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We compute explicitly the oscillation constant for Euler type half-linear second-order differential equation having multi-different
periodic coefficients.

1. Introduction

In literature, half-linear second-order differential equations
are given by

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 𝑐 (𝑡) Φ (𝑥) = 0,
Φ (𝑠) = |𝑠|𝑝−2 𝑠, 𝑝 > 1, (1)

where 𝑟, 𝑐 are continuous functions and 𝑟(𝑡) > 0. It is well
known that oscillation theory of (1) is very similar to that of
the linear Sturm-Liouville differential equation, which is the
special case of 𝑝 = 2 in (1); see [1].

In particular, (1) with 𝜆𝑐(𝑡) instead of 𝑐(𝑡) is said to be
conditionally oscillatory if there exists a constant 𝜆0 such that
this equation is oscillatory for 𝜆 > 𝜆0 and nonoscillatory for𝜆 < 𝜆0. 𝜆0 is called the critical oscillation constant of this
equation; see [2].

The half-linear Euler differential equation

(Φ (𝑥󸀠))󸀠 + 𝛾𝑝𝑡𝑝Φ (𝑥) = 0, (2)

with the so-called critical oscillation constant 𝛾𝑝 = ((𝑝 −1)/𝑝)𝑝, plays an important role in the conditionally oscilla-
tory half-linear differential equation.

Equation (2) can be regarded as a good comparative
equation in the sense that (2) with 𝛾 instead of 𝛾𝑝 is oscillatory

if and only if 𝛾 > 𝛾𝑝 (see [3]) and if 𝑟(𝑡) = 1 in (1), then this
equation is oscillatory provided

lim
𝑡→∞

inf 𝑡𝑝𝑐 (𝑡) > 𝛾𝑝 (3)

and nonoscillatory if

lim
𝑡→∞

sup 𝑡𝑝𝑐 (𝑡) < 𝛾𝑝; (4)

see [4].
In [5], perturbations of (2) being of the form

(Φ (𝑥󸀠))󸀠 + 1𝑡𝑝 (𝛾𝑝 +
𝑛∑
𝑙=1

𝛽𝑗
Log2𝑗𝑡)Φ (𝑥) = 0 (5)

are investigated when lim𝑡→∞𝑡𝑝𝑐(𝑡) = 𝛾𝑝 for constant 𝛽𝑗 (𝑗 =1, 2, . . . , 𝑛).Here the notation
Log𝑘𝑡 = 𝑘∏

𝑗=1

log𝑗𝑡,
Log𝑘𝑡 = log𝑘−1 (log 𝑡) ,
Log1𝑡 = log 𝑡

(6)

is used. It is shown that the constant 𝜇𝑝 fl (1/2)((𝑝−1)/𝑝)𝑝−1
plays a crucial role in (5). In particular, if 𝑛 = 1 in (5) this
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equation reduces to the so-called Riemann-Weber half-linear
differential equation, and this equation is oscillatory if 𝛽1 >𝜇𝑝 and nonoscillatory otherwise. In general, if 𝛽𝑗 = 𝜇𝑝 for𝑗 = 1, 2, . . . , 𝑛−1, then (5) is oscillatory if and only if 𝛽𝑛 > 𝜇𝑝.

One of the typical problems in the qualitative theory
of various differential equations is to study what happens
when constants in an equation are replaced by periodic
functions which have same periods and different periods.
Our investigation follows this line and it is mainly motivated
by the paper [6].

In [7], the half-linear differential equation being of the
form

((1 + 𝑛∑
𝑗=1

𝛼𝑗
Log2𝑗𝑡)

1−𝑝Φ(𝑥󸀠))
󸀠

+ 1𝑡𝑝 (𝛾𝑝 + 𝑛∑
𝑗=1

𝛽𝑗
Log2𝑗𝑡)Φ (𝑥) = 0

(7)

is investigated for 𝛼𝑗 and 𝛽𝑗 are constants and the following
result is obtained.

Theorem 1. Suppose that there exists 𝑘 ∈ {2, . . . , 𝑛} such that
𝛽𝑗 + (𝑝 − 1) 𝛾𝑝𝛼𝑗 = 𝜇𝑝, 𝑗 = 1, . . . , 𝑘 − 1 (8)

and 𝛽𝑘 + (𝑝 − 1)𝛾𝑝𝛼𝑘 ̸= 𝜇𝑝.Then (7) is oscillatory if 𝛽𝑘 + (𝑝 −1)𝛾𝑝𝛼𝑘 > 𝜇𝑝 and nonoscillatory if 𝛽𝑘 + (𝑝 − 1)𝛾𝑝𝛼𝑘 < 𝜇𝑝.
In [8], the half-linear differential equation being of the

form

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 𝛾𝑐 (𝑡)𝑡𝑝 Φ (𝑥) = 0 (9)

is considered for 𝛼-periodic positive functions 𝑟 and 𝑐 and it
is shown that (9) is oscillatory if 𝛾 > 𝐾 and nonoscillatory if𝛾 < 𝐾, where𝐾 is given by

