
-1
(=) x ) (g (x5, y)
i=1
X (@i (%5, ) + 4 (:x,5, y)) dy d,

i=1

b (605, )) dyd, (\/g . k>)

’ (\S/g(tl’k)> — 0, asty — 1y, x — X, k=0
k=0
pi P, )
Hence = 1+oc(t)+1+oc(t)+i;1“(rl)1“(r2)
|(N (u, ) (£5,x,) = (N (,)) (21, x1)| o
r-1 -l )
< |(Ny) (£ %3) - (Ny) (£, " . JO jo B - (x=9)" 7 x(qu (8. x5,

+|(Nyv) (5, x5) = (N,v) (81, %,)| — 0,

y) + a4y (x5, ) dy d, <\/g (t, k)) :

ast; — t,, X — X,. k=0
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Now, since a(t) — oo ast — 00, we conclude that, for each
x € [0, b], we obtain

(N (7)) (%) — 0, ast— +co.  (35)

Also, for each x € [-£,0], we get

(N (u,v)) (t, x)| < |®1 (t,x)| + |CD2 (t, x)l — 0,

(36)
as t — +00.
Then, for each x € [, b], we get
(N (u,v)) (t,x)] — 0, ast— +oo. (37)
Hence,
[((N (u,v)) (t, x) = (N (u,v)) (+00, x)| — 0,
(38)

as t — +00.

In view of Steps 1 to 4, along with the Lemma 7, we deduce
that N : B, — B, is continuous and compact. From an
application of Schauder’s theorem [23], we conclude that N
has a fixed point (u,v) which is a solution of the coupled
system (1)-(2).

Step 5 (the uniform global attractivity of solutions). Now let
us study the stability of solutions of the coupled system (1)-
(2). Let (4, u,) and (vy, v,) be two solutions of (1)-(2). Then,
for each (t, x) € [T, 00) x [-&, b], we obtain

[(uy5 1) (&, %) = (v1,v3) (8, 2)] = [(N (14, 45)) (£ x)

- (N (vi,1,)) (6 x)| < m
B) rx - L
.Jo J-o B®)=s)"" (x=y)" x|fi(t.xs

u (Y -1y =8),u (y () -1,y =&

u (Y ) =Ty = &) st (¥ () = T y = &)

- filtbxs v (Y -1,y -&),

O -1y =8) v ()~ Ty =)

Vv (Y (8) = T y = &,0))| dy dig (£, 5) (39)

1 B()

AT B0 )

x| (txs, you (y () -1y = &),

() =1y &)t (Y ()~ Ty = &)
Uy (Y () = Ty y = &) = fo (£ %,5, 3

vy -1y-8) ) -1y -§&)....
Vi (Y9 =Ty = &)

V(Y () = T y = &)) dy dig (£.5) .

Thus
|(u1,u2) (t,x) - (Vl’ Vz) (t, x)| = |(N (”1’“2)) (t, x)

- (N () (9] < W

Bt x . L
.Jo .[o BO =) (x=p)" x|fi(txsy,

wy () =1y =& )y () — 1,y = &),
Uy (Y(S)_Tm’y_gm)’uZ(y(s)_Tm’y_gm))
- filbxsyv (y(s) —m,y-&),
VZ(Y(S)_Tl’y_El)""’Vl (V(S)_Tm7y_€m)7
%Owﬂ—nwy—EMNdy¢<\hﬂnM> (40)
k=0

N 1

L (r)T(ry)

X Ifz (t’ X8 YUy (s) =T,y — 51)’”2)’(5) —T5Y

Lﬁ(t) Lx (B(t) - S)rl_l (x— y)rz—l

=& (P () = Ty = 6) sty (Y (8) = Ty
&) -5 (t,x,s,y,vl (Y(S)_Tp)’_fl)’
Vz(V(S)_Tl’J’_El)’~~->V1 (Y(S)_Tm’y_gm)’

Vy (Y (S) T Y — Em))l dyds <\/g (t) k)) .

