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We study systemswith different diffusions (local and nonlocal),mixed boundary conditions, and reaction terms.Weprove existence
and uniqueness of the solutions and then analyze global existence vs blow up in finite time. For blowing up solutions, we find
asymptotic bounds for the blow-up rate.

1. Introduction

1.1. Description of the Problem. Our first goal in this paper
is to study the following nonlocal reaction-diffusion system
with mixed boundary conditions

𝑢𝑡 (𝑥, 𝑡) = ∫
Ω

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)) 𝑑𝑦
+ V𝑝 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

V𝑡 (𝑥, 𝑡) = ∫
R𝑁

𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑡) − V (𝑥, 𝑡)) 𝑑𝑦
+ 𝑢𝑞 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

V (𝑥, 𝑡) = 0 𝑥 ∉ Ω, 𝑡 > 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,
V (𝑥, 0) = V0 (𝑥) ,

𝑥 ∈ Ω.

(1)

Here 𝑝, 𝑞 > 0, 𝑢0(𝑥), V0(𝑥) ∈ 𝐶(Ω) are nonnegative and
nontrivial functions, 𝐽 : R𝑛 󳨀→ R is a nonnegative,
smooth, symmetric radially and strictly decreasing kernel,
with ∫

R𝑛
𝐽(𝑥)𝑑𝑥 = 1 and supported in the unitary ball, and

Ω ⊂ R𝑁 (𝑁 ≥ 1) is a bounded connected and smooth
domain.

In the first equation, we are imposing that the diffusion
takes place only in Ω; nomass may enter or leave the domain.
This corresponds to what is called Neumann boundary
conditions in the literature; see [1]. In the second equation,
we have that the diffusion takes place in the whole R𝑁 but
we impose that 𝑢 vanishes outside Ω. This is the analogous of
what is called Dirichlet boundary conditions; see [1]. Hence
this system is governed by nonlocal diffusion with mixed
boundary conditions.

Our second objective in this paper is the study of the same
kind of system when one of the diffusions is local

𝑢𝑡 (𝑥, 𝑡) = Δ𝑢 + V𝑝 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0
V𝑡 (𝑥, 𝑡) = ∫

R𝑁
𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑡) − V (𝑥, 𝑡)) 𝑑𝑦

+ 𝑢𝑞 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0
𝜕𝑢𝜕𝜂 (𝑥, 𝑡) = 0,

(𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ;
V (𝑥, 𝑡) = 0,

𝑥 ∉ Ω, 𝑡 > 0
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𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,
V (𝑥, 0) = V0 (𝑥) ,

𝑥 ∈ Ω.
(2)

Again, we assume that 𝑝, 𝑞 > 0, 𝑢0(𝑥), V0(𝑥) ∈ 𝐶(Ω) are
nontrivial functions, 𝐽 is as before, and Ω ⊂ R𝑁 (𝑁 ≥ 1)
is a bounded connected and smooth domain with 𝜂 denoting
its outer normal unit vector field.

Now, we face a system similar to the previous one, in
which one of the two components obeys a local classical dif-
fusion (with the usual Laplacian) while the other component
has a nonlocal diffusion operator.

1.2. Main Results. For both problems (1) and (2) we analyze
the existence and uniqueness of nonnegative solutions. Once
we settle this issue, we look for the existence of solutions
globally defined in time and solutions blowing up in finite
time. Finally, whenwe have solutions that blowup,we analyze
the blow-up rate.

We say that a solution (𝑢, V) blows up in finite time if and
only if a finite time 𝑇 > 0 exists such that

lim
𝑡↗𝑇

sup (‖𝑢 (𝑥, 𝑡)‖𝐿∞(Ω) + ‖V (𝑥, 𝑡)‖𝐿∞(Ω)) = ∞. (3)

If solutions are well defined and finite for every 𝑡 ∈ (0, 𝑇)with𝑇 = ∞ the solution (𝑢, V) is global, i.e., the solution exists for
all 𝑡 ≥ 0.

For both problems our results can be summarized as
follows.

Theorem 1. For (𝑢0, V0) ∈ 𝐶(Ω)×𝐶(Ω) positive real functions,
there exists a unique positive solution (𝑢, V). Moreover, (𝑢, V)
can be extended to a maximal interval [0, 𝑇) with 𝑇 ≤ ∞.

A comparison principle between super- and subsolutions
holds.

If 𝑝𝑞 > 1, the solution (𝑢, V) blows up in finite time 𝑇, while
for 𝑝𝑞 ≤ 1 the solution (𝑢, V) exists globally.

For solutions that attain theirmaximumat𝑥 = 0 for every 𝑡
(for example, for radially symmetric nondecreasing solutions),
the blow-up rates are give by

𝑢 (0, 𝑡) ∼ (𝑇 − 𝑡)−(𝑝+1)/(𝑝𝑞−1)
V (0, 𝑡) ∼ (𝑇 − 𝑡)−(𝑞+1)/(𝑝𝑞−1) . (4)

1.3. Previous Results. Nonlocal diffusion equations of the
form

𝑢𝑡 (𝑥, 𝑡) = 𝐽 ∗ 𝑢 − 𝑢 (𝑥, 𝑡)
= ∫

R𝑛
𝐽 (𝑥 − 𝑦) 𝑢 (𝑦, 𝑡) 𝑑𝑦 − 𝑢 (𝑥, 𝑡) , (5)

and variations of it, have been widely used in the last decade
tomodel diffusion processes; see [1–7] and references therein.
This equation is called nonlocal diffusion equation since the
diffusion of the density 𝑢 at a point 𝑥 and time 𝑡 depends

not only on 𝑢(𝑥, 𝑡), but also on all the values of 𝑢 in a
neighborhood of 𝑥 through the convolution term 𝐽 ∗ 𝑢.
This equation shares many properties with the classical heat
equation 𝑢𝑡 = Δ𝑢 such as the fact that bounded stationary
solutions are constant, a maximum principle holds for both
of them, and even if 𝐽 is compactly supported, perturbations
propagate with infinite speed.

Concerning boundary conditions for nonlocal diffusion,
Chasseigne et al. in [5] studied the Dirichlet boundary
conditions problem

𝑢𝑡 (𝑥, 𝑡) = ∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)) 𝑑𝑦,
𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∉ Ω, 𝑡 > 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω,

(6)

In this model they have that diffusion takes place in the
whole R𝑁 but impose that 𝑢 vanishes outside Ω. This is the
analogous of what is called Dirichlet boundary conditions for
the heat equation.

Also in [5] the Neumann boundary conditions case is
studied

𝑢𝑡 (𝑥, 𝑡) = ∫
Ω

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)) 𝑑𝑦,
𝑥 ∈ Ω, 𝑡 > 0

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω.
(7)

Since we are now integrating in Ω, the diffusion takes place
only in Ω. The individuals may not enter nor leave Ω. This
is the analogous of what is called homogeneous Neumann
boundary conditions in the literature.