𝐾 = 𝑞−𝑝 (1𝛼 ∫𝛼
0

𝑑𝜏𝑟𝑞−1)
1−𝑝 (1𝛼 ∫𝛼

0
𝑐 (𝜏) 𝑑𝜏)−1 (10)

for 𝑝 and 𝑞 are conjugate numbers; that is, 1/𝑝 + 1/𝑞 = 1.
In [9], (9) and the half-linear differential equation being

of the form

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 1𝑡𝑝 (𝛾𝑐 (𝑡) + 𝜇𝑑 (𝑡)
log2𝑡 )Φ (𝑥) = 0 (11)

are considered for 𝑟, 𝑐, and 𝑑 are 𝛼-periodic, positive func-
tions defined on [0,∞) and it is shown that (9) is nonoscilla-
tory if and only if 𝛾 ≤ 𝛾𝑟𝑐, where 𝛾𝑟𝑐 is given by

𝛾𝑟𝑐 fl 𝛼𝑝𝛾𝑝(∫𝛼
0
𝑟1−𝑞 (𝑡) 𝑑𝑡)𝑝−1 ∫𝛼

0
𝑐 (𝑡) 𝑑𝑡 . (12)

In the limiting case 𝛾 = 𝛾𝑟𝑐 (11) is nonoscillatory if 𝜇 < 𝜇𝑟𝑑
and it is oscillatory if 𝜇 > 𝜇𝑟𝑑, where 𝜇𝑟𝑑 is given by

𝜇𝑟𝑑 = 𝛼𝑝𝜇𝑝(∫𝛼
0
𝑟1−𝑞 (𝑡) 𝑑𝑡)𝑝−1 ∫𝛼

0
𝑑 (𝑡) 𝑑𝑡 . (13)

In [10], the half-linear differential equation being of the
form

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 𝑐 (𝑡)𝑡𝑝 Φ (𝑥) = 0 (14)

is considered for 𝑟 : [𝑎,∞) → R, (𝑎 > 0), is a continuous
function for which mean value𝑀(𝑟1−𝑞) exists and for which

0 < inf
𝑡∈[𝑎,∞)

𝑟 (𝑡) ≤ sup
𝑡∈[𝑎,∞)

𝑟 (𝑡) < ∞ (15)

holds and 𝑐 : [𝑎,∞) → R, (𝑎 > 0), is a continuous
function having mean value𝑀(𝑐) and it was shown that (14)
is oscillatory if 𝑀(𝑐) > Γ and nonoscillatory if 𝑀(𝑐) < Γ,
where Γ is given by

Γ = 𝑞−𝑝 [𝑀(𝑟1−𝑞)]1−𝑝 . (16)

In [6], the half-linear differential equation being of the
form

((𝑟 (𝑡) + 𝑛∑
𝑗=1

𝛼𝑗 (𝑡)
Log2𝑗𝑡)

1−𝑝Φ(𝑥󸀠))
󸀠

+ 1𝑡𝑝 (𝑐 (𝑡) + 𝑛∑
𝑗=1

𝛽𝑗 (𝑡)
Log2𝑗𝑡)Φ (𝑥) = 0

(17)

is considered for 𝑇-periodic functions 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗, 𝑗 =1, 2, . . . , 𝑛, and 𝑟(𝑡) > 0 and the following result was obtained.
Theorem 2. Let 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗 (𝑗 = 1, 2, . . . , 𝑛) be 𝑇-periodic
continuous functions, 𝑟(𝑡) > 0, and their mean values over the
period 𝑇 are denoted by 𝑟, 𝑐, 𝛼̃𝑗, and 𝛽𝑗 (𝑗 = 1, 2, . . . , 𝑛).

