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An effective collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations
with initial and boundary conditions is presented. Using the properties of Genocchi polynomials, we derive a new Genocchi delay
operational matrix which we used together with the Genocchi operational matrix of fractional derivative to approach the problems.
The error upper bound for the Genocchi operational matrix of fractional derivative is also shown. Collocation method based on
these operational matrices is applied to reduce the generalized fractional pantograph equations to a system of algebraic equations.
The comparison of the numerical results with some existing methods shows that the present method is an excellent mathematical
tool for finding the numerical solutions of generalized fractional pantograph equations.

1. Introduction

Fractional calculus, the calculus of derivative and integral
of any order, is used as a powerful tool in science and
engineering to study the behaviors of real world phenomena
especially the ones that cannot be fully described by the
classical methods and techniques [1]. Differential equations
with proportional delays are usually referred to as panto-
graph equations or generalized pantograph equations. The
name pantograph was originated from the study work of
Ockendon and Tayler [2]. Many researchers have studied
different applications of these equations in applied sciences
such as biology, physics, economics, and electrodynamics
[3–5]. Solutions of pantograph equations were also studied
by many authors numerically and analytically. Bhrawy et
al. proposed a new generalized Laguerre-Gauss collocation
method for numerical solution of generalized fractional
pantograph equations [1]. Tohidi et al. in [6] proposed
a new collocation scheme based on Bernoulli operational
matrix for numerical solution of generalized pantograph

equation. Yusufoglu [7] proposed an efficient algorithm
for solving generalized pantograph equations with linear
functional argument. In [8], Yang and Huang presented a
spectral-collocation method for fractional pantograph delay
integrodifferential equations and in [9] Yüzbasi and Sezer
presented an exponential approximation for solutions of gen-
eralized pantograph delay differential equations. Chebyshev
and Bessel polynomials are, respectively, used in [10, 11] to
obtain the solutions of generalized pantograph equations.
Operationalmatrices of fractional derivatives and integration
have become very important tool in the field of numerical
solution of fractional differential equations. In this paper, a
member of Appell polynomials called Genocchi polynomials
is used; although this polynomial is not based on orthogonal
functions, it possesses operational matrices of derivatives
with high accuracy. It is very important to note that this
polynomial shares some great advantages with Bernoulli and
Euler polynomials for approximating an arbitrary function
over some classical orthogonal polynomials; we refer the
reader to [6] for these advantages. On top of that, we
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had successfully applied the operational matrix via Genoc-
chi polynomials for solving integer-order delay differential
equations [12] and fractional optimal control problems [13],
and the numerical solutions obtained are comparable or
even more accurate compared to some existing well-known
methods. Motivated by these advantages, in this paper, we
intend to extend the result for integer-order delay differential
equations in [12] to fractional delay differential equations
or so-called generalized fractional pantograph equations. To
the best of our knowledge, this is the first time that the
operationalmatrix based onGenocchi polynomials is applied
to solve the fractional pantograph equations. On the other
hand, some other types of polynomials were employed to
solve some special type of fractional calculus problems; for
example, Bessel polynomials were used for the solution of
fractional-order logistic population model [14]; Bernstein
polynomials were also used for the solution of Riccati type
differential equations [15].

In this paper, we use the new operational matrix of
fractional-order derivative via Genocchi polynomials to
provide approximate solutions of the generalized fractional
pantograph equations of the following form [1]:

𝐷𝛼𝑦 (𝑡) = 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡) 𝐷𝛽𝑛𝑦 (𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛) + 𝑔 (𝑡) ,
0 ≤ 𝑡 ≤ 1

(1)

subject to the following conditions:

𝑚−1∑
𝑛=0

𝑎𝑛,𝑖𝑦(𝑛) (0) = 𝑑𝑖, 𝑖 = 0, 1, . . . , 𝑚 − 1, (2)

where 𝑎𝑛,𝑖, 𝜆𝑗,𝑛, and 𝜇𝑗,𝑛 are real or complex coefficients;𝑚−1 < 𝛼 < 𝑚, 0 < 𝛽0 < 𝛽1 < ⋅ ⋅ ⋅ < 𝛽𝑚−1 < 𝛼, while 𝑝𝑗,𝑛(𝑡) and𝑔(𝑡) are given continuous functions in the interval [0, 1].
The rest of the paper is organized as follows: Section 2

introduces some mathematical preliminaries of fractional
calculus. In Section 3, we discuss some important properties
of Genocchi polynomials. In Section 4, we derive the Genoc-
chi delay operational matrix and we apply the collocation
method for solving fractional pantograph equation (1) using
the Genocchi operational matrix of fractional derivative and
the delay operational matrix in Section 5. In Section 6,
the proposed method is applied to several examples and
conclusion is given in Section 7.

2. Preliminaries

2.1. Fractional Derivative and Integration. We recall some
basic definitions and properties of fractional calculus that we
will use. There are various competing definitions for frac-
tional derivatives [16, 17]. The Riemann-Liouville definition
played a vital role in the development of the theory of frac-
tional calculus. However, there are certain disadvantages of
using this definition when modeling real world phenomena.
To cope with these disadvantages, Caputo definition was
introduced which is found to be more reliable in application.
So we use this definition of fractional derivatives. We begin
with the definition of Riemann-Liouville integral, in which
the fractional integral operator 𝐼 of a function 𝑓(𝑡) is defined
as follows.

