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Bioeconomic modeling of the exploitation of biological resources such as fisheries has gained importance in recent years. In this
work we propose to define and study a bioeconomic equilibrium model for two fishermen who catch three species taking into
consideration the fact that the prices of fish populations vary according to the quantity harvested; these species compete with each
other for space or food; the natural growth of each species is modeled using a logistic law. The main purpose of this work is to
define the fishing effort that maximizes the profit of each fisherman, but all of them have to respect two constraints: the first one is
the sustainable management of the resources and the second one is the preservation of the biodiversity. The existence of the steady
states and their stability are studied using eigenvalue analysis.The problem of determining the equilibriumpoint thatmaximizes the
profit of each fisherman leads to Nash equilibrium problem; to solve this problem we transform it into a linear complementarity
problem (LCP); then we prove that the obtained problem (LCP) admits a unique solution that represents the Nash equilibrium
point of our problem. We close our paper with some numerical simulations.

1. Introduction

Overfishing leads to resource destruction, that is why there
is an increasing need for the bioeconomic modeling tool
that evaluates the biological and economic effects of different
harvesting strategies directed at extracting the long-term
maximum sustainable production while avoiding the risk of
recruitment overfishing.The techniques and issues associated
with the bioeconomic modeling for the exploitation of
marine resources have been discussed in detail by Clark and
Munro [1, 2]. Clark and Munro [1] demonstrated that, with
the aid of optimal control theory, fisheries economics can
without difficulty be cast in a capital-theoretic framework
yielding results that are both general and readily compre-
hensible. Chaudhuri [3] discussed the problem of combined
harvesting of two competing fish species, each of which
obeys the law of logistic growth; it is shown that the open-
access fishery may possess a bioeconomic equilibrium which
drives one species to extinction. In this context, Chaudhuri
[4] considered the problem of dynamic optimization of the
exploitation policy connected with the combined harvesting
of two competing fish species, each of which obeys the

logistic growth law. Models on the combined harvesting of
a two-species prey-predator fishery have been discussed by
Chaudhuri and Ray [5]. Kar and Chaudhuri [6] studied
the problem of harvesting two competing species in the
presence of a predator species which feeds on both the
competing species; a combined harvesting effort is devoted
to the exploitation of the first two (prey) species while the
third (predator) species is not harvested. Mchich et al. [7]
proposed a specific stock-effort dynamic model; the stock
corresponds to two fish populations growing and moving
between two fishing zones, on which they are harvested
by two different fleets; the effort represents the number of
fishing vessels of the two fleets which operate on the two
fishing zones; the bioeconomicmodel is a set of four ordinary
differential equations governing the stocks and the fishing
efforts in the two fishing areas; fish migration, as well as
vessels displacements, between the two zones is assumed to
take place at a faster time scale than the variation of the
stocks and the changes of fleets sizes, respectively; the vessels
movements between the two fishing areas are assumed to be
stock dependent, that is, the larger the stock density is in a
zone, the more the vessels tend to remain in it.
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Many mathematical models have been developed to
describe the dynamics of fisheries; we can refer, for example,
to El Foutayeni et al. [8] who in their work have built a
bioeconomic equilibrium model for several fishermen who
catch two fish species; in this work, the authors have showed
that the problem of determining the equilibrium point that
maximizes the profit of each fisherman is solved by using
linear complementarity problem. El Foutayeni et al. [9]
have also defined a bioeconomic equilibrium model for “𝑛”
fishermen who catch three species; these species compete
with each other for space or food; the natural growth of
each species is modeled using a logistic law; the objective of
their work is to calculate the fishing effort that maximizes the
profit of each fisherman at biological equilibriumby using the
generalized Nash equilibrium problem.

Most bioeconomic models do not take into account the
variational of the price of fish population.Usually, the existing
models consider that the prices of the fish populations are
constants. In this context, El Foutayeni and Khaladi [10, 11]
have presented a bioeconomic model of fish populations
taking into consideration the fact that the prices of fish
populations vary according to the quantity harvested. But
in these articles they assumed the existence of a single
fisherman.

This paper is situated in this general context; in this work
we present a bioeconomic model for three species which
compete with each other for space or food and each of which
obeys the law logistic growth. These species are caught by
two fishermen. We will assume that the price of the fish
population increases with decreasing harvest and the price of
the fish population decreases with the increase of the harvest,
but the minimum price is equal to a fixed positive constant.
The aim of this paper consists in determining the fishing
effort strategy adopted by each fisherman to maximize its
incomeunder two assumptions; the first one is the sustainable
management of the resources, and the second one is the
preservation of the biodiversity.

The paper is structured as follows. In Section 2, we give
a description of the biological model of fish populations; we
will define the mathematical model and study the stability
of the equilibrium of our system. In Section 3, we give
the bioeconomic model of the fish populations taking into
consideration the fact that the prices of fish populations
vary according to the quantity harvested; in this section
we prove that the resolution of bioeconomic equilibrium
model of the three fish populations is equivalent to solving
a Nash equilibrium problem and then we show that the latter
problem is equivalent to a linear complementarity problem,
then we prove that the obtained problem (LCP) admits
a unique solution that represents the Nash equilibrium
of our problem. Some numerical simulations are given in
Section 4 to illustrate the results. Finally, in Section 5 we give
a conclusion.

2. The Biological Model of Fish Populations

The aim of this section is to define a biological model of three
marine species that compete with each other for space or food
and whose natural growth of each is obtained by means of a

logistic law. We study the existence of the steady states and
their stability using eigenvalue analysis and Routh-Hurwitz
stability criterion.

2.1. The Mathematical Model and Hypotheses. The evolution
of the biomass of the first species is given by the following
mathematical equation:𝑥̇1 (𝑡) = 𝑟1𝑥1 (𝑡) (1 − 𝑥1 (𝑡)𝐾1 ) − 𝑐12𝑥1 (𝑡) 𝑥2 (𝑡)− 𝑐13𝑥1 (𝑡) 𝑥3 (𝑡) , (1)

where 𝑥1(𝑡) is the biomass of population 1; 𝑟1 is the intrinsic
growth rate of species 1;𝐾1 is the carrying capacity for species1; 𝑐12 is the coefficient of competition between species 2 and
species 1; and 𝑐13 is the coefficient of competition between
species 3 and species 1.

The evolution of the biomass of the second population is
given by the following mathematical equation:𝑥̇2 (𝑡) = 𝑟2𝑥2 (𝑡) (1 − 𝑥2 (𝑡)𝐾2 ) − 𝑐21𝑥1 (𝑡) 𝑥2 (𝑡)− 𝑐23𝑥2 (𝑡) 𝑥3 (𝑡) , (2)

where 𝑥2(𝑡) is the biomass of population 2; 𝑟2 is the intrinsic
growth rate of species 2;𝐾2 is the carrying capacity for species2; 𝑐21 is the coefficient of competition between species 1 and
species 2; and 𝑐23 is the coefficient of competition between
species 3 and species 2.

The evolution of the biomass of the third species is given
by the following mathematical equation:𝑥̇3 (𝑡) = 𝑟3𝑥3 (𝑡) (1 − 𝑥3 (𝑡)𝐾3 ) − 𝑐31𝑥1 (𝑡) 𝑥3 (𝑡)− 𝑐32𝑥2 (𝑡) 𝑥3 (𝑡) , (3)

where 𝑥3(𝑡) is the biomass of population 3; 𝑟3 is the intrinsic
growth rate 3; 𝐾3 is the carrying capacity for the species of
species 3; 𝑐31 is the coefficient of competition between species1 and species 3; and 𝑐32 is the coefficient of competition
between species 2 and species 3.

It is interesting to note that to assure the existence of the
three species and their stability we should assume that𝑟𝑖 > 𝑐𝑖𝑗𝐾𝑗, ∀𝑖, 𝑗 = 1, 2, 3, with 𝑖 ̸= 𝑗. (4)

The evolution of the biomass of fish populations is
modeled by the following equations:𝑥̇1 (𝑡) = 𝑟1𝑥1 (𝑡) (1 − 𝑥1 (𝑡)𝐾1 ) − 𝑐12𝑥1 (𝑡) 𝑥2 (𝑡)− 𝑐13𝑥1 (𝑡) 𝑥3 (𝑡) ,𝑥̇2 (𝑡) = 𝑟2𝑥2 (𝑡) (1 − 𝑥2 (𝑡)𝐾2 ) − 𝑐21𝑥1 (𝑡) 𝑥2 (𝑡)− 𝑐23𝑥2 (𝑡) 𝑥3 (𝑡) ,𝑥̇3 (𝑡) = 𝑟3𝑥3 (𝑡) (1 − 𝑥3 (𝑡)𝐾3 ) − 𝑐31𝑥1 (𝑡) 𝑥3 (𝑡)− 𝑐32𝑥2 (𝑡) 𝑥3 (𝑡) .