(i) If 𝑐 𝑟𝑝−1 > 𝛾𝑝, then (17) is oscillatory and if 𝑐 𝑟𝑝−1 < 𝛾𝑝,
then it is nonoscillatory.(ii) Let 𝑐 𝑟𝑝−1 = 𝛾𝑝. If there exists 𝑘 ∈ {1, . . . , 𝑛} such that

𝛽𝑗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝𝛼̃𝑗𝑟−1 = 𝜇𝑝, 𝑗 = 1, 2, . . . , 𝑘 − 1 (18)

(if 𝑘 ̸= 1), and 𝛽𝑘𝑟𝑝−1 + (𝑝 − 1)𝛾𝑝𝛼𝑘𝑟−1 ̸= 𝜇𝑝, then (17)
is oscillatory if

𝛽𝑘𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝𝛼̃𝑘𝑟−1 > 𝜇𝑝 (19)

and nonoscillatory if

𝛽𝑘𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝𝛼̃𝑘𝑟−1 < 𝜇𝑝. (20)

Our research is motivated by the paper [6], where the
oscillation constant is computed for (17) with the periodic
coefficients having same𝑇-period. However, if these periodic
functions have different periodswhatwould be the oscillation
constant is not investigated.Thus, in this paper we investigate
the oscillation constant for (17) with periodic coefficients
having different periods. In this paper we consider two
types of periodic coefficients which have different periods
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for (17). In the first type we consider these periodic coefficient
functions having the least common multiple and in the
second type, we consider these periodic coefficient functions
which do not have least common multiple. We give some
corollarieswhich illustrate the first type’s cases that our results
compile the known results in [6] but in the second type only
our results can be applied.

In Section 2, we recall the concept of half-linear-trigo-
nometric functions and their properties. In Section 3we com-
pute the oscillation constant for (17)with periodic coefficients
which have different periods. Additionally we show that if the
different periods coincide, then our results compile with the
known results in [6]. Thus, our results extend and improve
the results of [6].

2. Preliminaries

We start this section with recalling the concept of half-linear-
trigonometric functions; see [1] or [4]. Consider the following
special half-linear equation being of the form

(Φ (𝑥󸀠))󸀠 + (𝑝 − 1)Φ (𝑥) = 0 (21)

and denote its solution by 𝑥 = 𝑥(𝑡) given by the initial con-
ditions 𝑥(0) = 0, 𝑥󸀠(0) = 1. We see that the behavior of
this solution is very similar to that of the classical sine func-
tion. We denote this solution by sin𝑝𝑡 and its derivative by(sin𝑝𝑡)󸀠 = cos𝑝𝑡. These functions are 2𝜋𝑝-periodic, where𝜋𝑝 fl 2𝜋/𝑝 sin(𝜋/𝑝), and satisfy the half-linear Pythagorean
identity

󵄨󵄨󵄨󵄨󵄨sin𝑝𝑡󵄨󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨󵄨cos𝑝𝑡󵄨󵄨󵄨󵄨󵄨𝑝 = 1, 𝑡 ∈ R. (22)

Every solution of (21) is of the form𝑥(𝑡) = 𝐶 sin𝑝(𝑡+𝜑), where𝐶 and 𝜑 are real constants; that is, it is bounded together with
its derivative and periodic with the period 2𝜋𝑝. The function𝑢 = Φ(cos𝑝𝑡) is a solution to the reciprocal equation of (21);

(Φ−1 (𝑢󸀠))󸀠 + (𝑝 − 1)𝑞−1Φ−1 (𝑢) = 0,
Φ−1 (𝑢) = |𝑢|𝑞−2 𝑢, 𝑞 = 𝑝𝑝 − 1 ,

(23)

which is an equation of the form as in (21), so the functions 𝑢
and 𝑢󸀠 are also bounded.

Let 𝑥(𝑡) be a nontrivial solution of (1) and we consider the
half-linear Prüfer transformation which is introduced using
the half-linear-trigonometric functions

𝑥 (𝑡) = 𝜌 (𝑡) sin𝑝𝜑 (𝑡) ,
𝑥󸀠 (𝑡) = 𝑟1−𝑞 (𝑡) 𝜌 (𝑡)𝑡 cos𝑝𝜑 (𝑡) , (24)

where 𝜌(𝑡) = √|𝑥(𝑡)|𝑝 + 𝑟𝑞(𝑡)|𝑥󸀠(𝑡)|𝑝 and Prüfer angle 𝜑(𝑡) is
a continuous function defined at all points where 𝑥(𝑡) ̸= 0.

Then 𝜑(𝑡) satisfies the following differential equation:
𝜑󸀠 (𝑡) = 1𝑡 [𝑟1−𝑞 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

− Φ(cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) + 𝑡𝑝𝑐 (𝑡)𝑝 − 1 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝] ;
(25)

see [9].

3. Main Results

We need the following lemma in order to prove our main
Theorem 4.