Concerning reaction terms, Pérez-Llanos and Rossi in [8]
studied the problem

𝑢𝑡 (𝑥, 𝑡) = ∫
Ω

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)) 𝑑𝑦
+ 𝑢𝑝 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω.
(8)

They prove that nonnegative and nontrivial solutions blow up
in finite time if and only if 𝑝 > 1. Moreover, they find that the
blow-up rate is the same as the one that holds for the ODE𝑢𝑡 = 𝑢𝑝, that is, lim𝑡󳨀→𝑇−(𝑇 − 𝑡)1/(𝑝−1)‖𝑢(⋅, 𝑡)‖∞ = (1/(𝑝 −1))1/(𝑝−1).

For systems, Bogoya in [9] studied the analogous system
to (1) with Neumann boundary conditions.

The paper is organized as follows: In Section 2, we analyze
the existence and uniqueness of solutions to (1). In Section 3,
we look for global existence vs blow up of solutions to (1)
and its blow-up rate when appropriate. In Section 4, we deal
with the existence and uniqueness of solutions to (2). Finally,
in Section 5, we analyze the global existence and blow up of
solutions of (2) and the corresponding blow-up rate.
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2. Existence and Uniqueness for (1)

In this section, we analyze the existence and uniqueness of
nonnegative solutions (𝑢, V) of (1).

We will deal with this issue for a slightly more general
system in which the reaction terms 𝑢𝑞, V𝑝 are replaced by𝑓(V), 𝑔(𝑢), two Lipschitz nonnegative functions. Existence
and uniqueness will be obtained via Banach’s fixed point
theorem. Let 𝑡0 > 0 be fixed and consider

𝑋𝑡0 = 𝐶 ([0, 𝑡0] : 𝐶 (Ω) × 𝐶 (Ω)) = {(𝑢, V) : [0, 𝑡0]
󳨀→ 𝐶 (Ω)
× 𝐶 (Ω) : (𝑢, V) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑠 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒 𝑎𝑛𝑑 𝑡𝑖𝑚𝑒} ,

(9)

that is, a Banach space with the norm

|‖(𝑢, V)‖| = max
0≤𝑡≤𝑡0

‖(𝑢 (⋅, 𝑡) , V (⋅, 𝑡))‖𝐼 ,
𝐼 = 𝐿∞ (Ω) × 𝐿∞ (Ω) (10)

and

‖(𝑢 (⋅, 𝑡) , V (⋅, 𝑡))‖𝐼 = max
𝑥∈Ω

|𝑢 (𝑥, 𝑡)| + max
𝑥∈Ω

|V (𝑥, 𝑡)| . (11)

Let

𝑃𝑡0 = {(𝑢, V) ∈ 𝑋𝑡0 : 𝑢 ≥ 0, V ≥ 0} , (12)

that is, a closed subspace of 𝑋𝑡0 . In what follows, we will use
the notation

‖𝑢‖𝜅 = max
0≤𝑡≤𝑡0

‖𝑢 (⋅, 𝑡)‖𝐿∞(Ω) . (13)

We define the operator

𝜓(𝑢0 ,V0) : 𝑃𝑡0 󳨀→ 𝑃𝑡0 ,
as 𝜓(𝑢0 ,V0) (𝑢, V) = (𝑇𝑢0 (𝑢) , 𝑆V0 (V)) , (14)

where

𝑇𝑢0 (𝑢) (𝑥, 𝑡)
= ∫𝑡
0

∫
Ω

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑠) − 𝑢 (𝑥, 𝑠)) 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

𝑓 (V (𝑥, 𝑠)) 𝑑𝑠 + 𝑢0 (𝑥)
𝑆V0 (V) (𝑥, 𝑡)

=
{{{{{{{{{{{

∫𝑡
0

∫
R𝑁

𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑠) − V (𝑥, 𝑠)) 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

𝑔 (𝑢 (𝑥, 𝑠)) 𝑑𝑠 + V0 (𝑥) 𝑥 ∈ Ω
0 𝑥 ∉ Ω.

(15)

The following Lemma is just the first step in order to show
that 𝜓(𝑢0 ,V0) has a fixed point in 𝑃𝑡0 .

Lemma 2. Let 𝑓 and 𝑔 be Lipschitz functions with Lipschitz
constants 𝐾1 and 𝐾2 and (𝑢0, V0) and (𝑤0, 𝑧0) two pairs of
initial conditions in𝐶(Ω)×𝐶(Ω) and (𝑢, V), (𝑤, 𝑧) ∈ 𝑃𝑡0 .Then,
there exists a positive constant 𝐶 = 𝐶(𝐾1, 𝐾2, Ω, 𝐽) such that󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩𝜓(𝑢0 ,V0) (𝑢, V) − 𝜓(𝑤0 ,𝑧0) (𝑤, 𝑧)󵄩󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨󵄨≤ 𝐶𝑡0 |‖(𝑢, V) − (𝑤, 𝑧)‖| + 󵄩󵄩󵄩󵄩(𝑢0, V0) − (𝑤0, 𝑧0)󵄩󵄩󵄩󵄩𝐼 (16)

Proof. For any (𝑥, 𝑡) ∈ Ω × [0, 𝑡0] we have󵄨󵄨󵄨󵄨󵄨𝑇𝑢0 (𝑢 (𝑥, 𝑡)) − 𝑇𝑤0 (𝑤 (𝑥, 𝑡))󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨𝑢0 (𝑥) − 𝑤0 (𝑥)󵄨󵄨󵄨󵄨
+ ∫𝑡
0

∫
Ω

𝐽 (𝑥 − 𝑦) 󵄨󵄨󵄨󵄨𝑢 (𝑦, 𝑠) − 𝑤 (𝑦, 𝑠)󵄨󵄨󵄨󵄨 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

∫
Ω

𝐽 (𝑥 − 𝑦) |𝑢 (𝑥, 𝑠) − 𝑤 (𝑥, 𝑠)| 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

󵄨󵄨󵄨󵄨𝑓 (V (𝑥, 𝑠)) − 𝑓 (𝑧 (𝑥, 𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 󵄩󵄩󵄩󵄩𝑢0 − 𝑤0󵄩󵄩󵄩󵄩𝐿∞(Ω)

+ 2 ∫𝑡
0

‖𝑢 (⋅, 𝑠) − 𝑤 (⋅, 𝑠)‖𝐿∞(Ω) 𝑑𝑠 ∫
Ω

𝐽 (𝑥 − 𝑦) 𝑑𝑦
+ 𝐾1 ∫𝑡

0
‖V (⋅, 𝑠) − 𝑧 (⋅, 𝑠) )‖𝐿∞(Ω) 𝑑𝑠

≤ 󵄩󵄩󵄩󵄩𝑢0 − 𝑤0󵄩󵄩󵄩󵄩𝐿∞(Ω) + (2𝐾 |Ω| + 𝐾1) 𝑡 ‖𝑢 − 𝑤‖𝜅 ,

(17)

where 𝐾 = ‖𝐽‖∞ and 𝐾1 is the Lipschitz constant of 𝑓.
Analogously, taking into account the fact that V is zero

outside Ω and denoting by 𝐾2 the Lipschitz constant for 𝑔,
we have that󵄨󵄨󵄨󵄨󵄨𝑆V0 (V (𝑥, 𝑡)) − 𝑆𝑧0 (𝑧 (𝑥, 𝑡))󵄨󵄨󵄨󵄨󵄨≤ 󵄩󵄩󵄩󵄩V0 − 𝑧0󵄩󵄩󵄩󵄩𝐿∞(Ω) + (2𝐾 |Ω| + 𝐾2) 𝑡 ‖V − 𝑧‖𝜅 . (18)