(5)
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Let 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) be the solution of system
(5). Then all the solutions of the system (5) are nonnegative.
To demonstrate that, we must recall that by [12] the system of
equation𝑥̇ = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) with 𝑥 (𝑡 = 0) = 𝑥0 (6)

is a positive system if and only if𝑥̇𝑖 = 𝑓𝑖 (𝑥1 ≥ 0, . . . , 𝑥𝑖 = 0, . . . , 𝑥𝑛 ≥ 0) ≥ 0;∀𝑖 ∈ [1 ⋅ ⋅ ⋅ 𝑛] . (7)

In our case, for𝑥1 = 0, 𝑥2, 𝑥3 ≥ 0, we have𝑑𝑥1/𝑑𝑡 = 0 ≥ 0.By
the same, for𝑥2 = 0, 𝑥1, 𝑥3 ≥ 0, we have𝑑𝑥2/𝑑𝑡 = 0 ≥ 0.Also
for 𝑥3 = 0, 𝑥1, 𝑥2 ≥ 0, we have 𝑑𝑥3/𝑑𝑡 = 0 ≥ 0.Therefore, all
the solutions of system (5) are nonnegative.

Theorem 1. All the solutions of system (5) which start in R3+
are uniformly bounded.

Proof. We define the function𝑊 = 𝑥1 + 𝑥2 + 𝑥3. (8)

Therefore, the time derivative along a solution of (5) is𝑑𝑊𝑑𝑡 = 𝑟1𝑥1 (1 − 𝑥1𝐾1) + 𝑟2𝑥2 (1 − 𝑥2𝐾2)
+ 𝑟3𝑥3 (1 − 𝑥3𝐾3) − 𝑐12𝑥1𝑥2 − 𝑐13𝑥1𝑥3− 𝑐21𝑥1𝑥2 − 𝑐23𝑥2𝑥3 − 𝑐31𝑥1𝑥3 − 𝑐32𝑥2𝑥3.

(9)

For each 𝜗 > 0, we have𝑑𝑊𝑑𝑡 + 𝜗𝑊 = 𝑟1𝑥1 (1 − 𝑥1𝐾1) + 𝑟2𝑥2 (1 − 𝑥2𝐾2)
+ 𝑟3𝑥3 (1 − 𝑥3𝐾3) − 𝑐12𝑥1𝑥2 − 𝑐13𝑥1𝑥3− 𝑐21𝑥1𝑥2 − 𝑐23𝑥2𝑥3 − 𝑐31𝑥1𝑥3− 𝑐32𝑥2𝑥3 + 𝜗𝑥1 + 𝜗𝑥2 + 𝜗𝑥3

≤ 𝑟1𝑥1 (1 − 𝑥1𝐾1) + 𝑟2𝑥2 (1 − 𝑥2𝐾2)
+ 𝑟3𝑥3 (1 − 𝑥3𝐾3) + 𝜗𝑥1 + 𝜗𝑥2 + 𝜗𝑥3

= 𝑥1 [𝑟1 (1 − 𝑥1𝐾1) + 𝜗]
+ 𝑥2 [𝑟2 (1 − 𝑥2𝐾2) + 𝜗]
+ 𝑥3 [𝑟3 (1 − 𝑥3𝐾3) + 𝜗]

= 𝑥1 (𝑟1 + 𝜗) − 𝑟1𝐾1 𝑥21 + 𝑥2 (𝑟2 + 𝜗)− 𝑟2𝐾2 𝑥22 + 𝑥3 (𝑟3 + 𝜗) − 𝑟3𝐾3 𝑥23.
(10)

We can easily show that

− 𝑟1𝐾1 𝑥21 + 𝑥1 (𝑟1 + 𝜗) − 𝐾14𝑟1 (𝑟1 + 𝜗)2 ≤ 0,
− 𝑟2𝐾2 𝑥22 + 𝑥2 (𝑟2 + 𝜗) − 𝐾24𝑟2 (𝑟2 + 𝜗)2 ≤ 0,
− 𝑟3𝐾3 𝑥23 + 𝑥3 (𝑟3 + 𝜗) − 𝐾34𝑟3 (𝑟3 + 𝜗)2 ≤ 0.

(11)

Then

− 𝑟1𝐾1 𝑥21 + 𝑥1 (𝑟1 + 𝜗) ≤ 𝐾14𝑟1 (𝑟1 + 𝜗)2 ,
− 𝑟2𝐾2 𝑥22 + 𝑥2 (𝑟2 + 𝜗) ≤ 𝐾24𝑟2 (𝑟2 + 𝜗)2 ,
− 𝑟3𝐾3 𝑥23 + 𝑥3 (𝑟3 + 𝜗) ≤ 𝐾34𝑟3 (𝑟3 + 𝜗)2 .

(12)

Therefore, we can deduce that𝑑𝑊𝑑𝑡 + 𝜗𝑊 ≤ 𝐾14𝑟1 (𝑟1 + 𝜗)2 + 𝐾24𝑟2 (𝑟2 + 𝜗)2
+ 𝐾34𝑟3 (𝑟3 + 𝜗)2 .

(13)

So the right-hand side is positive; therefore it is bounded for
all (𝑥1, 𝑥2, 𝑥3) ∈ R3+.Therefore we find a 𝜃 > 0 with 𝑑𝑊/𝑑𝑡 +𝜗𝑊 < 𝜃. Using the theory of differential inequality [13], we
obtain 0 ≤ 𝑊(𝑥1, 𝑥2, 𝑥3)

≤ 𝜃𝜗 + [𝑊(𝑥1 (0) , 𝑥2 (0) , 𝑥3 (0)) − 𝜃𝜗] 𝑒−𝜗𝑡 (14)

which, upon letting 𝑡 → ∞, yields 0 ≤ 𝑊 ≤ 𝜃/𝜗.
Then, we have

𝐵 = {(𝑥1, 𝑥2, 𝑥3) ∈ R
3
+ : 𝑊 < 𝜃𝜗 + 𝜀, for any 𝜀 > 0} , (15)

where 𝐵 is the region in which all the solutions of system of
(5) that start in R3+ are confined.

2.2. The Steady States of the System. The steady states of the
system of (5) are obtained by solving the system of equations
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𝑟1𝑥1 (1 − 𝑥1𝐾1) − 𝑐12𝑥1𝑥2 − 𝑐13𝑥1𝑥3 = 0,
𝑟2𝑥2 (1 − 𝑥2𝐾2) − 𝑐21𝑥1𝑥2 − 𝑐23𝑥2𝑥3 = 0,
𝑟3𝑥3 (1 − 𝑥3𝐾3) − 𝑐31𝑥1𝑥3 − 𝑐32𝑥2𝑥3 = 0.

(16)

This system of equations has eight solutions𝑃1(0, 0, 0), 𝑃2(𝐾1, 0, 0), 𝑃3(0, 𝐾2, 0), 𝑃4(0, 0, 𝐾3),𝑃5(𝑥(5)1 , 𝑥(5)2 , 0), where
𝑥(5)1 = 𝐾1𝑟2 𝑟1 − 𝑐12𝐾2𝑟1𝑟2 − 𝑐12𝑐21𝐾2𝐾1 ,𝑥(5)2 = 𝐾2𝑟1 𝑟2 − 𝑐21𝐾1𝑟1𝑟2 − 𝑐12𝑐21𝐾2𝐾1 ,

(17)

𝑃6(𝑥(6)1 , 0, 𝑥(6)3 ), where
𝑥(6)1 = 𝐾1𝑟3 𝑟1 − 𝑐13𝐾3𝑟1𝑟3 − 𝑐13𝑐31𝐾3𝐾1 ,𝑥(6)3 = 𝐾3𝑟1 𝑟3 − 𝑐31𝐾1𝑟1𝑟3 − 𝑐13𝑐31𝐾3𝐾1 ,

(18)

𝑃7(0, 𝑥(7)2 , 𝑥(7)3 ), where
𝑥(7)2 = 𝐾2𝑟3 𝑟2 − 𝑐23𝐾3𝑟3𝑟2 − 𝑐32𝑐23𝐾2𝐾3 ,𝑥(7)3 = 𝐾3𝑟2 𝑟3 − 𝑐32𝐾2𝑟3𝑟2 − 𝑐32𝑐23𝐾2𝐾3 ,

