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This paper studies continuous nonlinear economic dynamics with a continuous delay of a Kaldor type modified in dimension two.
The important results are, on the one hand, the boundedness of solutions, the existence of an attractive set, and the permanence of
the system and, on the other hand, the local and global stability of equilibrium points.

1. Model

The complex nonlinear dynamic has been introduced into
the analysis of economic phenomena to explain not only the
fluctuations observed in the series studies but also the eco-
nomic crisis in the capitalist system. Thus, economists such
as Goodwin (1967) and Kaldor (1955-1956) have employed
dynamicmodels to explain that the cyclic and chaotic growth
curves are the economic phenomena endogenous to the
capitalist system itself. Within the framework of structural
reforms for economic dynamics, NINDJIN et al. in [1] suggest
a proven model originating from ecology which could have a
certain range in analysis and regulation of financial systems.
This model of dimension two describes how the GDP and
an economic capital interact in accordance with the model
of Kaldor modified in order to increase the resilience of
these dynamics against possible disruptions. Mathematical
analysis of thismodel (see [1]) demonstrates that it is bounded
and permanent and admits under certain circumstances an
attractive set. On the one hand, this permanence manifests
itself in the form of stationary growth of capital stock and
product (stable interior equilibrium point). On the other
hand, it appears in the capital cyclic growth and the product
(limit cyclic). So, a capital stock rupture or a long-term
production is prevented. It is also shown that the financial
system stability (relative to the capital and the product) is

overall; i.e., it does not depend on either stock level or
production at the initial time. Facing a possible disruption
of one of the control parameters of the economic system, we
have analyzed, in [2], the model bifurcations. We have shown
that the model admits a transcritical bifurcation, a pitchfork
bifurcation or a Hopf bifurcation. In the last one, when the
model is disrupted, it changes from a stationary balanced
growth to a cyclic growth by preventing a GDP or capital
crisis. Interactions between the GDP and the economy’s
capital could not be clearly and definitively understood or
explained regardless of past situations which may affect the
present or the future. In this paper, we are going to focus
on the way in which investments are evolved and savings
are established. Indeed, economies finance their investments
through their own savings or those of other economies
via financial structures with an interest rate. Regarding the
savings, it is known that they are made up of a portion of
profits or wages. Thus, when the economy is able to be self-
funding by its savings, then the net profit increases 𝜋𝑛𝑒𝑡 =𝜋 − 𝑟𝐷 (i.e., profit, 𝜋 deprived of the portion set aside to pay
interest, 𝑟 debt, 𝐷). So, saving at a time 𝑡 depends on the net
profit; consequently, the GDP from a time 𝑡0 = 𝑡 − 𝑇 where𝑇 > 0. Let us suppose that 𝑇 is the deadline needed by this
saving to reach a certain threshold likely to ensure the self-
financing of the investments of the economy.
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Let us consider the dynamics with no delay of the
modified Kaldor type and the following assumption:

�̇� = [𝑎0𝑌(1 − 𝑌𝐶0)]
+ 𝛼 (𝑎1𝐾 + 𝑏1) 𝑌(1 − 𝑚2𝐾𝑌 + 𝐶2)
− [𝛼 𝑚1𝑌𝑌 + 𝐶1 ]𝐾,

�̇� = [(𝑎2𝑌 + 𝑏2) (1 − 𝑚2𝐾𝑌 + 𝐶2)]𝐾 − 𝐾,
𝑌 (0) > 0, 𝐾 (0) > 0, 𝑌,𝐾 ∈ 𝐶1 ([0; +∞ [ ;R+) ,

(1.1)

with (𝑎0, 𝐶0, 𝐶1, 𝐶2, 𝑚1, 𝑚2, 𝛼) ∈ (R∗+)7 and (𝑎1, 𝑎2, 𝑏1,𝑏2, ) ∈ (R+)5.𝑌 denotes the product,𝐾 denotes the stock of capital, and�̇� and �̇� indicate, respectively, the growth rate of the product
and the stock of capital depending on the following economic
parameters:

(i) 𝑎0 the trend of rate of increase in GDP for a given
(future) period in absence (or in neglect) of the losses,

(ii) 𝐶0 themaximum (monetary) value ofGDPwe can get
from this economy for that given period,

(iii) 𝛼 the currency adjustment factor,

(iv) 𝑚1 the maximum (monetary) value of the genuine
saving of this economy for the given period,

(v) 𝐶1 the maximum (monetary) value of the saving
supported by the economy in the given period,

(vi) 𝑚2 the maximum value of the investment rates losses
for the given period,

(vii) 𝐶2 the maximum capital stock for the given period,

(viii) 𝑎1 the derivative relative to the capital of the invest-
ment rate in the absence (or in the neglect) of the
losses (when𝑚2 = 0) for the given period,

(ix) 𝑏1 the investment rate when the capital is null (𝐾 =0) and this rate has suffered no loss (𝑚2 = 0) for the
given period,

(x) 𝑎2 the share of the GDP converted into stock of capital
for the given period,

(xi) 𝑏2 the accumulation rate of capital when the product is
null (𝑌 = 0) and that the investment rate has suffered
no loss (𝑚2 = 0) for the given period.

(see [1], page 4).

Assumption 1. The ratio saving-capital 𝑔(𝑌,𝐾) = 𝑚1𝑌/(𝑌 +𝐶1) at a given time 𝑡 depends on the GDP produced since 𝑡0 =𝑡 −𝑇 with a probability of exponential lag (see, [3], appendix,
page 272).

So, the ratio saving-capital with delay is 𝑔(𝑡, 𝑇) =𝑚1𝑥(𝑡)/(𝑥(𝑡) + 𝐶1) with 𝑥(𝑡) = ∫𝑡
𝑡−𝑇

𝜇𝑒−𝜇(𝑡−𝜉)𝑌(𝜉)𝑑𝜉 so that
∫𝑡
−∞

𝜇𝑒−𝜇(𝑡−𝜉)𝑑𝜉 = 1, 𝜇 ∈ R∗+. Then,

�̇� = −𝜇 (𝑥 − 𝑌) − 𝜇𝑒−𝜇𝑇𝑌 (𝑡 − 𝑇) . (1)

By replacing 𝑔(𝑌,𝐾) by 𝑔(𝑡, 𝑇), one obtains continuous
nonlinear economic dynamics with a continuous delay of a
Kaldor type modified in dimension two. Enclosing (1) to the
systemwith a continuous delay, one gets the following system
with discrete delay in dimension three:

�̇� = 𝑎0 [1 − 𝑌𝐶0 ]𝑌
+ 𝛼 (𝑎1𝐾 + 𝑏1) [(1 − 𝑚2𝐾𝑌 + 𝐶2)]𝑌
− 𝛼 [ 𝑚1𝑥𝑥 + 𝐶1 ]𝐾,

�̇� = (𝑎2𝑌 + 𝑏2) [(1 − 𝑚2𝐾𝑌 + 𝐶2)]𝐾 − 𝐾,
�̇� = −𝜇 (𝑥 − 𝑌) − 𝜇𝑒−𝜇𝑇𝑌 (𝑡 − 𝑇) ,
𝑌,𝐾, 𝑥 ∈ 𝐶1 ([0; +∞ [; R+) , 𝑌 (0) > 0, 𝐾 (0) > 0,

(1.2)

with (𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐0, 𝑐1, 𝑐2, 𝑚1, 𝑚2, , 𝛼, 𝑇, 𝜇) ∈ (R∗+)14,𝑌𝑡(𝜃) = 𝑌(𝑡 + 𝜃), ∀𝜃 ∈ [−𝑇; 0], and the feedback function𝑌0 = 𝜑1 ∈ 𝐶([−𝑇; 0];R+) is consequently 𝑌0(0) = 𝑌(0).
To facilitate the qualitative study of system (1.2)

which possesses 14 parameters (𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐0, 𝑐1, 𝑐2,𝑚1, 𝑚2, , 𝛼, 𝑇, 𝜇) ∈ (R∗+)14, let us change the variables by
reducing the number of parameters.

Let us define the new variables:

𝜏 = 𝑎0𝑡,
𝑢 (𝜏) = 𝑌 (𝑡)𝑐0 ,
V (𝜏) = 𝑚2𝑐0 K (t) ,
𝑤 (𝑡) = 𝑥𝑐0 = ∫𝑡

𝑡−𝑇
𝜆𝑒−𝜆(𝑡−𝜉)𝑢 (𝜉) 𝑑𝜉.

(2)

Let us define the new parameters of control:

𝛽1 = 𝛼𝑎1𝐶0𝑎0𝑚2 ,
𝛽2 = 𝑎2𝐶0𝑎0 ,
𝛼1 = 𝛼𝑏1𝑎0 ,
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𝛼2 = 𝑏2𝑎0 ,
𝑑1 = 𝐶1𝐶0 ,
𝑑2 = 𝐶2𝐶0 ,
𝛾 = 𝛼 𝑚1𝑎0𝑚2 ,
𝛿 = 𝑎0 ,

(3)

𝑇 = 𝑎0𝑇, and 𝜆 = 𝜇/𝑎0.Then, system (1.2) becomes

�̇� (𝜏) = [1 − 𝑢 (𝜏)] 𝑢 (𝜏)
+ (𝛽1V (𝜏) + 𝛼1) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2)𝑢 (𝜏)
− 𝛾𝑤 (𝜏)𝑤 (𝜏) + 𝑑1 V (𝜏) ,

V̇ (𝜏) = (𝛽2𝑢 (𝜏) + 𝛼2) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2) V (𝜏) − 𝛿V (𝜏) ,

�̇� (𝜏) = −𝜆 (𝑤 (𝜏) − 𝑢 (𝜏)) − 𝜆𝑒−𝜆𝑇𝑢 (𝜏 − 𝑇) ,
𝑢, V, 𝑤 ∈ 𝐶1 ([0; +∞ [; R+) 𝑢 (0) > 0, V (0) > 0, 𝑤 (0) > 0,

(1.3)
with (𝑑1, 𝑑2, 𝛾, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛿, 𝑇, 𝜆) ∈ (R∗+)10 and 𝑢0 =𝜑 ∈ 𝐶([−𝑇; 0];R+) so that 𝑢0(0) = 𝑢(0).
In the long run, we shall adopt the following notations:

𝜑 = sup
𝜃∈[−𝑇;0]

{𝜑 (𝜃)} ,
𝑘 = 1 − 𝑒−𝜆𝑇,

and 𝑤 (0) = ∫0
−𝑇

𝜆𝜑 (𝜃) 𝑒𝜆𝜃𝑑𝜃.
(4)

2. Boundedness and Equilibria Points of (1.3)
2.1. Boundedness of the Solutions of Model (1.3)
Lemma 2. The interior int(R3+) and the boundary 𝜕(R3+) of a
positive cone R3+ are invariant for model (1.3).
Proof. Given 0 ≤ 𝑇0 < +∞. Let 𝜏 be in [−𝑇; 𝑇0[. One knows
that

𝑢 (𝜏) = 𝑢 (0) exp{∫𝜏
0
[1 − 𝑢 (𝑡) + (𝛽1V (𝑡) + 𝛼1) (1 − V (𝑡)𝑢 (𝑡) + 𝑑2) − 𝛾V (𝑡) 𝑤 (𝑡)𝑢 (𝑡) (𝑤 (𝑡) + 𝑑1)] 𝑑𝑡} ,

V (𝜏) = V (0) exp{∫𝜏
0
[(𝛽2𝑢 (𝑡) + 𝛼2) (1 − V (𝑡)𝑢 (𝑡) + 𝑑2) − 𝛿] 𝑑𝑡} ,

𝑤 (𝜏) = 𝑤 (0) exp{∫𝜏
0

−𝜆 (𝑤 (𝑡) − 𝑢 (𝑡)) − 𝜆𝑒−𝜆𝑇𝑢 (𝑡 − 𝑇)𝑤 (𝑡) 𝑑𝑡} .
(5)

Thus, on the one hand, (𝑢(0), V(0), 𝑤(0)) ∈ 𝜕(R3+) ⇒(𝑢(𝜏), V(𝜏), 𝑤(𝜏)) ∈ 𝜕(R3+), and, on the other hand, (𝑢(0),
V(0), 𝑤(0)) ∈ int(R3+) ⇒ (𝑢(𝜏), V(𝜏), 𝑤(𝜏)) ∈ int(R3+).
Lemma 3 (see [4]). Given (𝐴, 𝐵) ∈ R2+ and 𝜙 a continuous
and derivable function as there is 𝑡0 ≥ 0 verifying 𝜙(𝑡0) > 0.
Then, ∀𝑡 ≥ 𝑡0,

