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The aim of this paper is to derive existence results for a second-order singular multipoint boundary value problem at resonance
using coincidence degree arguments.

1. Introduction

In this paper we derive existence results for the second-order
singular multipoint boundary value problem of the form

𝑥󸀠󸀠 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡) , 0 < 𝑡 < 1,
𝑥󸀠 (0) = 0,
𝑥 (1) = 𝑚−2∑

𝑖=1

𝑎𝑖𝑥 (𝜉𝑖) ,
(1)

where 𝑓 : [0, 1] × R2 → R is Caratheodory’s function (i.e.,
for each (𝑥, 𝑦) ∈ R2 the function 𝑓(⋅, 𝑥, 𝑦) is measurable on[0, 1]; for a.e. 𝑡 ∈ [0, 1], the function 𝑓(𝑡, ⋅, ⋅) is continuous on
R2). Let 𝜉𝑖 ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑚 − 2, 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ <𝜉𝑚−2 < 1, 𝑎𝑖 ∈ (0, 1) 𝑖 = 1, 2, . . . , 𝑚 − 2, and ∑𝑚−2𝑖=1 𝑎𝑖 = 1,
where 𝑓 and 𝑔 have singularity at 𝑡 = 1.

In [1] Gupta et al. studied the above equation when 𝑓
and 𝑔 have no singularity and ∑𝑚−2𝑖=1 𝑎𝑖 ̸= 1. They obtained
existence of a 𝐶1[0, 1] solution by utilising the Leray-
Schauder continuation principle. In [2] Ma and O’Regan
derived existence results for the same equation when 𝑓 and𝑔 have a singularity at 𝑡 = 1 and ∑𝑚−2𝑖=1 𝑎𝑖 ̸= 1. They
also utilised the Leray-Schauder continuation method.These
results correspond to the nonresonance case. The purpose of
this article is therefore to derive existence results for (1) when∑𝑚−2𝑖=1 𝑎𝑖 = 1 (the resonance case) and when 𝑓 and 𝑔 have

a singularity at 𝑡 = 1. We shall employ coincidence degree
arguments in obtaining our results. In this case, the methods
used in [1, 2] are not valid.

Research on singular differential equations is important
because singular differential equations are useful in the
modeling of many problems in the physical and engineering
sciences; see [3].

In general singular boundary value problems can be dif-
ficult to solve because they may blow up near the singularity.
The existence and multiplicity of solutions for second-order
nonsingular boundary value problems have been extensively
studied by many researchers. However to the best of our
knowledge the corresponding problem for second-order
differential equations at resonance and with a singularity
had not received much attention in the literature. For recent
results in these directions see [1, 2, 4–9] and references
therein.

The rest of this paper is organised as follows. In Section 2,
we present some definitions, lemmas, and theorems neces-
sary for obtaining our main results. In Section 3, we derive
some lemmas and themain theorem. In what follows we shall
utilise the following assumptions:

(A0) For 𝜉𝑖 ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑚 − 2, 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ <𝜉𝑚−2 < 1 and ∑𝑚−2𝑖=1 𝑎𝑖 = 1.
(A1)There exist 𝑎(𝑡), 𝑐(𝑡) ∈ 𝐿1[0, 1] with (1 − 𝑡)𝑎(𝑡), (1 −𝑡)𝑐(𝑡), 𝑏(𝑡) ∈ 𝐿1[0, 1] and |𝑓(𝑡, 𝑥, 𝑦)| ≤ 𝑎(𝑡)|𝑥| +𝑏(𝑡)|𝑦| + 𝑐(𝑡), a.e., 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ R2.
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(A2) 𝑔 : [0, 1] → R is such that ∫1
0
(1 − 𝑡)|𝑔(𝑡)| < ∞.

2. Preliminaries

In this section we state some definitions, theorems, and
lemmas that will be used in the subsequent section.

Definition 1. Let 𝑋 and 𝑍 be real Banach spaces. One says
that the linear operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 is a Fredholm
mapping of index zero if Ker 𝐿 and 𝑍/ Im 𝐿 are of finite
dimension, where Im 𝐿 denotes the image of 𝐿.