(19)

and 𝑃8(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ), where
𝑥∗1 = 𝐾1 (𝑟1𝑟2𝑟3 − 𝑟1𝑐23𝑐32𝐾2𝐾3 + 𝑟3𝑐12𝑐23𝐾2𝐾3 − 𝑟2𝑟3𝑐12𝐾2 − 𝑟2𝑟3𝑐13𝐾3 + 𝑟2𝑐13𝑐32𝐾2𝐾3)Δ ,
𝑥∗2 = 𝐾2 (𝑟1𝑟2𝑟3 − 𝑟2𝑐13𝑐31𝐾1𝐾3 + 𝑟1𝑐23𝑐31𝐾1𝐾3 − 𝑟1𝑟3𝑐21𝐾1 − 𝑟1𝑟3𝑐23𝐾3 + 𝑟3𝑐13𝑐21𝐾1𝐾3)Δ ,
𝑥∗3 = 𝐾3 (𝑟1𝑟2𝑟3 − 𝑟3𝑐12𝑐21𝐾1𝐾2 − 𝑟1𝑟2𝑐31𝐾1 + 𝑟1𝑐21𝑐32𝐾1𝐾2 + 𝑟2𝑐12𝑐31𝐾1𝐾2 − 𝑟1𝑟2𝑐32𝐾2)Δ ,
Δ = 𝑟1𝑟2𝑟3 − 𝑟1𝑐23𝑐32𝐾2𝐾3 − 𝑟2𝑐13𝑐31𝐾1𝐾3 − 𝑟3𝑐12𝑐21𝐾1𝐾2 + 𝑐12𝑐23𝑐31𝐾1𝐾2𝐾3 + 𝑐13𝑐21𝑐32𝐾1𝐾2𝐾3.

(20)

The system of (16) has several solutions, but only one of
them can give the coexistence of the biomass of the three
species; this solution is the point 𝑃8(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ).
2.3. The Stability of the Steady States. The variational matrix
of system (5) is

𝐽 = [[[[
𝐽11 −𝑐12𝑥1 −𝑐13𝑥1−𝑐21𝑥2 𝐽22 −𝑐23𝑥2−𝑐31𝑥3 −𝑐32𝑥3 𝐽33

]]]] , (21)

where

𝐽11 = 𝑟1 (1 − 2𝐾1 𝑥1) − 𝑐12𝑥2 − 𝑐13𝑥3,
𝐽22 = 𝑟2 (1 − 2𝐾2 𝑥2) − 𝑐21𝑥1 − 𝑐23𝑥3,
𝐽33 = 𝑟3 (1 − 2𝐾3 𝑥3) − 𝑐31𝑥1 − 𝑐32𝑥2.

(22)

Proposition 2. The point 𝑃1(0, 0, 0) is unstable.

Proof. The variational matrix of system (5) at the steady state𝑃1(0, 0, 0) is
𝐽1 = [[[[

𝑟1 0 00 𝑟2 00 0 𝑟3
]]]] . (23)

The eigenvalues of 𝐽1 are𝜆1 = 𝑟1 > 0,𝜆2 = 𝑟2 > 0,𝜆3 = 𝑟3 > 0, (24)

then, the point 𝑃1(0, 0, 0) is unstable.
Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 1 shows the dynam-

ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values 𝑥(0) =0.01, 𝑦(0) = 0.01, 𝑧(0) = 0.01. By Figure 1 we find that the
steady state point𝑃1 is unstable, andmore precisely this point
tends to the point 𝑃8.
Proposition 3. The point 𝑃2(𝐾1, 0, 0) is unstable if the condi-
tions of existence given by (4) hold; if not, it is stable.
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Figure 1: Dynamical behaviors and phase space trajectories of the three marine species.

Proof. The variational matrix of system (5) at the steady state𝑃2(𝐾1, 0, 0) is
𝐽2 = [[[

−𝑟1 −𝑐12𝐾1 −𝑐13𝐾10 𝑟2 − 𝑐21𝐾1 00 0 𝑟3 − 𝑐31𝐾1
]]] . (25)

The eigenvalues of 𝐽2 are𝜆1 = −𝑟1 < 0,𝜆2 = 𝑟2 − 𝑐21𝐾1,𝜆3 = 𝑟3 − 𝑐31𝐾1 (26)

if 𝑟2 > 𝑐21𝐾1𝑟3 > 𝑐31𝐾1, (27)

then, the point 𝑃2(𝐾1, 0, 0) is unstable; if not, it is stable.
Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 2 shows the dynam-

ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values 𝑥(0) =

70, 𝑦(0) = 0.01, 𝑧(0) = 0.01. By Figure 2 we can see that the
steady state point𝑃2 is unstable, andmore precisely this point
tends to the point 𝑃8 too.
Proposition 4. The point 𝑃3(0, 𝐾2, 0) is unstable if the condi-
tions of existence given by (4) hold; if not, it is stable.

Proof. The variational matrix of system (5) at the steady state𝑃3(0, 𝐾2, 0) is
𝐽3 = [[[

𝑟1 − 𝑐12𝐾2 0 0−𝑐21𝐾2 −𝑟2 −𝑐23𝐾20 0 𝑟3 − 𝑐32𝐾2]]] . (28)

The eigenvalues of 𝐽3 are𝜆1 = 𝑟1 − 𝑐12𝐾2,𝜆2 = −𝑟2 < 0,𝜆3 = 𝑟3 − 𝑐32𝐾2 (29)

if 𝑟1 > 𝑐12𝐾2,𝑟3 > 𝑐32𝐾2; (30)

therefore, the point 𝑃3(0, 𝐾2, 0) is unstable; if not, it is stable.
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Figure 2: Dynamical behaviors and phase space trajectories of the three marine species.

Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 3 shows the dynam-
ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values 𝑥(0) =0.01, 𝑦(0) = 50, 𝑧(0) = 0.01. By Figure 3 we can see that the
steady state point𝑃3 is also unstable and tends to the point𝑃8.
Proposition 5. The point 𝑃4(0, 0, 𝐾3) is unstable if the condi-
tions of existence given by (4) hold; if not, it is stable.

Proof. The variational matrix of system (5) at the steady state𝑃4(0, 0, 𝐾3) is
𝐽4 = [[[[

𝑟1 − 𝑐13𝐾3 0 00 𝑟2 − 𝑐23𝐾3 0−𝑐13𝐾3 −𝑐32𝐾3 −𝑟3
]]]] . (31)

The eigenvalues of 𝐽4 are
𝜆1 = 𝑟1 − 𝑐13𝐾3,𝜆2 = 𝑟2 − 𝑐23𝐾3,𝜆3 = −𝑟3 < 0

(32)

if 𝑟1 > 𝑐13𝐾3,𝑟2 > 𝑐23𝐾3, (33)

then, the point 𝑃4(0, 0, 𝐾3) is unstable; if not, it is stable.
Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 4 indicates the

dynamical behaviors and phase space trajectory of the three
marine species against time, beginning with the initial values𝑥(0) = 0.01, 𝑦(0) = 0.01, 𝑧(0) = 40. Following Figure 4 we
can see that the steady state point𝑃3 is unstable and also tends
to the point 𝑃8.
Proposition 6. The point 𝑃5(𝑥(5)1 , 𝑥(5)2 , 0) is unstable.
Proof. The variational matrix of system (5) at the steady state𝑃5(𝑥(5)1 , 𝑥(5)2 , 0) is

𝐽5 = [[[[[
− 𝑟1𝐾1 𝑥(5)1 −𝑐12𝑥(5)1 −𝑐13𝑥(5)1−𝑐21𝑥(5)2 − 𝑟2𝐾2 𝑥(5)2 −𝑐23𝑥(5)20 0 𝑟3 − 𝑐31𝑥(5)1 − 𝑐32𝑥(5)2

]]]]]
. (34)
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Figure 3: Dynamical behaviors and phase space trajectories of the three marine species.