𝑑𝜙𝑑𝑡 ≤ 𝜙 (𝐵 − 𝐴𝜙) ⇒
lim sup
𝑡→+∞

𝜙 (𝑡) ≤ 𝐵𝐴,
(6)

𝑑𝜙𝑑𝑡 ≥ 𝜙 (𝐵 − 𝐴𝜙) ⇒
lim inf
𝑡→+∞

𝜙 (𝑡) ≥ 𝐵𝐴.
(7)

Theorem 4. Let us assume that 𝛼2 > 𝛿. Let us pose
𝑀𝑢 = 4𝑑2𝛽1 + (𝛽1𝑑2 + 2𝛼1) 𝛽1𝑑2 + 𝛼21𝛽1𝑑2 (4 − 𝛽1) if 0 < 𝛽1 < 4
and 𝑀𝑢 = 1 + 𝛼1 if 𝛽1 = 0,
𝑀V = (𝑀𝑢 + 𝑑2) (𝛽2𝑀𝑢 + 𝛼2 − 𝛿)𝛼2
and 𝑚V = (𝛼2 − 𝛿) 𝑑2𝛽2𝑑2 + 𝛼2 ,
𝑚(0)𝑢 = 𝑚𝑢 + 𝛽1𝑚V,
𝑚𝑢 = −𝛽1𝑑2𝑀2V − 𝛼1𝑑2𝑀V + 1 + 𝛼1,

𝑚𝜀𝑢 = 𝑚(0)𝑢 + √[𝑚(0)𝑢 − 𝜀]2 − 4𝛾𝑘𝑀𝑢𝑀V/𝑑1
2 ,
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0 ≤ 𝜀 ≤ 𝑚(0)𝑢 − 2√𝛾𝑘𝑀𝑢𝑀V𝑑1
or 𝑚(0)𝑢 + 2√𝛾𝑘𝑀𝑢𝑀V𝑑1 ≤ 𝜀,
𝑀𝑤 = 𝑘𝑀𝑢
and 𝑚𝑤 = 𝑘𝑚𝜀𝑢.

(8)

If 𝑚(0)𝑢 ≥ 2√𝛾𝑘𝑀𝑢𝑀V𝑑1 , (9)

and, then, model (1.3) is permanent. Otherwise, the set defined
by

A
+ = {(𝑢, V, 𝑤) ∈ R

3
+ : 𝑚𝜀𝑢 ≤ 𝑢 ≤ 𝑀𝑢, 𝑚V ≤ V

≤ 𝑀V and 𝑚𝑤 ≤ 𝑤 ≤ 𝑀𝑤} (10)

Which is a bounded set, positively invariant for model (1.3).
Proof. Let us consider system (1.3) and Lemma 3.

(1) One has the following: V̇(𝜏) does not depend on the
variable 𝑤. So, one obtains the same results like those
of the model with no delay, i.e.,

lim inf 𝑡→+∞[V(𝑡)] ≥ 𝑚V and lim sup𝑡→+∞[V(𝑡)] ≤𝑀V.
(2) One has the following:𝑑𝑢/𝑑𝑡 ≤ (1−𝑢)𝑢+(𝛽1V+𝛼1)(1−

V/(𝑢 + 𝑑2))𝑢 because −𝛾𝑤V/(𝑤 + 𝑑1) < 0.
Then, 𝑑𝑢/𝑑𝑡 ≤ (𝐵1−𝐴1𝑢)𝑢with (𝐴1, 𝐵1) = (1; 1+𝛼1)
if 𝛽1 = 0
and (𝐴1, 𝐵1)= ((4−𝛽1)/4; (4𝑑2𝛽1 + (𝛽1𝑑2+2𝛼1)𝛽1𝑑2 +𝛼21)/4𝛽1𝑑2) if 0 < 𝛽1 < 4 and, in that case,maxV{(𝛽1V+𝛼1)(1−V/(𝑢+𝑑2))𝑢} = 𝑢[𝛽1(𝑢+𝑑2)+𝛼1]2/4𝛽1(𝑢+𝑑2).
By property (6) of Lemma 3, one obtains
lim sup𝑡→+∞[𝑢(𝑡)] ≤ 𝑀𝑢.

(3) One knows that 0 ≤ 𝑢(𝜏). Let us suppose that 𝑢(0) > 0
and, then, there exist 𝑡0 so that, ∀𝜏 ≥ 𝑡0, 0 < 𝑢(𝜏) ≤𝑀𝑢. Let us suppose that 𝑙 = liminf 𝑡→+∞[𝑢(𝑡)]. Thus,
for any 𝜀 very tiny, there is 𝑡1 > 0 so that, ∀𝜏 > 𝑡1,𝑢(𝜏) ≥ 𝑙 − 𝜀 > 0.

Let us pose 𝑡2 = max(𝑡0, 𝑡1) and𝑚 = 𝑙 − 𝜀.Then, ∀𝜏 >𝑡2, 0 < 𝑚 < 𝑢(𝜏) ≤ 𝑀𝑢. Thus

∀𝜏 > 𝑡2,
0 < 𝑤 (𝜏) < 𝑢 (𝜏)𝑤 (𝜏)𝑚 ≤ 𝑀𝑢𝑤 (𝜏)𝑚 . (11)

Hence, ∀𝜏 > 𝑡2, −𝛾𝑤(𝜏)/(𝑤(𝜏) + 𝑑1) >−𝛾(𝑢(𝜏)𝑤(𝜏)/𝑚)/(𝑢(𝜏)𝑤(𝜏)/𝑚 + 𝑑1) for 𝑔(𝑥) =−𝛾𝑥/(𝑥 + 𝑑1) is decreasing upon R+. On the one
hand,

it is known that 𝑤(𝑡) = ∫𝑡
𝑡−𝑇

𝜆𝑒−𝜆(𝑡−𝜉)𝑢(𝜉)𝑑𝜉 and
∫𝑡
−∞

𝜆𝑒−𝜆(𝑡−𝜉)𝑑𝜉 = 1.
Meanwhile, lim sup𝑡→+∞{∫𝑡𝑡−𝑇 𝜆𝑒−𝜆(𝑡−𝜉)𝑢(𝜉)𝑑𝜉} ≤
∫𝑡
𝑡−𝑇

𝜆𝑒−𝜆(𝑡−𝜉)𝑑𝜉 × lim sup𝑡→+∞[𝑢(𝑡)] and, then,
lim sup𝜏→+∞[𝑤(𝜏)] ≤ 𝑀𝑢(1 − 𝑒−𝜆𝑇) = 𝑘𝑀𝑢 = 𝑀𝑤.
On the other hand,

�̇�/𝑢 = [1 − 𝑢(𝜏)] + (𝛽1V(𝜏) + 𝛼1)(1 − V(𝜏)/(𝑢(𝜏) +𝑑2))−(𝛾𝑤(𝜏)/(𝑤(𝜏)+𝑑1))(V(𝜏)/𝑢(𝜏)) and 1+ (𝛽1V(𝜏)+𝛼1)(1 − V(𝜏)/(𝑢(𝜏) + 𝑑2)) ≥ 𝑚(0)𝑢 = −(𝛽1/𝑑2)𝑀2V −(𝛼1/𝑑2)𝑀V + 1 + 𝛼1 + 𝛽1𝑚V. Then, 𝜏 > 𝑡2, and�̇� ≥ [𝑚(0)𝑢 − 𝛾𝑤(𝜏)V(𝜏)/(𝑢(𝜏)𝑤(𝜏) + 𝑚𝑑1) − 𝑢]𝑢(𝜏).
So, 𝑑𝑢/𝑑𝑡 ≥ (𝐵2 − 𝐴2𝑢)𝑢 with 𝐴2 = 1 and 𝐵2 =𝑚(0)𝑢 −𝛾𝑀V𝑀𝑤/𝑚𝑑1.Therefore, applying property (7)
of Lemma 3 one obtains lim inf 𝑡→+∞[𝑢(𝑡)] ≥ 𝑚(0)𝑢 −𝛾𝑀V𝑀𝑤/𝑚𝑑1.
Consequently, 𝑙 ≥ 𝑚(0)𝑢 −𝛾𝑀V𝑀𝑤/(𝑙−𝜀)𝑑1 for𝑚 = 𝑙−𝜀.
So, one obtains

𝑙2 − (𝑚(0)𝑢 + 𝜀) 𝑙 + 𝛾𝑀𝑢𝑀𝑤𝑑1 + 𝑚(0)𝑢 𝜀 ≥ 0. (12)

If 𝑚(0)𝑢 ≥ 2√𝛾𝑘𝑀𝑢𝑀V/𝑑1 then [𝑚(0)𝑢 − 𝜀]2 −4𝛾𝑀𝑤𝑀V/𝑑1 ≥ 0.
Thus one obtains lim inf 𝑡→+∞[𝑢(𝑡)] ≥ 𝑚𝜀𝑢 = (𝑚(0)𝑢 +
√[𝑚(0)𝑢 − 𝜀]2 − 4𝛾𝑀𝑤𝑀V/𝑑1)/2
with 0 ≤ 𝜀 ≤ 𝑚(0)𝑢 − 2√𝛾𝑘𝑀𝑢𝑀V/𝑑1 or 𝑚(0)𝑢 +2√𝛾𝑘𝑀𝑢𝑀V/𝑑1 ≤ 𝜀.

(4) It is known that lim inf 𝑡→+∞{∫𝑡𝑡−𝑇 𝜆𝑒−𝜆(𝑡−𝜉)𝑢(𝜉)𝑑𝜉} ≥
∫𝑡
𝑡−𝑇

𝜆𝑒−𝜆(𝑡−𝜉)𝑑𝜉 × lim inf 𝑡→+∞[𝑢(𝑡)]. So,
lim inf 𝑡→+∞[𝑤(𝑡)] ≥ 𝑚𝑤 = 𝑘𝑚𝜀𝑢.

Remark 5. Let us consider the notations of Theorem 4.
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(1) Let us consider the following assumptions:

𝛼2 > 𝛿,
𝑚(0)𝑢 > 0,

𝑑1 [𝑚(0)𝑢 ]2
4𝛾𝑀𝑢𝑀V

< 1

and 𝑇 < −1𝜆 ln[
[
1 − 𝑑1 [𝑚(0)𝑢 ]2

4𝛾𝑀𝑢𝑀V

]
]
.

(13)

𝛼2 > 𝛿,
𝑚(0)𝑢 > 0

and 0 ≤ 𝛾 < 𝑑1 [𝑚(0)𝑢 ]2
4𝑘𝑀𝑢𝑀V

.
(14)

One remarks that each of assumptions (13) and (14)
implies, respectively, condition (9).

(2) If𝑚(0)𝑢 ≥ 2√𝛾𝑘𝑀𝑢𝑀V/𝑑1, one has 0 < 𝑚(0)𝑢 /2 ≤ 𝑚𝜀𝑢 ≤
lim inf 𝑡→+∞[𝑢(𝑡)]. So, we can adjust the minimum
value of lim inf 𝑡→+∞[𝑢(𝑡)] by choosing the value of𝜀.

2.2. The Equilibria Points of Model (1.3)
2.2.1. Points of Trivial Equilibria. If 0 < 𝛼2 ≤ 𝛿 then
system (1.3) admits two points of trivial equilibria: 𝐸∗0 =(0; 0; 0), 𝐸∗1 = (1 + 𝛼1; 0; 𝑘(1 + 𝛼1)).

If 𝛼2 > 𝛿 ≥ 0 then system (1.3) admits three points of
trivial equilibria: 𝐸∗0 = (0; 0; 0), 𝐸∗1 = (1 + 𝛼1; 0; 𝑘(1 + 𝛼1)),
and 𝐸∗2 = (0; (𝛼2 − 𝛿)𝑑2/𝛼2; 0).

2.2.2. Points of Interior Equilibria. Given 𝑝1(𝑥) = 𝑎14𝑥4 +𝑎13𝑥3 + 𝑎12𝑥2 + 𝑎11𝑥 + 𝑎10 such as

𝑎14 = −𝑘𝛽22 ,
𝑎13 = (𝑘 − 𝑑1) 𝛽22 − 2𝑘𝛽2𝛼2 + 𝑘𝛽2 (𝛽1𝛿 − 𝛾𝛽2) ,
𝑎12 = 2𝛽2𝛼2 (𝑘 − 𝑑1) − 𝑘𝛼22 + 𝑑1𝛽22 + 𝑘𝛼1𝛿𝛽2

− 𝑘𝛾𝛽2𝛼2 + 𝛽1𝛽2𝛿𝑑1
+ 𝑘 (𝛽2𝑑2 + 𝛼2 − 𝛿) (𝛽1𝛿 − 𝛾𝛽2) ,

𝑎11 = 𝛼1𝛿 (𝛽2𝑑1 + 𝑘𝛼2) + (𝑘 − 𝑑1) 𝛼22 + 2𝛽2𝛼2𝑑1
+ 𝑘 (𝛽1𝛿 − 𝛾𝛽2) 𝑑2 (𝛼2 − 𝛿)
+ (𝛽1𝛿𝑑1 − 𝑘𝛾𝛼2) (𝛽2𝑑2 + 𝛼2 − 𝛿) ,

𝑎10 = 𝑑1𝛼22 + 𝛼1𝛼2𝛿𝑑1 + (𝛽1𝛿𝑑1 − 𝑘𝛾𝛼2) 𝑑2 (𝛼2 − 𝛿) .