As a result of Definition 1, we will require the continuous
projections 𝑃 : 𝑋 → 𝑋, 𝑄 : 𝑍 → 𝑍 such that Im𝑃 = Ker 𝐿,
Ker𝑄 = Im 𝐿, 𝑋 = Ker 𝐿 ⊕ Ker𝑃, 𝑍 = Im 𝐿 ⊕ Im𝑄, and𝐿|dom 𝐿∩Ker𝑃 : dom 𝐿 ∩ Ker𝑃 → Im 𝐿 is an isomorphism.

Definition 2. Let 𝐿 be a Fredholmmapping of index zero andΩ a bounded open subset of𝑋 such that dom 𝐿∩Ω ̸= 𝜙. The
map𝑁 : 𝑋 → 𝑍 is called 𝐿-compact onΩ, if themap𝑄𝑁(Ω)
is bounded and 𝐾𝑝(𝐼 − 𝑄) is compact, where one denotes by𝐾𝑝 : Im 𝐿 → dom 𝐿 ∩ Ker𝑃 the generalised inverse of 𝐿. In
addition 𝑁 is 𝐿-completely continuous if it is 𝐿-compact on
every boundedΩ ⊂ 𝑋.
Theorem 3 (see [10]). Let 𝐿 be a Fredholm operator of index
zero and let 𝑁 be 𝐿-compact on Ω. Assume that the following
conditions are satisfied:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for every (𝑥, 𝜆) ∈ [(dom 𝐿 \Ker 𝐿)∩𝜕Ω]×(0, 1).
(ii) 𝑁𝑥 ∉ Im 𝐿, for every 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω.
(iii) deg(𝑄𝑁|Ker𝐿∩𝜕Ω, Ω ∩ Ker 𝐿, 0) ̸= 0,

with 𝑄 : 𝑍 → 𝑍 being a continuous projection such that
Ker𝑄 = Im 𝐿. Then the equation 𝐿𝑥 = 𝑁𝑥 has at least one
solution in dom 𝐿 ∩ Ω.

In what follows, we shall make use of the following
classical spaces, 𝐶[0, 1], 𝐶1[0, 1], 𝐿1[0, 1], and 𝐿∞[0, 1].
Let 𝐴𝐶[0, 1] denote the space of all absolute continuous
functions on [0, 1], 𝐴𝐶1[0, 1] = {𝑥 ∈ 𝐶1[0, 1] : 𝑥󸀠(𝑡) ∈𝐴𝐶[0, 1]}, 𝐿1loc[0, 1] = {𝑥 : 𝑥|[0,𝑑] ∈ 𝐿1[0, 𝑑] for every
compact interval [0, 𝑑] ⊆ [0, 1)}.𝐴𝐶loc[0, 1) = {𝑥 : 𝑥|[0,𝑑] ∈ 𝐴𝐶[0, 𝑑]}.

Let 𝑍 be the Banach space defined by

𝑍 = {𝑦 ∈ 𝐿1loc [0, 1) : (1 − 𝑡) 𝑦 (𝑡) ∈ 𝐿1 [0, 1]} , (2)

with the norm

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 = ∫1
0
(1 − 𝑡) 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡. (3)

Let𝑋 be the Banach space

𝑋 = {𝑥 ∈ 𝐶1 [0, 1) : 𝑥
∈ 𝐶 [0, 1] , lim

𝑡→1−
(1 − 𝑡) 𝑥󸀠 (𝑡) exists} ,

(4)

with the norm

‖𝑥‖𝑋 = max {‖𝑥‖∞ , 󵄩󵄩󵄩󵄩󵄩(1 − 𝑡) 𝑥󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩∞}
where ‖𝑥‖∞ = sup

𝑡∈[0,1]

|𝑥 (𝑡)| . (5)

We denote the norm in 𝐿1[0, 1] by ‖ ⋅ ‖1. We define the linear
operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 by