The eigenvalues of 𝐽5 are
𝜆1 = − 12𝐾1𝐾2 (𝑀 − √𝑁) ,
𝜆2 = − 12𝐾1𝐾2 (𝑀 + √𝑁) ,
𝜆3 = 𝑟3 − 𝑐31𝑥(5)1 − 𝑐32𝑥(5)2 ,

(35)

where𝑀 = 𝑟1𝑥(5)1 𝐾2 + 𝐾1𝑟2𝑥(5)2 ,𝑁 = [𝑟1𝑥(5)1 𝐾2 − 𝐾1𝑟2𝑥(5)2 ]2 + 4𝐾21𝐾22𝑐21𝑥(5)2 𝑐12𝑥(5)1 . (36)

If 𝑟1 > 𝑐12𝐾2,𝑟2 > 𝑐21𝐾1 (37)

then, 𝜆3 > 0; if not, then 𝜆1 > 0.Therefore, the point 𝑃5(𝑥(5)1 ,𝑥(5)2 , 0) is unstable in all cases.

Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 5 represents the

dynamical behaviors and phase space trajectory of the three
marine species against time, beginning with the initial values𝑥(0) = 60, 𝑦(0) = 28, 𝑧(0) = 0.01. Following Figure 5 we
can deduce that the steady state point 𝑃5 is unstable and also
tends to the point 𝑃8.
Proposition 7. The point 𝑃6(𝑥(6)1 , 0, 𝑥(6)3 ) is unstable.
Proof. The variational matrix of system (5) at the steady state𝑃6(𝑥(6)1 , 0, 𝑥(6)3 ) is

𝐽6 = [[[[[[
− 𝑟1𝑘1 𝑥(6)1 −𝑐12𝑥(6)1 −𝑐13𝑥(6)10 𝑟2 − 𝑐21𝑥(6)1 − 𝑐23𝑥(6)3 0−c31𝑥(6)3 −𝑐32𝑥(6)3 − 𝑟3𝐾3 𝑥(6)3

]]]]]]
. (38)

The eigenvalues of 𝐽6 are
𝜆1 = − 12𝐾1𝐾3 (𝐺 − √𝐿) ,
𝜆2 = 𝑟2 − 𝑐21𝑥(6)1 − 𝑐23𝑥(6)3 ,𝜆3 = − 12𝐾1𝐾3 (𝐺 + √𝐿) ,

(39)
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Figure 4: Dynamical behaviors and phase space trajectories of the three marine species.

where

𝐺 = 𝑟1𝑥(6)1 𝐾3 + 𝐾1𝑟3𝑥(6)3 ,𝐿 = [𝑟1𝑥(6)1 𝐾3 − 𝐾1𝑟3𝑥(6)3 ]2 + 4𝐾21𝐾23𝑐31𝑥(6)3 𝑐13𝑥(6)1 . (40)

If 𝑟1 > 𝑐13𝐾3,𝑟3 > 𝑐31𝐾1 (41)

then, 𝜆2 > 0; if not, then 𝜆1 > 0; therefore, point 𝑃6(𝑥(6)1 ,0, 𝑥(6)3 ) is unstable.
Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 6 indicates the

dynamical behaviors and phase space trajectory of the three
marine species against time, beginning with the initial values𝑥(0) = 59, 𝑦(0) = 0.01, 𝑧(0) = 38. Following Figure 6 we
can deduce that the steady state point 𝑃6 is unstable and also
tends to the point 𝑃8.
Proposition 8. The point 𝑃7(0, 𝑥(7)2 , 𝑥(7)3 ) is unstable.

Proof. The variational matrix of system (5) at the steady state𝑃7(0, 𝑥(7)2 , 𝑥(7)3 ) is
𝐽7 = [[[[[[

𝑟1 − 𝑐12𝑥(7)2 − 𝑐13𝑥(7)3 0 0−𝑐21𝑥(7)2 − 𝑟2𝐾2 𝑥(7)2 −𝑐23𝑥(7)2−𝑐31𝑥(7)3 −𝑐32𝑥(7)3 − 𝑟3𝐾3 𝑥(7)3
]]]]]]
. (42)

The eigenvalues of 𝐽7 are𝜆1 = 𝑟1 − 𝑐12𝑥(7)2 − 𝑐13𝑥(7)3 ,𝜆2 = − 12𝐾2𝐾3 (𝑅 − √𝑆) ,𝜆3 = − 12𝐾2𝐾3 (𝑅 + √𝑆) ,
(43)

where𝑅 = 𝑟2𝑥(7)2 𝐾3 + 𝐾2𝑟3𝑥(7)3 ,𝑆 = [𝑟2𝑥(7)2 𝐾3 + 𝐾2𝑟3𝑥(7)3 ]2 + 4𝐾22𝐾23𝑐23𝑥(7)2 𝑐32𝑥(7)3 . (44)

If 𝑟2 > 𝑐23𝐾3,𝑟3 > 𝑐32𝐾2 (45)
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Figure 5: Dynamical behaviors and phase space trajectories of the three marine species.

then, 𝜆1 > 0; if not, then 𝜆2 > 0. Therefore, point 𝑃7(0, 𝑥(7)2 ,𝑥(7)3 ) is unstable.
Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 7 shows the dynam-

ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values 𝑥(0) =0.01, 𝑦(0) = 48, 𝑧(0) = 39. By Figure 7 we can conclude that
the steady state point𝑃7 is unstable and also tends to point𝑃8.
Theorem 9. The point 𝑃8(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) is locally asymptotically
stable.

Proof. Weproof this theorem by using Routh-Hurwitz stabil-
ity criterion.

The variational matrix of system (5) in the steady state𝑃8(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) is
𝐽8 = [[[

𝐽11 −𝑐12𝑥∗1 −𝑐13𝑥∗1−𝑐21𝑥∗2 𝐽22 −𝑐23𝑥∗2−𝑐31𝑥∗3 −𝑐32𝑥∗3 𝐽33
]]] , (46)

where 𝐽11 = 𝑟1 (1 − 2𝐾1 𝑥∗1) − 𝑐12𝑥∗2 − 𝑐13𝑥∗3 ,

𝐽22 = 𝑟2 (1 − 2𝐾2 𝑥∗2) − 𝑐21𝑥∗1 − 𝑐23𝑥∗3 ,𝐽33 = 𝑟3 (1 − 2𝐾3 𝑥∗3) − 𝑐31𝑥∗1 − 𝑐32𝑥∗2 .
(47)

Using the fact that by (16) we have

𝑟1 (1 − 2𝐾1 𝑥∗1) − 𝑐12𝑥∗2 − 𝑐13𝑥∗3 = − 𝑟1𝐾1 𝑥∗1 ,𝑟2 (1 − 2𝐾2 𝑥∗2) − 𝑐21𝑥∗1 − 𝑐23𝑥∗3 = − 𝑟2𝐾2 𝑥∗2 ,𝑟3 (1 − 2𝐾3 𝑥∗3) − 𝑐31𝑥∗1 − 𝑐32𝑥∗2 = − 𝑟3𝐾3 𝑥∗3
(48)

then

𝐽8 = [[[[[[
− 𝑟1𝐾1 𝑥∗1 −𝑐12𝑥∗1 −𝑐13𝑥∗1−𝑐21𝑥∗2 − 𝑟2𝐾2 𝑥∗2 −𝑐23𝑥∗2−𝑐31𝑥∗3 −𝑐32𝑥∗3 − 𝑟3𝐾3 𝑥∗3

]]]]]]
. (49)

The characteristic polynomial of the variational matrix is𝑃 (𝜆) = 𝑎0𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3, (50)
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Figure 6: Dynamical behaviors and phase space trajectories of the three marine species.

where

𝑎0 = 1,𝑎1 = 𝑟1𝐾1 𝑥∗1 + 𝑟2𝐾2 𝑥∗2 + 𝑟3𝐾3 𝑥∗3 ,𝑎2 = 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2 + 𝑟1𝐾1 𝑥∗1 𝑟3𝐾3 𝑥∗3 + 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3− 𝑐23𝑥∗2 𝑐32𝑥∗3 − 𝑐12𝑥∗1 𝑐21𝑥∗2 − 𝑐13𝑥∗1 𝑐31𝑥∗3 ,𝑎3 = 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3 + 𝑐12𝑥∗1 𝑐23𝑥∗2 𝑐31𝑥∗3+ 𝑐13𝑥∗3 𝑐32𝑥∗2 𝑐21𝑥∗1 − 𝑐12𝑥∗1 𝑐21𝑥∗2 𝑟3𝐾3 𝑥∗3− 𝑐23𝑥∗2 𝑐32𝑥∗3 𝑟1𝐾1 𝑥∗1 − 𝑐13𝑥∗3 𝑐31𝑥∗1 𝑟2𝐾2 𝑥∗2 ;