(15)

(1) System (1.3) does not admit any point of interior
equilibria if 𝛽2𝑀𝑢 + 𝛼2 − 𝛿 < 0.

(2) Any interior equilibrium point 𝐸∗3 = (𝑢∗; V∗, 𝑤∗) of
system (1.3) verifies the following relations:

𝑝1 (𝑢∗) = 0,
V∗ = (𝛽2𝑢∗ + 𝛼2 − 𝛿)𝛽2𝑢∗ + 𝛼2 (𝑢∗ + 𝑑2)

with 𝛽2𝑢∗ + 𝛼2 − 𝛿 > 0,
𝑤∗ = 𝑘𝑢∗.

(16)

Designating 𝑃𝑥𝑦 the projection over the plan 𝑥𝑦, we study the
border dynamics of the model.

3. Border Dynamics on the Plan 𝑢V
On 𝑢V plan, model (1.3) becomes

�̇� (𝜏) = [1 − 𝑢 (𝜏)] 𝑢 (𝜏) + (𝛽1V (𝜏) + 𝛼1) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2)𝑢 (𝜏) ,
V̇ (𝜏) = (𝛽2𝑢 (𝜏) + 𝛼2) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2) V (𝜏) − 𝛿V,

𝑢, V, 𝑤 ∈ 𝐶1 ([0; +∞ [; R+) , 𝑢 (0) > 0, V (0) > 0, 𝑢0 = 𝜑 ∈ 𝐶 ([−𝑇; 0] ;R+) ,
(3.1)

with (𝑑2, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛿, 𝑇, 𝜆) ∈ (R∗+)7.
The equilibria points of model (3.1) are

𝑈(1)0 = 𝑃𝑢V (𝐸∗0 ) = (0, 0) ,
𝑈(1)1 = 𝑃𝑢V (𝐸∗1 ) = (1 + 𝛼1; 0) , (17)

𝑈(1)2 = 𝑃𝑢V (𝐸∗2 ) = (0; (𝛼2 − 𝛿) 𝑑2𝛼2 ) , (18)

𝑈(1)3 = (𝑢; (𝛽2𝑢 + 𝛼2 − 𝛿) (𝑢 + 𝑑2)𝛽2𝑢 + 𝛼2 )
if 𝑢 > 0 and (𝛽2𝑢 + 𝛼2 − 𝛿) > 0,

(19)
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where 𝑝0 (𝑢) = 𝑎03𝑢3 + 𝑎02𝑢2 + 𝑎01𝑢 + 𝑎00 = 0. (20)

With 𝑎03 = −𝛽22 ,
𝑎02 = (𝛽2 − 2𝛼2 + 𝛿𝛽1) 𝛽2,
𝑎01 = 𝛼2 (2𝛽2 − 𝛼2) + 𝛽1𝛿 (𝛽2𝑑2 + 𝛼2 − 𝛿)

+ 𝛿𝛽2𝛼1,
𝑎00 = 𝛼22 + 𝛿𝛽1𝑑2 (𝛼2 − 𝛿) + 𝛼1𝛼2𝛿.

(21)

Let us give below the results on the permanence of themodel.
Therefore, let us consider the notations ofTheorem 4. If 𝛼2 >𝛿 and𝑚(0)𝑢 > 0 thenmodel (3.1) is permanent. Among others,
the set defined by

A
(0)

= {(𝑢, V) ∈ R
2
+ : 𝑚(0)𝑢 ≤ 𝑢 ≤ 𝑀𝑢, and 𝑚V ≤ V ≤ 𝑀V}

(22)

which is a bounded set, positively invariant for model(3.1).
3.1. Local Stability of the Equilibria Points of Model (3.1).
Performing the spectral study of Jacobian matrix of the
system linearized around each of the points of equilibrium,
one obtains, classically, the following conclusions:

(1) Stability of 𝑈(1)0 = (0; 0):
(a) 𝑈(1)0 is an unstable node if 𝛼2 > 𝛿.
(b) 𝑈(1)0 is a point unstable saddle repulsive follow-

ing direction 𝑢 and attractive following direc-
tion V if 𝛼2 < 𝛿.

(2) Stability 𝑈(1)1 = (1 + 𝛼1; 0):
(a) 𝑈(1)1 is stable if 𝛼2 + (1 + 𝛼1)𝛽2 < 𝛿.
(b) 𝑈(1)1 is a point unstable saddle attractive follow-

ing direction𝑢 and repulsive following direction𝑤1 if 𝛼2 + (1 + 𝛼1)𝛽2 > 𝛿.
(3) Stability of 𝑈(1)2 = (0; (𝛼2 − 𝛿)𝑑2/𝛼2) for 𝛼2 > 𝛿:

(a) 𝑈(1)2 is stable if 𝜓(𝛿) < 0.
(b) 𝑈(1)2 is a point of unstable saddle if 𝜓(𝛿) > 0,

repulsive following 𝑤2, and attractive following
V. Consider

𝜓 (𝑥) = −𝑑2𝛽1𝑥2 + [𝑑2𝛽1𝛼2 + 𝛼1𝛼2] 𝑥 + 𝛼22 . (23)

(4) Given𝑈(1)3 = (𝑢; V) interior equilibrium point of (3.1)
testifying the system (19)-(20) and J its associated
Jacobian matrix.

(a) 𝑈(1)3 is stable (stable node or stable focus) if
det(𝐽) > 0 and 𝑇𝑟(𝐽) < 0.

(b) 𝑈(1)3 is marginal or center if det(𝐽) ≥ 0 and𝑇𝑟(𝐽) = 0.
(c) 𝑈(1)3 is unstable if det(𝐽) < 0 or (det(𝐽) > 0 and𝑇𝑟(𝐽) > 0), precisely:

(i) 𝑈(1)3 is a node or a focus if det(𝐽) > 0 and𝑇𝑟(𝐽) > 0,
(ii) 𝑈(1)3 is a point unstable saddle if det(𝐽) < 0.

With 𝑇𝑟(𝐽) the trace and det(𝐽) determinant of J, vectors

𝑤1 = ((1 + 𝛼1) [𝛽1 − 𝛼11 + 𝛼1 + 𝑑2 ] ; (1 + 𝛼1) (𝛽2 + 1)

+ 𝛼2 − 𝛿) .
(24)

and𝑤2 = (𝜓(𝛿)/𝛼22 +𝛼2 −𝛿; [𝛽2𝑑2𝛿+𝛼2(𝛼2 −𝛿)](𝛼2 −𝛿)/𝛼22).
3.2. Global Stability of 𝑈(1)3 = (𝑢; V). Now let us define the
conditions for which the stability of the product and the stock
of capital of the economy is global; i.e., it does not depend
on the produced quantities and level of stock at the initial
moment. For this study, we define an appropriate Lyapunov
function.

Theorem 6. Let us consider the following assumptions:

(3.1) 𝑎𝑑𝑚𝑖𝑡𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 𝑈(1)3
= (𝑢; V) ,

(25)

0 < 𝛽1 < 4,
𝛼2 > 𝛿,
𝛽2𝑑2 < 2𝛼2,
𝑑2 < 𝑑1,
2𝛿𝛽1𝛼2 < 𝛼1𝑀𝑢 + 𝑑2 ,

(26)

𝛽1𝑀V𝑑2 + 𝛼1𝑑2 <
𝛽1𝑑2 (2𝛼2 − 𝛿)
𝛼2 (𝑀𝑢 + 𝑑2) + 𝛿𝛽1 (1 + 𝑑2𝛽2/2𝛼2)𝛼2 , (27)

1 + 𝛼1𝑑2 − 1 + 2𝛽1𝑑22𝛼21 < 0. (28)

where𝑀𝑢 and𝑀V are defined in Theorem 4.
If assumptions (25), (26), (27), (28), (29), (30), (31), (35),

(36), and (37) are verified, then, the unique point of the interior
equilibrium ofmodel (3.1) is globally and asymptotically stable.
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Proof. Let us consider system (3.1). Let us suppose that
assumption (35) is verified and, then, model (3.1) admits a
unique interior equilibrium point 𝑈(1)3 = (𝑢; V) verifying

1 = 𝑢 − 𝛼1 (1 − V𝑢 + 𝑑2) ,
𝛼2 − 𝛿 = −𝛽2𝑢 + (𝛽2𝑢 + 𝛼2) V𝑢 + 𝑑2 .

(29)

Let us note that 𝜆 = 𝛽1𝑑2/2𝛼2. Given 𝑉1 : R2 → R and𝑉2 : R2 → R one has

𝑉1 (𝑢, V) = [𝑢 − 𝑢 − 𝑢 ln(𝑢𝑢)] = ∫𝑢
𝑢
[1 − 𝑢𝑥] 𝑑𝑥, (30)

𝑉2 (𝑢, V) = 𝜆 [V − V − V ln(V
V
)] = 𝜆∫V

V
[1 − V𝑥] 𝑑𝑥. (31)

Considering the Lyapunov functional 𝑉 : R2 → R one has

𝑉 (𝑢, V) = 𝑉1 (𝑢, V) + 𝑉2 (𝑢, V) . (32)

Let us pose

𝑔 (𝑢, V) = −1 + 𝛽1V2 + 𝛼1V(𝑢 + 𝑑2) (𝑢 + 𝑑2) ;
ℎ (𝑢, V) = 12 [𝛽1 − 𝛽1 (V + V) + 𝛼1(𝑢 + 𝑑2) ]

+ 𝜆2 [𝛽2 − 𝛽2V𝑢 + 𝑑2 +
(𝛽2𝑢 + 𝛼2) V(𝑢 + 𝑑2) (𝑢 + 𝑑2)] .

(33)

By using relation (29) and model (3.1), one obtains
𝑑𝑉𝑑𝑡 ≤ [𝜙1 (𝑢, V)] (𝑢 − 𝑢)2 + [𝜙2 (𝑢, V)] (V − V)2 (34)

with 𝜙1 = 𝑔(𝑢, V) + |ℎ(𝑢, V)| and 𝜙2 = |ℎ(𝑢, V)| − 𝜆(𝛽2𝑢 +𝛼2)/(𝑢 + 𝑑2), ∀(𝑢, V) ∈ R2.
Let us overestimate 𝑔(𝑢, V) and ℎ(𝑢, V) and, then, 𝜙1(𝑢, V)

and 𝜙2(𝑢, V).
(1) One has 𝑔(𝑢, V) < 𝑅0 < 0, ∀(𝑢, V) ∈ R2, if 𝑅0 = −1 +(𝛽1𝑀2V + 𝛼1𝑀V)/𝑑22 < 0.
(2) if 𝛽2 < 2𝛼2/𝑑2 then 𝜕ℎ/𝜕V < 0. So, ℎ(𝑀𝑢,𝑀V) ≤ℎ(𝑢, V) ≤ ℎ(0, 0). Therefore, ℎ(0, 0) < 0 if 𝛽2𝑑2 <2𝛼2, 𝑑2 < 𝑑1, 2𝛿𝛽1/𝛼2 < 𝛼1/(𝑀𝑢 + 𝑑2). Con-

sequently, |ℎ(𝑢, V)| = −ℎ(𝑢, V) < −ℎ(𝑀𝑢,𝑀V) <𝑅1 = 𝛽1𝑀V/2𝑑2 − (𝑑2𝛽1𝑀V/2𝛼2)(𝛽2𝑀𝑢 + 𝛼2)/(𝑀𝑢 +𝑑2)2 + (1/2)[−(𝛽1𝛿/𝛼2)(1 + 𝛽2𝑑2/2𝛼2) + 𝛼1/𝑑2].Thus,𝜙1(𝑢, V) < 𝑅0+𝑅1 and 𝜙2(𝑢, V) < 𝑅1−𝛽1𝑑2/2(𝑀𝑢+𝑑2)
if 𝛽2𝑑2 < 2𝛼2, 𝑑2 < 𝑑1, and 2𝛿𝛽1/𝛼2 < 𝛼1/(𝑀𝑢 + 𝑑2).