Definition 1. The Riemann-Liouville integral 𝐼 of fractional-
order 𝛼 of 𝑓(𝑡) is given by

𝐼𝛼𝑓 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏,

𝑡 > 0, 𝛼 ∈ R+,
(3)

where Γ(⋅) is the Gamma function. The fractional derivative
of order 𝛼 > 0 due to Riemann-Liouville is defined by

(𝐷𝛼𝑙 𝑓) (𝑡) = ( 𝑑𝑑𝑡)
𝑚 (𝐼𝑚−𝛼𝑓) (𝑡) ,

(𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚) .
(4)

The following are important properties of Riemann-Liouville
fractional integral 𝐼𝛼:

𝐼𝛼𝐼𝛽𝑓 (𝑡) = 𝐼𝛼+𝛽𝑓 (𝑡) , 𝛼 > 0, 𝛽 > 0,
𝐼𝛼𝑡𝛽 = Γ (𝛽 + 1)

Γ (𝛽 + 𝛼 + 1) 𝑡𝛽+𝛼.
(5)

Definition 2. The Caputo fractional derivative 𝐷𝛼 of a func-
tion 𝑓(𝑡) is defined as

𝐷𝛼𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0

𝑓(𝑛) (𝜏)
(𝑡 − 𝜏)𝛼−𝑛+1 𝑑𝜏,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N.
(6)

Some properties of Caputo fractional derivatives are as
follows:

𝐷𝛼𝐶 = 0, (𝐶 is constant) ,
𝐷𝛼𝑡𝛽 = {{{{{

0, 𝛽 ∈ N ∪ {0} , 𝛽 < ⌈𝛼⌉
Γ (𝛽 + 1)
Γ (𝛽 + 1 − 𝛼)𝑡𝛽−𝛼, 𝛽 ∈ N ∪ {0} , 𝛽 ≥ ⌈𝛼⌉ or 𝛽 ∉ N, 𝛽 > ⌊𝛼⌋ ,

(7)
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where ⌈𝛼⌉ denotes the smallest integer greater than or equal
to 𝛼 and ⌊𝛼⌋ denotes the largest integer less than or equal to𝛼.

Similar to the integer-order differentiation, the Caputo
fractional differential operator is a linear operator; that is,

𝐷𝛼 (𝜆𝑓 (𝑡) + 𝜇𝑔 (𝑡)) = 𝜆𝐷𝛼𝑓 (𝑡) + 𝜇𝐷𝛼𝑔 (𝑡) (8)

for 𝜆 and 𝜇 constants.
3. Genocchi Polynomials and Some Properties

Genocchi polynomials and numbers have been extensively
studied in many different contexts in branches of mathe-
matics such as elementary number theory, complex analytic
number theory, homotopy theory (stable homotopy groups
of spheres), differential topology (differential structures on
spheres), theory of modular forms (Eisenstein series), and
quantum physics (quantum groups). The classical Genocchi
polynomial 𝐺𝑛(𝑥) is usually defined by means of the expo-
nential generating functions [18–20].

2𝑡𝑒𝑥𝑡𝑒𝑡 + 1 =
∞∑
𝑛=0

𝐺𝑛 (𝑥) 𝑡𝑛𝑛! , (|𝑡| < 𝜋) , (9)

where 𝐺𝑛(𝑥) is the Genocchi polynomial of degree 𝑛 and is
given by

𝐺𝑛 (𝑥) = 𝑛∑
𝑘=0

(𝑛𝑘)𝐺𝑛−𝑘𝑥𝑘. (10)

𝐺𝑛−𝑘 here is the Genocchi number.
Some of the important properties of these polynomials

include

∫1
0
𝐺𝑛 (𝑥) 𝐺𝑚 (𝑥) 𝑑𝑥 = 2 (−1)𝑛 𝑛!𝑚!(𝑚 + 𝑛)! 𝐺𝑚+𝑛 𝑛,𝑚 ≥ 1, (11)

𝑑𝐺𝑛 (𝑥)𝑑𝑥 = 𝑛𝐺𝑛−1 (𝑥) , 𝑛 ≥ 1, (12)

𝐺𝑛 (1) + 𝐺𝑛 (0) = 0, 𝑛 > 1. (13)

Before we move to the next level, we need the following
linear independence on which the rest of theoretical results
are based.