Therefore, we have obtained󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩𝜓(𝑢0 ,V0) (𝑢, V) − 𝜓(𝑤0 ,𝑧0) (𝑤, 𝑧)󵄩󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨󵄨≤ (2𝐾 |Ω| + 𝐾3) 𝑡0 |‖(𝑢, V) − (𝑤, 𝑧)‖|
+ 󵄩󵄩󵄩󵄩(𝑢0, V0) − (𝑤0, 𝑧0)󵄩󵄩󵄩󵄩𝐼 ,

(19)

where 𝐾3 = max{𝐾1, 𝐾2}. Then, if 𝐶 = 2𝐾|Ω| + 𝐾3 we have
that󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩𝜓(𝑢0 ,V0) (𝑢, V) − 𝜓(𝑤0 ,𝑧0) (𝑤, 𝑧)󵄩󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨󵄨≤ 𝐶𝑡0 |‖(𝑢, V) − (𝑤, 𝑧)‖| + 󵄩󵄩󵄩󵄩(𝑢0, V0) − (𝑤0, 𝑧0)󵄩󵄩󵄩󵄩𝐼 . (20)

Next, we show the existence and uniqueness of the
solution for functions 𝑓 and 𝑔 that are locally Lipschitz.
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Theorem 3. Let 𝑓 and 𝑔 be locally Lipschitz functions and(𝑢0, V0) ∈ 𝐶(Ω) × 𝐶(Ω) be nonnegative real functions; then
there exists a unique solution (𝑢, V) such that (𝑢, V) ∈ 𝑃𝑡0 .
Moreover, (𝑢, V) can be extended to a maximal interval [0, 𝑇)
with 𝑇 ≤ ∞.

Proof. Wecheck first that𝜓(𝑢0 ,V0) : 𝑃𝑡0 󳨀→ 𝑃𝑡0 . Taking (𝑤, 𝑧) =(𝑤0, 𝑧0) = (0, 0) in Lemma 2 we get that 𝜓(𝑢0 ,V0)(𝑢, V) ∈ 𝑃𝑡0 .
Choose 𝑡0 such that 𝐶𝑡0 < 1. Now taking (𝑤0, 𝑧0) = (𝑢0, V0)
in Lemma 2 we get that (𝑢0, V0) is a strict contraction in 𝑃𝑡0
and the existence and uniqueness part of the theorem follow
from Banach’s fixed point theorem in the interval [0, 𝑡0]. To
extend the solution to [0, 𝑇) wemay take as initial conditions𝑢(𝑥, 𝑡0), V(𝑥, 𝑡0) ∈ 𝐶(Ω) and obtain a solution up to [0, 2𝑡0].
Iterating this procedure, we get a solution defined in [0, 𝑇).

Now, we use the same ideas of the previous analysis to
obtain the following results.

Corollary 4. The solution (𝑢, V) depends continuously on the
initial data. In fact, let 𝑓 and 𝑔 be locally Lipschitz functions
and if (𝑢, V) and (𝑤, 𝑧) are solutions with initial data (𝑢0, V0)
and (𝑤0, 𝑧0), respectively, then there exists a constant 𝐶 such
that

|‖(𝑢, V) − (𝑤, 𝑧)‖| ≤ 𝐶 󵄩󵄩󵄩󵄩(𝑢0, V0) − (𝑤0, 𝑧0)󵄩󵄩󵄩󵄩𝐼 . (21)

Corollary 5. (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) ∈ 𝑃𝑡0 is a solution of (1) if and
only if

𝑢 (𝑥, 𝑡)
= ∫𝑡
0

∫
Ω

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑠) − 𝑢 (𝑥, 𝑠)) 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

𝑓 (V (𝑥, 𝑠)) 𝑑𝑠 + 𝑢0 (𝑥)
V (𝑥, 𝑡)

=
{{{{{{{{{{{

∫𝑡
0

∫
Ω

𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑠) − V (𝑥, 𝑠)) 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

𝑔 (𝑢 (𝑥, 𝑠)) 𝑑𝑠 + V0 (𝑥) 𝑥 ∈ Ω
0 𝑥 ∉ Ω.

(22)

Now, we look for existence and uniqueness of solutions to
(1).

Theorem 6. If 𝑝, 𝑞 ≥ 1 and (𝑢0, V0) ∈ 𝐶(Ω) × 𝐶(Ω) are
nonnegative real functions, then there exists a unique solution(𝑢, V) of (1) such that (𝑢, V) ∈ 𝑃𝑡0 .
Proof. The functions 𝑓(V) = V𝑝, 𝑔(𝑢) = 𝑢𝑞 are locally
Lipschitz; then byTheorem 3, system (1) has a unique solution(𝑢, V) ∈ 𝑃𝑡0 .

For exponents less than one, we have the following
existence result.

Theorem 7. Let 𝑝, 𝑞 > 0 and (𝑢0, V0) ∈ 𝐶(Ω) × 𝐶(Ω) be
nonnegative and bounded functions; then there exists a solution(𝑢, V) ∈ 𝑃𝑡0 to (1).
Proof. The existence of the solution of (1) is obtained with an
approximation procedure. We assume that 0 < 𝑝 < 1 ≤ 𝑞
(the other possibilities are left to the reader). Let (𝑓𝑛)𝑛 be a
sequence of locally Lipschitz functions such that, for 𝑛 fixed𝑓𝑛(𝑠) = 0, if 𝑠 ≤ 0,𝑓𝑛 is nondecreasing and lim𝑛󳨀→∞𝑓𝑛(𝑠) = 𝑠𝑝
for 𝑠 ≥ 0. Consider the system with 𝑓𝑛(V) and 𝑢𝑞. From
Lemma 2 and Theorem 3, we have that there is a unique
solution (𝑢𝑛(𝑥, 𝑡), V𝑛(𝑥, 𝑡)). Now, (𝑢𝑛(𝑥, 𝑡))𝑛𝑎𝑛𝑑(V𝑛(𝑥, 𝑡))𝑛 are
nondecreasing and bounded sequences.Therefore, passing to
the limit as 𝑛 󳨀→ ∞ using Corollary 5, we get the existence
of (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)), a solution to (1).

Remark 8. For future reference, let us analyze the solution to
the ODE system

𝑢󸀠 (𝑡) = V𝑝 (𝑡) ,
V󸀠 (𝑡) = 𝑢𝑞 (𝑡)

𝑓𝑜𝑟 𝑡 > 0
𝑢 (0) = 𝑎 ≥ 0,
V (0) = 𝑏 ≥ 0.