Hence, 𝑑𝑉/𝑑𝑡 < 0, ∀(𝑢, V) ∈ R2, if

0 < 𝛽1 < 4,
𝛼2 > 𝛿,
𝛽2 < 𝛼2𝑑2 ,
2𝛿𝛽1𝛼2 < 𝛼1𝑀𝑢 + 𝑑2 ,

(35)

𝛽1𝑀V2𝑑2 + 𝛼12𝑑2
< 𝛽1𝑑22 (𝑀𝑢 + 𝑑2) + 𝑑2𝛽1𝑀V2𝛼2

(𝛽2𝑀𝑢 + 𝛼2)(𝑀𝑢 + 𝑑2)2
+ 𝛽1𝛿2𝛼2 (1 + 𝛽2𝑑22𝛼2 ) ,

(36)

and
𝛽1𝑀2V + 𝛼1𝑀V𝑑22 − 1 + 𝛽1𝑑22 (𝑀𝑢 + 𝑑2) < 0. (37)

The model is permanent if 𝑚𝑢 = −(𝛽1/𝑑2)𝑀2V −(𝛼1/𝑑2)𝑀V + 1 + 𝛼1 > 0. Then, (𝛽1/𝑑22)𝑀2V +(𝛼1/𝑑22)𝑀V < (1 + 𝛼1)/𝑑2. Moreover, 1/(𝑀𝑢 + 𝑑2) <4𝑑2/𝛼21 .
So, from formulas (35), one obtains (27) ⇒ (36) and
(28) ⇒ (37).

Hence, 𝑑𝑉/𝑑𝑡 < 0, ∀(𝑢, V) ∈ R2, if assumptions (25)–(28) are
verified.

Remark 7. As 𝛽1 = 0, the unique interior equilibrium point
of model (3.1) is globally and asymptotically stable if the
following assumptions are verified:

𝛼2 > 𝛿,
𝛽2 < 𝛼2𝑑2 ,

𝛿𝛽2𝛼2 < 𝛼1𝑀𝑢 + 𝑑2 ,
(38)

−1 + 1 + 𝛼1𝑑2 + 4𝛼2𝑑2𝛼21 < 0, (39)

𝛼12𝑑2 +
𝛿𝛽2𝛼2 < 3 (𝛼2 − 𝛿)

2 (𝑀𝑢 + 𝑑2) , (40)

with constant𝑀𝑢 and𝑀V defined inTheorem 4.
In fact, it is worth taking the Lyapunov functional 𝑉 :

R2 → R so that𝑉(𝑢, V) = 𝑉1(𝑢, V)+𝑉2(𝑢, V)with𝑉1 : R2 →
R and 𝑉2 : R2 → R so that

𝑉1 (𝑢, V) = [𝑢 − 𝑢 − 𝑢 ln(𝑢𝑢)] = ∫𝑢
𝑢
[1 − 𝑢𝑥] 𝑑𝑥, (41)

𝑉2 (𝑢, V) = [V − V − V ln(V
V
)] = ∫V

V
[1 − V𝑥] 𝑑𝑥. (42)
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Considering (38)–(40), one shows, similarly in 𝛽1 ̸= 0, that𝑑𝑉/𝑑𝑡 < 0, ∀(𝑢, V) ∈ R2.
4. Border Dynamics of Plan 𝑢𝑤
On the plan 𝑢𝑤model (1.3) becomes

�̇� (𝜏) = [1 + 𝛼1 − 𝑢 (𝜏)] 𝑢 (𝜏) ,
�̇� = −𝜆 (𝑤 − 𝑢) − 𝜆𝑒−𝜆𝑇𝑢 (𝜏 − 𝑇) ,

𝑢, 𝑤 ∈ 𝐶1 ([0; +∞ [ ;R+) , 𝑢 (0) > 0, 𝑢0 = 𝜑 ∈ 𝐶 ([−𝑇; 0] ;R+)
(4.1)

with (𝛼1, 𝑇, 𝜆) ∈ (R∗+)3.The equilibria of model (4.1) are
𝑈(2)0 = 𝑃𝑢𝑤 (𝐸∗0 ) = (0, 0) ,
𝑈(2)1 = 𝑃𝑢𝑤 (𝐸∗1 ) = (1 + 𝛼1; 𝑘 (1 + 𝛼1)) . (43)

Let 𝑀(2)𝑢 = 1 + 𝛼1, 0 < 𝑚(2)𝑢 < 1 + 𝛼1, 𝑀(2)𝑤 = 𝑘(1 + 𝛼1), and𝑚(2)𝑤 = 𝑘𝑚(2)𝑢 .Themodel is permanent and the set defined by

A
(2) = {(𝑢, 𝑤) ∈ R

2
+ : 𝑚(2)𝑢 ≤ 𝑢 ≤ 𝑀(2)𝑢 , and 𝑚(2)𝑤 ≤ 𝑤

≤ 𝑀(2)𝑤 } (44)

is limited, positively invariant.
Concerning the local stability, one obtains, for any delay𝑇, the following results:
(1) 𝑈(2)0 = (0; 0) is an unstable saddle point, repulsive

along the direction 𝑢, and attractive along the direc-
tion 𝑤.

(2) 𝑈(2)1 = (1 + 𝛼1; 𝑘(1 + 𝛼1)) is stable.
The global stability of equilibrium 𝑈(2)1 is given in the

following theorem.

Theorem 8.

If 𝑇 < ln 2𝜆
and 𝜆 < (1 + 𝛼1) (1 − ln 2)

(45)

and, then, the unique interior equilibrium point 𝑈(2)1 = (1 +𝛼1; 𝑘(1 + 𝛼1)) of model (4.1) is globally and asymptotically
stable.

Proof. Let us consider 𝑈(2)1 = (𝑢, 𝑤) with 𝑢 = 1 + 𝛼1 and𝑤 = 𝑘(1 + 𝛼1). Let us pose𝑈 = ln(𝑢/𝑢) and 𝑊 = ln(𝑤/𝑤). Then, one obtains the
following system:

�̇� (𝜏) = −𝑢 [𝑒𝑈(𝜏) − 1] ,
�̇� (𝜏) = 𝜆𝑒−𝑤(𝜏)𝑘 [(𝑒𝑈(𝜏) − 1) − 𝑘 (𝑒𝑊(𝜏) − 1)

− 𝑒−𝜆𝑇 (𝑒𝑈(𝜏−𝑇) − 1)] .
(46)

Let us note that 𝑉1(𝜏) = |𝑈(𝜏)|.

Then, the superior derivative𝐷+𝑉1(𝜏) of𝑉1(𝜏) in relation
to time, alongside the solutions of (46), gives

𝐷+𝑉1 (𝜏) ≤ −𝑢 𝑒𝑈(𝜏) − 1 = − |𝑢 − 𝑢| . (47)

Let us note that 𝑉21(𝜏) = |𝑊(𝜏)|. Considering (𝑢, 𝑤) ∈ A(2),
one has 𝑚(2)𝑢 /𝑢 ≤ 𝑒𝑈(𝜏) ≤ 𝑀(2)𝑢 /𝑢 and 𝑚(2)𝑤 /𝑤 ≤ 𝑒𝑊(𝜏) ≤𝑀(2)𝑤 /𝑤. Hence, the superior derivative of 𝑉21(𝜏) in relation
to time, alongside solutions (46), gives

𝐷+𝑉21 (𝜏) ≤ 𝜆 𝑒𝑈(𝜏) − 1 − 𝜆 𝑤∗
𝑚(2)𝑤

𝑒𝑊(𝜏) − 1
+ 𝑀(2)𝑢 𝜆𝑒−𝜆𝑇𝑘 ∫𝜏

𝜏−𝑇

𝑒𝑈(𝑠) − 1 𝑑𝑠.
(48)

Considering the functional: 𝑉22(𝜏) = (𝑀(2)𝑢 𝜆𝑒−𝜆𝑇/𝑘) ∫𝜏
𝜏−𝑇

∫𝜏V |𝑒𝑈(𝑠) − 1|𝑑𝑠𝑑V then
𝐷+𝑉22 (𝜏) ≤ 𝑇𝑀(2)𝑢 𝜆𝑒−𝜆𝑇𝑘 𝑒𝑈(𝜏) − 1

− 𝑀(2)𝑢 𝜆𝑒−𝜆𝑇𝑘 ∫𝜏
𝜏−𝑇

𝑒𝑈(𝑠) − 1 𝑑𝑠.
(49)

Let us pose 𝑉2(𝜏) = 𝑉21(𝜏) + 𝑉22(𝜏).Thus,

𝐷+𝑉2 (𝜏) ≤ 𝜆(1 + 𝑇𝑀(2)𝑢 𝑒−𝜆𝑇𝑘 ) 𝑒𝑈(𝜏) − 1
− 𝜆 𝑤∗

𝑚(2)𝑤
𝑒𝑊(𝜏) − 1 .

(50)

Then, 𝐷+𝑉2 (𝜏) ≤ 𝜆𝑢 (1 + 𝑇𝑀(2)𝑢 𝑒−𝜆𝑇𝑘 ) |𝑢 − 𝑢|
− 𝜆

𝑚(2)𝑤 |𝑤 − 𝑤| .
(51)

Let 𝑉(𝜏) = 𝑉1(𝜏) + 𝑉2(𝜏).Then,

𝐷+𝑉 (𝜏) ≤ −[1 − 𝜆𝑢 (1 + 𝑇𝑀(2)𝑢 𝑒−𝜆𝑇𝑘 )] |𝑢 − 𝑢|
− 𝜆

𝑚(2)𝑤 |𝑤 − 𝑤| .
(52)

So,𝐷+𝑉(𝜏) < 0 if (1 + (𝑇𝑒−𝜆𝑇/(1 − 𝑒−𝜆𝑇))𝑀(2)𝑢 < (1 + 𝛼1)/𝜆).
Consequently, 𝐷+𝑉(𝜏) < 0 if (𝑇 < (ln 2)/𝜆 and 𝜆 < (1 +𝛼1)(1 − ln 2).
5. Border Dynamics of the Plan V𝑤
On the V𝑤 plan model (1.3) becomes

V̇ (𝜏) = [𝛼2 − 𝛿 − 𝛼2V (𝜏)𝑑2 ] V (𝜏) ,
�̇� = −𝜆𝑤 − 𝜆𝑒−𝜆𝑇1[0;𝑇] (𝜏) 𝑢 (𝜏 − 𝑇) ,

V, 𝑤 ∈ 𝐶1 ([0; +∞ [ ;R+) 𝑢 (0) > 0, 𝑢0 = 𝜑 ∈ 𝐶 ([−𝑇; 0] ;R+)
(5.1)
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with (𝑑2, 𝛼2, 𝛿, 𝑇, 𝜆) ∈ (R∗+)4 and 1[0;𝑇](𝜏) = 1 if 0 ≤ 𝜏 ≤𝑇, 1[0;𝑇](𝜏) = 0 if 𝜏 > 𝑇.
The equilibria of model (5.1) are as follows: for 𝜏 ≥ 𝑇,

𝑈(3)0 = 𝑃V𝑤 (𝑈0) = (0, 0) ,
𝑈(3)2 = 𝑃V𝑤 (𝑈2) = ((𝛼2 − 𝛿) 𝑑2𝛼2 ; 0) . (53)

Model (4.1) is nonpermanent. In fact, lim𝑡→+∞[𝑤(𝑡)] = 0.
Let us now give the results upon stability of the equilibria

of model (5.1).
(1) The equilibrium 𝑈(3)0 = (0; 0) is stable if 𝛼2 < 𝛿 and a

point unstable saddle if 𝛼2 > 𝛿.
(2) The equilibrium 𝑈(3)2 = ((𝛼2 − 𝛿)𝑑2/𝛼2; 0) for 𝛼2 > 𝛿

is stable.
Moreover, the equilibrium 𝑈(3)2 = ((𝛼2 − 𝛿)𝑑2/𝛼2; 0)
is globally and asymptotically stable. In effect,
lim𝑡→+∞[V(𝑡)] = (𝛼2−𝛿)𝑑2/𝛼2 and lim𝑡→+∞[𝑤(𝑡)] =0.