Lemma 3. The set 𝐴 = {𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)} ⊂ 𝐿2[0, 1] is
a linearly independent set in 𝐿2[0, 1].
Proof. To show that 𝐴 is the set of linearly independent
elements of 𝐿2[0, 1], it is enough to show that the Gram
determinant is not zero. That is,

Gram (𝐺1, 𝐺2, . . . , 𝐺𝑁) ̸= 0, (14)

where
Gram (𝐺1, 𝐺2, . . . , 𝐺𝑁)

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝐺1, 𝐺1⟩ ⟨𝐺1, 𝐺2⟩ ⋅ ⋅ ⋅ ⟨𝐺1, 𝐺𝑁⟩⟨𝐺2, 𝐺1⟩ ⟨𝐺2, 𝐺2⟩ ⋅ ⋅ ⋅ ⟨𝐺2, 𝐺𝑁⟩... ... ⋅ ⋅ ⋅ ...
⟨𝐺𝑛, 𝐺1⟩ ⟨𝐺𝑛, 𝐺2⟩ ⋅ ⋅ ⋅ ⟨𝐺𝑛, 𝐺𝑁⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (15)

Now, to prove that this determinant is not equal to zero, we
first reduce the Gram matrix to an upper triangular matrix
by Gaussian elimination and it is not difficult to see that the
elements of the diagonal of the reduced matrix are given by

𝑎 (𝑛) = (𝑛! (𝑛 + 1)!)2(2𝑛!) (2𝑛 + 1)! , 𝑛 ∈ N. (16)

Clearly, one can see that, for any ∈ N, 𝑎(𝑛) ̸= 0. Consequently,
the determinant given by

𝑁∏
𝑛=1

𝑎 (𝑛) (17)

is not equal to zero. Therefore, the set 𝐴 is the set of linearly
independent sets.

3.1. Function Approximation. Assume that {𝐺1(𝑡), 𝐺2(𝑡),. . . , 𝐺𝑁(𝑡)} ⊂ 𝐿2[0, 1] is the set of Genocchi polynomials
and 𝑌 = Span{𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)}. Let 𝑓(𝑡) be arbitrary
element of 𝐿2[0, 1]; since𝑌 is a finite dimensional subspace of𝐿2[0, 1] space, 𝑓(𝑡) has a unique best approximation in 𝑌, say𝑓∗(𝑡), such that󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑓∗ (𝑡)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑦 (𝑡)󵄩󵄩󵄩󵄩2 , ∀𝑦 (𝑡) ∈ 𝑌. (18)

This implies that, ∀𝑦(𝑡) ∈ 𝑌,
⟨𝑓 (𝑡) − 𝑓∗ (𝑡) , 𝑦 (𝑡)⟩ = 0, (19)

where ⟨⋅⟩ denotes inner product. Since 𝑓∗(𝑡) ∈ 𝑌, there exist
the unique coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑁 such that

𝑓 (𝑡) ≈ 𝑓∗ (𝑡) = 𝑁∑
𝑛=1

𝑐𝑛𝐺𝑛 (𝑡) = C𝑇G (𝑡) , (20)

where C = [𝑐1, 𝑐2, . . . , 𝑐𝑁]𝑇, G(𝑡) = [𝐺1(𝑡), 𝐺2(𝑡), . . . ,𝐺𝑁(𝑡)]𝑇.
Using (19), we have

⟨𝑓 (𝑡) − C𝑇G (𝑡) , 𝐺𝑖 (𝑡)⟩ = 0 𝑖 = 1, 2, . . . , 𝑁; (21)

for simplicity, we write

C𝑇 ⟨G (𝑡) ,G (𝑡)⟩ = ⟨𝑓 (𝑡) ,G (𝑡)⟩ , (22)

where ⟨G(𝑡),G(𝑡)⟩ is an𝑁 ×𝑁matrix.
Let𝑊 = ⟨G(𝑡),G(𝑡)⟩ = ∫1

0
G(𝑡)G𝑇(𝑡)𝑑𝑡.

The entries of the matrix𝑊 can be calculated from (11).
Therefore, any function 𝑓(𝑡) ∈ 𝐿2[0, 1] can be expanded by
Genocchi polynomials as 𝑓(𝑡) = C𝑇G(𝑡), where

C = 𝑊−1 ⟨𝑓 (𝑡) ,G (𝑡)⟩ . (23)
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4. Genocchi Operational Matrix

In this section, we derive the operational matrices for the
delay and that of fractional derivative based on Genocchi
polynomials for the solution of fractional pantograph equa-
tions.

4.1. Genocchi Delay Operational Matrix. The Genocchi delay
vector G(𝑡 − 𝜇) can be expressed as

G (𝑡 − 𝜇) = RG (𝑡) , (24)

where R is the𝑁 ×𝑁 operational delay matrix given by

R = 𝑊1𝑊−1

=

[[[[[[[[[[[[[[[
[

1 0 0 0 0 ⋅ ⋅ ⋅ 0
−2𝜇 1 0 0 0 ⋅ ⋅ ⋅ 0
3𝜇2 −3𝜇 1 0 0 ⋅ ⋅ ⋅ 0
−4𝜇3 6𝜇2 −4𝜇 1 0 ⋅ ⋅ ⋅ 0
5𝜇4 −10𝜇3 10𝜇2 −5𝜇 1 ⋅ ⋅ ⋅ 0
... ... ... ⋅ ⋅ ⋅ ... ... ...