𝐿𝑥 = 𝑥󸀠󸀠 (𝑡) , (6)

where dom 𝐿 = {𝑥 ∈ 𝑋 : 𝑥󸀠(0) = 0, 𝑥(1) = ∑𝑚−2𝑖=1 𝑎𝑖𝑥(𝜉𝑖)}
and𝑁 : 𝑋 → 𝑍 is defined by

𝑁𝑥 = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡) . (7)

Then boundary value problem (1) can be written as

𝐿𝑥 = 𝑁𝑥. (8)

Lemma 4 (see [2]). Let 𝑦 ∈ 𝑍. Then

(i) ∫𝑡
0
𝑦(𝑠)𝑑𝑠 ∈ 𝐿1[0, 1].

(ii) lim𝑡→1−(1 − 𝑡) ∫𝑡0 𝑦(𝑠)𝑑𝑠 = 0.
Lemma 5. If ∑𝑚−2𝑖=1 𝑎𝑖 = 1 then

(i) Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥(𝑡) = 𝑐, 𝑐 ∈ R, 𝑡 ∈ [0, 1]};
(ii) Im 𝐿 = {𝑦 ∈ 𝑍 : ∑𝑚−2𝑖=1 𝑎𝑖 ∫1𝜉𝑖 ∫𝑠0 𝑦(𝜏)𝑑𝜏 𝑑𝑠 = 0};
(iii) 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 is a Fredholm operator of index

zero and the continuous operator 𝑄 : 𝑍 → 𝑍 can be
defined by

𝑄𝑦 = 𝑒𝑡ℎ
𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (9)

where ℎ = ∑𝑚−2𝑖=1 𝑎𝑖[𝑒 + 𝜉𝑖 − 𝑒𝜉𝑖 − 1] ̸= 0.
(iv) The linear operator 𝐾𝑝 : Im 𝐿 :→ dom 𝐿 ∩ Ker𝑃 can

be defined as

𝐾𝑝𝑦 = ∫𝑡
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠. (10)

(v) ‖𝐾𝑝𝑦‖𝑋 ≤ ‖𝑦‖𝑍 for all 𝑦 ∈ 𝑍.
Proof. (i) It is obvious that

Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥 (𝑡) = 𝑐, 𝑐 ∈ R} . (11)

(ii) We show that

Im 𝐿 = {𝑦 ∈ 𝑍 : 𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = 0} . (12)

To do this, we consider the problem

𝑥󸀠󸀠 (𝑡) = 𝑦 (𝑡) , (13)
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and we show that (13) has a solution 𝑥(𝑡) satisfying 𝑥󸀠(0) = 0,𝑥(1) = ∑𝑚−2𝑖=1 𝑎𝑖𝑥(𝜉𝑖) if and only if

𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = 0. (14)

Suppose (13) has a solution 𝑥(𝑡) satisfying 𝑥󸀠(0) = 0, 𝑥(1) =∑𝑚−2𝑖=1 𝑎𝑖𝑥(𝜉𝑖); then we obtain from (13) that

𝑥 (𝑡) = 𝑥 (0) + ∫𝑡
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (15)

and applying the boundary conditions we get

𝑚−2∑
𝑖=1

𝑎𝑖 ∫𝜉𝑖
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = ∫1

0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (16)

since ∑𝑚−2𝑖=1 𝑎𝑖 = 1, and using (i) of Lemma 4 we get

𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = 0. (17)

On the other hand if (14) holds, let 𝑥0 ∈ R; then 𝑥(𝑡) = 𝑥0 +∫𝑡
0
∫𝑠
0
𝑦(𝜏)𝑑𝜏 𝑑𝑠, where 𝑦 ∈ 𝑍 and 𝑥󸀠(𝑡) ∈ 𝐴𝐶loc[0, 1). Then

from Lemma 4 ∫𝑡
0
𝑦(𝜏)𝑑𝜏 ∈ 𝐿1[0, 1] and lim𝑡→1−(1 − 𝑡)𝑥󸀠(𝑡)