6. Local Stability of Model (1.3)
Let us consider model (1.3).

Let us pose that 𝑈𝑖(𝜏) = 𝑢(𝜏) − 𝑢∗𝑖 , 𝑉𝑖(𝜏) = V(𝜏) − V∗𝑖 , and𝑊𝑖(𝜏) = 𝑤(𝜏) − 𝑤∗𝑖 for 𝑖 = 0, 1, 2, 3 with
𝑢∗0 = 0,
𝑢∗1 = 1 + 𝛼1,
𝑢∗2 = 0,
𝑢∗3 = 𝑢∗

(54)

V∗0 = 0,
V∗1 = 0,
V∗2 = (𝛼2 − 𝛿) 𝑑2𝛼2 ,
V∗3 = V∗

(55)

𝑤∗0 = 0,
𝑤∗1 = 𝑘 (1 + 𝛼1) ,
𝑤∗2 = 0,
𝑤∗3 = 𝑘𝑢∗.

(56)

The system linearized around the point of equilibrium 𝐸∗𝑖 =(𝑢∗𝑖 , V∗𝑖 , 𝑤∗𝑖 ), 𝑖 = 0, 1, 2, 3, is
�̇�𝑖 (𝜏) = 𝐴(𝑖)11𝑈𝑖 (𝜏) + 𝐴(𝑖)12𝑉𝑖 (𝜏) + 𝐴(𝑖)13𝑊𝑖 (𝜏) ,
�̇�𝑖 (𝜏) = 𝐴(𝑖)21𝑈𝑖 (𝜏) + 𝐴(𝑖)22𝑉𝑖 (𝜏) ,
�̇�𝑖 (𝜏) = 𝜆𝑈𝑖 (𝜏) − 𝜆𝑊𝑖 (𝜏) − 𝜆𝑒−𝜆𝑇𝑈𝑖 (𝜏 − 𝑇) ,

(57)

with

𝐴(𝑖)11 = 1 − 2𝑢∗𝑖 + (𝛽1V∗𝑖 + 𝛼1) (1 − V∗𝑖𝑢∗𝑖 + 𝑑2)

+ (𝛽1V∗𝑖 + 𝛼1) 𝑢∗𝑖 V∗𝑖(𝑢∗𝑖 + 𝑑2)2 ,
(58)

𝐴(𝑖)12 = [𝛽1 − 2𝛽1𝑢∗𝑖 + 𝑑2 V∗𝑖 −
𝛼1𝑢∗𝑖 + 𝑑2] 𝑢∗𝑖 − 𝛾𝑤∗𝑖𝑤∗𝑖 + 𝑑1 , (59)

𝐴(𝑖)13 = −𝛾𝑑1V∗𝑖(𝑤∗𝑖 + 𝑑1)2 ,

𝐴(𝑖)21 = [𝛽2 (1 − V∗𝑖𝑢∗𝑖 + 𝑑2) + (𝛽2𝑢∗𝑖 + 𝛼2) V∗𝑖(𝑢∗𝑖 + 𝑑2)2 ] V∗𝑖 ,
(60)

𝐴(𝑖)22 = (𝛽2𝑢∗𝑖 + 𝛼2) (1 − 2V∗𝑖𝑢∗𝑖 + 𝑑2) − 𝛿,
𝐴(𝑖)23 = 0,

(61)

𝐴(𝑖)31 = 𝜆,
𝐴(𝑖)32 = 0,
𝐴(𝑖)33 = −𝜆,
𝐴(𝑖)34 = −𝜆𝑒−𝜆𝑇.

(62)

The characteristic equation of (57) is

Δ 𝑖 (𝑥, 𝑇) = 𝑃𝑖 (𝑥, 𝑇) + 𝑒−𝑥𝑇𝑄𝑖 (𝑥, 𝑇) = 0 (63)

with 𝑃𝑖 (𝑥, 𝑇) = − [𝑥3 + 𝑎(𝑖)𝑥2 + 𝑏(𝑖)𝑥 + 𝑐(𝑖)] ,
𝑄𝑖 (𝑥, 𝑇) = 𝑒−𝜆𝑇 [𝐷(𝑖)𝑥 + 𝐸(𝑖)] (64)

where, 𝐷(𝑖) = −𝜆𝐴(𝑖)13,
𝐸(𝑖) = 𝜆𝐴(𝑖)13𝐴(𝑖)22,
𝑎(𝑖) = − (𝐴(𝑖)11 + 𝐴(𝑖)22 − 𝜆) ,

(65)

𝑏(𝑖) = − [𝜆 (𝐴(𝑖)11 + 𝐴(𝑖)22 + 𝐴(𝑖)13) + 𝐴(𝑖)21𝐴(𝑖)12 − 𝐴(𝑖)11𝐴(𝑖)22] , (66)

𝑐(𝑖) = 𝜆 [𝐴(𝑖)11𝐴(𝑖)22 − 𝐴(𝑖)21𝐴(𝑖)12 + 𝐴(𝑖)13𝐴(𝑖)22] . (67)

6.1. Local Stability of 𝐸∗0 and 𝐸∗1 . We are in situations where𝑄𝑖(𝑥, 𝑇) = 0. Let us use the following criterion Routh-
Hurwitz: the interior equilibrium 𝐸∗𝑖 is stable if 𝑎(𝑖) > 0,𝑏(𝑖) > 0, 𝑐(𝑖) > 0, and 𝑎(𝑖)𝑏(𝑖) − 𝑐(𝑖) > 0 and unstable if not.

Theorem 9. Let us suppose that 𝛼2 > 𝛿. Then, the equilibria𝐸∗0 and 𝐸∗1 of model (1.3) are all unstable.
Proof. Let us consider formula (63)–(67).
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(1) The equation of 𝐸∗0 is Δ 0(𝑥, 𝑇) = 𝑥3 + 𝑎(0)𝑥2 + 𝑏(0)𝑥 +𝑐(0) = 0.
One has the following: 𝑎(0) = 𝜆− (1+𝛼1 +𝛼2 −𝛿) and𝑏(0) = (1+𝛼1)(𝛼2−𝛿)−𝜆(1+𝛼1+𝛼2−𝛿). Let us suppose
that (𝑎(0) > 0 and 𝑏(0) > 0). Then, one would have(1+𝛼1+𝛼2−𝛿) < 𝜆 < (1+𝛼1)(𝛼2−𝛿)/(1+𝛼1+𝛼2−𝛿).
Consequently, (1+𝛼1)2+(𝛼2−𝛿)2+(1+𝛼1)(𝛼2−𝛿) < 0
which is absurd. Hence, the equilibrium 𝐸∗0 of model(1.3) is unstable by application of the Routh-Hurwitz
criterion.

(2) One has Δ 1(𝑥, 𝑇) = 𝑥3 + 𝑎(1)𝑥2 + 𝑏(1)𝑥 + 𝑐(1) = 0.
Meanwhile, 𝛼2 > 𝛿 and, then, 𝑐(1) = −𝜆(1+𝛼1)[𝛽2(1+𝛼1) +𝛼2 −𝛿] < 0 so the equilibrium 𝐸∗0 of model (1.3)
is unstable by application of Routh-Hurwitz criterion.

6.2. Local Stability of𝐸∗2 and𝐸∗3 . Weare in the situationwhere𝑄𝑖(𝑥, 𝑇) ̸= 0. In order to assess the influence of delay 𝑇 over
the local stability of model (1.3), we use the results upon the
local stability of model obtained taking 𝑇 = 0 into model(1.3) and the results of [5] upon the local stability of the delay
systems. Let us consider the characteristic equation (63).

(i) One has the following: 𝑄𝑖(𝑧, 𝑇) = 0 ⇒ 𝑧 =−𝐸(𝑖)/𝐷(𝑖) ∈ R. Then, 𝑃𝑖(𝑥, 𝑇) and 𝑄𝑖(𝑥, 𝑇) do not
have any common imaginary roots.

(ii) One has the following: 𝑃𝑖(𝑥, 𝑇) and 𝑄𝑖(𝑥, 𝑇) are
polynomials with real coefficients

so 𝑃𝑖(−𝑖𝜔, 𝑇) = 𝑃𝑖(𝑖𝜔, 𝑇) and 𝑄𝑖(−𝑖𝜔, 𝑇) = 𝑄𝑖(𝑖𝜔, 𝑇).
(iii) If −(1/𝜆) ln(𝑐(𝑖)/𝐸(𝑖)) ̸= 𝑇 so 𝑃𝑖(0, 𝑇) + 𝑄𝑖(0, 𝑇) =𝐸(𝑖)𝑒−𝜆𝑇 − 𝑐(𝑖) ̸= 0.
(iv) Let us pose 𝑥 = 𝜌𝑒𝑖𝜑.Then, |𝑃𝑖(𝑥, 𝑇)/𝑄𝑖(𝑥, 𝑇)| ∼ 1/𝜌4

when 𝜌 → +∞.
Thus lim sup

|𝑥|→+∞

{
𝑄𝑖 (𝑥, 𝑇)𝑃𝑖 (𝑥, 𝑇)

} = 0 < 1. (68)

Let us consider the function defined on R by the following:𝐹𝑖(𝜔) = |𝑃𝑖(𝑖𝜔, 𝑇)|2 − |𝑄𝑖(𝑖𝜔, 𝑇)|2.
Then, 𝐹 (𝜔) = [𝑏(𝑖)𝜔 − 𝜔3]2 + [𝑐(𝑖) − 𝑎(𝑖)𝜔2]2

− 𝑒−2𝜆𝑇 (𝐷(𝑖)𝜔2 + 𝐸(𝑖)) (69)

So 𝐹𝑖 (𝜔) = 𝜔6 + 𝑚2𝜔4 + 𝑚1𝜔2 + 𝑚0,where (70)

𝑚2 = ([𝑎(𝑖)]2 − 2𝑏(𝑖)) ,
𝑚1 = ([𝑏(𝑖)]2 − 2𝑎(𝑖)𝑐(𝑖) − 𝑒−2𝑇𝜆𝐷(𝑖)) ,
𝑚0 = [𝑐(𝑖)]2 − 𝐸(𝑖)𝑒−2𝜆𝑇.

(71)

Let us determine 𝛿(𝑇∗𝑖 ) = sgn((𝑑Re(𝑥)/𝑑𝑇)|𝑥=𝑖𝜔(𝑇∗
𝑖
))

the sign of the real part of a solution 𝑥 of the characteristic
equation Δ 𝑖(𝑥, 𝑇) = 0.

Lemma 10. Let us consider 𝑥, a solution of the characteristic
equation Δ 𝑖(𝑥, 𝑇) = 𝑃𝑖(𝑥, 𝑇) + 𝑒−𝑥𝑇𝑄𝑖(𝑥, 𝑇) = 0, with

𝑃𝑖 (𝑥, 𝑇) = − [𝑥3 + 𝑎(𝑖)𝑥2 + 𝑏(𝑖)𝑥 + 𝑐(𝑖)]
and 𝑄𝑖 (𝑥, 𝑇) = 𝑒−𝜆𝑇 {𝐷(𝑖)𝑥 + 𝐸(𝑖)} . (72)

Given 𝜔𝑖 = 𝜔(𝑇∗𝑖 ) positive root of 𝐹𝑖(𝜔) and 𝑇∗𝑖 the associated
delay certifying the following relation:

𝑇∗𝑖 = 1𝜔𝑖
⋅ arctan{ (𝑎(𝑖)𝐷(𝑖) − 𝐸(𝑖)) 𝜔3 + (𝑏(𝑖)𝐸(𝑖) − 𝑐(𝑖)𝐷(𝑖)) 𝜔

−𝐷(𝑖)𝜔4 + (−𝑎(𝑖)𝐸(𝑖) + 𝑏(𝑖)𝐷(𝑖)) 𝜔2 + 𝑐(𝑖)𝐸(𝑖)}
+ 2𝑛𝜋𝜔𝑖 , 𝑛 ∈ N.

(73)

Let us pose 𝛿(𝑇∗𝑖 ) = sgn{(𝑑Re(𝑥)/𝑑𝑇)|𝑥=𝑖𝜔(𝑇∗
𝑖
)}.Then,

𝛿 (𝑇∗𝑖 ) = sgn {Λ 1𝑖𝐻3𝑖 + Λ 2𝑖𝐻1𝑖𝐻2𝑖} (74)

with

𝐻1𝑖 = 𝜆2 + 𝜔2,
𝐻2𝑖 = (𝜆𝐸(𝑖) − 𝐷(𝑖)𝜔2)2 + (𝐸(𝑖) + 𝜆𝐷(𝑖))2 𝜔2,
𝐻3𝑖 = (𝑐(𝑖) − 𝑎(𝑖)𝜔2)2 + (𝑏(𝑖) − 𝜔)2 𝜔2,
Λ 1𝑖 = (−𝑇∗𝑖 [𝐷(𝑖)]2 − 𝜆2 [𝐷(𝑖)]2)𝜔4 + {𝜆𝐷(𝑖)𝐸(𝑖)

− 𝑇∗𝑖 [(𝐸(𝑖) − 𝜆𝐷(𝑖))2 − 2𝜆𝐷(𝑖)𝐸(𝑖)] − 𝜆2 [𝐷(𝑖)]2}
⋅ 𝜔2 + (𝜆3𝐷(𝑖)𝐸(𝑖) − 𝜆2 [𝐸(𝑖)]2 𝑇∗𝑖 ) ,

Λ 2𝑖 = −3𝑎(𝑖)𝜔4 + 2𝜔3 + (3𝑐(𝑖) + 𝑎(𝑖)𝑏(𝑖) − 2𝑏(𝑖)) 𝜔2
− 𝑏(𝑖)𝑐(𝑖).