𝑏𝑛 (1) 𝑏𝑛 (2) 𝑏𝑛 (3) 𝑏𝑛 (4) 𝑏𝑛 (5) ⋅ ⋅ ⋅ 1

]]]]]]]]]]]]]]]
]

, (25)

where𝑊1 = ∫10 G(𝑡−𝜇)G𝑇(𝑡)𝑑𝑡 and 𝑏𝑛(𝑖) = (−1)𝑛−𝑖 (( 𝑛𝑖 )) 𝜇𝑛−𝑖,𝑖 = 1, 2, . . . , 𝑛.
Also, for any delay function 𝑓(𝑡 − 𝜇), we can express it in

terms of Genocchi polynomials as shown in (26):

𝑓 (𝑡 − 𝜇) = 𝑁∑
𝑖=1

𝑐𝑖𝐺𝑖 (𝑡 − 𝜇) = C𝑇RG (𝑡) , (26)

where C is given in (23).
The following lemma is also of great importance.

Lemma 4. Let 𝐺𝑖(𝑡) be the Genocchi polynomials; then𝐷𝛼𝐺𝑖(𝑡) = 0, for 𝑖 = 1, ..., ⌈𝛼⌉ − 1, 𝛼 > 0.
The proof of this lemma is obvious; one can use (7) and

(8) on (10).

4.2. Genocchi Operational Matrix of Fractional Derivative.
If we consider the Genocchi vector G(𝑡) given by G(𝑡) =[𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)], then the derivative of G(𝑡) with the
aid of (12) can be expressed in the matrix form by

𝑑G (𝑡)𝑇𝑑𝑡 = 𝑀G (𝑡)𝑇 , (27)

where

𝑀 =

[[[[[[[[[[[[[[[
[

0 0 0 ⋅ ⋅ ⋅ 0 0 0
2 0 0 ⋅ ⋅ ⋅ 0 0 0
0 3 0 ⋅ ⋅ ⋅ 0 0 0
0 0 4 ⋅ ⋅ ⋅ 0 0 0
... ... ... ⋅ ⋅ ⋅ ... ... ...
0 0 0 ⋅ ⋅ ⋅ 𝑁 − 1 0 0
0 0 0 ⋅ ⋅ ⋅ 0 𝑁 0

]]]]]]]]]]]]]]]
]

. (28)

Thus,𝑀 is𝑁 ×𝑁 operational matrix of derivative.
It is not difficult to show inductively that the 𝑘th deriva-

tive of G(𝑡) can be given by

𝑑𝑘G (𝑡)𝑇𝑑𝑡𝑘 = G (𝑡) (𝑀𝑇)𝑘 . (29)

In the following theorem, the operational matrix of frac-
tional-order derivative for theGenocchi polynomials is given.

Theorem5 (see [21]). Suppose thatG(𝑡) is the Genocchi vector
given in (20) and let 𝛼 > 0. Then,

𝐷𝛼G (𝑡)𝑇 = 𝑃𝛼G (𝑡)𝑇 , (30)

where 𝑃𝛼 is𝑁 ×𝑁 operational matrix of fractional derivative
of order 𝛼 in Caputo sense and is defined as follows:

𝑃(𝛼) =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

0 0 ⋅ ⋅ ⋅ 0
... ... ⋅ ⋅ ⋅ ...
0 0 ⋅ ⋅ ⋅ 0

⌈𝛼⌉∑
𝑘=⌈𝛼⌉

𝜌⌈𝛼⌉,𝑘,1 ⌈𝛼⌉∑
𝑘=⌈𝛼⌉

𝜌⌈𝛼⌉,𝑘,2 ⋅ ⋅ ⋅ ⌈𝛼⌉∑
𝑘=⌈𝛼⌉

𝜌⌈𝛼⌉,𝑘,𝑁
... ... ⋅ ⋅ ⋅ ...
𝑖∑
𝑘=⌈𝛼⌉

𝜌𝑖,𝑘,1 𝑖∑
𝑘=⌈𝛼⌉

𝜌𝑖,𝑘,2 ⋅ ⋅ ⋅ 𝑖∑
𝑘=⌈𝛼⌉

𝜌𝑖,𝑘,𝑁
... ... ⋅ ⋅ ⋅ ...

𝑁∑
𝑘=⌈𝛼⌉

𝜌𝑁,𝑘,1 𝑁∑
𝑘=⌈𝛼⌉

𝜌𝑁,𝑘,2 ⋅ ⋅ ⋅ 𝑁∑
𝑘=⌈𝛼⌉

𝜌𝑁,𝑘,𝑁

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

, (31)

where 𝜌𝑖,𝑘,𝑗 is given by

𝜌𝑖,𝑘,𝑗 = 𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼)𝑐𝑗. (32)

𝐺𝑖−𝑘 is the Genocchi number and 𝑐𝑗 can be obtained from
(23).

Proof. For the proof, see [21].
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4.3. Upper Bound of the Error for the Operational Matrix of
Fractional Derivative𝑃𝛼. Webegin here by proving the upper
bound of the error of arbitrary function approximation by
Genocchi polynomials in the following Lemma.