= lim𝑡→1−(1 − 𝑡) ∫𝑡0 𝑦(𝜏)𝑑𝜏 = 0. Hence
𝑥󸀠󸀠 (𝑡) = 𝑦 (𝑡) . (18)

(iii) For 𝑦 ∈ 𝑍, we define the projection 𝑄𝑦 as

𝑄𝑦 = 𝑒𝑡ℎ
𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, 𝑡 ∈ [0, 1] , (19)

where ℎ = ∑𝑚−2𝑖=1 𝑎𝑖[𝑒 + 𝜉𝑖 − 𝑒𝜉𝑖 − 1] ̸= 0.
We show that 𝑄 : 𝑍 → 𝑍 is well defined and bounded.

󵄨󵄨󵄨󵄨𝑄𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

= 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 ,
󵄩󵄩󵄩󵄩𝑄𝑦󵄩󵄩󵄩󵄩𝑍 ≤ ∫1

0
(1 − 𝑡) 󵄨󵄨󵄨󵄨𝑄𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡

≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍∫1
0
(1 − 𝑡) 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 𝑑𝑡

= 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 󵄩󵄩󵄩󵄩󵄩𝑒𝑡󵄩󵄩󵄩󵄩󵄩𝑍 .

(20)

In addition it is easily verified that

𝑄2𝑦 = 𝑄𝑦, 𝑦 ∈ 𝑍. (21)

We therefore conclude that 𝑄 : 𝑍 → 𝑍 is a projection. If𝑦 ∈ Im 𝐿, then from (14)𝑄𝑦(𝑡) = 0. Hence Im 𝐿 ⊆ Ker𝑄. Let𝑦1 = 𝑦 − 𝑄𝑦; that is, 𝑦1 ∈ Ker𝑄. Then

𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦1 (𝜏) 𝑑𝜏 𝑑𝑠

= 𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 − 1ℎ

𝑚−2∑
𝑖=1

∫1
𝜉𝑖

∫1
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠

⋅ ℎ = 0.

(22)

Thus, 𝑦1 ∈ Im 𝐿 and therefore Ker𝑄 ⊆ Im 𝐿 and hence 𝑍 =
Im 𝐿 + Im𝑄 = Im 𝐿 +R. It follows that since Im 𝐿 ∩R = {0},
then 𝑍 = Im 𝐿 ⊕ Im𝑄. Therefore

dimKer 𝐿 = dim Im𝑄 = dimR = codim Im 𝐿 = 1. (23)

This implies that 𝐿 is Fredholm mapping of index zero.
(iv) We define 𝑃 : 𝑋 → 𝑋 by

𝑃𝑥 = 𝑥 (0) , (24)

and clearly 𝑃 is continuous and linear and 𝑃2𝑥 = 𝑃(𝑃𝑥) =𝑃𝑥(0) = 𝑥(0) = 𝑃𝑥 and Ker𝑃 = {𝑥 ∈ 𝑋 : 𝑥(0) = 0}. We now
show that the generalised inverse𝐾𝑝 : Im 𝐿 → dom 𝐿∩Ker𝑃
of 𝐿 is given by

𝐾𝑝𝑦 = ∫𝑡
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠. (25)

For 𝑦 ∈ Im 𝐿 we have
(𝐿𝐾𝑝) 𝑦 (𝑡) = [(𝐾𝑝𝑦) (𝑡)]󸀠󸀠 = 𝑦 (𝑡) (26)

and for 𝑥 ∈ dom 𝐿 ∩ Ker𝑃 we know that

(𝐾𝑝𝐿) 𝑥 (𝑡) = ∫𝑡
0
∫𝑠
0
𝑥󸀠󸀠 (𝜏) 𝑑𝜏 𝑑𝑠

= ∫𝑡
0
(𝑡 − 𝑠) 𝑥󸀠󸀠 (𝑠) 𝑑𝑠

= 𝑥 (𝑡) − 𝑥󸀠 (0) 𝑡 − 𝑥 (0) = 𝑥 (𝑡)
(27)

since 𝑥 ∈ dom 𝐿 ∩ Ker𝑃, 𝑥(0) = 0, and 𝑃𝑥 = 0.
This shows that 𝐾𝑝 = (𝐿|dom 𝐿∩Ker𝑃)−1.
(v)