(75)

Proof. Given𝜔𝑖 = 𝜔(𝑇∗𝑖 ) positive root of 𝐹𝑖(𝜔). Let us assume
that there is a delay 𝑇∗𝑖 so that
𝑇∗𝑖 = 1𝜔 (𝑇∗𝑖 ) arctan{− Im [𝑃𝑖 (𝑖𝜔, 𝑇∗𝑖 ) /𝑄𝑖 (𝑖𝜔, 𝑇∗𝑖 )]

Re [𝑃𝑖 (𝑖𝜔, 𝑇∗𝑖 ) /𝑄𝑖 (𝑖𝜔, 𝑇∗𝑖 )] }
+ 2𝑛𝜋𝜔 (𝑇∗𝑖 ) , 𝑛 ∈ N.

(76)

Then, 𝑇∗𝑖 = 1𝜔𝑖
⋅ arctan{ (𝑎(𝑖)𝐷(𝑖) − 𝐸(𝑖)) 𝜔3 + (𝑏(𝑖)𝐸(𝑖) − 𝑐(𝑖)𝐷(𝑖)) 𝜔

−𝐷(𝑖)𝜔4 + (−𝑎(𝑖)𝐸(𝑖) + 𝑏(𝑖)𝐷(𝑖)) 𝜔2 + 𝑐(𝑖)𝐸(𝑖)}
+ 2𝑛𝜋𝜔𝑖 , 𝑛 ∈ N.

(77)
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Let us pose

𝛿 (𝑇∗𝑖 ) = sgn( 𝑑Re (𝑥)𝑑𝑇
𝑥=𝑖𝜔(𝑇∗

𝑖
)

)

= [sgn( 𝑑Re (𝑥)𝑑𝑇
𝑥=𝑖𝜔(𝑇∗

𝑖
)

)]−1 .
(78)

One has

Δ 𝑖 (𝑥, 𝑇) = 𝑃𝑖 (𝑥, 𝑇) + 𝑒−𝑥𝑇𝑄𝑖 (𝑥, 𝑇) = 0 ⇒
𝑑𝑃𝑖 (𝑥, 𝑇)𝑑𝑇 − [𝑇𝑑 (𝑥)𝑑𝑇 + 𝑥] 𝑒−𝑥𝑇𝑄𝑖 (𝑥, 𝑇)

+ 𝑒−𝑥𝑇𝑑𝑄𝑖 (𝑥, 𝑇)𝑑𝑇 = 0.
(79)

Therefore,𝑃𝑖(𝑥, 𝑇) = −[𝑥3+𝑎(𝑖)𝑥2+𝑏(𝑖)𝑥+𝑐(𝑖)] and𝑄𝑖(𝑥, 𝑇) =𝑒−𝜆𝑇{𝐷(𝑖)𝑥 + 𝐸(𝑖)}. Thus, {𝑒−𝑥𝑇[𝐷(𝑖)𝑒−𝜆𝑇 − 𝑇𝑄𝑖(𝑥, 𝑇)] − (3𝑥2 +2𝑎(𝑖)𝑥 + 𝑏(𝑖))}(𝑑(𝑥)/𝑑𝑇) − 𝑒−𝑥𝑇{𝑥𝑄𝑖(𝑥, 𝑇) + 𝜆𝑒−𝜆𝑇(𝐷(𝑖)𝑥 +𝐸(𝑖))} = 0.
Hence, [𝑑 (𝑥)𝑑𝑇 ]−1

= {𝑒−𝑥𝑇 [𝐷(𝑖)𝑒−𝜆𝑇 − 𝑇𝑄𝑖 (𝑥, 𝑇)] − (3𝑥2 + 2𝑎(𝑖)𝑥 + 𝑏(𝑖))}
𝑒−𝑥𝑇 {𝑥𝑄𝑖 (𝑥, 𝑇) + 𝜆𝑒−𝜆𝑇 (𝐷(𝑖)𝑥 + 𝐸(𝑖))} .

Thus, [𝑑 (𝑥)𝑑𝑇 ]−1

= − 𝑇𝑥 + 𝜆 + 𝐷(𝑖)(𝑥 + 𝜆) (𝐷(𝑖)𝑥 + 𝐸(𝑖))
− (3𝑥2 + 2𝑎(𝑖)𝑥 + 𝑏(𝑖))

𝑥3 + 𝑎(𝑖)𝑥2 + 𝑏(𝑖)𝑥 + 𝑐(𝑖)

(80)

and, meanwhile, 𝛿(𝑇∗𝑖 ) = [sgn((𝑑Re(𝑥)/𝑑𝑇)|𝑥=𝑖𝜔(𝑇∗
𝑖
))]−1.

Then, 𝛿(𝑇∗𝑖 ) = sgn{Λ 1𝑖𝐻3𝑖 + Λ 2𝑖𝐻1𝑖𝐻2𝑖}
with 𝐻1𝑖 = 𝜆2 + 𝜔2, 𝐻2𝑖 = (𝜆𝐸(𝑖) − 𝐷(𝑖)𝜔2)2

+ (𝐸(𝑖) + 𝜆𝐷(𝑖))2𝜔2, 𝐻3𝑖 = (𝑐(𝑖) − 𝑎(𝑖)𝜔2)2 + (𝑏(𝑖) −𝜔)2𝜔2, Λ 1𝑖 = (−𝑇∗𝑖 [𝐷(𝑖)]2 − 𝜆2[𝐷(𝑖)]2)𝜔4 + {𝜆𝐷(𝑖)𝐸(𝑖) −𝑇∗𝑖 [(𝐸(𝑖) − 𝜆𝐷(𝑖))2, −2𝜆𝐷(𝑖)𝐸(𝑖)] − 𝜆2[𝐷(𝑖)]2}𝜔2 + (𝜆3𝐷(𝑖)𝐸(𝑖) −𝜆2[𝐸(𝑖)]2𝑇∗𝑖 ), and Λ 2𝑖 = −3𝑎(𝑖)𝜔4 + 2𝜔3 + (3𝑐(𝑖) + 𝑎(𝑖)𝑏(𝑖) −2𝑏(𝑖))𝜔2 − 𝑏(𝑖)𝑐(𝑖).
It is noticed that the analysis of the local stability of

the system with delay when 𝑄𝑖(𝑥, 𝑇) ̸= 0 depends on the
existence of positive root for function 𝐹𝑖(𝜔). The coefficients𝑚0 and 𝑚1, of 𝐹𝑖(𝜔), depend on 𝑇. Therefore, its positive
root 𝜔 depends on 𝑇. Using the Cartan method and Viet

formulas, one proves on the one hand that 𝐹𝑖(𝜔) admits at
least a positive root if 𝑚0 < 0. On the other hand, if 𝑚0 ≥ 0,
then, 𝐹𝑖(𝜔) admits either of two positive roots whereas 𝐹𝑖(𝜔)
does not admit any positive root.

The condition 𝑚0 < 0 is equivalent to the following
assumption:

0 ≤ 𝑇 ≤ 𝑇𝑠 = − 12𝜆 ln
[𝑐(𝑖)]2
𝐸(𝑖)

with 𝐸(𝑖) > 0 and [𝑐(𝑖)]2 < 𝐸(𝑖).
(81)

Let us denote det[𝐽(𝑖)] = 𝐴(𝑖)11𝐴(𝑖)22 −𝐴(𝑖)21𝐴(𝑖)12, 𝑝 = −𝑚1𝑚3 +𝑚22/3, and 𝑞 = −𝑚0𝑚23 − 2(𝑚2/3)3 + 𝑚1𝑚2𝑚3/3. Then, one
obtains the following proposition.

Proposition 11. Let us suppose that 𝐴(𝑖)13𝐴(𝑖)22 > 0.
Let us pose 𝜆(𝑖)𝑚𝑎𝑥 = 𝐴(𝑖)13𝐴(𝑖)22/[det[𝐽(𝑖)] + 𝐴(𝑖)13𝐴(𝑖)22]2 and𝑇(𝑖)𝑠 = −(1/2𝜆) ln([𝑐(𝑖)]2/𝐸(𝑖)), 𝑖 = 2, 3.
(1) 𝐹𝑖(𝜔) admits at least a positive root if

0 ≤ 𝜆 < 𝜆(𝑖)𝑚𝑎𝑥
and 0 ≤ 𝑇 < 𝑇(𝑖)𝑠 .

(82)

(2) 𝐹𝑖(𝜔) does not admit any positive root if one of the
following conditions is verified:

𝑇(𝑖)𝑠 ≤ 𝑇
and 27𝑞2 − 4𝑝3 > 0. (83)

𝑇(𝑖)𝑠 ≤ 𝑇,
27𝑞2 − 4𝑝3 = 0

and [𝑚1𝑚2 − 𝑚0] > 0.
(84)

𝑇(𝑖)𝑠 ≤ 𝑇,
27𝑞2 − 4𝑝3 < 0,

𝑚2 < 0,
𝑚1 < 0

and [𝑚1𝑚2 − 𝑚0] > 0.

(85)

Now, let us use the results ofTheorem 4 from [5] to study
the stability of these points of equilibriums 𝐸∗2 and 𝐸∗3 .
Theorem 12. One poses

𝑥− = 𝛽1𝑑2 + 𝛼1 + 𝛾𝑑2/𝑑21 − √(𝛽1𝑑2 + 𝛼1 + 𝛾𝑑2/𝑑21)2 − 4𝛽1𝑑2 (𝛾𝑑2/𝑑21 − 1)
2𝛽1𝑑2 . (86)
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Let us consider one of these assumptions (82)–(85) and one of
the following conditions:

𝛾𝑑2𝑑21 < 1, (87)

𝛾𝑑2𝑑21 ≥ 1
and max (0; 𝑥−) ≤ 𝛿𝛼2 < 1,

(88)

𝛾𝑑2𝑑21 ≥ 1,
0 ≤ 𝛿𝛼2 < min (1; 𝑥−)

and 𝑇 ̸= − 1𝜆 ln(1 − 𝑑21𝜓 (𝛿)𝛾𝛼2 (𝛼2 − 𝛿)) ,
(89)

det (𝐽) = 𝐴(3)11𝐴(3)22 − 𝐴(3)21𝐴(3)12 > 0
and 𝑇𝑟 (𝐽) = 𝐴(3)11 + 𝐴(3)22 < 0. (90)

With 𝜓(𝛿) defined in formula (23), consider the following.

(1) Let us suppose that one of assumptions (83)–(85) is
verified for i=2,3. Then, there is no change of stability
for equilibrium 𝐸∗𝑖 , 𝑖 = 2, 3.

(2) Let us suppose that assumptions (82) and one of these
assumptions (87)–(89) are verified for i=2.

(a) If 𝛿(𝑇∗2 ) > 0 then the equilibrium 𝐸∗2 is unstable
for any 𝑇 ∈ [0; 𝑇𝑠[.

(b) If 𝛿(𝑇∗2 ) < 0 then the equilibrium 𝐸∗2 is unstable
if 0 ≤ 𝑇 < 𝑇∗2 and stable if 𝑇∗2 ≤ 𝑇.

(3) Let us suppose that assumption (82) is verified for i=3.

(a) In case 𝛿(𝑇∗3 ) > 0,
(i) If assumption (90) is verified then the equi-

librium 𝐸∗3 is stable if 0 ≤ 𝑇 < 𝑇∗3 and
unstable if 𝑇∗3 ≤ 𝑇.

(ii) If assumption (90) is not verified then the
equilibrium 𝐸∗3 is unstable for any 𝑇 ∈[0; 𝑇𝑠[.

(b) Considering 𝛿(𝑇∗3 ) < 0,
(i) If assumption (90) is verified then the equi-

librium 𝐸∗3 is stable for every 𝑇 ∈ [0; 𝑇𝑠[.
(ii) If assumption (90) is not verified then the

equilibrium 𝐸∗3 is unstable if 0 ≤ 𝑇 < 𝑇∗3
and stable if 𝑇∗3 ≤ 𝑇.