Lemma 6. Suppose that 𝑓(𝑡) ∈ 𝐶𝑛+1[0, 1] and 𝑌 =
Span{𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)}; if C𝑇G(𝑡) is the best approxi-
mation of 𝑓(𝑡) out of 𝑌, then

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡) − C𝑇G (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑅
(𝑛 + 1)!√2𝑛 + 3 , (33)

where 𝑅 = max𝑡∈[0,1]|𝑓(𝑛+1)(𝑡)|.
To see this, we set {1, 𝑡, . . . , 𝑡𝑛} as a basis for the polynomial

space of degree 𝑛.
Define 𝑦1(𝑡) = 𝑓(0) + 𝑡𝑓󸀠(0) + (𝑡2/2!)𝑓󸀠󸀠(0) + ⋅ ⋅ ⋅ +(𝑡𝑛/𝑛!)𝑓(𝑛)(0).
FromTaylor’s expansion, one has |𝑓(𝑡)−𝑦1(𝑡)| = |(𝑡𝑛+1/(𝑛+1)!)𝑓(𝑛+1)(𝜉𝑡)|, where 𝜉𝑡 ∈ (0, 1).
SinceC𝑇G(𝑡) is the best approximation of𝑓(𝑡) out of𝑌 and𝑦1(𝑡) ∈ 𝑌, from (18), one has
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡) − C𝑇G (𝑡)󵄩󵄩󵄩󵄩󵄩22 ≤ 󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑦1 (𝑡)󵄩󵄩󵄩󵄩22
≤ ∫1
0

󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑦1 (𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡
= ∫1
0
( 𝑡𝑛+1(𝑛 + 1)!)

2 󵄩󵄩󵄩󵄩󵄩𝑓(𝑛+1) (𝜉𝑡)󵄩󵄩󵄩󵄩󵄩2 𝑑𝑡
≤ 𝑅2
((𝑛 + 1)!)2 ∫

1

0
𝑡2𝑛+2𝑑𝑡 = 𝑅2

((𝑛 + 1)!)2 (2𝑛 + 3) .

(34)

Taking the square root of both sides, one has

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡) − C𝑇G (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑅
(𝑛 + 1)!√2𝑛 + 3 (35)

which is the desired error bound.

We use the following theorem from [22].

Theorem 7 (see [22]). Suppose that 𝐻 is a Hilbert space and𝑌 is a closed subspace of 𝐻 such that dim𝑌 < ∞ and𝑦1, 𝑦2, . . . , 𝑦𝑛 is a basis for 𝑌. Let 𝑓 be an arbitrary element
in𝐻 and let 𝑦0 be the unique best approximation of 𝑓 out of 𝑌.
Then,

󵄩󵄩󵄩󵄩𝑓 − 𝑦0󵄩󵄩󵄩󵄩2 = Gram (𝑓, 𝑦1, 𝑦2, . . . , 𝑦𝑛)
Gram (𝑦1, 𝑦2, . . . , 𝑦𝑛) , (36)

where

Gram (𝑦1, 𝑦2, . . . , 𝑦𝑛)

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝑦1, 𝑦1⟩ ⟨𝑦1, 𝑦2⟩ ⋅ ⋅ ⋅ ⟨𝑦1, 𝑦𝑛⟩⟨𝑦2, 𝑦1⟩ ⟨𝑦2, 𝑦2⟩ ⋅ ⋅ ⋅ ⟨𝑦2, 𝑦𝑛⟩... ... ⋅ ⋅ ⋅ ...
⟨𝑦𝑛, 𝑦1⟩ ⟨𝑦𝑛, 𝑦2⟩ ⋅ ⋅ ⋅ ⟨𝑦𝑛, 𝑦𝑛⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (37)

Theorem 8. Suppose that 𝑓(𝑡) ∈ 𝐿2[0, 1] is approximated by𝑓𝑛(𝑡) as
𝑓𝑛 (𝑡) = 𝑛∑

𝑖=1

𝑐𝑖𝐺𝑖 (𝑡) = C𝑇G (𝑡) ; (38)

then,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑓𝑛 (𝑡)󵄩󵄩󵄩󵄩 = 0. (39)

The proof of this theorem obviously follows from
Lemma 6.

The operational matrix error vector 𝐸𝛼 is given by

𝐸𝛼 = 𝑃𝛼G (𝑡) − 𝐷𝛼G (𝑡) , (40)

where

𝐸𝛼 =
[[[[[[
[

𝑒𝛼1𝑒𝛼2...
𝑒𝛼𝑛

]]]]]]
]
; (41)

fromTheorem 7, we get
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑓0 (𝑡) −

𝑁∑
𝑗=1

𝑐𝑗𝐺𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= (Gram (𝑓 (𝑡) , 𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡))
Gram (𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡)) )1/2 .

(42)

Thus, according to equations (29) and (30) in [21], one has

󵄩󵄩󵄩󵄩𝑒𝛼𝑖 󵄩󵄩󵄩󵄩 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷
𝛼𝐺𝑖 (𝑡)

− 𝑁∑
𝑗=1

( 𝑖∑
𝑘=⌈𝛼⌉

𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼)𝑐𝑗)𝐺𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑖∑
𝑘=⌈𝛼⌉

𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼) 𝑡𝑘−𝛼
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓0 (𝑡)

− 𝑁∑
𝑗=1

𝑐𝑗𝐺𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝑖∑
𝑘=⌈𝛼⌉

𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼) 𝑡𝑘−𝛼

⋅ (Gram (𝑓 (𝑡) , 𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡))
Gram (𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡)) )1/2 .