(51)

we have 𝑎𝑖 > 0, ∀𝑖 = 0, 1, 2, 3. In fact,

(i) 𝑎0 = 1 > 0,
(ii) 𝑎1 = (𝑟1/𝐾1)𝑥∗1 + (𝑟2/𝐾2)𝑥∗2 + (𝑟3/𝐾3)𝑥∗3 > 0,
(iii) using the fact that by (4) we have

𝑟1𝑟2 > 𝑐12𝐾2𝑐21𝐾1,𝑟2𝑟3 > 𝑐23𝐾3𝑐32𝐾2,𝑟1𝑟3 > 𝑐13𝐾3𝑐31𝐾1 (52)

so𝑎2 = 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2 + 𝑟1𝐾1 𝑥∗1 𝑟3𝐾3 𝑥∗3 + 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3− 𝑐23𝑥∗2 𝑐32𝑥∗3 − 𝑐12𝑥∗1 𝑐21𝑥∗2 − 𝑐13𝑥∗1 𝑐31𝑥∗3 > 0,𝑎3 = 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3 + 𝑐12𝑥∗1 𝑐23𝑥∗2 𝑐31𝑥∗3
+ 𝑐13𝑥∗3 𝑐32𝑥∗2 𝑐21𝑥∗1 − 𝑐12𝑥∗1 𝑐21𝑥∗2 𝑟3 𝑥∗3𝐾3− 𝑐23𝑥∗2 𝑐32𝑥∗3 𝑟1𝐾1 𝑥∗1 − 𝑐13𝑥∗3 𝑐31𝑥∗1 𝑟2𝐾2 𝑥∗2 > 0,

(53)

(iv)

𝑎1𝑎2 − 𝑎0𝑎3 = ( 𝑟1𝐾1 𝑥∗1 + 𝑟2𝐾2 𝑥∗2 + 𝑟3𝐾3 𝑥∗3)
⋅ ( 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2 + 𝑟1𝐾1 𝑥∗1 𝑟3𝐾3 𝑥∗3 + 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3
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Figure 7: Dynamical behaviors and phase space trajectories of the three marine species.

− 𝑐23𝑥∗2 𝑐32𝑥∗3 − 𝑐12𝑥∗1 𝑐21𝑥∗2 − 𝑐13𝑥∗1 𝑐31𝑥∗3)
− ( 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3 + 𝑐12𝑥∗1 𝑐23𝑥∗2 𝑐31𝑥∗3
+ 𝑐13𝑥∗3 𝑐32𝑥∗2 𝑐21𝑥∗1 − 𝑐12𝑥∗1 𝑐21𝑥∗2 𝑟3 𝑥∗3𝐾3
− 𝑐23𝑥∗2 𝑐32𝑥∗3 𝑟1𝐾1 𝑥∗1 − 𝑐13𝑥∗3 𝑐31𝑥∗1 𝑟2𝐾2 𝑥∗2) = 𝑟1𝐾1 𝑥∗1
⋅ 𝑟2𝐾2 𝑥∗2 𝑟3𝐾3 𝑥∗3 − 𝑐12𝑥∗1 𝑐23𝑥∗2 𝑐31𝑥∗3 + 𝑟1𝐾1 𝑥∗1 𝑟2𝐾2 𝑥∗2
⋅ 𝑟3𝐾3 𝑥∗3 − 𝑐13𝑥∗3 𝑐32𝑥∗2 𝑐21𝑥∗1 + 𝑟21𝐾21 𝑥∗21 𝑟2𝐾2 𝑥∗2 − 𝑟1𝐾1
⋅ 𝑥∗21 𝑐12𝑐21𝑥∗2 + 𝑟22𝐾22 𝑥∗22 𝑟3𝐾3 𝑥∗3 − 𝑟2𝐾2 𝑥∗22 𝑐32𝑐23𝑥∗3
+ 𝑟21𝐾21 𝑥∗22 𝑟3𝐾3 𝑥∗3 − 𝑟1𝐾1 𝑥∗21 𝑐13𝑐31𝑥∗3 + 𝑟23𝐾23 𝑥∗23 𝑟1𝐾1 𝑥∗1

− 𝑟3𝐾3 𝑥∗23 𝑐13𝑐31𝑥∗1 + 𝑟22𝐾22 𝑥∗22 𝑟1𝐾1 𝑥∗1 − 𝑟2𝐾2 𝑥∗22 𝑐12𝑐21𝑥∗1+ 𝑟23𝐾23 𝑥∗23 𝑟2𝐾2 𝑥∗2 − 𝑟3𝐾3 𝑥∗23 𝑐23𝑐32𝑥∗2 .
(54)

From (4) we deduce that𝑎1𝑎2 − 𝑎0𝑎3 > 0. (55)

Then, using the Routh-Hurwitz stability criterion we con-
clude that the steady state point 𝑃8(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) is locally
asymptotically stable.

Let 𝑟1 = 2, 𝑟2 = 1, 𝑟3 = 3, 𝑐12 = 0.009, 𝑐21 = 0.007, 𝑐13 =0.008, 𝑐23 = 0.001, 𝑐31 = 0.002, 𝑐32 = 0.001, 𝐾1 = 70, 𝐾2 =50, 𝐾3 = 40 in appropriate units. Figure 8 shows the dynam-
ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values 𝑥(0) =49, 𝑦(0) = 30, 𝑧(0) = 38. By Figure 8 one can see that the
steady state point 𝑃8 is locally asymptotically stable.

More precisely, beginning with different initial values
we can confirm that the three marine species tend to point𝑃8, and according to the phase space trajectories given by
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Figure 8: Dynamical behaviors and phase space trajectories of the three marine species.

Figures 1–7 we can confirm that the steady state point 𝑃8 is
a global attractor.

3. Bioeconomic Model of Fishery

The main purpose of this section is to define and study a
bioeconomic equilibriummodel for two fishermenwho catch
three fish populations.

More specifically, this bioeconomic model includes three
parts: a biological part connecting the catch to the biomass
stock, an exploitation part connecting the catch to the fishing
effort, and an economic part connecting the fishing effort to
the profit.

So, introducing the fishing by reducing the rate of fish
population growth by the amount𝐻𝑖𝑗 = 𝑞𝑗𝐸𝑖𝑗𝑥𝑗, (56)

where𝐻𝑖𝑗 is the catches of fish population 𝑗 by the fisherman𝑖, 𝐸𝑖𝑗 is the fishing effort to exploit a fish population 𝑗 by
the fisherman 𝑖, and 𝑞𝑗 is the catchability coefficient of fish
population 𝑗, the model for the evolution of fish populations
is given by the following mathematical system of equations:

𝑥̇1 = 𝑟1𝑥1 (1 − 𝑥1𝐾1) − 𝑐12𝑥1𝑥2 − 𝑐13𝑥1𝑥3 − 𝑞1𝐸1𝑥1,

𝑥̇2 = 𝑟2𝑥2 (1 − 𝑥2𝐾2) − 𝑐21𝑥1𝑥2 − 𝑐23𝑥2𝑥3 − 𝑞2𝐸2𝑥2,
𝑥̇3 = 𝑟3𝑥3 (1 − 𝑥3𝐾3) − 𝑐31𝑥1𝑥3 − 𝑐32𝑥2𝑥3 − 𝑞3𝐸3𝑥3.

(57)

On one hand, we denote by 𝐻𝑗 = 𝐻1𝑗 + 𝐻2𝑗 the
total catches of species 𝑗 by all fishermen; on the other
hand, we denote by 𝐸𝑗 = 𝐸1𝑗 + 𝐸2𝑗 the total fishing effort
dedicated to species 𝑗 by all fishermen, and we denote by𝐸(𝑖) = (𝐸𝑖1, 𝐸𝑖2, 𝐸𝑖3)𝑇 the vector fishing effort which must be
provided by the fisherman 𝑖 to catch the three species.

In what follows of this paper, the product of two vectors𝛼 ∈ R3 and 𝛽 ∈ R3 is the vector noted by 𝛼𝛽 or 𝛽𝛼 and is
defined by 𝛼𝛽 fl (𝛼1𝑦1, 𝛼2𝑦2, 𝛼3𝑦3)𝑇 ∈ R

3. (58)

The scalar product is noted by 𝛼𝑇𝛽.The division of the vector𝛼 ∈ R3 and the not null vector𝛽 ∈ R3 (i.e.,𝛽𝑖 ̸= 0,∀𝑖 = 1, 2, 3)
is the vector noted by 𝛼/𝛽 and is defined by𝛼𝛽 fl (𝛼1𝛽1 , 𝛼2𝛽2 , 𝛼3𝛽3)𝑇 ∈ R

3. (59)
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The product of the vector 𝛼 ∈ R3 and the matrix 𝐴 ∈ R3×3 is
noted by 𝛼𝐴 and is defined by𝛼𝐴 fl diag (𝛼) ⋅ 𝐴 ∈ R

3×3. (60)

Nowwe give the expression of biomass as a function of fishing
effort.