(23)

If 𝑝𝑞 > 1, the solution to (23) is given by

𝑢 (𝑡) = 𝐶1( (𝑝𝑞 − 1)(𝑝+1)/(𝑝𝑞−1)
((𝑝 + 1) (𝑞 + 1)𝑝)1/(𝑝𝑞−1) 𝑎(𝑝𝑞−1)/(𝑝+1)

− 𝑡)
−(𝑝+1)/(𝑝𝑞−1)

,

V (𝑡) = 𝐶2( (𝑝𝑞 − 1)(𝑞+1)/(𝑝𝑞−1)
((𝑝 + 1)𝑞 (𝑞 + 1))1/(𝑝𝑞−1) 𝑏(𝑝𝑞−1)/(𝑞+1)

− 𝑡)
−(𝑞+1)/(𝑝𝑞−1)

,

(24)

with

𝐶1 = ( (𝑝 + 1) (𝑞 + 1)𝑝
(𝑝𝑞 − 1)(𝑝+1) )1/(𝑝𝑞−1) 𝑎𝑛𝑑

𝐶2 = ( (𝑝 + 1)𝑞 (𝑞 + 1)
(𝑝𝑞 − 1)(𝑞+1) )1/(𝑝𝑞−1) .

(25)

If 𝑝𝑞 < 1, the solution of (23) is

𝑢 (𝑡) = (𝑎(1−𝑝𝑞)/(𝑝+1) + 𝐶1𝑡)(𝑝+1)/(1−𝑝𝑞) ,
V (𝑡) = (𝑏(1−𝑝𝑞)/(𝑞+1) + 𝐶2𝑡)(𝑞+1)/(1−𝑝𝑞) , (26)
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with

𝐶1 = ( 1 − 𝑝𝑞𝑝 + 1 ) ( 𝑝 + 1𝑞 + 1 )𝑝/(𝑝+1) 𝑎𝑛𝑑
𝐶2 = ( 1 − 𝑝𝑞𝑞 + 1 ) ( 𝑞 + 1𝑝 + 1 )𝑞/(𝑞+1) .

(27)

If 𝑝𝑞 = 1, the solution of (23) is

𝑢 (𝑡) = 𝑎𝑒𝐶1𝑡,
𝐶1 = ( 𝑝 + 1𝑞 + 1 )𝑝/(𝑝+1) ;

V (𝑡) = 𝑏𝑒𝐶2𝑡,
𝐶2 = ( 𝑞 + 1𝑝 + 1 )𝑞/(𝑞+1) .

(28)

We will use the notation (𝑎, 𝑏) ≥ (𝑐, 𝑑) to indicate that𝑎 ≥ 𝑐 and 𝑏 ≥ 𝑑.
Definition 9. Let 𝑢, V ∈ 𝐶1([0, 𝑇); 𝐶(Ω)). (𝑢, V) is called a
supersolution of (1) if

𝑢𝑡 (𝑥, 𝑡) ≥ ∫
Ω

𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)) 𝑑𝑦
+ V𝑝 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

V𝑡 (𝑥, 𝑡) ≥ ∫
R𝑁

𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑡) − V (𝑥, 𝑡)) 𝑑𝑦
+ 𝑢𝑞 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

V (𝑥, 𝑡) ≥ 0, 𝑥 ∉ Ω, 𝑡 > 0,
𝑢 (𝑥, 0) ≥ 𝑢0 (𝑥) ,
V (𝑥, 0) ≥ V0 (𝑥) ,

𝑥 ∈ Ω.

(29)

Analogously (𝑢, V) ∈ 𝑃𝑡0 is called a subsolution of (1) if it
satisfies the opposite inequalities.

Lemma 10 (comparison principle). Let (𝑢, V) and (𝑢, V)
be a subsolution and supersolution of (1), respectively. If(𝑢0(𝑥), V0(𝑥)) ≤ (𝑢0(𝑥), V0(𝑥)) for all 𝑥 ∈ Ω, then

(𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ≤ (𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) (30)

for all (𝑥, 𝑡) ∈ Ω × (0, 𝑇).

Proof. Let 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡), 𝑧(𝑥, 𝑡) = V(𝑥, 𝑡) − V(𝑥, 𝑡).
Assume first that 𝑤(𝑥, 0), 𝑧(𝑥, 0) > 0 for 𝑥 ∈ Ω. We observe
that 𝑤 and 𝑧 verify

𝑤𝑡 (𝑥, 𝑡) ≥ ∫
Ω

𝐽 (𝑥 − 𝑦) (𝑤 (𝑦, 𝑡) − 𝑤 (𝑥, 𝑡)) 𝑑𝑦
+ (V𝑝 (𝑥, 𝑡) − V𝑝 (𝑥, 𝑡)

V (𝑥, 𝑡) − V (𝑥, 𝑡) ) 𝑧 (𝑥, 𝑡) ,
𝑧t (𝑥, 𝑡) ≥ ∫

Ω
𝐽 (𝑥 − 𝑦) (𝑧 (𝑦, 𝑡) − 𝑧 (𝑥, 𝑡)) 𝑑𝑦

+ ( 𝑢𝑞 (𝑥, 𝑡) − 𝑢𝑞 (𝑥, 𝑡)𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) ) 𝑤 (𝑥, 𝑡) .

(31)

Now, set 0 < 𝛿 = min{𝑤(𝑥, 0), 𝑧(𝑥, 0)} and suppose that the
conclusion of the Lemma does not hold. Thus, let 𝑡1 be the
first time such that𝛿2 = min {𝑤 (𝑥, 𝑡1) , 𝑧 (𝑥, 𝑡1)} . (32)

We can assume that 𝑤 attains the previous minimum. At that
time, there must be a point 𝑥1 ∈ Ω such that 𝑤(𝑥1, 𝑡1) = 𝛿/2.
But, on the one hand 𝑤𝑡(𝑥1, 𝑡1) ≤ 0 and, on the other hand

𝑤𝑡 (𝑥1, 𝑡1) ≥ ∫
Ω

𝐽 (𝑥1 − 𝑦) (𝑤 (𝑦, 𝑡) − 𝑤 (𝑥1, 𝑡1)) 𝑑𝑦
+ (V𝑝 (𝑥1, 𝑡1) − V𝑝 (𝑥1, 𝑡1)

V (𝑥1, 𝑡1) − V (𝑥1, 𝑡1) ) 𝑧 (𝑥1, 𝑡1)
≥ 𝑝𝜂𝑝−1 (𝑥1, 𝑡1) 𝑧 (𝑥1, 𝑡1) > 0,

(33)

where V(𝑥1, 𝑡1) < 𝜂(𝑥1, 𝑡1) < V(𝑥1, 𝑡1). This gives a contra-
diction. Using the continuity of solutions of (1) with respect
to the initial condition and an approximation argument, the
result follows for general initial condition.

Corollary 11. Let (𝑢, V) ∈ 𝑃𝑡0 be a supersolution of (1). Then,
if (𝑢0, V0) ≥ (0, 0) for 𝑥 ∈ Ω we have that (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) ≥(0, 0) for all (𝑥, 𝑡) ∈ Ω×(0, 𝑇) andmoreover, a strict inequality
holds if (𝑢0, V0) is positive.