(43)

By consideringTheorem 8 and (43), we can conclude that
by increasing the number of the Genocchi bases the vector 𝑒𝛼𝑖
tends to zero.

For comparison purpose in Table 1, we show below the
errors of operational matrix of fractional derivative based
on Genocchi polynomials and shifted Legendre polynomials
derived in [23, 24] when 𝑁 = 10 and 𝛼 = 0.75 at different
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Table 1: Comparison of the operational matrix errors for the GPOMFD and SLPOMFD.

𝐸𝛼 𝑥 = 1 𝑥 = 0 𝑥 = 0.5
GPOMFD SLPOMFD GPOMFD SLPOMFD GPOMFD SLPOMFD𝑒1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000𝑒2 0.01288 0.01343 0.51657 0.51648 0.00353 0.00345𝑒3 0.02204 0.03462 0.77767 1.56518 0.00531 0.01047𝑒4 0.00004 0.02916 0.01241 3.17608 0.00008 0.02487𝑒5 0.03944 0.17666 1.28048 5.36557 0.00911 0.02570𝑒6 0.00292 0.33223 0.02450 8.00571 0.00001 0.05647𝑒7 0.15747 2.61748 5.38767 15.06874 0.03839 0.04226𝑒8 0.00748 11.8527 0.15766 11.80719 0.00060 0.92194𝑒9 1.21090 38.04476 39.19581 54.74287 0.27897 15.64398𝑒10 0.04902 806.14232 1.32181 629.08480 0.00519 20.30772

points on [0, 1]. From this table, it is clear that the accuracy
of Genocchi polynomials operational matrix of fractional
derivative (GPOMFD) is better than the shifted Legendre
polynomials operational matrix of fractional derivatives
(SLPOMFD). We believe that this is the case for any value
of 𝑁 because the Genocchi polynomials have smaller coef-
ficients of individual terms compared to shifted Legendre
polynomials.

5. Collocation Method Based on Genocchi
Operational Matrices

In this section, we use the collocation method based on
Genocchi operational matrix of fractional derivatives and
Genocchi delay operational matrix to solve numerically the
generalized fractional pantograph equation. We now derive
an algorithm for solving (1). To do this, let the solution of (1)
be approximated by the first𝑁 terms Genocchi polynomials.
Thus, we write

𝑦𝑁 (𝑡) ≈ 𝑁∑
𝑛=1

𝑐𝑛𝐺𝑛 (𝑡) = 𝐺 (𝑡) 𝐶, (44)

where the Genocchi coefficient vector 𝐶 and the Genocchi
vector 𝐺(𝑡) are given by

𝐶𝑇 = [𝑐1, 𝑐2, . . . , 𝑐𝑁] ,
𝐺 (𝑡) = [𝐺1 (𝑡) , 𝐺2 (𝑡) , . . . , 𝐺𝑁 (𝑡)] ; (45)

thus, 𝐷𝛼𝑦𝑁(𝑡) and 𝐷𝛽𝑛𝑦𝑁(𝑡), 𝑛 = 0, 1, . . . , 𝑚 − 1, can be
expressed, respectively, as follows:

𝐷𝛼𝑦𝑁 (𝑡) = 𝐺 (𝑡) (𝑃𝑇)𝛼 𝐶,
𝐷𝛽𝑛𝑦𝑁 (𝑡) = 𝐺 (𝑡) (𝑃𝑇)𝛽𝑛 𝐶, 𝑛 = 0, 1, . . . , 𝑚 − 1.

(46)

Substituting (44) and (46) in (1), we have

𝐺 (𝑡) (𝑃𝑇)𝛼 𝐶
= 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡) 𝐺 (𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛) (𝑃𝑇)𝛽𝑛 𝐶 + 𝑔 (𝑡) , (47)

where 𝐺(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛) = [𝐺1(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛), 𝐺2(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛), . . . ,𝐺𝑁(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛)].
Also the initial condition will produce𝑚 other equations:

𝑚−1∑
𝑛=0

𝑎𝑛,𝑖𝐺 (0) (𝑃𝑇)𝑖 𝐶 = 𝑑𝑖, 𝑖 = 0, 1, . . . , 𝑚 − 1. (48)

To find the solution 𝑦𝑁(𝑡)we collocate (47) at the collocation
points 𝑡𝑗 = 𝑗/(𝑁 − 𝑚), 𝑗 = 1, 2, . . . , 𝑁 − 𝑚, to obtain

𝐺(𝑡𝑗) (𝑃𝑇)𝛼 𝐶
= 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡𝑗)𝐺 (𝜆𝑗,𝑛𝑡𝑗 + 𝜇𝑗,𝑛) (𝑃𝑇)𝛽𝑛 𝐶
+ 𝑔 (𝑡𝑗)

(49)

for 𝑗 = 1, 2, . . . , 𝑁 − 𝑚. Additionally, one can also use
both the operational matrix of fractional derivative and delay
operational matrix to solve problem (1). According to (44),
we can approximate the delay function 𝑦(𝜆𝑗,𝑛𝑡𝑗 +𝜇𝑗,𝑛) and its
fractional derivative using the operational matrices P and R
as follows:

𝑦𝑁 (𝜆𝑗,𝑛𝑡𝑗 + 𝜇𝑗,𝑛) = R𝐶𝑇𝐺 (𝑡) ,
𝐷𝛽𝑛𝑦𝑁 (𝜆𝑗,𝑛𝑡𝑗 + 𝜇𝑗,𝑛) = R𝐶𝑇𝑃𝛽𝑛𝐺 (𝑡) . (50)

Putting this approximation together with (44) in (1), we have

𝐺 (𝑡) (𝑃𝑇)𝛼 𝐶 = 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡)R𝐶𝑇𝑃𝛽𝑛𝐺 (𝑡) + 𝑔 (𝑡) . (51)
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Table 2: Comparison errors obtained by the present method and those obtained in [25] when 𝛼 = 0.6 and 𝜏 = 0.3 for Example 1.

𝑡 Error (new method) [25] Error (FAM) [25] Error (present method)
0.2 0.0781197 0.078155 3.37154𝐸 − 03
0.4 0.129928 0.129978 6.52102𝐸 − 03
0.6 0.190687 0.19076 9.77309𝐸 − 03
0.8 0.248601 0.248694 1.30349𝐸 − 02
1.0 0.307649 0.307763 1.64103𝐸 − 02

Thus, collocating (51) at the same collocation point as that in
(47), we get

𝐺(𝑡𝑗) (𝑃𝑇)𝛼 𝐶 = 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡𝑗)R𝐶𝑇𝑃𝛽𝑛𝐺(𝑡𝑗)
+ 𝑔 (𝑡𝑗) .

(52)

Hence, (49) or (52) is 𝑁 − 𝑚 nonlinear algebraic equation.
Any of these equations together with (48) makes𝑁 algebraic
equations which can be solved using Newton’s iterative
method. Consequently,𝑦𝑁(𝑥) given in (44) can be calculated.
6. Numerical Examples

In this section, some numerical examples are given to illus-
trate the applicability and accuracy of the proposed method.
All the numerical computations have been done using Maple
18.

Example 1. Consider the following example solved in [25]:

𝐷𝛼𝑦 (𝑡) = 2Γ (3 − 𝛼)𝑦1−𝛼/2 (𝑡) + 𝑦 (𝑡 − 𝜏) − 𝑦 (𝑡)
+ 2𝜏√𝑦 (𝑡) − 𝜏2

(53)

subject to

𝑦 (𝑡) = 0, 𝑡 ≤ 0. (54)

The exact solution for this example is given by 𝑦(𝑡) =𝑡2. We solve the example when 𝛼 = 0.6 and 𝜏 = 0.3.
In Table 2, we compare the errors obtained by our method
with those obtained using FAM and new approach in [25].
As reported in [25], the time required for the new method
is 104.343750 seconds and for the FAM the time taken is215.031250 seconds for completing the same task, whereas
in our method we only need 38.080 seconds to complete the
computations.

Example 2 (see [1]). Consider the following generalized
fractional pantograph equation:

𝐷5/2𝑦 (𝑡) = −𝑦 (𝑡) − 𝑦 (𝑡 − 0.5) + 𝑔 (𝑡) , 𝑡 ∈ [0, 1] (55)

subject to

𝑦 (0) = 0,
𝑦󸀠 (0) = 0,
𝑦󸀠󸀠 (0) = 0,

(56)

where

𝑔 (𝑡) = Γ (4)Γ (3/2) 𝑡1/2 + 𝑡3 + (𝑡 − 0.5)3 . (57)

The exact solution of this problem is known to be 𝑦(𝑡) =𝑡3. This problem is solved in [1] using generalized Laguerre-
Gauss collocation scheme. We apply our technique with𝑁 =4. Approximating (55) with Genocchi polynomials, we have

𝐺 (𝑡) (𝑃𝑇)5/2 𝐶 = −𝐺 (𝑡) 𝐶 + 𝐺 (𝑡 − 0.5) 𝐶 + 𝑔 (𝑡) . (58)

Also from the initial conditions we have
𝐺 (0) 𝐶 = 0,

𝐺 (0) (𝑃𝑇) 𝐶 = 0,
𝐺 (0) (𝑃𝑇)2 𝐶 = 0.

(59)

Thus, collocating (58) at 𝑡 = 0.267339, we get
− 3.507078326 + 15.27479180𝑐4 + 2𝑐1

+ 0.2727646328𝑐3 − 1.930640400𝑐2 = 0, (60)

and (59) gives

𝑐1 − 𝑐2 + 𝑐4 = 0,
2𝑐1 − 3𝑐2 = 0,
6𝑐3 − 12𝑐4 = 0.

(61)

Solving these equations, we have

𝑐1 = 0.4999969148,
𝑐2 = 0.7499953722,
𝑐3 = 0.4999969148,
𝑐4 = 0.2499984574.

(62)

Thus, 𝑦(𝑡) = 𝐺(𝑥)𝐶 is calculated and we have0.9999938296𝑡3 which is almost the exact solution. In Table 3,
we compare the absolute errors obtained by ourmethod (with
only few terms𝑁 = 4) and the absolute errors obtained in [1]
when𝑁 = 22 with different Laguerre parameters 𝛽.
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Table 3: Comparison of the absolute errors obtained by the present method and those obtained in [1] for Example 2.