󵄩󵄩󵄩󵄩󵄩𝐾𝑝𝑦󵄩󵄩󵄩󵄩󵄩∞ ≤ max
𝑡∈[0,1]

∫𝑡
0
(𝑡 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 ,

󵄩󵄩󵄩󵄩󵄩󵄩(1 − 𝑡) (𝐾𝑝𝑦)󸀠󵄩󵄩󵄩󵄩󵄩󵄩∞ ≤ max
𝑡∈[0,1]

∫𝑡
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 .

(28)
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We conclude that

󵄩󵄩󵄩󵄩󵄩𝐾𝑝𝑦󵄩󵄩󵄩󵄩󵄩𝑋 ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 . (29)

Lemma 6. The operator𝑁 : 𝑋 → 𝑍 defined by

𝑁𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡) , 𝑡 ∈ (0, 1) (30)

is 𝐿-completely continuous.

Proof. Suppose Ω is an open bounded subset of 𝑋. Let 𝑅1 =
sup{‖𝑥‖𝑋 : 𝑥 ∈ Ω}. From condition (A1) and each 𝑥𝑛 ∈ Ω we
have

󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡) , 𝑥𝑛 (𝑡) , 𝑥󸀠𝑛 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨
≤ 𝑎 (𝑡) 𝑅1 + 𝑏 (𝑡) 𝑅11 − 𝑡 + 𝑟 (𝑡) + 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨
= 𝜑 (𝑡) .

(31)

We can deduce from (A1) and (A2) that 𝜑(𝑡) ∈ 𝑍:
󵄨󵄨󵄨󵄨𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝑡ℎ
𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑁𝑥𝑛 (𝜏) 𝑑𝜏 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨

≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝜑 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨

≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 , 𝑡 ∈ (0, 1) ,
󵄩󵄩󵄩󵄩𝑄𝑁𝑥𝑛󵄩󵄩󵄩󵄩𝑍 ≤ 1|ℎ|

𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍∫1
0
(1 − 𝑡) 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 𝑑𝑡

= 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 󵄩󵄩󵄩󵄩󵄩𝑒𝑡󵄩󵄩󵄩󵄩󵄩𝑍 .

(32)

This shows that 𝑄𝑁(Ω) is bounded in 𝑍 and 𝑄𝑁 is
continuous by using the Lebesgue Dominated Convergence
Theorem. Next we show that𝐾𝑃,𝑄𝑁(Ω) = 𝐾𝑃(𝐼 − 𝑄)𝑁(Ω) is
compact.

By using (31) we derive

󵄨󵄨󵄨󵄨𝐾𝑃𝑁𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ ∫𝑡
0
(𝑡 − 𝑠) 󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝜑 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 = 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 ,

󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑡) − 𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜑 (𝑡)󵄨󵄨󵄨󵄨 + 1|ℎ|

𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨
= 𝛼𝑟 (𝑡) ,

󵄨󵄨󵄨󵄨𝐾𝑃,𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐾𝑝 (𝑁𝑥𝑛 − 𝑄𝑁𝑥𝑛) (𝑡)󵄨󵄨󵄨󵄨󵄨
≤ 𝐾𝑃𝛼𝑟 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝛼𝑟󵄩󵄩󵄩󵄩𝑍 .

(33)

This indicates that the sequence {𝐾𝑃,𝑄𝑁𝑥𝑛(Ω)} is uniformly
bounded in 𝐶[0, 1]. Also for 𝑡 ∈ [0, 1)

󵄨󵄨󵄨󵄨󵄨(1 − 𝑡) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 − 𝑡) ∫

𝑡

0
(𝑁𝑥𝑛 (𝑠) − 𝑄𝑁𝑥𝑛 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫1
0
(1 − 𝑠) 𝛼𝑟 (𝑠) 𝑑𝑠 ≤ 󵄩󵄩󵄩󵄩𝛼𝑟󵄩󵄩󵄩󵄩𝑍 .