The following lemma gives us the existence of a maximal
solution of (1) when 𝑝𝑞 < 1. Its proof is analogous to those
given in [10]; therefore we omit the details here.

Lemma 12. Let 0 < 𝑝𝑞 < 1. Then there exists(𝑢𝑀(𝑥, 𝑡), V𝑀(𝑥, 𝑡)), a maximal solution of (1), in the sense that
if (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) is any other solution there holds

𝑢 (𝑥, 𝑡) ≤ 𝑢𝑀 (𝑥, 𝑡) ,
V (𝑥, 𝑡) ≤ V𝑀 (𝑥, 𝑡)

𝑖𝑛 Ω × (0, ∞) .
(34)

Moreover, 𝑢𝑀(𝑥, 𝑡) > 0, V𝑀(𝑥, 𝑡) > 0 for all (𝑥, 𝑡) ∈ Ω×(0, ∞).
The following theorems deal with the uniqueness prob-

lem for (1) in the cases of identically null initial condition and
of nontrivial initial condition, respectively. Their proofs are
analogous to those given in [9]; hence we omit them.
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Theorem 13. Let (𝑢0, V0) = (0, 0).
(1) If 𝑝𝑞 ≥ 1, then the unique solution of (1) is (𝑢, V) =(0, 0).
(2) If 𝑝𝑞 < 1, then there exists exactly one solution (𝑢, V)

of (1) such that 𝑢 and V are strictly positives.

Theorem 14. If (𝑢0, V0) ̸= (0, 0), then the solution of problem
(1) is unique.

3. Global Existence vs Blow Up
for Solutions to (1)

In this section, we look for conditions that ensure that
solutions of (1) blow up in finite time or are globally defined.

Theorem 15. Let 𝑝𝑞 > 1 and 𝑢0, V0 ∈ 𝐶(Ω) be nonnegative
and nontrivial functions. Then, the solution (𝑢, V) of (1) blows
up in finite time 𝑇.
Proof. Let 𝑝𝑞 > 1 and 𝑢0(𝑥), V0(𝑥) ∈ 𝐶(Ω) be nonnegative
and nontrivial functions and (𝑢, V) solution of (1). We define
the functions for 𝑡 ≥ 0

𝑀 (𝑡) = ∫
Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥,
𝑁 (𝑡) = ∫

R𝑁
𝜙1 (𝑥) V (𝑥, 𝑡) 𝑑𝑥, (35)

where 𝐶1 ≤ 𝜙1 ≤ 𝐶2 is eigenfunction of the nonlocal
operator, which is positive in Ω; see [7].

As 𝑝 ≥ 1, by Holder’s inequality we have that
𝑁𝑝 (𝑡) = (∫

R𝑁
𝜙1 (𝑥) V (𝑥, 𝑡) 𝑑𝑥)𝑝

≤ 𝐶𝑝2 (∫
Ω
V (𝑥, 𝑡) 𝑑𝑥)𝑝

≤ 𝐶𝑝2 |Ω|𝑝/𝑝󸀠 ∫
Ω
V𝑝 (𝑥, 𝑡) 𝑑𝑥

≤ 𝐶 ∫
Ω
V𝑝 (𝑥, 𝑡) 𝑑𝑥

(36)

with 1/𝑝 + 1/𝑝󸀠 = 1. Now, differentiating 𝑀 with respect to 𝑡
and using (1) we obtain that

𝑀󸀠 (𝑡) = ∫
Ω

𝑢𝑡 (𝑥, 𝑡) 𝑑𝑥 = ∫
Ω
V𝑝 (𝑥, 𝑡) 𝑑𝑥 ≥ 𝐶𝑁𝑝 (𝑡) . (37)

As 𝑞 ≥ 1, by Holder’s inequality we have that
∫
Ω

𝜙1 (𝑥) 𝑢𝑞 (𝑥, 𝑡) 𝑑𝑥 ≥ 𝐶1 ∫
Ω

𝑢𝑞 (𝑥, 𝑡) 𝑑𝑥
≥ 𝐶1 |Ω|𝑞/𝑞󸀠 (∫

Ω
𝑢 (𝑥, 𝑡) 𝑑𝑥)𝑞

= 𝐶𝑀𝑞 (𝑡) .
(38)

Now, taking the derivative of 𝑁 with respect to 𝑡 we have that
𝑁󸀠 (𝑡) = ∫

R𝑁
𝜙1 (𝑥) V𝑡 (𝑥, 𝑡) 𝑑𝑥 = ∫

R𝑁
𝜙1 (𝑥)

⋅ ∫
R𝑁

𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑡) − V (𝑥, 𝑡)) 𝑑𝑦
+ ∫

R𝑁
𝜙1 (𝑥) 𝑢𝑞 (𝑥, 𝑡) 𝑑𝑥 = ∫

R𝑁
V (𝑥, 𝑡) 𝜙1 (𝑥)

⋅ ∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝜙1 (𝑦) − 𝜙1 (𝑥)) 𝑑𝑦
+ ∫

R𝑁
𝜙1 (𝑥) 𝑢𝑞 (𝑥, 𝑡) 𝑑𝑥

= −𝜆1 ∫
R𝑁

𝜙1 (𝑥) V (𝑥, 𝑡) 𝑑𝑥
+ ∫
Ω

𝜙1 (𝑥) 𝑢𝑞 (𝑥, 𝑡) 𝑑𝑥 ≥ −𝜆1𝑁 (𝑡) + 𝐶𝑀𝑞 (𝑡) .

(39)

Summarizing, we get that

𝑀󸀠 (𝑡) ≥ 𝐶𝑁𝑝 (𝑡) ,
𝑁󸀠 (𝑡) ≥ −𝜆1𝑁 (𝑡) + 𝐶𝑀𝑞 (𝑡) . (40)

If 𝑢0, V0 are large, then 𝑀, 𝑁 blow up in finite time; therefore(𝑢, V) blow up in finite time.
In general, (𝑢, V) blow up in finite time for any initial data𝑢0, V0. In fact, if we consider 𝑢(𝑥, 𝑡) = 𝑎(𝑡), V(𝑥, 𝑡) = 𝑏(𝑡)𝜙1(𝑥)

for 𝑥 ∈ Ω, 𝑡 ≥ 0, with 𝑎(𝑡), 𝑏(𝑡) positive functions, then
𝑎󸀠 (𝑡) = 𝑐1𝑏𝑝 (𝑡) ,
𝑏󸀠 (𝑡) = −𝜆1𝑏 (𝑡) + 𝑐2𝑎𝑞 (𝑡) . (41)

Then, it can be obtained that (𝑎(𝑡), 𝑏(𝑡)) (and then (𝑢, V))
blows up in finite time.

Theorem 16. Let 𝑝𝑞 ≤ 1 and 𝑢0(𝑥), V0(𝑥) ∈ 𝐶(Ω) be
nonnegative and nontrivial functions. Then, the solution (𝑢, V)
of (1) exists globally.