𝑡 𝑁 = 22 [1] 𝑁 = 4𝛽 = 2 𝛽 = 3 𝛽 = 5 Present method
0.1 1.030𝐸 − 04 1.019𝐸 − 05 6.273𝐸 − 06 6.17040𝐸 − 09
0.2 6.510𝐸 − 04 6.051𝐸 − 05 3.892𝐸 − 05 4.93630𝐸 − 08
0.3 1.740𝐸 − 03 1.495𝐸 − 04 1.023𝐸 − 04 1.66600𝐸 − 07
0.4 3.283𝐸 − 03 2.559𝐸 − 04 1.901𝐸 − 04 3.94910𝐸 − 07
0.5 5.138𝐸 − 03 3.546𝐸 − 04 2.944𝐸 − 04 7.71300𝐸 − 07
0.6 7.175𝐸 − 03 4.261𝐸 − 04 4.088𝐸 − 04 1.33280𝐸 − 06
0.7 9.303𝐸 − 03 4.592𝐸 − 04 5.306𝐸 − 04 2.11640𝐸 − 06
0.8 1.147𝐸 − 02 4.510𝐸 − 04 6.597𝐸 − 04 3.15920𝐸 − 06
0.9 1.367𝐸 − 02 4.055𝐸 − 04 7.977𝐸 − 04 4.49820𝐸 − 06
1.0 1.589𝐸 − 02 3.311𝐸 − 04 9.468𝐸 − 04 6.17040𝐸 − 06

Table 4: Comparison of the absolute errors obtained by the present method and those in [26] for Example 4.

𝑡 Absolute error [26]𝑁 = 4 Absolute error (present method)𝑁 = 3
0.1 0.100𝐸 − 07 1.15000𝐸 − 09
0.2 0.115𝐸 − 07 2.00000𝐸 − 09
0.3 0.115𝐸 − 07 2.55000𝐸 − 09
0.4 0.107𝐸 − 07 2.80000𝐸 − 09
0.5 0.967𝐸 − 08 2.70000𝐸 − 09
0.6 0.811𝐸 − 08 2.40000𝐸 − 09
0.7 0.641𝐸 − 08 1.70000𝐸 − 09
0.8 0.440𝐸 − 08 8.00000𝐸 − 10
0.9 0.223𝐸 − 08 5.00000𝐸 − 10
1.0 0.372𝐸 − 09 2.00000𝐸 − 09

Example 3. Consider the following fractional pantograph
equation:

𝐷1/2𝑦 (𝑡) = 2𝑦 (3𝑡2 ) + 8𝑡
3/2

3√𝜋 − 9𝑡
2

2 , 𝑡 ∈ [0, 1] (63)

subject to

𝑦 (0) = 0,
𝑦 (1) = 1. (64)

The exact solution of this problem is known to be 𝑦(𝑡) =𝑡2.We solve (63) using our technique with𝑁 = 3 only. As in
Example 2, we obtained the values of the coefficients to be

𝑐1 = 12 ,
𝑐2 = 12 ,
𝑐3 = 13 .

(65)

Thus, 𝑦𝑁(𝑡) = 𝐺(𝑡)𝐶 is calculated to be 𝑡2 which is the exact
solution and so there is nothing to compare for the error is
zero.

Example 4. Consider the following fractional pantograph
equation solved in [26]:

𝐷2𝑦 (𝑡) + 𝐷3/2𝑦 (𝑡) + 𝑦 (𝑡)
= 𝑦 ( 𝑡2) + 3𝑡

2

4 + 4√ 𝑡𝜋 + 2, 𝑡 ∈ [0, 1]
(66)

subject to

𝑦 (0) = 0,
𝑦 (1) = 1. (67)

The exact solution of this problem is known to be 𝑦(𝑡) =𝑡2. As in Example 3, we solve (66) using our technique with𝑁 = 3 and the values of the coefficients obtained are

𝑐1 = 0.5000000011,
𝑐2 = 0.5000000011,
𝑐3 = 0.3333333384.

(68)

Thus, 𝑦𝑁(𝑡) = 𝐺(𝑡)𝐶 is calculated and compared with
the exact solution. This problem is solved using Taylor
collocation method in [26] when𝑁 = 4, 5, and 6. In Table 4,
we compare the absolute errors obtained by present method
when𝑁 = 3 with the errors obtained when𝑁 = 4 in [26].
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7. Conclusion

In this paper, a collocation method based on the Genocchi
delay operational matrix and the operational matrix of
fractional derivative for solving generalized fractional panto-
graph equations is presented. The comparison of the results
shows that the present method is an excellent mathematical
tool for finding the numerical solutions delay equation.
The advantage of the method over others is that only few
terms are needed and every operational matrix involves more
numbers of zeroes; as such themethod has less computational
complexity and provides the solution at high accuracy.
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[14] S. Yüzbasi, “A collocation method for numerical solutions
of fractional-order logistic population model,” International
Journal of Biomathematics, vol. 9, no. 2, article 1650031, 14 pages,
2016.
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