(34)

Hence the sequence 𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡) is bounded in 𝐶[0, 1] and
lim𝑡→1−(1−𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠(𝑡) = 0.Thus𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡) is bounded
in𝑋.

Next we show that the sequence {𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡)} is equicon-
tinuous. Let 𝑡1, 𝑡2 ∈ [0, 1], 𝑡1 < 𝑡2; then
󵄨󵄨󵄨󵄨𝐾𝑃,𝑄𝑥𝑛 (𝑡2) − 𝐾𝑃,𝑄𝑥𝑛 (𝑡1)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡2

𝑡1

(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑠) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡2
𝑡1

∫𝑠
0

󵄨󵄨󵄨󵄨(𝑁𝑥𝑛 (𝜏) − 𝑄𝑁𝑥𝑛 (𝜏))󵄨󵄨󵄨󵄨 𝑑𝜏 𝑑𝑠
≤ ∫𝑡2
𝑡1

∫𝑠
0
𝛼𝑟 (𝜏) 𝑑𝜏 𝑑𝑠,

(35)

for every 𝑡1, 𝑡2 ∈ [0, 1]. By (i) of Lemma 4 ∫𝑠
0
𝛼𝑟(𝜏)𝑑𝜏 ∈

𝐿1[0, 1]. Thus the sequence {𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡)} is equicontinuous
on [0, 1] and by Arzela-Ascoli Theorem is convergent. Next
we prove that the sequence {(1 − 𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠} is also
equicontinuous on [0, 1]. We have for 𝑡 ∈ [0, 1]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨[(1 − 𝑡) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡)]

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨− (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡) + (1 − 𝑡) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
(𝑁𝑥𝑛 (𝑠) − 𝑄𝑁𝑥𝑛 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(1 − 𝑡)𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨

≤ ∫𝑡
0
𝛼𝑟 (𝑠) 𝑑𝑠 + (1 − 𝑡) 𝜑 (𝑡) = 𝜓 (𝑡) .

(36)
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Using (i) of Lemma 4 and the fact that 𝛼𝑟(𝑡) and 𝜑(𝑡) are in𝑍
we conclude that 𝜓(𝑡) ∈ 𝐿1[0, 1]. Therefore

󵄨󵄨󵄨󵄨󵄨(1 − 𝑡2) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡2) − (1 − 𝑡1) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡1)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡2

𝑡1

[(1 − 𝑠) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑠)]󸀠 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡2
𝑡1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨[(1 − 𝑠) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑠)]
󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ ∫

𝑡2

𝑡1

𝜓 (𝑠) 𝑑𝑠.
(37)

The sequence {(1 − 𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠(𝑡)} is therefore equicon-
tinuous on [0, 1) and therefore converges to some (1 −𝑡)(𝐾𝑃,𝑄𝑁𝑥0)󸀠(𝑡) ∈ 𝐶[0, 1] with lim𝑡→1−(1 − 𝑡)[(1 −𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠(𝑡)] = 0, 𝑡 ∈ [0, 1).

We then conclude that 𝐾𝑃,𝑄 is relatively compact and
since 𝑄𝑁(Ω) is bounded we conclude from Definition 2 that𝑁 is 𝐿-compact on every bounded subset Ω of 𝑋 and hence𝑁 is 𝐿-completely continuous.

3. Main Result

In this section we will state and prove the main existence
results for problem (1).