Proof. Consider 𝑎, 𝑏 such that (𝑢0, V0) ≤ (𝑎, 𝑏). Since 𝑝𝑞 ≤ 1,
by Remark 8, we have that (𝑢(𝑡), V(𝑡)); the solution of (23)
with 𝑎 ≥ 𝑢0, 𝑏 ≥ V0 is globally defined. Notice that (𝑢(𝑡), V(𝑡))
is a supersolution of (1). If (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) is a solution of
(1) with initial conditions (𝑢0(𝑥), V0(𝑥)), then, by Lemma 10
(comparison principle), we have that 𝑢(𝑥, 𝑡) ≤ 𝑢(𝑡) and
V(𝑥, 𝑡) ≤ V(𝑡) in Ω × (0, 𝑇). Therefore, any solution of (1) can
be continued for all times in the case 𝑝𝑞 ≤ 1.

Next, we analyze the blow-up rate of the solutions of (1).
We assume that 𝑥 = 0 ∈ Ω and note that for smooth
radially symmetric and nondecreasing initial conditions (that
is, when 𝑢0(𝑟), V0(𝑟) are 𝐶1 such that 𝑢󸀠0(𝑟) ≤ 0, V󸀠0(𝑟) ≤0) the solutions are also radially symmetric and radially
nondecreasing (that is, it holds that 𝑢𝑟(𝑟, 𝑡) ≤ 0 and V𝑟(𝑟, 𝑡) ≤0). Hence, for every 𝑡 ∈ (0, 𝑇), the maximum of both
components is attained at 𝑥 = 0. We state this result as
follows.
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Lemma 17. If Ω = 𝐵(0, 𝑅) is a ball and (𝑢0, V0) are smooth,
radially symmetric, and nondecreasing initial conditions (i.e.𝑢0(𝑟), V0(𝑟) are 𝐶1 such that 𝑢󸀠0(𝑟) ≤ 0, V󸀠0(𝑟) ≤ 0), then both
components of the solution are radially symmetric and radially
nondecreasing (they verify 𝑢𝑟(𝑟, 𝑡) ≤ 0 and V𝑟(𝑟, 𝑡) ≤ 0 for
every 𝑟 ∈ [0, 𝑅) and every 𝑡 > 0).
Proof. For a proof we refer to Lemma 4.1 in [8].

Theorem 18. For 𝑝𝑞 > 1, let (𝑢, V) be a positive solution to (1)
such that themaximum is attained at𝑥 = 0 for every 𝑡 ∈ (0, 𝑇).
Then, there exist 𝐶1, 𝐶2, 𝐶3, 𝐶4 positive constants such that

𝐶1 (𝑇 − 𝑡)−(𝑝+1)/(𝑝𝑞−1) ≤ 𝑢 (0, 𝑡)
≤ 𝐶2 (𝑇 − 𝑡)−(𝑝+1)/(𝑝𝑞−1)

𝐶3 (𝑇 − 𝑡)−(𝑞+1)/(𝑝𝑞−1) ≤ V (0, 𝑡)
≤ 𝐶4 (𝑇 − 𝑡)−(𝑞+1)/(𝑝𝑞−1) ,

(42)

where 𝑇 stands for the blow-up time of the solution.

Proof. As𝑝𝑞 > 1, we have that (𝑢, V), the solution of (1), blows
up in finite time (that we called 𝑇). We assumed that

𝑢 (0, 𝑡) = max
𝑥∈Ω

𝑢 (𝑥, 𝑡) 𝑎𝑛𝑑
V (0, 𝑡) = max

𝑥∈Ω
V (𝑥, 𝑡) . (43)

By (1), we have that

𝑢𝑡 (0, 𝑡) = ∫
Ω

𝐽 (0 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (0, 𝑡)) 𝑑𝑦
+ V𝑝 (0, 𝑡) ≤ V𝑝 (0, 𝑡)

V𝑡 (0, 𝑡) = ∫
R𝑁

𝐽 (0 − 𝑦) (V (𝑦, 𝑡) − V (0, 𝑡)) 𝑑𝑦
+ 𝑢𝑞 (0, 𝑡) ≤ 𝑢𝑞 (0, 𝑡) ,

(44)

As

1 = ∫
R𝑁

𝐽 (𝜁) 𝑑𝜁 ≥ ∫
Ω

𝐽 (𝜁) 𝑑𝜁, (45)

we have that

𝑢𝑡 (0, 𝑡) = ∫
Ω

𝐽 (0 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (0, 𝑡)) 𝑑𝑦
+ V𝑝 (0, 𝑡) ≥ −𝑢 (0, 𝑡) + V𝑝 (0, 𝑡)

V𝑡 (0, 𝑡) = ∫
R𝑁

𝐽 (0 − 𝑦) (V (𝑦, 𝑡) − V (0, 𝑡)) 𝑑𝑦
+ 𝑢𝑞 (0, 𝑡) ≥ −V (0, 𝑡) + 𝑢𝑞 (0, 𝑡) .

(46)

Therefore, we get that for all 0 < 𝑡 < 𝑇
−𝑢 (0, 𝑡) + V𝑝 (0, 𝑡) ≤ 𝑢𝑡 (0, 𝑡) ≤ V𝑝 (0, 𝑡) (47)

and

−V (0, 𝑡) + 𝑢𝑞 (0, 𝑡) ≤ V𝑡 (0, 𝑡) ≤ 𝑢𝑞 (0, 𝑡) . (48)

Multiplying the second inequality of (47) by 𝑢𝑞(0, 𝑡) and the
first inequality of (48) by V𝑝(0, 𝑡), we obtain

𝑢𝑡 (0, 𝑡) 𝑢𝑞 (0, 𝑡) ≤ V𝑡 (0, 𝑡) V𝑝 (0, 𝑡) + V𝑝+1 (0, 𝑡) , (49)

which is equivalent to

( 𝑢𝑞+1𝑞 + 1 )
𝑡

(0, 𝑡) ≤ ( V𝑝+1𝑝 + 1 )
𝑡

(0, 𝑡) + V𝑝+1 (0, 𝑡) . (50)

Multiplying the inequality by (𝑝 + 1)𝑒(𝑝+1)𝑡 and integrating in[0, 𝑡] with 𝑡 < 𝑇, we have that
𝑢𝑞 (0, 𝑡) ≤ ((𝑞 + 1) 𝑒(𝑝+1)𝑡V𝑝+1 (0, 𝑡) + 𝐶)𝑞/(𝑞+1)

≤ ((𝑞 + 1) 𝑒(𝑝+1)𝑇V𝑝+1 (0, 𝑡) + 𝐶)𝑞/(𝑞+1)
≤ 𝐶 (V (0, 𝑡))(𝑝+1)𝑞/(𝑞+1) .