The biomasses at biological equilibrium are the solutions
of the system

𝑟1 (1 − 𝑥1𝐾1) = 𝑐12𝑥2 + 𝑐13𝑥3 + 𝑞1𝐸1,
𝑟2 (1 − 𝑥2𝐾2) = 𝑐21𝑥1 + 𝑐23𝑥3 + 𝑞2𝐸2,
𝑟3 (1 − 𝑥3𝐾3) = 𝑐31𝑥1 + 𝑐32𝑥2 + 𝑞3𝐸3.

(61)

The solutions of this system are given by𝑥1 = 𝑎11𝐸1 + 𝑎12𝐸2 + 𝑎13𝐸3 + 𝑥∗1 ,𝑥2 = 𝑎21𝐸1 + 𝑎22𝐸2 + 𝑎23𝐸3 + 𝑥∗2 ,𝑥3 = 𝑎31𝐸1 + 𝑎32𝐸2 + 𝑎33𝐸3 + 𝑥∗3 ,
(62)

where

𝑎11 = 𝐾1 (𝑐32𝐾2𝐾3𝑐23𝑞1 − 𝑟3𝑟2𝑞1)Δ ,
𝑎12 = 𝐾1 (−𝑐32𝐾2𝑞2𝑐13𝐾3 + 𝐾2𝑞2𝑐12𝑟3)Δ ,
𝑎13 = 𝐾1 (−𝐾2𝐾3𝑐23𝑐12𝑞3 + 𝑞3𝑟2𝑐13𝐾3)Δ ,
𝑎21 = 𝐾2 (−𝐾3𝑐23𝑞1𝐾1𝑐31 + 𝐾1𝑐21𝑟3𝑞1)Δ ,
𝑎22 = 𝐾2 (𝑞2𝑐13𝐾1𝐾3𝑐31 − 𝑞2𝑟1𝑟3)Δ ,
𝑎23 = 𝐾2 (𝐾3𝑐23𝑟1𝑞3 − 𝐾1𝑐21𝑞3𝑐13𝐾3)Δ ,
𝑎31 = 𝐾3 (−𝑞1𝐾1𝑐32𝐾2𝑐21 + 𝑞1𝐾1𝑟2𝑐31)Δ ,
𝑎32 = 𝐾3 (𝑟1𝑐32𝐾2𝑞2 − 𝑐12𝐾1𝐾2𝑞2𝑐31)Δ ,
𝑎33 = 𝐾3 (𝑐12𝐾1𝐾2𝑐21𝑞3 − 𝑟1𝑟2𝑞3)Δ

(63)

or in matrix form 𝑋 = −𝐴𝐸 + 𝑋∗, where 𝐴 = (−𝑎𝑖𝑗)1≤𝑖,𝑗≤3,𝐸 = (𝐸1, 𝐸2, 𝐸3)𝑇, and𝑋∗ = (𝑥∗1 , 𝑥∗2 , 𝑥∗3 )𝑇.
3.1. Expression of the Total Revenue. It is interesting to note
that there exist many different variables that affect the fish
price; in this paper, we will consider that the price of the fish
population depends on the quantity harvested; specifically we

assumed that the price of the marine species increases with
the decreasing harvest and the price of the marine species
decreases with the increase of the harvest, but the minimum
price is equal to a fixed positive constant. More precisely, the
price of marine species 𝑗 exploited by the fisherman 𝑖 is given
by 𝑝𝑖𝑗 = 𝑎𝑗/𝐻𝑖𝑗 + 𝑝0𝑗, where 𝑎𝑗 and 𝑝0𝑗 are given positive
parameters for all 𝑗 = 1, 2, 3. Under these more realistic
assumptions the total revenue of the fisherman 𝑖 is(TR)𝑖 = 𝑝𝑖1𝐻𝑖1 + 𝑝𝑖2𝐻𝑖2 + 𝑝𝑖3𝐻𝑖3

= ( 𝑎1𝐻𝑖1 + 𝑝01)𝐻𝑖1 + ( 𝑎2𝐻𝑖2 + 𝑝02)𝐻𝑖2
+ ( 𝑎3𝐻𝑖3 + 𝑝03)𝐻𝑖3

= 𝑝01𝐻𝑖1 + 𝑝02𝐻𝑖2 + 𝑝03𝐻𝑖3 + 3∑
𝑘=1

𝑎𝑘
= 𝑝01𝑞1𝐸𝑖1𝑥1 + 𝑝02𝑞2𝐸𝑖2𝑥2 + 𝑝03𝑞3𝐸𝑖3𝑥3
+ 3∑
𝑘=1

𝑎𝑘 = ⟨𝑃0, 𝑞𝐸(𝑖)𝑋⟩ + 3∑
𝑘=1

𝑎𝑘
= ⟨𝑃0, 𝑞𝐸(𝑖) (−𝐴𝐸 + 𝑋∗)⟩ + 3∑

𝑘=1

𝑎𝑘
= ⟨𝑃0, 𝑞𝐸(𝑖)(−𝐴 2∑

𝑖=1

𝐸(𝑖) + 𝑋∗)⟩ + 3∑
𝑘=1

𝑎𝑘
= ⟨𝐸(𝑖), 𝑞𝑃0(−𝐴 2∑

𝑖=1

𝐸(𝑖) + 𝑋∗)⟩ + 3∑
𝑘=1

𝑎𝑘,

(64)

so, (TR)𝑖 = ⟨𝐸(𝑖), −𝑃0𝑞𝐴𝐸(𝑖)⟩
+ ⟨𝐸(𝑖), 𝑃0𝑞𝑥𝑋∗ − 𝑃0𝑞𝐴E(𝑗)⟩ + 3∑

𝑘=1

𝑎𝑘, (65)

where 𝑃0 = diag(𝑝0).
3.2. Expression of the Total Effort Cost. In accordance with
many standard fisheries models, we consider that expression
of the total effort cost is(TC)𝑖 = ⟨𝑐(𝑖), 𝐸(𝑖)⟩ , (66)

where 𝑐(𝑖) is the constant cost per unit of harvesting and 𝐸(𝑖)
is the total effort of the fisherman 𝑖.
3.3. Expression of the Profit. The profit of each fisherman 𝜋𝑖
is equal to total revenue (TR)𝑖 minus total cost (TC)𝑖; it is
represented by the following function:𝜋𝑖 (𝐸(𝑖)) = (TR)𝑖 − (TC)𝑖= ⟨𝐸(𝑖), −𝑃0𝑞𝐴𝐸(𝑖)⟩
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+ ⟨𝐸(𝑖), 𝑃0𝑞𝑋∗ − 𝑃0𝑞𝐴𝐸(𝑗)⟩ + 3∑
𝑘=1

𝑎𝑘
− ⟨𝑐(𝑖), 𝐸(𝑖)⟩

= ⟨𝐸(𝑖), −𝑃0𝑞𝐴𝐸(𝑖)⟩
+ ⟨𝐸(𝑖), 𝑃0𝑞𝑋∗ − 𝑐(𝑖) − 𝑃0𝑞𝐴𝐸(𝑗)⟩ + 3∑

𝑘=1

𝑎𝑘.
(67)

3.4. Constraints of the Model. The biological model has a
meaning if and only if the biomass of all the marine species
are strictly positive, then we have𝑋 = −𝐴𝐸 + 𝑋∗ ≥ 𝑋0 > 0. (68)

In other words, for the fisherman 𝑖,𝐴𝐸(𝑖) ≤ −𝐴𝐸(𝑗) + 𝑋∗. (69)

3.5. Nash Equilibrium Problem. The problem of determining
the fishing effort that maximizes the profit of each fisherman
leads to a Nash equilibrium problem. By definition a Nash
equilibrium exists when there is no unilateral profitable
deviation from any of the fishermen involved. In other words,
no fisherman would take a different action as long as every
other fisherman remains the same. This problem can be
translated into the following two mathematical problems.