With 𝑇∗𝑖 and 𝛿(𝑇∗𝑖 ), 𝑖 = 2, 3 are the denotations defined in
Lemma 10.

Proof. Let us consider formula (63)–(67). Let us consider
the function 𝐹𝑖(𝜔) defined in relation to the formula (70)-
(71) for any point of equilibrium 𝐸∗𝑖 , 𝑖 = 2, 3. Let us

consider assumptions (82). Then, 𝑇(𝑖)𝑠 exists so that, for
any 𝑇 ≤ 𝑇(𝑖)𝑠 , 𝐹𝑖(𝜔) admits 𝜔𝑖 = 𝜔(𝑇∗𝑖 ) a positive root
(see Proposition 11). Considering 𝑇∗𝑖 the associated delay
determined from Lemma 10, consider the following:

(1) Let us suppose that one of assumptions (83)–(85) is
verified in i=2,3. Then, ∀𝑇 > 𝑇(𝑖)𝑠 , 𝐹𝑖(𝜔) does not
admit any positive root. Thus, there is no change of
stability of the equilibrium 𝐸∗𝑖 , 𝑖 = 2, 3.

(2) Stability of𝐸∗2 : let us consider that one of assumptions
(87)-(88) is verified.Then, 𝑐(2) < 0. If assumption (89)
is verified, then, 𝑇 ̸= 𝑇𝑙 = −(1/𝜆) ln(𝑐(2)/𝐸). Hence,𝑃2(0, 𝑇)+𝑄2(0, 𝑇) = 𝐸(2)𝑒−𝜆𝑇−𝑐(2) ̸= 0 if assumptions
(87)-(88) are verified. Then, let us apply Theorem 4
from [5]. So, let us suppose that 0 ≤ 𝑇 < 𝑇(2)𝑠 . It is
known that 𝑇 = 0 and 𝐸∗2 = 𝑈(1)2 so 𝐸∗2 is unstable
because 𝜓(𝛿) > 0 for 𝛿 < 𝛼2. Taking into account the
conclusions of Theorem 4 from [5], one obtains the
stability of 𝐸∗2 .

(3) Let us suppose that the assumptiondet(𝐽) = 𝐴(3)11𝐴(3)22−𝐴(3)21𝐴(3)12 > 0 of (90) is verified. Then, 𝑐 > 𝐵 so 𝑇 ≥0 > 𝑇𝑙 = −(1/𝜆) ln(𝑐/𝐵).Thus, let us applyTheorem 4
from [5]. It is known that when 𝑇 = 0 and 𝐸(3)3 = 𝑈(1)3
then 𝐸(3)3 is stable if assumption (90) is verified and
unstable if not. Taking into account the conclusions
of Theorem 4 from [5], one gets the stability of 𝐸∗3 .

7. Global Stability of Model (1.3)
Theorem13. Let us suppose thatmodel (1.3) is permanent and
that it admits a unique interior equilibrium point. If

𝛿 < 𝛼2,
𝛽2𝑑2 − 𝛼2 < 0,
𝑑2 < 𝑑1,
𝛾 < 𝛼2,
𝑇 < ln 2𝜆 ,
12 < 𝜆,

(91)

1 + 𝛼1𝑑22 + 𝛼2𝑀V𝑑22 + 4𝑑2𝛼21 (1 + 𝛼1𝑑1 + 𝜆) + 𝛽2𝛿𝛼2 + ln 2
− 1 < 0,

(92)

𝛽1 𝛿𝛼2 +
𝛾𝑀𝑢 + 𝑑1 <

𝛼2𝑀𝑢 + 𝑑2 , (93)

then the unique interior equilibrium point 𝐸∗3 =(𝑢∗; V∗, 𝑘𝑢∗) of model (1.3) is globally and asymptotically
stable.



International Journal of Differential Equations 13

Proof. Let us consider model (1.3) and 𝐸∗3 = (𝑢∗; V∗, 𝑘𝑢∗) a
unique interior equilibrium point. Let us pose 𝑈 = ln(𝑢/𝑢∗),𝑉 = ln(V/V∗), and𝑊 = ln(𝑤/𝑤∗).

Then, 𝑢 − 𝑢∗ = 𝑢∗[𝑒𝑈 − 1], V − V∗ = V∗[𝑒𝑉 − 1], and𝑤 − 𝑤∗ = 𝑤∗[𝑒𝑊 − 1].Thus,

�̇� = 𝑢∗ [−1 + 𝛽1V2 + 𝛼1V(𝑢∗ + 𝑑2) (𝑢 + 𝑑2)
+ 𝛾𝑘V(𝑘𝑢∗ + 𝑑1) (𝑤 + 𝑑1) 𝑢] {𝑒𝑈 − 1} + V∗ [𝛽1
− (𝛽1 (V + V∗) + 𝛼1)(𝑢∗ + 𝑑2) − 𝛾𝑘𝑘𝑢∗ + 𝑑1 ] {𝑒𝑉 − 1}
+ 𝑤∗ [ −𝑑1(𝑘𝑢∗ + 𝑑1) 𝑢] {𝑒𝑊 − 1} ,

�̇� = 𝑢∗ [𝛽2 − 𝛽2V∗𝑢∗ + 𝑑2 +
(𝛽2𝑢 + 𝛼2) V(𝑢∗ + 𝑑2) (𝑢 + 𝑑2)] {𝑒𝑈

− 1} − (𝛽2𝑢 + 𝛼2)𝑢∗ + 𝑑2 V∗ {𝑒𝑉 − 1} ,
�̇� (𝜏) = 𝜆𝑒−𝑤(𝜏)𝑘 [{𝑒𝑈(𝜏) − 1} − 𝑘 {𝑒𝑊(𝜏) − 1}

− 𝑒−𝜆𝑇 {𝑒𝑈(𝜏−𝑇) − 1}] .

(7.1)

Let us denote 𝑉1(𝜏) = |𝑈(𝜏)|. Consider
(𝑢, V, 𝑤) ∈ A

+ = {(𝑢, V, 𝑤) ∈ R
3
+ : 𝑚𝜀𝑢 ≤ 𝑢 ≤ 𝑀𝑢, 𝑚V

≤ V ≤ 𝑀V and 𝑚𝑤 ≤ 𝑤 ≤ 𝑀𝑤} . (94)

Then, 𝑑𝑉1(𝜏)/𝑑𝜏 = sgn(𝑈(𝜏))�̇�(𝜏). Meanwhile, [sgn(𝑒𝑈(𝜏) −1)](𝑒𝑈(𝜏) − 1) = |𝑒𝑈(𝜏) − 1| so the superior derivative of 𝑉1(𝜏)
in relation to the time, alongside the solutions of system (7.1),
gives

𝐷+𝑉1 (𝜏) ≤ {−1 + 𝛽1𝑀2V + 𝛼1𝑀V𝑑22 + 𝛾𝑘𝑀V𝑚𝜀𝑢𝑑21 }
𝑢 − 𝑢∗

+ 
𝛽1𝛿𝛼2 − 𝛾𝑘𝑘𝑀𝑢 + 𝑑1

 V − V∗
+ 𝑑1(𝑘𝑀𝑢 + 𝑑1)𝑀𝑢

𝑤 − 𝑤∗ .
(95)

Let us denote 𝑉2(𝜏) = |𝑉(𝜏)|. However, (𝛽2𝑢 + 𝛼2)V/(𝑢∗ +𝑑2)(𝑢 + 𝑑2) ≤ 𝛼2V/(𝑢∗ + 𝑑2)𝑑2 if 𝛽2𝑑2 − 𝛼2 < 0.Then,

𝐷+𝑉2 (𝜏) ≤ 
𝛽2𝛿𝛼2 + 𝛼2𝑑22𝑀V


𝑢 − 𝑢∗

− 𝛼2𝑀𝑢 + 𝑑2
V − V∗ .

(96)

Let us note𝑉31(𝜏) = |𝑊(𝜏)|. One has𝑚𝜀𝑢/𝑢∗ ≤ 𝑒𝑈(𝜏) ≤ 𝑀𝑢/𝑢∗
and 𝑚𝑤/𝑤∗ ≤ 𝑒𝑊(𝜏) ≤ 𝑀𝑤/𝑤∗. Then, superior derivative of

𝑉31(𝜏) in relation to the time, alongside the solutions of (7.1),
results in

𝐷+𝑉31 (𝜏) ≤ 𝜆 𝑒𝑈(𝜏) − 1 − 𝜆𝑚𝑤𝑤∗
𝑒𝑊(𝜏) − 1

+ 𝑀𝑢𝜆𝑒−𝜆𝑇𝑘 ∫𝜏
𝜏−𝑇

𝑒𝑈(𝑠) − 1 𝑑𝑠.
(97)

Let us consider the functional 𝑉32(𝜏) = (𝑀𝑢𝜆𝑒−𝜆𝑇/𝑘) ∫𝜏
𝜏−𝑇

∫𝜏V |𝑒𝑈(𝑠) − 1|𝑑𝑠𝑑V; then,

𝐷+𝑉32 (𝜏) ≤ 𝑇𝑀𝑢𝜆𝑒−𝜆𝑇𝑘 𝑒𝑈(𝜏) − 1
− 𝑀𝑢𝜆𝑒−𝜆𝑇𝑘 ∫𝜏

𝜏−𝑇

𝑒𝑈(𝑠) − 1 𝑑𝑠.
(98)

Let us pose that 𝑉3(𝜏) = 𝑉31(𝜏) + 𝑉32(𝜏).Thus,

𝐷+𝑉3 (𝜏) ≤ 𝜆(1 + 𝑇𝑀𝑢𝑒−𝜆𝑇𝑘 ) 𝑒𝑈(𝜏) − 1
− 𝜆 𝑒𝑊(𝜏) − 1 .

(99)

Then, 𝐷+𝑉3 (𝜏) ≤ 𝜆𝑀𝑢 (1 + 𝑇𝑀𝑢𝑒−𝜆𝑇𝑘 ) 𝑢 − 𝑢∗
− 2𝜆𝑚𝑤

𝑤 − 𝑤∗ .
(100)

Let us pose𝑉(𝜏) = 𝑉1(𝜏)+𝑉2(𝜏)+𝑉3(𝜏).Then, from formulas
(95), (96), and (100), one obtains

𝐷+𝑉 (𝜏) ≤ ℎ1 𝑢 − 𝑢∗ + ℎ2 V − V∗
+ ℎ3 𝑤 − 𝑤∗

if 𝛽2𝑑2 − 𝛼2 < 0
(101)

with ℎ1 = −1 + 𝛽1𝑀2V + 𝛼1𝑀V𝑑22 + 𝛾𝑘𝑀V𝑚𝜀𝑢𝑑21
+ 𝛽2𝛿𝛼2 + 𝛼2𝑑22𝑀V

+ 𝜆𝑀𝑢 (1 + 𝑇𝑒−𝜆𝑇𝑘 𝑀𝑢) ,
ℎ2 = − 𝛼2𝑀𝑢 + 𝑑2 +


𝛽1𝛿𝛼2 − 𝛾𝑘𝑘𝑀𝑢 + 𝑑1


and ℎ3 = − 2𝜆𝑘𝑚𝜀𝑢 +

𝑑1(𝑘𝑀𝑢 + 𝑑1)𝑀𝑢 .
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We have: 𝑇 < ln 2𝜆 ⇒
𝑒−𝜆𝑇𝑘 < 1,

𝛽1 𝛿𝛼2 +
𝛾𝑀𝑢 + 𝑑1 <

𝛼2𝑀𝑢 + 𝑑2 ⇒ℎ2 < 0,
and 12 < 𝜆 ⇒

ℎ3 < 0.
(102)

One has 𝛼21/4𝑑2 < 𝑀𝑢 ⇒ 1/𝑀𝑢 < 4𝑑2/𝛼21 . Model (1.3) is
permanent. So, on the one hand, one has 𝑚(0)𝑢 ≥ 𝑚𝑢 > 0 if(𝛽1/𝑑22)𝑀2V + (𝛼1/𝑑22)𝑀V < (1 + 𝛼1)/𝑑22. In addition,𝑚(0)𝑢 /2 ≤𝑚𝜀𝑢 ≤ 𝑚(0)𝑢 .Moreover,𝑚(0)𝑢 ≥ 2√𝛾𝑘𝑀𝑢𝑀V/𝑑1.

Then, 𝛾𝑘𝑀V/𝑚𝜀𝑢𝑑21 ≤ 2𝛾𝑀V/𝑚(0)𝑢 𝑑21 ≤ 𝑚(0)𝑢 /2𝑘𝑀𝑢𝑑1 <𝑚(0)𝑢 /𝑀𝑢𝑑1 if 𝑇 < (ln 2)/𝜆.
So,𝐷+𝑉(𝜏) < 0 if assumptions (91)–(93) are checked.