(51)

Replacing the second inequality of (48) by inequality (51), we
get

V𝑡 (0, 𝑡) ≤ 𝐶 (V (0, 𝑡))(𝑝+1)𝑞/(𝑞+1) . (52)

Integrating this inequality on [𝑡, 𝑇), we finally obtain
V (0, 𝑡) ≥ 𝐶3 (𝑇 − 𝑡)−𝛽 , 𝑤𝑖𝑡ℎ 𝛽 = 𝑞 + 1𝑝𝑞 − 1 . (53)

In an analogous way we obtain that

𝑢 (0, 𝑡) ≥ 𝐶1 (𝑇 − 𝑡)−𝛼 , 𝑤𝑖𝑡ℎ 𝛼 = 𝑝 + 1𝑝𝑞 − 1 . (54)

With an analysis similar to the one developed above, we
obtain that there exists a constant 𝐶 > 0 such that for 0 <𝑡 < 𝑇

𝐶 (V (0, 𝑡))(𝑝+1)𝑞/(𝑞+1) ≤ 𝑢𝑞 (0, 𝑡) . (55)

Replacing the first inequality of (48) by inequality (55) and as𝑝𝑞 > 1 we have that (𝑝 + 1)𝑞/(𝑞 + 1) > 1 and

𝐶 (V (0, 𝑡))(𝑝+1)𝑞/(𝑞+1) ≤ −V (0, 𝑡)
+ 𝐶 (V (0, 𝑡))(𝑝+1)𝑞/(𝑞+1)

≤ V𝑡 (0, 𝑡) .
(56)

Integrating the inequality from above on [𝑡, 𝑇), we obtain that
V (0, 𝑡) ≤ 𝐶4 (𝑇 − 𝑡)−𝛽 . (57)

In an analogous way we get

𝑢 (0, 𝑡) ≤ 𝐶2 (𝑇 − 𝑡)−𝛼 . (58)
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4. Local and Nonlocal Diffusion

In this section, we analyze the existence and uniqueness of
nonnegative solutions (𝑢, V) of (2).

As in Section 2, we will initially study the system with𝑔(𝑢) and 𝑓(V) replacing 𝑢𝑞, V𝑝, with 𝑓, 𝑔 being nonnegative
Lipschtiz functions. Existence and uniqueness will be again
obtained via Banach’s fixed point theorem. Let 𝑡0 > 0 be fixed;
we consider the Banach space 𝑋𝑡0 with the norm

|‖(𝑢, V)‖| = max
0≤𝑡≤𝑡0

‖(𝑢 (⋅, 𝑡) , V (⋅, 𝑡))‖𝐼 , (59)

and 𝑃𝑡0 a closed subspace of 𝑋𝑡0 already considered in
Section 2.

We define the operator 𝜛(𝑢0, V0) : 𝑃𝑡0 󳨀→ 𝑃𝑡0 , by𝜛(𝑢0 ,V0) (𝑢, V) = (𝜑𝑢0 (𝑢) , 𝜙V0 (V)) , (60)

where

𝜑𝑢0 (𝑢) (𝑥, 𝑡) = 𝑆 (𝑡) 𝑢0 + ∫𝑡
0

𝑆 (𝑡 − 𝑠) 𝑓 (V (𝑥, 𝑠)) 𝑑𝑠
𝜙V0 (V) (𝑥, 𝑡)

=
{{{{{{{{{{{

∫𝑡
0

∫
R𝑁

𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑠) − V (𝑥, 𝑠)) 𝑑𝑦 𝑑𝑠
+ ∫𝑡
0

𝑔 (𝑢 (𝑥, 𝑠)) 𝑑𝑠 + V0 (𝑥) 𝑥 ∈ Ω
0 𝑥 ∉ Ω,

(61)

where for any function ℎ ∈ 𝐿1(Ω)
𝑆 (𝑡) ℎ = ∫

Ω
𝐺 (𝑥, 𝑦, 𝑡) ℎ (𝑦) 𝑑𝑦 (62)

where 𝐺 is Green’s function.That is, 𝑆(𝑡)ℎ denote the solution
of (see [11]) 𝑢𝑡 − Δ𝑢 = 0 (𝑥, 𝑡) ∈ Ω × (0, 𝑇)𝜕𝑢𝜕𝜂 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ;

𝑢 (𝑥, 0) = ℎ (𝑥) , 𝑥 ∈ Ω,
(63)

Now, we need the following lemma.

Lemma 19. Let (𝑢0, V0), (𝑤0, 𝑧0) ∈ 𝐶(Ω) × 𝐶(Ω) and(𝑢, V), (𝑤, 𝑧) ∈ 𝑃𝑡0 . Then, there exists a positive constant 𝐶 =𝐶(𝐾1, 𝐾2, Ω, 𝐽) such that󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩𝜛(𝑢0 ,V0) (𝑢, V) − 𝜛(𝑤0 ,𝑧0) (𝑤, 𝑧)󵄩󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨󵄨≤ 𝐶𝑡0 |‖(𝑢, V) − (𝑤, 𝑧)‖| + 󵄩󵄩󵄩󵄩(𝑢0, V0) − (𝑤0, 𝑧0)󵄩󵄩󵄩󵄩𝐼 . (64)

Proof. For any (𝑥, 𝑡) ∈ Ω) × [0, 𝑡0] we have󵄨󵄨󵄨󵄨󵄨𝜑𝑢0 (𝑢 (𝑥, 𝑡)) − 𝜑𝑤0 (𝑤 (𝑥, 𝑡))󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨𝑆 (𝑡) (𝑢0 − 𝑤0)󵄨󵄨󵄨󵄨
+ ∫𝑡
0

󵄨󵄨󵄨󵄨𝑆 (𝑡 − 𝑠) (𝑓 (V (𝑥, 𝑠) − 𝑓 (𝑧 (𝑥, 𝑠)))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 𝐶1 󵄩󵄩󵄩󵄩𝑢0 − 𝑤0󵄩󵄩󵄩󵄩𝐿∞(Ω) + 𝐶2𝐾1𝑡 ‖𝑢 − 𝑤‖𝜅 ,

(65)

where 𝐾1 is the Lipschitz constant of 𝑓.

Taking into account that V is zero outside of Ω, we have
that 󵄨󵄨󵄨󵄨󵄨𝜙V0 (V (𝑥, 𝑡)) − 𝜙𝑧0 (𝑧 (𝑥, 𝑡))󵄨󵄨󵄨󵄨󵄨≤ 󵄩󵄩󵄩󵄩𝑢0 − 𝑤0󵄩󵄩󵄩󵄩𝐿∞(Ω) + (2𝐾 |Ω| + 𝐾2) 𝑡 ‖𝑢 − 𝑤‖𝜅 , (66)

where 𝐾 = ‖𝐽‖∞ and 𝐾2 is the Lipschitz constant of 𝑔.
Therefore,󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩𝜛(𝑢0 ,V0) (𝑢, V) − 𝜛(𝑤0 ,𝑧0) (𝑤, 𝑧)󵄩󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨󵄨≤ 𝐶𝑡0 |‖(𝑢, V) − (𝑤, 𝑧)‖| + 󵄩󵄩󵄩󵄩(𝑢0, V0) − (𝑤0, 𝑧0)󵄩󵄩󵄩󵄩𝐼 . (67)

In the following theorem, we analyze the existence and
uniqueness of the solution by considering that the functions𝑓 and 𝑔 are locally Lipschitz. The proof is analogous to the
one for Theorem 3; hence we omit it.

Theorem 20. Let 𝑓 and 𝑔 be locally Lipschitz functions and(𝑢0, V0) ∈ 𝐶(Ω) × 𝐶(Ω) are nonnegative real functions; then
there exists a unique solution (𝑢, V) ∈ 𝑃𝑡0 . Moreover, (𝑢, V) can
be extended to a maximal interval [0, 𝑇) with 𝑇 ≤ ∞.