Lemma 3. Let 𝜑(𝑡) = 𝜑1(𝑡) + ∑𝑛𝑗=1 𝜑2𝑗(𝑡) + 𝜑3(𝑡) + 𝜑4(𝑡) +∑𝑛𝑗=1 𝜑5𝑗(𝑡) + 𝑀 (𝑀 is a suitable constant) be a solution of the
equation

𝜑󸀠 (𝑡) = 𝜑󸀠1 (𝑡) + 𝑛∑
𝑗=1

𝜑󸀠2𝑗 (𝑡) + 𝜑󸀠3 (𝑡) + 𝜑󸀠4 (𝑡)
+ 𝑛∑
𝑗=1

𝜑󸀠5𝑗 (𝑡) ,
(26)

where

𝜑󸀠1 (𝑡) = 1𝑡 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠2𝑗 (𝑡) = 𝛼𝑗 (𝑡)𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 (𝑗 = 1, . . . , 𝑛) ,
𝜑󸀠3 (𝑡) = −1𝑡 Φ (cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) ,
𝜑󸀠4 (𝑡) = 𝑐 (𝑡)(𝑝 − 1) 𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠5𝑗 (𝑡) = 𝛽𝑗 (𝑡)(𝑝 − 1) 𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 (𝑗 = 1, . . . , 𝑛) ,

(27)

with 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗 (𝑗 = 1, 2, . . . , 𝑛) are periodic functions
having different 𝑇1, 𝑇2, 𝑃𝑗, and 𝑄𝑗 (𝑗 = 1, 2, . . . , 𝑛) periods,
respectively, and 𝑟(𝑡) > 0 and

𝜃 (𝑡) = 1𝑇1 ∫
𝑡+𝑇1

𝑡
𝜑1 (𝑠) 𝑑𝑠 + 𝑛∑

𝑗=1

1𝑃𝑗 ∫
𝑡+𝑃𝑗

𝑡
𝜑2𝑗 (𝑠) 𝑑𝑠

+ 1𝜉 ∫𝑡+𝜉
𝑡

𝜑3 (𝑠) 𝑑𝑠 + 1𝑇2 ∫
𝑡+𝑇2

𝑡
𝜑4 (𝑠) 𝑑𝑠

+ 𝑛∑
𝑗=1

1𝑄𝑗 ∫
𝑡+𝑄𝑗

𝑡
𝜑5𝑗 (𝑠) 𝑑𝑠,

(28)
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where 𝜉 is one of the following 𝑇1, 𝑇2, 𝑃𝑗, and 𝑄𝑗 (𝑗 =1, 2, . . . , 𝑛) periods. Then 𝜃(𝑡) is a solution of

𝜃󸀠 (𝑡)
= 1𝑡 [[

∗𝑟 + 𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡]]

󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

+ 1(𝑝 − 1) 𝑡 [[
∗𝑐 + 𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡]]

󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

− 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) ,

(29)

where

∗𝑟 = 1𝑇1 ∫
𝑇1

0
𝑟 (𝑠) 𝑑𝑠,

∗𝑐 = 1𝑇2 ∫
𝑇2

0
𝑐 (𝑠) 𝑑𝑠,

∗𝛼𝑗 = 1𝑃𝑗 ∫
𝑃𝑗

0
𝛼𝑗 (𝑠) 𝑑𝑠,

∗𝛽𝑗 = 1𝑄𝑗 ∫
𝑄𝑗

0
𝛽𝑗 (𝑠) 𝑑𝑠

for 𝑗 = 1, 2, . . . , 𝑛

(30)

and 𝜑(𝜏) − 𝜃(𝑡) = ∘(1) as 𝑡 → ∞.

Proof. Taking derivative of 𝜃(𝑡), we have
𝜃󸀠 (𝑡) = 1𝑇1 ∫

𝑡+𝑇1

𝑡
𝜑󸀠1 (𝑠) 𝑑𝑠 + 𝑛∑

𝑗=1

1𝑃𝑗 ∫
𝑡+𝑃𝑗

𝑡
𝜑󸀠2𝑗 (𝑠) 𝑑𝑠

+ 1𝜉 ∫𝑡+𝜉
𝑡

𝜑󸀠3 (𝑠) 𝑑𝑠 + 1𝑇2 ∫
𝑡+𝑇2

𝑡
𝜑󸀠4 (𝑠) 𝑑𝑠

+ 𝑛∑
𝑗=1

1𝑄𝑗 ∫
𝑡+𝑄𝑗

𝑡
𝜑󸀠5𝑗 (𝑠) 𝑑𝑠

= 1𝑇1 ∫
𝑡+𝑇1

𝑡

1𝑠 𝑟 (𝑠) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠
+ 𝑛∑
𝑗=1

1𝑃𝑗 ∫
𝑡+𝑃𝑗

𝑡

𝛼𝑗 (𝑠)𝑠Log2𝑗𝑠 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠
− 1𝜉 ∫𝑡+𝜉
𝑡

1𝑠Φ (cos𝑝𝜑 (𝑠)) sin𝑝𝜑 (𝑠) 𝑑𝑠
+ 1𝑇2 ∫

𝑡+𝑇2

𝑡

𝑐 (𝑠)(𝑝 − 1) 𝑠 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠
+ 𝑛∑
𝑗=1

1𝑄𝑗 ∫
𝑡+𝑄𝑗

𝑡

𝛽𝑗 (𝑠)𝑠 (𝑝 − 1) Log2𝑗𝑠 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠.