Theorem 7. Assume that the following conditions are satis-
fied:

(H1)There exists a positive constant 𝐵1 such that, for each𝑥 ∈ dom 𝐿, if |𝑥(𝑡)| > 𝐵1 for all 𝑡 ∈ [0, 1] then
𝑄𝑁𝑥 (𝑡)
= 𝑒𝑡ℎ
𝑚=2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
[𝑓 (𝜏, 𝑥 (𝜏) , 𝑥󸀠 (𝜏)) + 𝑔 (𝜏)] 𝑑𝜏 𝑑𝑠

̸= 0.
(38)

(H2)There exists a positive constant 𝐵2 such that for 𝑐 ∈ R

and |𝑐| > 𝐵2 either (𝑖) 𝑄𝑁(𝑐) ≥ 0 or (𝑖𝑖) 𝑄𝑁(𝑐) ≤ 0.
Then (1) has at least one solution in𝑋 provided

‖𝑎‖𝑍 + ‖𝑏‖1 < 12 . (39)

To proveTheorem 7, we first establish some lemmas.

Lemma 8. Let Ω1 = {𝑥 ∈ dom 𝐿 \ Ker 𝐿 : 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈(0, 1)} then Ω1 is bounded in𝑋.
Proof. Let 𝑥 ∈ Ω1. We let 𝐿𝑥 = 𝜆𝑁𝑥, 0 < 𝜆 < 1. Since 𝜆 ̸= 0
it is clear that 𝑁𝑥 ∈ Im 𝐿 = Ker𝑄; hence 𝑄𝑁𝑥 = 0 for all

𝑡 ∈ [0, 1]. Therefore by assumption (H1) there exist 𝑡0 ∈ [0, 1]
such that |𝑥(𝑡0)| < 𝐵1. Now
∫𝑡
0
∫𝑠
0
𝑥󸀠󸀠 (𝜏) 𝑑𝜏 𝑑𝑠 = ∫𝑡0

0
(𝑡0 − 𝑠) 𝑥󸀠󸀠 (𝑠) 𝑑𝑠

= 𝑥 (𝑡0) − 𝑥 (0)
(40)

‖𝑃𝑥‖𝑋 = |𝑥 (0)|
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 (𝑡0) + ∫

𝑡0

0
(𝑡0 − 𝑠) 𝑥󸀠󸀠 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨𝑥 (𝑡0)󵄨󵄨󵄨󵄨 + ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨󵄨𝑥󸀠󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐵1 + ‖𝐿𝑥‖𝑍 ≤ 𝐵1 + ‖𝑁𝑥‖𝑍 .

(41)

We note that (𝐼 − 𝑃)𝑥 ∈ dom 𝐿 ∩ Ker𝑃:
‖(𝐼 − 𝑃) 𝑥‖𝑋 = 󵄩󵄩󵄩󵄩𝐾𝑃𝐿 (𝐼 − 𝑃) 𝑥󵄩󵄩󵄩󵄩𝑋 ≤ 󵄩󵄩󵄩󵄩𝐾𝑃𝐿𝑥󵄩󵄩󵄩󵄩𝑋

≤ ‖𝐿𝑥‖𝑍 < ‖𝑁𝑥‖𝑍 . (42)

From (41) and (42) we get

‖𝑥‖𝑋 = ‖𝑃𝑥 + (𝐼 − 𝑃) 𝑥‖𝑋 ≤ ‖𝑃𝑥‖𝑋 + ‖(𝐼 − 𝑃) 𝑥‖𝑋
< 𝐵1 + 2 ‖𝑁𝑥‖𝑍 . (43)

From the definition of𝑁 we obtain

‖𝑁𝑥‖𝑍 = ‖(1 − 𝑡) (𝑁𝑥) (𝑡)‖1 = ∫1
0
(1 − 𝑡)

⋅ [𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡)] 𝑑𝑡
≤ ∫1
0
[(1 − 𝑡) 𝑎 (𝑡) |𝑥 (𝑡)| + |𝑏 (𝑡)| (1 − 𝑡) 𝑥󸀠 (𝑡)

+ (1 − 𝑡) |𝑟 (𝑡)| + (1 − 𝑡) 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨] 𝑑𝑡 ≤ ‖𝑎‖𝑍
⋅ ‖𝑥‖∞ + ‖𝑏‖1 󵄩󵄩󵄩󵄩󵄩(1 − 𝑡) 𝑥󸀠󵄩󵄩󵄩󵄩󵄩∞ + ‖𝑟‖𝑍 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑍 .

(44)

From (43) and (44) we get

‖𝑥‖𝑋 < 𝐵1
+ 2 [‖𝑎‖𝑍 ‖𝑥‖𝑋 + ‖𝑏‖1 ‖𝑥‖𝑋 + ‖𝑟‖𝑍 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑍] . (45)

Since 1 − 2[‖𝑎‖𝑍 + ‖𝑏‖1] > 0 we obtain that

‖𝑥‖𝑋 < 𝐵1 + 2 ‖𝑟‖𝑍1 − 2 [‖𝑎‖𝑍 + ‖𝑏‖1] +
2 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑍1 − 2 [‖𝑎‖𝑍 + ‖𝑏‖1] . (46)

Therefore Ω1 is bounded in𝑋.
Lemma 9. The set Ω2 = {𝑥 ∈ Ker 𝐿 : 𝑁𝑥 ∈ Im 𝐿} is a
bounded subset of𝑋.
Proof. Let 𝑥 ∈ Ω2 with 𝑥(𝑡) = 𝑐, 𝑐 ∈ R. Then 𝑄𝑁(𝑐) = 0
implies𝑁(𝑐) ∈ Im 𝐿 = Ker𝑄. We therefore derive from (H2)
that

‖𝑥‖𝑋 = |𝑐| = max {|𝑐| , ‖(1 − 𝑡) 0‖} = |𝑐| < 𝐵2. (47)
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Lemma 10. The sets Ω+3 = {𝑥 ∈ Ker 𝐿 : 𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥 =0, 𝜆 ∈ [0, 1]} and Ω−3 = {𝑥 ∈ Ker 𝐿 : −𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥 =0, 𝜆 ∈ [0, 1]} are bounded in𝑋 provided (H2)(i) and (H2)(ii)
are satisfied simultaneously.

Proof. If𝑄𝑁(𝑐) ≥ 0 then, for 𝑥 ∈ Ω+3 with 𝑥(𝑡) = 𝑐, 𝑐 ∈ R, we
have

𝜆𝑐 = − (1 − 𝜆)𝑄𝑁 (𝑐) . (48)

If 𝜆 = 0, it follows from (48) that𝑁(𝑐) ∈ Ker𝑄 = Im 𝐿; that
is,𝑁(𝑐) ∈ Ω2, and therefore by Lemma 9. we have ‖𝑥‖𝑋 ≤ 𝐵2.
However if 𝜆 ∈ (0, 1) and ‖𝑐‖ > 𝐵2 then using assumption
(H2)(i) we obtain the contradiction

𝜆𝑐2 = − (1 − 𝜆) 𝑐𝑄𝑁 (𝑐) ≤ 0. (49)

Thus ‖𝑥‖𝑋 = |𝑐| < 𝐵2. Hence Ω+3 is bounded in 𝑋. We can
use the same argument to prove that Ω−3 is also bounded in𝑋.
Proof of Theorem 7. We show that the conditions of
Theorem 3 are satisfied where Ω is an open and bounded set
such that⋃3𝑖=1Ω𝑖 ⊂ Ω. It is easily seen that conditions (i) and
(ii) of Theorem 3 are satisfied by using Lemmas 8 and 9. To
verify the third condition we set𝐻(𝑥, 𝜆) = ±𝜆𝑥+(1−𝜆)𝑄𝑁𝑥.
We choose the isomorphism 𝐽 : Im𝑄 → Ker 𝐿 defined by𝐽(𝑐) = 𝑐, 𝑐 ∈ R. By Lemma 10, we derive that𝐻(𝑥, 𝜆) ̸= 0 for
all (𝑥, 𝜆) ∈ (Ker 𝐿 ∩ 𝜕Ω) × [0, 1]. Hence

deg (𝑄𝑁|Ker𝐿 , Ω ∩ Ker 𝐿, 0)
= deg (±𝐽, Ω ∩ Ker 𝐿, 0) ̸= 0. (50)

Therefore problem (1) has at least one solution in𝑋.
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