With these ingredients we can show existence and
uniqueness of the solution as well as a comparison principle.
The proofs are analogous to the ones that we included in
Section 2; hence we omit them.

Theorem 21. Let (𝑢0, V0) ∈ 𝐶(Ω) × 𝐶(Ω) be nonnegative real
functions.

(i) If 𝑝𝑞 ≥ 1 then there exists a unique solution (𝑢, V) ∈𝑃𝑡0 .
(ii) If 𝑝𝑞 < 1 then there exists a solution (𝑢, V) ∈ 𝑃𝑡0 .

Remark 22. The stationary problem

0 = Δ𝑢 + V𝑝, 𝑥 ∈ Ω,
0 = ∫

R𝑁
𝐽 (𝑥 − 𝑦) (V (𝑦) − V (𝑥)) 𝑑𝑦 + 𝑢𝑞,

𝑥 ∈ Ω
𝜕𝑢𝜕𝜂 (𝑥) = 0 𝑥 ∈ Ω
V (𝑥) = 0 𝑥 ∉ Ω

(68)

has a solution 𝑢(𝑥) = V(𝑥) = 0, 𝑥 ∈ Ω.

Definition 23. Let 𝑢, V ∈ 𝐶1([0, 𝑇); 𝐶(Ω)). (𝑢, V) is called a
supersolution of (2) if

𝑢𝑡 (𝑥, 𝑡) ≥ Δ𝑢 + V𝑝 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0
V𝑡 (𝑥, 𝑡) ≥ ∫

R𝑁
𝐽 (𝑥 − 𝑦) (V (𝑦, 𝑡) − V (𝑥, 𝑡)) 𝑑𝑦

+ 𝑢𝑞 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0
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𝜕𝑢𝜕𝜂 (𝑥, 𝑡) ≥ 𝛿 > 0 𝑥 ∈ 𝜕Ω, 𝑡 > 0
V (𝑥, 𝑡) ≥ 0 𝑥 ∉ Ω, 𝑡 > 0
𝑢 (𝑥, 0) ≥ 𝑢0 (𝑥) ,
V (𝑥, 0) ≥ V0 (𝑥) ,

𝑥 ∈ Ω.
(69)

Analogously (𝑢, V) ∈ 𝑃𝑡0 is called a subsolution of (2) if it
satisfies the opposite inequalities.

Lemma 24 (comparison principle). Let (𝑢, V) and (𝑢, V)
be a subsolution and supersolution of (2), respectively. If(𝑢0(𝑥), V0(𝑥)) ≤ (𝑢0(𝑥), V0(𝑥)) for all 𝑥 ∈ Ω, then(𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) ≤ (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) for all (𝑥, 𝑡) ∈ Ω × (0, 𝑇).
5. Global Existence and Blow Up for the
Local/Nonlocal Diffusion System

In this section, we analyze under what conditions the solu-
tions of (2) blow up in finite time or are global.

Reasoning analogously to Theorems 15 and 16, we have
the following theorem on the global existence and blow up of
the solutions of (2); again we omit their proofs.

Theorem 25. Let 𝑢0, V0 ∈ 𝐶(Ω) be nonnegative and nontrivial
functions.

(1) If 𝑝𝑞 > 1, then the solution (𝑢, V) of (2) blows up in
finite time 𝑇.

(2) If 𝑝𝑞 ≤ 1, then the solution (𝑢, V) of (2) exists globally.
Next, we analyze the blow-up rate of the solutions of (2).

We assume that 𝑥 = 0 ∈ Ω.

Theorem 26. Let 𝑝𝑞 > 1 and 𝑢0(𝑥), V0(𝑥) ∈ 𝐶(Ω) be
nonnegative and nontrivial functions. Let (𝑢, V) be the solution
such that the maximum is reached at 𝑥 = 0 for every 𝑡 ∈ (0, 𝑇).
Then, there exist 𝐶1, 𝐶2, 𝐶3, 𝐶4 positive constants such that

𝐶1 (𝑇 − 𝑡)−(𝑝+1)/(𝑝𝑞−1) ≤ 𝑢 (0, 𝑡)
≤ 𝐶2 (𝑇 − 𝑡)−(𝑝+1)/(𝑝𝑞−1)

𝐶3 (𝑇 − 𝑡)−(𝑞+1)/(𝑝𝑞−1) ≤ V (0, 𝑡)
≤ 𝐶4 (𝑇 − 𝑡)−(𝑞+1)/(𝑝𝑞−1) .

(70)

Proof. As 𝑝𝑞 > 1, we have that (𝑢, V), the solution of (1), blow
up in finite time 𝑇. Let 𝑢(0, 𝑡) = max𝑥∈Ω𝑢(𝑥, 𝑡) and V(0, 𝑡) =
max𝑥∈ΩV(𝑥, 𝑡). By (1), we have that

𝑢𝑡 (0, 𝑡) = Δ𝑢 (0, 𝑡) + V𝑝 (0, 𝑡) ≤ V𝑝 (0, 𝑡)
V𝑡 (0, 𝑡) = ∫

R𝑁
𝐽 (0 − 𝑦) (V (𝑦, 𝑡) − V (0, 𝑡)) 𝑑𝑦

+ 𝑢𝑞 (0, 𝑡) ≤ 𝑢𝑞 (0, 𝑡) ,
(71)

and we have that

𝑢𝑡 (0, 𝑡) ≥ 𝛿V𝑝 (0, 𝑡)
V𝑡 (0, 𝑡) = ∫

R𝑁
𝐽 (0 − 𝑦) (V (𝑦, 𝑡) − V (0, 𝑡)) 𝑑𝑦

+ 𝑢𝑞 (0, 𝑡) ≥ −V (0, 𝑡) + 𝑢𝑞 (0, 𝑡) .
(72)

Therefore, we have that for all 0 < 𝑡 < 𝑇
𝛿V𝑝 (0, 𝑡) ≤ 𝑢𝑡 (0, 𝑡) ≤ V𝑝 (0, 𝑡) (73)

and

−V (0, 𝑡) + 𝑢𝑞 (0, 𝑡) ≤ V𝑡 (0, 𝑡) ≤ 𝑢𝑞 (0, 𝑡) . (74)

Multiplying the second inequality of (73) by 𝑢𝑞(0, 𝑡) and the
first inequality of (74) by V𝑝(0, 𝑡), we have that

𝑢𝑡 (0, 𝑡) 𝑢𝑞 (0, 𝑡) ≤ V𝑡 (0, 𝑡) V𝑝 (0, 𝑡) + V𝑝+1 (0, 𝑡) , (75)

which is equivalent to

( 𝑢𝑞+1 (0, 𝑡)𝑞 + 1 )
𝑡

≤ (V𝑝+1 (0, 𝑡)𝑝 + 1 )
𝑡

+ V𝑝+1 (0, 𝑡) . (76)

From this point the proof follows analogously to what was
done in the proof of Theorem 18.
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