(31)

Using integration by parts, we get

𝜃󸀠 (𝑡) = 1𝑇1𝑡 ∫
𝑡+𝑇1

𝑡
𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡

𝑛∑
𝑗=1

1𝑃𝑗
⋅ ∫𝑡+𝑃𝑗
𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 − 1𝜉𝑡

⋅ ∫𝑡+𝜉
𝑡

Φ(cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) 𝑑𝜏 + 1𝑇2𝑡
⋅ ∫𝑡+𝑇2
𝑡

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡
𝑛∑
𝑗=1

1𝑄𝑗
⋅ ∫𝑡+𝑄𝑗
𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 − 1𝑇1
⋅ ∫𝑡+𝑇1
𝑡

1𝑠2 ∫
𝑡+𝑇1

𝑠
𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠 − 𝑛∑

𝑗=1

1𝑃𝑗
⋅ ∫𝑡+𝑃𝑗
𝑡

1𝑠2 ∫
𝑡+𝑃𝑗

𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠 + 1𝜉

⋅ ∫𝑡+𝜉
𝑡

1𝑠2 ∫
𝑡+𝜉

𝑠
Φ(cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) 𝑑𝜏 𝑑𝑠 − 1𝑇2

⋅ ∫𝑡+𝑇2
𝑡

1𝑠2 ∫
𝑡+𝑇2

𝑠

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠
− 𝑛∑
𝑗=1

1𝑄𝑗
⋅ ∫𝑡+𝑄𝑗
𝑡

1𝑠2 ∫
𝑡+𝑄𝑗

𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠.

(32)

Let 𝑓 be a continuous 𝑇-periodic function and
∗𝑓 =(1/𝑇) ∫𝑇

0
𝑓(𝑠)𝑑𝑠; then integration by parts yields

1𝑇 ∫𝑡+𝑇
𝑡

𝑓 (𝑠)
log2𝑗𝑠𝑑𝑠 =

∗𝑓
log2𝑗𝑡 [1 + 𝑂( 1𝑡 log 𝑡)] . (33)

By using (33) and ∫𝑡+𝑇
𝑡

𝑓(𝑠)𝑑𝑠 = ∫𝑇
0
𝑓(𝑠)𝑑𝑠 for any𝑇-periodic

function and Pythagorean identity, the expressions

𝑟1−𝑞 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
−Φ (cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) ,

𝑐 (𝑡)𝑝 − 1 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
(34)

are bounded. Thus we get

𝜃󸀠 (𝑡)
= 1𝑇1𝑡 ∫

𝑡+𝑇

𝑡
𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
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+ 1𝑡
𝑛∑
𝑗=1

1𝑃𝑗 ∫
𝑡+𝑃𝑗

𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏

− 1𝜉𝑡 ∫
𝑡+𝜉

𝑡
Φ(cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) 𝑑𝜏

+ 1𝑇2𝑡 ∫
𝑡+𝑇2

𝑡

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
+ 1𝑡
𝑛∑
𝑗=1

1𝑄𝑗 ∫
𝑡+𝑄𝑗

𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏
󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏

+ 𝑂(1𝑡 ) .
(35)

If we add and subtract the below terms in the right side of
this equation

1𝑇1𝑡 ∫
𝑡+𝑇1

𝑡
𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏

+ 1𝑡
𝑛∑
𝑗=1

1𝑃𝑗 ∫
𝑡+𝑃𝑗

𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏

󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
− 1𝜉𝑡 ∫

𝑡+𝜉

𝑡
Φ(cos𝑝𝜃 (𝑡)) sin𝑝𝜑 (𝜏) 𝑑𝜏

+ 1𝑇2𝑡 ∫
𝑡+𝑇2

𝑡

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
+ 1𝑡
𝑛∑
𝑗=1

1𝑄𝑗 ∫
𝑡+𝑄𝑗

𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏

(36)

we can rewrite this equation as

𝜃󸀠 (𝑡) = 1𝑇1𝑡 ∫
𝑡+𝑇1

𝑡
𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡

𝑛∑
𝑗=1

1𝑃𝑗
⋅ ∫𝑡+𝑃𝑗
𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 − 1𝜉𝑡

⋅ ∫𝑡+𝜉
𝑡

Φ(cos𝑝𝜃 (𝑡)) sin𝑝𝜑 (𝜏) 𝑑𝜏 + 1𝑇2𝑡
⋅ ∫𝑡+𝑇
𝑡

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡
𝑛∑
𝑗=1

1𝑄𝑗
⋅ ∫𝑡+𝑄𝑗
𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑇1𝑡
⋅ ∫𝑡+𝑇1
𝑡

𝑟 (𝜏) {󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏
+ 1𝑡
𝑛∑
𝑗=1

1𝑃𝑗 ∫
𝑡+𝑃𝑗

𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 {󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝

− 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏 − 1𝜉𝑡
⋅ ∫𝑡+𝜉
𝑡

{Φ (cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏)
− Φ (cos𝑝𝜃 (𝑡)) sin 𝜃 (𝑡)} 𝑑𝜏 + 1𝑇2𝑡
⋅ ∫𝑡+𝑇2
𝑡

𝑐 (𝜏)(𝑝 − 1) {󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏
+ 1𝑡
𝑛∑
𝑗=1

1𝑄𝑗 ∫
𝑡+𝑄𝑗

𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 {󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
− 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏 + 𝑂(1𝑡 ) .

(37)

And using the half-linear-trigonometric functions, we
have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝜑(𝜏)

𝜃(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨Φ (cos𝑝𝑠) (cos𝑝𝑠)󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ const 󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨Φ (cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) − Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝜑(𝜏)

𝜃(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨(Φ (cos𝑝𝑠) sin𝑝𝑠)󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ const 󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨󵄨󵄨 ≤ const 󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 .

(38)

By the Mean Value Theorem we can write

𝜃 (𝑡) = 𝜑1 (𝑡1) + 𝑛∑
𝑗=1

𝜑2𝑗 (𝑡2𝑗) + 𝜑3 (𝑡3) + 𝜑4 (𝑡4)
+ 𝑛∑
𝑗=1

𝜑5𝑗 (𝑡5𝑗)
(39)

for 𝑡1 ∈ [𝑡, 𝑡+𝑇1], 𝑡2𝑗 ∈ [𝑡, 𝑡+𝑃𝑗], 𝑗 = 1, 2, . . . , 𝑛, 𝑡3 ∈ [𝑡, 𝑡+𝜉],𝑡4 ∈ [𝑡, 𝑡 + 𝑇2], and 𝑡5𝑗 ∈ [𝑡, 𝑡 + 𝑄𝑗], 𝑗 = 1, 2, . . . , 𝑛; thus󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝜑1 (𝜏) − 𝜑1 (𝑡1)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

(𝜑2𝑗 (𝜏) − 𝜑2𝑗 (𝑡2𝑗))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝜑3 (𝜏) − 𝜑3 (𝑡3)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝜑4 (𝜏) − 𝜑4 (𝑡4)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

(𝜑5𝑗 (𝜏) − 𝜑5𝑗 (𝑡5𝑗))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(40)
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This implies that

󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑜 (1𝑡 ) ,
𝜑 (𝜏) − 𝜃 (𝑡) = 𝑜 (1) as 𝑡 󳨀→ ∞. (41)

And using ∗𝑟, ∗𝑐, ∗𝛼𝑗, ∗𝛽𝑗, and (33), we get

𝜃󸀠 (𝑡) = 1𝑡 [[
∗𝑟 + {1 + 𝑂( 1𝑡 log 𝑡)}

𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡]]

⋅ 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
+ 1(𝑝 − 1) 𝑡 [[

∗𝑐 + {1 + 𝑂( 1𝑡 log 𝑡)}
𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡]]

⋅ 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) + 𝑂(1𝑡 ) .

(42)

The term𝑂(1/𝑡) can be written as (|cos𝑝𝜃|𝑝+|sin𝑝𝜃|𝑝)𝑂(1/𝑡);
hence we get

𝜃󸀠 (𝑡) = 1𝑡 [[
∗𝑟 + [1 + 𝑂( 1𝑡 log 𝑡)]

𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡

+ 𝑂(1𝑡 )]]
󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 + 1(𝑝 − 1) 𝑡 [[

∗𝑐

+ {1 + 𝑂( 1𝑡 log 𝑡)}
𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 + 𝑂(1𝑡 )]]

⋅ 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) .

(43)

Now since all the terms of𝑂(1/𝑡 log 𝑡)/log2𝑗𝑡 are𝑂(1/𝑡) as𝑡 → ∞ for 𝑗 = 1, 2, . . . , 𝑛, then all these terms are asympto-
tically less than 𝑜(1)/log2𝑛𝑡. Hence we get
𝜃󸀠 (𝑡)
= 1𝑡 [[

∗𝑟 + 𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡]]

󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

+ 1(𝑝 − 1) 𝑡 [[
∗𝑐 + 𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡]]

󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

− 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) .