k=0
Hence

|(uy, 1) (8, %) = (v1,v3) (£, %)] = (N (w1, 1)) (£, x)
2

- (N (v,1,)) (0)] < T

. J'Oﬁ(t) Lx (B - S),l—l (x— y)rz—l

X D (@ (%5, y) + @y (£ %, 5, y)) dy d,
i=1

s 2
'(Mg“’k’> “Trr()

' i Lﬁ(t) Lx (B®)=9)"" (x=y)*"

=1

(41)

X (qui (8,5, y) + @i (£, %, 5, y)) dy d
-<ngm>.
k=0

By using (41) and (H;), we obtain

Jim (g, 15) (£, x) = (v4,v,) (£, x)| = 0. (42)



Therefore, all solutions of the coupled system (1)-(2) are
uniformly globally attractive.

Let BC := BC" (product space) be the Banach space
equipped with the following norm:

)l = kZ letel - (43)
-1

O

(775

From the above theorem, we deduce the following conse-
quence.

Corollary 11. Consider the system of nonlinear fractional
Riemann-Liouville-Volterra-Stielties quadratic multidelay
partial integral equations of the form

1

T (r)T(ry)
B )
] o= ey

0

uy (6,x) =y (x(t),x) +

% fi (t %59,

u (Y&) -1,y =8) (O -1y = &),
(V&) =75,y = &) s (¥ () = T y =€) »
Uy (YS) =Ty =€) 55
Uy (Y () = Ty y = &) dy dg (8,5)
uz(t,x):‘uz((x(t),x)+m

B®) -
[T [ B@O-97 - s s
u (Y() =1,y =§) (O~ 1,7 = &),
U (Y() =1y =&1) sty (V) = Ty = &) > (44)
uy (y (s) - -

(

,yf)..
£n)

u, (y(s) =7, Ydyd.g(t,s)

un(t’x):.un(‘x(t)sx)"'m
1 2
B®) . .
I [ 6o-9 - < s,
u (Y$) =1,y =8) () =1y = &),
U, () =15y = &) sty (Y(8) = T ¥y = &) s
w(Y(S) =Ty =)
u, (Y (8) = T y = £,,)) dy d.g (£,5) 5
(t,x) €],
u, (t,x) = Oy (t,x)
u, (t,x) = O, (t, x)
(45)
un(t,x)=®n(t,x);

(t,x) € ] = [T, 00) x [~&,b] \ (0,00) x (0,b],
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where r,r, € (0,00), 7,8 > 0;i = 1,....m T =
max; {7} & = max, &) o By R, — R, g:
R,xR, — R, ;i ] — R, f: 'xR™ — R, j=1,...,n
are given continuous functions, lim, _, a(t) = 00, p; j =
1,...,n are bounded, J' = {(t,x,s,y) € s <t y < x},
Q;: J — R; j = 1,2 are continuous and bounded functions
with lim,_,,®;(t,x) = 0; x € [-&, 0], pi(a(t),0) =
(Dj(t, 0) for eacht € R, and yj(oc(O),x) = CDj(O,x);for each
x € [0,b].

Suppose that (H,)—(H,) and the following assumptions are
verified:

.....

(H,) There exist positive functions pj € BC j=1,....n
such that

+a®)|u(@®),x)|<pjt,x); (Lx)e].  (46)

(H;) There exist continuous functions q; : J  — R, i=

L,...,m, j=1,...,n, such that

(155

[\/]§

)|fj(t,x,s,y,ull,u21,...,unl,...,

i=1 j=1
(47)
m n
Ul s Uppps v+ s Ups Uy | < Z t X8y |uﬂ|
i=1 j=1
for(t,x,s,y)e],uﬂele—l m,j=1,...,n
Moreover, assume that
p® -1
lim J (B@) =s)" q;i(t.x,s,y)dg (t,5) = 0;
t—00 0 (48)

i=1,....,m, j=1,...,n

Then problem (44)-(45) has at least one solution in the space
BC. In addition, the solutions are uniformly globally attractive.