The first fisherman must solve the problem (𝑃1):
max 𝜋1 (𝐸(1))= ⟨𝐸(1), −𝑃0𝑞𝐴𝐸(1) + 𝑃0𝑞𝑋∗ − 𝑐(1) − 𝑃0𝑞𝐴𝐸(2)⟩

+ 3∑
𝑘=1

𝑎𝑘
subject to 𝐴𝐸(1) ≤ −𝐴𝐸(2) + 𝑋∗𝐸(1) ≥ 0𝐸(2)given

(𝑃1)

and the second fisherman must solve the problem (𝑃2):
max 𝜋2 (𝐸(2))= ⟨𝐸(2), −𝑃0𝑞𝐴𝐸(2) + 𝑃0𝑞𝑋∗ − 𝑐(2) − 𝑃0𝑞𝐴𝐸(1)⟩

+ 3∑
𝑘=1

𝑎𝑘
subject to 𝐴𝐸(2) ≤ −𝐴𝐸(1) + 𝑋∗𝐸(2) ≥ 0𝐸(1)given.

(𝑃2)

The point (𝐸(1), 𝐸(2)) is called Nash equilibrium point if
and only if 𝐸(1) is a solution of problem (𝑃1) for 𝐸(2) given,
and 𝐸(2) is solution of problem (𝑃2) for 𝐸(1) given.

The essential conditions of Karush-Kuhn-Tucker applied
to the problem (𝑃1) confirm that if 𝐸(1) is a solution of the
problem (𝑃1) then there exist constants 𝑢(1) ∈ R3+, V

(1) ∈ R3+,
and 𝜆(1) ∈ R3+ such that2𝑃0𝑞𝐴𝐸(1) + 𝑐(1) − 𝑃0𝑞𝑋∗ + 𝑃0𝑞𝐴𝐸(2) − 𝑢(1)+ 𝐴𝑇𝜆(1) = 0,𝐴𝐸(1) + V(1) = −𝐴𝐸(2) + 𝑋∗,⟨𝑢(1), 𝐸(1)⟩ = ⟨𝜆(1), V(1)⟩ = 0.

(KKT1)
In the same way, the essential conditions of Karush-

Kuhn-Tucker applied to the problem (𝑃2) confirm that if 𝐸(2)
is a solution of the problem (𝑃2) then there exist constants𝑢(2) ∈ R3+, V(2) ∈ R3+, and 𝜆(2) ∈ R3+ such that2𝑃0𝑞𝐴𝐸(2) + 𝑐(2) − 𝑃0𝑞𝑋∗ + 𝑃0𝑞𝐴𝐸(1) − 𝑢(2)+ 𝐴𝑇𝜆(2) = 0,𝐴𝐸(2) + V(2) = −𝐴𝐸(1) + 𝑋∗,⟨𝑢(2), 𝐸(2)⟩ = ⟨𝜆(2), V(2)⟩ = 0;

(KKT2)
we remark that (KKT1) and (KKT2) lead to the following
system: 𝑢(1) = 2𝑃0𝑞𝐴𝐸(1) + 𝑐(1) − 𝑃0𝑞𝑋∗+ 𝑃0𝑞𝐴𝐸(2) + 𝐴𝑇𝜆(1),𝑢(2) = 2𝑃0𝑞𝐴𝐸(2) + 𝑐(2) − 𝑃0𝑞𝑋∗+ 𝑃0𝑞𝐴𝐸(1) + 𝐴𝑇𝜆(2),

V(1) = −𝐴𝐸(1) − 𝐴𝐸(2) + 𝑋∗,
V(2) = −𝐴𝐸(1) − 𝐴𝐸(2) + 𝑋∗,⟨𝑢(𝑖), 𝐸(𝑖)⟩ = ⟨𝜆(𝑖), V(𝑖)⟩ = 0 ∀𝑖 = 1, 2,

𝐸(𝑖), 𝑢(𝑖), 𝜆(𝑖), V(𝑖) ≥ 0 ∀𝑖 = 1, 2.

(70)

To maintain the biodiversity of species, it is natural to
assume that all biomasses remain strictly positive; that is,𝑥𝑗 > 0 for all 𝑗 = 1, 2, 3; therefore V(1) = V(2) > 0.

As the scalar product of (𝜆(𝑖))𝑖=1,2 and (V(𝑖))𝑖=1,2 is zero,𝜆(𝑖) = 0 for all 𝑖 = 1, 2. So, we denote V = V(1) = V(2). Then we
have the following expressions:𝑢(1) = 2𝑃0𝑞𝐴𝐸(1) + 𝑃0𝑞𝐴𝐸(2) + 𝑐(1) − 𝑃0𝑞𝑋∗,𝑢(2) = 2𝑃0𝑞𝐴𝐸(2) + 𝑃0𝑞𝐴𝐸(1) + 𝑐(2) − 𝑃0𝑞𝑋∗,

V = −𝐴𝐸(1) − 𝐴𝐸(2) + 𝑋∗,⟨𝑢(𝑖), 𝐸(𝑖)⟩ = 0 ∀𝑖 = 1, 2,
𝐸(𝑖), 𝑢(𝑖), V ≥ 0 ∀𝑖 = 1, 2.

(71)
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Thus

(𝑢(1)𝑢(2)
V

) = [[[[
2𝑃0𝑞𝐴 𝑃0𝑞𝐴 𝐴𝑇𝑃0𝑞𝐴 2𝑃0𝑞𝐴 0−𝐴 −𝐴 0

]]]](
𝐸(1)𝐸(2)0 )

+(𝑐(1) − 𝑃0𝑞𝑋∗𝑐(2) − 𝑃0𝑞𝑋∗𝑋∗ ).
(72)

3.6. Linear Complementarity Problem. We denote

𝑧 = (𝐸(1)𝐸(2)0 ) ,
𝑤 = (𝑢(1)𝑢(2)

V

),
𝑀 = [[[[

2𝑃0𝑞𝐴 𝑃0𝑞𝐴 𝐴𝑇𝑃0𝑞𝐴 2𝑃0𝑞𝐴 0−𝐴 −𝐴 0
]]]] ,

𝑏 = (𝑐(1) − 𝑃0𝑞𝑋∗𝑐(2) − 𝑃0𝑞𝑋∗𝑋∗ ).

(73)

The Nash equilibrium problem is equivalent to the Linear
Complementarity Problem LCP(𝑀, 𝑏). Find vectors 𝑧, 𝑤 ∈
R6 such that 𝑤 = 𝑀𝑧 + 𝑏 ≥ 0,𝑧, 𝑤 ≥ 0,𝑧𝑇𝑤 = 0. (74)

The following proposition confirms that LCP(𝑀, 𝑏) has a
unique solution.

Proposition 10. The matrix

𝑀 = [[[[
2𝑃0𝑞𝐴 𝑃0𝑞𝐴 𝐴𝑇𝑃0𝑞𝐴 2𝑃0𝑞𝐴 0−𝐴 −𝐴 0

]]]] (75)

is 𝑃-matrix.

Proof. We have 𝑎𝑖𝑖 < 0 for all 𝑖 = 1, 2, 3 and Δ > 0 so, if we
note by (𝑀𝑖)𝑖=1,...,9 the submatrix of𝑀, we obtain

det (𝑀1) = −2𝑝01𝑞1𝑎11 > 0,
det (𝑀2) = 4𝑝01𝑞1𝑝02𝑞2𝑞2𝑞1𝐾1𝑟3𝑞2𝐾2Δ > 0,
det (𝑀3) = 8𝑝01𝑞1𝑝02𝑞2𝑝3𝑞3𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ2 > 0,

det (𝑀4) = −12𝑎11𝑝201𝑞21𝑝02𝑞2𝑝03𝑞3𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ2> 0,
det (𝑀5)= 18𝑝201𝑞21𝑝202𝑞22𝑝03𝑞3𝑞1𝐾1𝑟3𝑞2𝐾2𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ3> 0,
det (𝑀6) = 27𝑝201𝑞21𝑝202𝑞22𝑝203𝑞23 (𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ2)2> 0,
det (𝑀7) = −9𝑝01𝑞1𝑝202𝑞22𝑝203𝑞23𝑎11 (𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ2)2> 0,
det (𝑀8)
= 3𝑝01𝑞1𝑝02𝑞2𝑝203𝑞23𝑞1𝐾1𝑟3𝑞2𝐾2Δ (𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ2)2> 0,
det (𝑀) = 𝑝01𝑞1𝑝02𝑞2𝑝03𝑞3 (𝑞3𝐾3𝑞1𝐾1𝑞2𝐾2Δ2)2 > 0.

(76)

Then, the matrix𝑀 is 𝑃-matrix and therefore the linear
complementarity problem LCP(𝑀, 𝑏) admits one and only
one solution.