Corollary 14. For 𝑟 ≥ 14, if the following assumptions are
verified:

𝛾 ≤ 3 + [1 + 2 (𝑟 + √𝑟2 + 𝑟)]2 , (103)

𝑑2 ≥
1 − 8𝑟𝛾 − 8𝑟 + 2𝑟√(1/2𝑟 − 4𝛾 − 4)2 − (8/𝑟) {𝛾 − 3 − [1 + 2 (𝑟 + √𝑟2 + 𝑟)]2}

8 , (104)

𝑑22𝑟 ≥ 𝛼2 ≥ max
{{{

4𝑑2 + 44𝑑2 − 1 ;
4𝑑2 + 3 + [1 + 2 (𝑟 + √𝑟2 + 𝑟)]2

4𝑑2 − 1
}}}

+ 𝛾. (105)

2 (𝑟 + √𝑟2 + 𝑟) ≤ 𝛼1 ≤ −1 + √(𝛼2 − 𝛾) (4𝑑2 − 1) − 3 − 4𝑑2 (106)

0 < 𝛽1 < 1𝑑2 ,
𝛽2 < 𝛼2𝑑2 ,
12 < 𝜆 < 1 + 𝛼1,

(107)

1 − 𝑑2𝑀𝑢 + 𝑑2 <
𝛿𝛼2 < 1,

𝛽2 < 𝛽𝑚𝑎𝑥2 = 𝛼2𝑀𝑢 [
𝑑2𝑀𝑢 + 𝑑2 +

𝛿𝛼2 − 1] ,
(108)

𝑑2 < 𝑑1,
𝛾 < 𝛼2,
𝑇 < ln 2𝜆 ,

(109)

then, the unique interior equilibrium point 𝐸∗3 = (𝑢∗; V∗, 𝑘𝑢∗)
of model (1.3) is globally and asymptotically stable.

Proof. Let us consider the assumptions of Theorem 13.

Posing: 𝜒 (𝛽1) =
{{{{{{{{{

𝑑2 si 0 < 𝛽1 < 1𝑑2 ,
√ 𝑑2𝛽1 si 1𝑑2 < 𝛽1 < 4. (110)

The model is permanent. Then

𝑚(0) ≥ 𝑚𝑢 > 0 ⇐⇒
(1 − 𝜒 (𝛽1)𝑀𝑢 + 𝑑2 <

𝛿𝛼2 < 1, 𝛽2 < 𝛽𝑚𝑎𝑥2
= 𝛼2𝑀𝑢 [

𝜒 (𝛽1)𝑀𝑢 + 𝑑2 +
𝛿𝛼2 − 1]) .

(111)
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Assumptions (91) and (93) give the following assumption:

𝛽1 < 𝛼2 − 𝛾𝑀𝑢 + 𝑑2 . (112)

Moreover, assumptions (91) and (92) give the following
assumption:

1 + 𝛼1𝑑22 + 2𝛼2𝑑2 + 4𝑑2𝛼21 (1 + 𝛼1𝑑1 + 𝜆) + ln 2 − 1 < 0. (113)

Posing (1 + 𝛼1)/𝑑22 = 1/𝑟1, 2𝛼2/𝑑2 = 1/𝑟2, (4𝑑2/𝛼21)((1 +𝛼1)/𝑑1) = 1/𝑟3, and 4𝑑2𝜆/𝛼21 = 1/𝑟4.
Then, condition (113) becomes

1𝑟1 +
1𝑟2 +

1𝑟3 +
1𝑟4 < 1 − ln 2. (114)

By imposing the condition, 𝑟1 = 𝑟2 = 𝑟3 = 𝑟4 = 𝑟,
one obtains 𝑟 ≥ 14 and assumptions (103)–(109). According
to Theorem 13, the unique interior equilibrium point 𝐸∗3 =(𝑢∗; V∗, 𝑘𝑢∗) of model (1.3) is globally and asymptotically
stable.

8. Numerical Simulations

8.1. Limit Cycle. Let us consider the period 𝑝 = 46 and the
following control parameters: (𝑑1, 𝑑2, 𝛾, 𝛼1, 𝛼2, 𝛿, 𝛽1, 𝛽2) =(1.75; 0.25; 0.5; 3.5; 1.75; 0.4375; 3.617; 1.1), 𝜆 = 0.0000123,
and 𝑇 = 45.

For the graphic illustration, let us consider the initial
conditions (𝑢0, V0, 𝑤0) = (6; 3; 0.00331962170895946), the
step ℎ = 10−5, and the numbers iterations of time 𝑁 =4600000. One obtains the maximum values of 𝑢, V, and 𝑤:

𝑢𝑚𝑎𝑥 = 66.4527115210953,
V𝑚𝑎𝑥 = 2836.21769136928,
𝑤𝑚𝑎𝑥 = 0.0367713984036395.

(115)

The trivial equilibrium points of the model are 𝐸0 =(0; 0.0),𝐸1 = (4.5; 0; 0.00249006081209868), and 𝐸2 =(0; 0.000476921218349683; 0).
In addition, 𝐸∗ = (2.19899664564055; 2.19198952607149;

0.00121680786072133) is the unique interior equilibrium. So,
the illustrating Figure 1 is for the initial time 𝑡0 = 0.
(i) Interpretation. The trajectories of GDP 𝑢 and of capital V
and 𝑤 (the effect of delay) are periodic. The orbit starting
from the initial condition (𝑢0, V0, 𝑤0) gravitates around the
equilibrium point 𝐸∗ without never reaching it. There is,
therefore, a limit cycle around this equilibrium point 𝐸∗. The
orbit revolves around the equilibrium point.They aremoving
away from trivial equilibrium points and converge towards
the limit cycle around 𝐸∗. Indeed, one has 𝜆 = 0.0000123 <

𝜆(3)𝑚𝑎𝑥 = 0.2302 and 𝑇 = 45 < 𝑇(3)𝑠 = 305733.267595647.
According to Proposition 11, 𝜔 = 0.000686044679105366 is
the positive root of 𝐹(𝜔). One has 𝑇∗3 = 2383.38276771532
and 𝛿(𝑇∗3 ) < 0. So, 𝐸∗ is unstable according to Theorem 12
because 𝑇𝑟 = 3.255 > 0 for 𝑇 = 0. The trivial equilibrium
points of the model are all unstable for 𝑇 < 𝑇∗3 < 𝑇∗2 =4437.41337922542.Hence, we have the graphic illustration.
8.2. Global Stability. Let us consider the period 𝑝 = 25 and
the following control parameters: (𝑑1, 𝑑2, 𝛾, 𝛼1, 𝛼2, 𝛿, 𝛽1, 𝛽2)
= (101390.241; 50695.121; 0.5; 1822.498; 1747.022; 1721.154;9.863.10−6; 7.784.10−6) and 𝜆 = 0.75 and 𝑇 = 0.462.

For the graphic illustration, let us consider the initial
conditions (𝑢0, V0, 𝑤0) = (5000; 8000; 1344.89438670147),
the step ℎ = 10−4, and the numbers iterations of time 𝑁 =250000. From condition (9) of Theorem 4, the system is
permanent if 𝛼2 > 𝛿, 0 ≤ 𝛽1 < 4, and𝑚(0)𝑢 ≥ 2√𝛾𝑘𝑀𝑢𝑀V/𝑑1.
One obtains the maximum and minimum values of 𝑢, V, and𝑤 for 𝜀 = 𝑚(0)𝑢 − 2√𝛾𝑘𝑀𝑢𝑀V/𝑑1 :

𝑢𝑚𝑎𝑥 = 1661666.077,
V𝑚𝑎𝑥 = 38031.766,
𝑤𝑚𝑎𝑥 = 486690.726.
𝑢𝑚𝑖𝑛 = 𝑚𝜀𝑢 = 1139.233,
V𝑚𝑖𝑛 = 750.460,
𝑤𝑚𝑖𝑛 = 333.6737.

(116)

The trivial equilibrium points of the model are 𝐸0 = (0; 0; 0),𝐸1 = (1823.498; 0; 534.090), and 𝐸2 = (0; 750.630; 0).
In addition, 𝐸∗ = (1796.505; 777.6445; 526.184) is

the unique interior equilibrium point verifying condition
(91)–(93) of Theorem 13. Then, 𝐸∗ is globally stable. Hence,
the illustrating Figure 2 is for the initial time 𝑡0 = 0:
(ii) Interpretation. The trajectories of GDP 𝑢 and capital V
and 𝑤 (the effect of delay) stabilize, respectively, around𝑢∗ = 1796.505, V∗ = 777.6445, and 𝑤∗ = 526.184 when𝑡 is greater than 𝑇. The border dynamics show that when
the orbit arrives in a border plan, it remains and converges
towards a corresponding equilibrium point (see Orbit.2 to
Orbit.4 of Figure 2). Moreover, the trivial equilibrium points
of the model are all unstable. So, the orbits, are moving away
from the borders plans and converge towards 𝐸∗. Hence, 𝐸∗
is globally stable, which is illustrated by the figure “phase
portrait” of Figure 2.

9. Conclusion

The economic basic model of our work was one of dynamics
Kaldor at an effective growth rate whose rate of saving is
the Holling-II type and investment rate is from Leslie and
Gower type modified in dimension two. Taking into account
the time required for the saving to ensure its self-financing
of all the investments, one obtains a model with a delay
of the Kaldor type modified. This model is bounded and
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Figure 1: Trajectories and orbits with 𝑢0(𝜃) = 𝜑(𝜃) = 𝑢(0)𝑒𝐴𝜃/(1 + 𝑢(0)(𝑒𝐴𝜃 − 1)), ∀𝜃[−𝑇; 0], where 𝐴 = (1/2𝑇) ln{|𝑢(0) − 1|/𝑢(0)} if 𝑢(0) ̸= 1
and 𝐴 = −1/2𝑇 if 𝑢(0) = 1.

admits an attractor unit (set).Thus, under certain conditions,
this model with delay is permanent. On the one hand, this
permanence appears in the form of stationary growth of the
capital stock and the product (stable interior equilibrium
point) and, on the other hand, in the form of cyclic growth of
the capital and the product (limiting cycle). In other words,
this permanence avoids a shortage of the capital stock or the
long-term production. In front of some other conditions, the
dynamic stability with delay is also global; i.e., it does not
depend on the level of the capital stock and the level of the
production at the initial time. The consideration of the delay
(due to the time for the economy to finance investments)
can justify the bifurcation of an economic model of the
stationary growth towards cyclic growth (see Theorem 12,

(3)(a)(i)). However, this delay in the model can stabilize an
initially unstable equilibrium of the system (see Theorem 12,(3)(b)(ii)), which represents a major economic interest since
it allows the saving to get rid of risks from the cyclic growth.
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Figure 2: Trajectories, orbits, and phase portrait with 𝑢0(𝜃) = 𝜑(𝜃) = 𝑢(0)𝑒𝐴𝜃/(1 + 𝑢(0)(𝑒𝐴𝜃 − 1)), ∀𝜃[−𝑇; 0], where 𝐴 = (1/2𝑇) ln{|𝑢(0) −1|/𝑢(0)} if 𝑢(0) ̸= 1 and 𝐴 = −1/2𝑇 if 𝑢(0) = 1.
References

[1] A. F. Nindjin, A. Tetchi N’Guessan, H. Okou, and K. Thiban
Tia, “Cyclic growth and global stability of economic dynamics
of Kaldor type in two dimensions,” International Journal of
Differential Equations, Art. ID 2062819, 12 pages, 2017.

[2] A. F. Nindjin, A. T. N’Guessan, H. Okou, and K. T. Tia,
“Bifurcations of an economic dynamics of a modified
Kaldor type in two dimensions,” Global Journal of Pure

and Applied Mathematics, vol. 2017, pp. 7855–7877, 2017,
http://www.ripublication.com/gjpam.htm.

[3] H.-W. Lorenz, Nonlinear Dynamical Economics and Chaotic
Motion, Springer, Berlin, Germany, 1993.

[4] F. D. Chen, X. Y. Liao, and Z. K. Huang, “The dynamic behavior
of N-species co-operation system with continuous time delays
and feedback controls,” Applied Mathematics and Computation,
vol. 181, no. 2, pp. 803–815, 2006.

http://www.ripublication.com/gjpam.htm


18 International Journal of Differential Equations

[5] E. Beretta and Y. Kuang, “Geometric stability switch criteria
in delay differential systems with delay dependent parameters,”
SIAM Journal onMathematical Analysis, vol. 33, no. 5, pp. 1144–
1165, 2002.