4. An Example

To illustrate our results, we consider the following
coupled system of nonlinear fractional order Riemann-
Liouville-Volterra-Stieltjes quadratic multidelay partial
integral equation

e l(zyfwﬁyﬁw

1+t T(r)T(r

ri—1 r,—1
= =) (s

; ) “1()’(5)_i’)’_2)>

u(r -3+
uz(V(S)— %,y— )
(

up (t,x) =

u, [ y(s) - i,y - 2)) dydg(t,s)
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2 —t
x“e 1

Bt) rx
T+t T(r)T(r,) Jo Jo (B®

9 =) (s

(r&-37-1)m (y©-1.0-2),
u2<y(s)—%,y—l>,
(

u, (t,x) =

u (y@s)-=

1
u, [ y(s) - Z,y— 2>>dydsg (t,s);

(t,x) €],
(49)

u, (t,x) = x’e
2

X
up (6%) = T3 (50)

(t,x) €T = [—%,oo) « [=2,1]\ (0,00) x (0, 1],

where ] =R, x[0,1],7, = 1/4,1, = 1/2,a(t) = B(t) = y(t) =
LteR,,

xet

pla(t),x) = s

(t,x) e R, x[0,1],

fl (t’x’ S, Vs Uyps Uy, Vs Vz)

xs 3 (|tr] + |uo| + 1| + |v,]) sin \/?sins.
(L+ 92+ 2) (L+ uy| + Jua| + [v1] + |va])

if (tbxsy)els s#0, yel0l], upup,v,v, €R, (5
1 (6%,0, y,uy,uy,v1,v,) = 05
if (t,x)e], yel01], upuyvy,v, €R,

f2 (t, X8, Y, Uy, Uy, Vs Vz)

x5~ (|tg] + |ua] + |[v1| + |v,]) sin Ve

1+ |u1| + |u2’ + |v1| + |v2|

if (t,x,s,9)¢€ ]',y € [0,1] and uy,u,,v,v, €R,

J = {(t,x,s,y) efis<t, ygx},
g(t,s) =s, (52)

(t,s) e R%.

First, we can see that lim, , «(t) = oo and
lim, _,,®;(t,x) =0; j=1,2. Next, the assumption (H,) is

satisfied with p;(t,x) = x*¢”" and consequently pJ = L

Also, it is clear that the function g satisfies assumptions
(H,) - (H,).

Finally, the functions f;, j = 1,2, satisfy the assumption
(H;). Indeed, f; are continuous and satisfy the inequality

‘f]’ (%, 5,y up, 1, "1"’2)‘

_ @ (6x5.9) (] + 1)) + @, (855, 9) (] + ) O3
B L+ ug| + [uy| + [vi] + v
(t,x, s, y) € J's ty, uy, vy, v, € R. Also, we have
(t,%,5,y) = xs~/* sin tsins.
DALY = 1+y2+2
54
(t,x,s,y) €], ye[0,1], s#0, (54)
q, (6,x,0,y)=0; (t,x)e], ye[0,1].
and
g, (t, %, 5, ) = xs* sin Vie™;
(55)

(t,x,s,y) €], yel0,1].

Fori = 1,2, we have also

t
J (t=)"" g (62,5, y) dog (t,5)
0

t
< J (t- s)_3/4 xs M |sin Vi si
0

(\/g (t, k)> < x'sm \/—|J (t- s)_3/4 sds (56)

<xF2(1/4) sin VE|  xT%(1/4) 0
T oWm Vi Vrt
as t — 00,
and
U T ()T (r)
J J t-5)"" (x-y)" " g (t.x,s,y) dyd,
y (57)
B xF(1/4) sin Vt
<Vg0)> sop = 7
U@
T

Consequently, Theorem 10 implies that the coupled system
(49)-(50) has a solution defined on [-1/2,00) x [-2,1];
moreover solutions of this system are uniformly globally
attractive.
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