(44)

The main result of this paper is as follows.

Theorem 4. Let 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛, are peri-
odic functions which have different 𝑇1, 𝑇2, 𝑃𝑗, and 𝑄𝑗, 𝑗 =1, 2, . . . , 𝑛, periods, respectively, and 𝑟(𝑡) > 0 in (17).

(i) (17) is oscillatory if ∗𝑐∗𝑟𝑝−1 > 𝛾𝑝 and nonoscillatory if
∗𝑐∗𝑟𝑝−1 < 𝛾𝑝, where ∗𝑟 and ∗𝑐 are defined in Lemma 3.

(ii) Let ∗𝑐∗𝑟𝑝−1 = 𝛾𝑝. If there exists 𝑘 ∈ {2, . . . , 𝑛} such that
∗𝛽𝑗 ∗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝 ∗𝛼𝑗 ∗𝑟−1 = 𝜇𝑝, 𝑗 = 1, . . . , 𝑘 − 1 (45)

and
∗𝛽𝑘 ∗𝑟𝑝−1 + (𝑝 − 1)𝛾𝑝 ∗𝛼𝑘 ∗𝑟−1 ̸= 𝜇𝑝, then (17) is

oscillatory if

∗𝛽𝑘 ∗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝 ∗𝛼𝑘 ∗𝑟−1 > 𝜇𝑝 (46)

and nonoscillatory if

∗𝛽𝑘 ∗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝 ∗𝛼𝑘 ∗𝑟−1 < 𝜇𝑝, (47)

where ∗𝛼𝑗 and ∗𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛, are defined in
Lemma 3.

Proof. The statement (i) is proved in [10]. It remains to prove
the statement (ii) in full generality.

We consider (17); let 𝑥(𝑡) be the nontrivial solution of (17)
and 𝜑(𝑡) is the Prüfer angle of (17) given in (24). Then

𝜑 (𝑡) = 𝜑1 (𝑡) + 𝑛∑
𝑗=1

𝜑2𝑗 (𝑡) + 𝜑3 (𝑡) + 𝜑4 (𝑡) + 𝑛∑
𝑗=1

𝜑5𝑗 (𝑡)
+ 𝑀

(48)

is a solution of

𝜑󸀠 (𝑡) = 𝜑󸀠1 (𝑡) + 𝑛∑
𝑗=1

𝜑󸀠2𝑗 (𝑡) + 𝜑󸀠3 (𝑡) + 𝜑󸀠4 (𝑡)
+ 𝑛∑
𝑗=1

𝜑󸀠5𝑗 (𝑡) ,
(49)

where

𝜑󸀠1 (𝑡) = 1𝑡 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠2𝑗 (𝑡) = 𝛼𝑗 (𝑡)𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 (𝑗 = 1, 2, . . . , 𝑛) ,
𝜑󸀠3 (𝑡) = −1𝑡 Φ (cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) ,
𝜑󸀠4 (𝑡) = 𝑐 (𝑡)(𝑝 − 1) 𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠5𝑗 (𝑡) = 𝛽𝑗 (𝑡)(𝑝 − 1) 𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

(𝑗 = 1, 2, . . . , 𝑛) .

(50)
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By the help of Lemma 3, 𝜃(𝑡) is a solution of

𝜃󸀠 (𝑡)
= 1𝑡 [[

∗𝑟 + 𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡]]

󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

+ 1(𝑝 − 1) 𝑡 [[
∗𝑐 + 𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡]]

󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

− 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) ,

(51)

where ∗𝑟, ∗𝑐, ∗𝛼𝑗, and ∗𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛, are given in Lemma 3.
This equation is a “Prüfer angle” equation for the follow-

ing second-order half-linear differential equation

((∗𝑟 + 𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡)

1−𝑝Φ(𝑥󸀠))
󸀠

+ 1𝑡𝑝 (∗𝑐+𝑛𝑗=1
𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 +

𝑜 (1)
Log2𝑛𝑡)Φ (𝑥) = 0,

(52)

which is the same as the following equation:

(𝑅 (𝑡)Φ (𝑥󸀠))󸀠
+ 1𝑡𝑝 (∗𝑐∗𝑟𝑝−1 +

𝑛∑
𝑗=1

∗𝛽𝑗 ∗𝑟𝑝−1
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡)Φ (𝑥) = 0. (53)

Suppose that assumption (ii) ofTheorem4 is satisfied and that
(46) holds for 𝑘 ∈ {1, 2, . . . , 𝑛 − 1}. Then (53) is oscillatory as
a direct consequence ofTheorem 1. If (46) holds for 𝑘 = 𝑛, let𝜀 > 0 be so small that still