The unique solution of LCP(𝑀, 𝑏) represents the Nash
equilibrium point of our problem and it is given by

𝐸(1) = 13𝐴−1 (𝑋∗ − 𝑐(1)𝑃0𝑞) ,
𝐸(2) = 13𝐴−1 (𝑋∗ − 𝑐(2)𝑃0𝑞) ,

(77)

where

𝐴−1 =
[[[[[[[[[[

𝑟1𝐾1𝑞1 𝑐12𝑞1 𝑐13𝑞1𝑐21𝑞2 𝑟2𝐾2𝑞2 𝑐23𝑞2𝑐31𝑞3 𝑐32𝑞3 𝑟3𝐾3𝑞3

]]]]]]]]]]
. (78)

Then, the fishing effort that maximizes the profit of the first
fisherman for catching the first species is

𝐸11 = 13 [ 𝑟1𝐾1𝑞1 (𝑥∗1 − 𝑐1𝑃01𝑞1) + 𝑐12𝑞1 (𝑥∗2 − 𝑐1𝑃02𝑞2)
+ 𝑐13𝑞1 (𝑥∗3 − 𝑐1𝑃03𝑞3)] ;

(79)



16 International Journal of Differential Equations

the fishing effort that maximizes the profit of the first
fisherman for catching the second species is

𝐸12 = 13 [ 𝑟2𝐾2𝑞2 (𝑥∗2 − 𝑐1𝑃02𝑞2) + 𝑐21𝑞2 (𝑥∗1 − 𝑐1𝑃01𝑞1)
+ 𝑐23𝑞2 (𝑥∗3 − 𝑐1𝑃03𝑞3)] ;

(80)

the fishing effort that maximizes the profit of the first fisher-
man for catching the third species is

𝐸13 = 13 [ 𝑟3𝐾3𝑞3 (𝑥∗3 − 𝑐1𝑃03𝑞3) + 𝑐31𝑞3 (𝑥∗1 − 𝑐1𝑃01𝑞1)
+ 𝑐32𝑞3 (𝑥∗2 − 𝑐1𝑃02𝑞2)] .

(81)

The fishing effort that maximizes the profit of the second
fisherman for catching the first species is

𝐸21 = 13 [ 𝑟1𝐾1𝑞1 (𝑥∗1 − 𝑐2𝑃01𝑞1) + 𝑐12𝑞1 (𝑥∗2 − 𝑐2𝑃02𝑞2)
+ 𝑐13𝑞1 (𝑥∗3 − c2𝑃03𝑞3)] ;

(82)

the fishing effort that maximizes the profit of the second
fisherman for catching the second species is

𝐸22 = 13 [ 𝑟2𝐾2𝑞2 (𝑥∗2 − 𝑐2𝑃02𝑞2) + 𝑐21𝑞2 (𝑥∗1 − 𝑐2𝑃01𝑞1)
+ 𝑐23𝑞2 (𝑥∗3 − 𝑐2𝑃03𝑞3)] ;

(83)

the fishing effort that maximizes the profit of the second
fisherman for catching the third species is

𝐸23 = 13 [ 𝑟3𝐾3𝑞3 (𝑥∗3 − 𝑐2𝑃03𝑞3) + 𝑐31𝑞3 (𝑥∗1 − 𝑐2𝑃01𝑞1)
+ 𝑐32𝑞3 (𝑥∗2 − 𝑐2𝑃02𝑞2)] .

(84)

4. Numerical Simulations and
Discussion of the Results

In this section, we take as case of study two fishermen
who catch three fish species competing with each other for
space or food. In order to assure the existence and stability
of the locally asymptotically stable state of the three fish
populations, we consider the parameters of the model system
(5) as shown in Table 1.

Let us consider the economic parameters such as that
shown in Table 2.

Using the parameters cited in Tables 1 and 2, thereafter we
will see how changes in the minimum prices can affect effort
fishing, catches, and profit.

Table 1: Characteristics of the three marine species.

Species 1 Species 2 Species 3𝑟1 = 0,5 𝑟2 = 0,3 𝑟3 = 0,2𝐾1 = 1000 𝐾2 = 700 𝐾3 = 600𝑐12 = 2 ⋅ 10−4 𝑐21 = 10−5 𝑐31 = 10−4𝑐13 = 3 ⋅ 10−4 𝑐23 = 2 ⋅ 10−5 𝑐32 = 10−4
Table 2: Economic parameters of the model.

Species 1 Species 2 Species 3𝑎1 = 0,1 𝑎2 = 0,2 𝑎3 = 0,3𝑝01 = 1 𝑝02 = 2 𝑝03 = 3𝑞1 = 0,1 𝑞2 = 0,02 𝑞3 = 0,004𝑐1 = 0,1 𝑐1 = 0,1 𝑐1 = 0,1𝑐2 = 0,2 𝑐2 = 0,2 𝑐2 = 0,2

Table 3: The influence of the price on the fishing effort.𝑝01 𝑝02 𝑝03 𝐸1 𝐸2
1 2 3 17,0451 16,5151
11 17 23 17,5943 17,5314
16 27 48 17,6383 17,6073
31 47 78 17,6552 17,6363
51 70 108 17,6627 17,6492
84 101 273 17,6734 17,6677
106 133 327 17,6749 17,6702
340 378 427 17,6769 17,6736
574 577 606 17,6783 17,6760
808 811 914 17,6794 17,6778
917 956 981 17,6795 17,6781
1000 1079 1090 17,6797 17,6784

Table 4: The influence of the price on the catches.𝑝01 𝑝02 𝑝03 𝐻1 𝐻2
1 2 3 245,0957 234,4651
11 17 23 246,4411 245,9382
16 27 48 246,5725 246,2429
31 47 78 246,6298 246,3781
51 70 108 246,6552 246,5718
84 101 273 246,6865 246,5974
106 133 327 246,6923 246,6334
340 378 427 246,7020 246,6334
574 577 606 246,7063 246,6582
808 811 914 246,7095 246,6775
917 956 981 246,7101 246,6804
1000 1079 1090 246,7107 246,6839

4.1.The Influence of the Price on the Fishing Effort, Catches, and
Profit. By Tables 3, 4, and 5 we will discover how changes in
the price can affect the fishing effort, catches, and profit.

According to Tables 3, 4, and 5, one can remark that
an increase in the price leads to an increase in fishing
effort, catches, and profit. But it is clear that when the price
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Table 5: The influence of the price on the profits.𝑝01 𝑝02 𝑝03 𝜋1 𝜋2
1 2 3 282 269
11 17 23 2959 2942
16 27 48 4513 4500
31 47 78 8479 8465
51 70 108 13584 13567
84 101 273 23130 23118
106 133 327 29111 29099
340 378 427 85598 85572
574 577 606 142017 141987
808 811 914 200558 200531
917 956 981 227721 227692
1000 1079 1090 249295 249266

level increases significantly, that is, when it varies in a large
amplitude interval, the fishing effort and the catches increase
by varying in an interval of small amplitude. More precisely,
when the price is between 1 and 1090, the fishing effort varies
between 16,51 and 17,68, and the catches vary between 234,4
and 246,7. This is justified by the need for conservation of
marine species even if the price increases significantly.

From Table 5 one can see that the level of profit increases,
which allows fishermen to have highest returns throughmore
reasonable catches, taking into account the conservation of
biodiversity.

These results allow us to deduce that our model is
pertinent since it allows us to determine the fishing effort
that maximizes the profit of each fisherman without being
obliged tomakemore catches that lead to the overexploitation
of these marine species.

Let us add that when the price tends to infinity, the
fishing efforts of the two fishermen are equal and they do
not exceed 18, as well as the catches which do not exceed
250; contrariwise the profit is always increasing thanks to the
increase of the price. Then we can deduce the effect of the
price change on the fishing effort, catches, and profit.

It is very interesting to note that if the price tends to
infinity and the fishing effort is superior to 18, then the catches
and the profit decrease.

5. Conclusions

In this paper, we have developed a bioeconomic model for
three species catches by two fishermen. In one hand, we have
assumed that the evolution of these species is described by
a density dependent model taking into account the competi-
tion between the species which compete with each other for
space or food. The natural growth of each species is modeled
using a logistic law. On the other hand, we have assumed
that the prices of these species vary according to the quantity
harvested. In this work we have calculated fishing effort
that maximizes the income of each fisherman at biological
equilibrium by using the Nash equilibrium problem. The
existence of the steady states and their stability are studied
using eigenvalue analysis and Routh-Hurwitz criterion.
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