∗𝛽𝑛 ∗𝑟𝑝−1 − 𝜀 + (𝑝 − 1) 𝛾𝑝 (∗𝑟−1 ∗𝛼𝑗 − 𝜀) > 𝜇𝑝 (54)

and consider the following equation:

(𝑅1 (𝑡) Φ (𝑥󸀠))󸀠
+ 1𝑡𝑝 (∗𝑐∗𝑟𝑝−1 +

𝑛∑
𝑗=1

∗𝛽𝑗 ∗𝑟𝑝−1
Log2𝑗𝑡 + ∗𝛽𝑛 ∗𝑟𝑝−1 − 𝜀

Log2𝑛𝑡 )Φ (𝑥)
= 0,

(55)

where 𝑅1(𝑡) = (1 + ∑𝑛𝑗=1(( ∗𝛼𝑗/∗𝑟)/log2𝑗𝑡) + ( ∗𝛼𝑛/∗𝑟 − 𝜀)/log2𝑛𝑡)1−𝑝.
This equation is a Sturmian minorant for sufficiently large 𝑡
in (53) and (54) and Theorem 1 implies that this minorant
equation is oscillatory and hence (53) is oscillatory as well.
This means that the Prüfer angle 𝜃(𝑡) of the solution of
(52) is unbounded and by Lemma 3 the Prüfer angle 𝜑(𝑡)
of the solution of (17) is unbounded as well. Thus, (17) is
oscillatory. A slightly modified argument implies that (17) is
nonoscillatory provided that (47) holds.

Corollary 5. If the periods of the functions 𝑟, 𝑐, 𝛼𝑗, and𝛽𝑗, 𝑗 =1, 2, . . . , 𝑛, in (17) coincide with 𝑇-period, which is given in [6],
then our oscillation constants overlap to their oscillation con-
stants and our main result compiles with the result given in [6].

Corollary 6. If there exists a lcm(𝑇1, 𝑇2, 𝑃𝑗, 𝑄𝑗), 𝑗 =1, 2, . . . , 𝑛, and the period 𝑇 which is given in [6] is chosen as
lcm(𝑇1, 𝑇2, 𝑃𝑗, 𝑄𝑗), 𝑗 = 1, 2, . . . , 𝑛, then our oscillation con-
stants overlap to their oscillation constants and our main result
compiles with the result given in [6].

Remark 7. If for 𝑗 = 1, 2, . . . , 𝑛 lcm(𝑇1, 𝑇2, 𝑃𝑗, 𝑄𝑗) is not
defined, then only our result can be appliedwhereas the result
given in [6] can not.

Example 8. Consider the nonlinear equation (17) for 𝑝 = 3,𝑟(𝑡) = 2+cos(𝑎𝑥+𝑏), (𝑎, 𝑏 ∈ R),𝛼1(𝑡) = cos 3𝑡,𝛼2(𝑡) = sin 8𝑡,𝛽1(𝑡) = sin 4𝑡, 𝛽2(𝑡) = sin 2𝑡, and 𝑐(𝑡) = 2+ sin 6𝑡. In this case𝑇1 = 2𝜋/|𝑎|, 𝑃1 = 2𝜋/3, 𝑃2 = 𝜋/4, 𝑄1 = 𝜋/2, 𝑄2 = 𝜋, and𝑇2 = 𝜋/3 are periods of these functions, respectively. Because
of these functions being periodic functions and 𝑟(𝑡) positive
defined we can use Theorem 4 for all 𝑎 ̸= 0 and we obtain

∗𝑐∗𝑟𝑝−1 = ( |𝑎|2𝜋 ∫2𝜋/|𝑎|
0

(2 + cos (𝑎𝑠 + 𝑏)) 𝑑𝑠)
⋅ ( 3𝜋 ∫𝜋/3

0
(2 + sin 6𝑠) 𝑑𝑠)3−1 = 8,

𝛾3 = (3 − 13 )3 = 827 .
(56)

Thuswe get ∗𝑐∗𝑟𝑝−1 > 𝛾3 for all 𝑎 ̸= 0 and considered equation is
oscillatory. Here the important point to note is that while we
cannot applyTheorem 2which is given in [6] for this example
if we choose 𝑎 = √5, then lcm(2𝜋/|𝑎|, 2𝜋/3, 𝜋/4, 𝜋/2, 𝜋, 𝜋/3)
is not defined, we can apply our Theorem 4.
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[6] O. Došlý and H. Funková, “Euler type half-linear differential
equation with periodic coefficients,”Abstract and Applied Anal-
ysis, vol. 2013, Article ID 714263, 6 pages, 2013.
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