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We consider two reaction-diffusion equations connected by one-directional coupling function and study the synchronization prob-
lem in the case where the coupling function affects the driven system in some specific regions.We derive conditions that ensure that
the evolution of the driven system closely tracks the evolution of the driver system at least for a finite time. The framework built to
achieve our results is based on the study of an abstract ordinary differential equation in a suitableHilbert space. As a specific applica-
tion we consider the Gray-Scott equations and perform numerical simulations that are consistent with our main theoretical results.

1. Introduction

The synchronization of the evolution of systems that are
sensitive to changes in the initial condition is a phenomenon
that occurs spontaneously in systems ranging from biology
to physics. As a matter of fact, starting from publications
by Fujisaka and Yamada [1] and later by Pecora and Carroll
[2], there have been many explanations about the occurrence
of this phenomenon as well as new practical applications
[3]; among these we highlight [4]. For localized systems
(ODE) the problem is well understood; see, for example,
[4, 5] and the references therein. On the other hand, a much
smaller number of results are available for extended systems
represented by partial differential equations (PDE). Among
these in [6, 7], the authors have considered a pair of unidi-
rectionally coupled systems with a linear term that penalizes
the separation between the actual states of the systems.
When the coupling function is linear, the synchronization
problem has been addressed through different approaches
like invariantmanifoldmethod viaGalerkin’s approximations
[8], via an abstract formulation using semigroup theory [7, 9],
or numerically [6].

With the exception of works [6, 10], in the rest of the
references [7–9, 11, 12] the coupling function disturbs the
system in its entirety. In contrast, in [6, 10], the authors
propose a synchronization scheme that does need to disturb
the whole driven system. Moreover, the subset of sites in the
driven system is chosen arbitrarily.

In this work we present a general procedure for two
reaction-diffusion equations connected through a one-
directional coupling function. We study the synchronization
problem in the case where the coupling function affects the
driven system in some specific regions and our approach,
which is based in an abstract formulation coming from
semigroup theory, allows establishing a relation between the
conditions to obtain synchronization in finite time and the
intensity of the coupling. To illustrate the theoretical results
we consider a pair of equations of Gray-Scott [13].

The paper is organized as follows: in Section 2 we set the
problem, in Section 3we give an abstract representation of the
problem in a suitable Hilbert space, in Section 4 we give the
main theoretical results, as the existence of bounded solutions
of the abstract equation, in Section 5 we give an example and
numerical simulations of the performance of the strategy, and
finally in Section 6 we give some final remarks.
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2. Setting of the Problem

We consider the following system with boundary Dirichlet
conditions:

𝑢𝑡 = 𝐷𝑢𝑥𝑥 + 𝑓 (𝑢) , (1)

V𝑡 = 𝐷V𝑥𝑥 + 𝑓 (V) + 𝑝 (𝑥) (V − 𝑢) , (2)

where 0 < 𝑥 < 𝑙, 𝑡 > 0. 𝐷 = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛) is a diagonal
matrix with positive entries, the function 𝑓 : R𝑛 → R𝑛 is a
continuous locally Lipschitz function, and 𝑝(𝑥) is defined as

𝑝 (𝑥) = 𝑚∑
𝑖=1

]𝑖X[𝑎𝑖 ,𝑏𝑖] (𝑥) , (3)

where, for 𝑖 ∈ {1, 2, . . . , 𝑚}, each ]𝑖 ∈ R and X[𝑎𝑖 ,𝑏𝑖] is the
characteristic function of the interval [𝑎𝑖, 𝑏𝑖], with 0 < 𝑎1 <𝑏1 < ⋅ ⋅ ⋅ < 𝑎𝑚 < 𝑏𝑚 < 𝑙.

We show that the evolution of (2) closely tracks the
evolution of (1) which means V behaves, in some sense, like𝑢. To set precisely our problem and consider it in an abstract
framework we start with a bounded solution 𝑢(𝑥, 𝑡) of (1).
Thus, there exists𝑁 > 0 such that

|𝑢 (𝑥, 𝑡)| fl √ 𝑛∑
𝑖=1

𝑢2𝑖 (𝑥, 𝑡) ≤ 𝑁; 0 < 𝑥 < 𝑙, 𝑡 > 0, (4)

where 𝑢𝑖 are the components of the vector valued function 𝑢.
Also, we assume that for any interval 𝐽 = [𝑎, 𝑏] ⊂ (0, +∞)
there exists a constant𝐾 > 0, depending on 𝐽, such that󵄨󵄨󵄨󵄨𝑢𝑡 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐾; 0 < 𝑥 < 𝑙, 𝑡 ∈ 𝐽. (5)

Let us define a function 𝑔 : (0, 𝑙) × (0,∞) ×R𝑛 → R𝑛 by

𝑔 (𝑥, 𝑡, 𝑒) fl 𝑓 (𝑒 + 𝑢 (𝑥, 𝑡)) − 𝑓 (𝑢 (𝑥, 𝑡)) + 𝑝 (𝑥) 𝑒 (6)

and consider the transformation

𝑒 (𝑥, 𝑡) = V (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) . (7)

If V is a solution of (2), with input 𝑢(𝑥, 𝑡), then (6) and (7) lead
us to the equation

𝑒𝑡 = 𝐷𝑒𝑥𝑥 + 𝑔 (𝑥, 𝑡, 𝑒) . (8)

Now, we consider (8) together with Dirichlet boundary
conditions:

𝑒 (0, 𝑡) = 0,
𝑒 (𝑙, 𝑡) = 0,

𝑡 > 0.
(9)

Our efforts will focus on problem (8)-(9). Concretely, we are
interested in solutions such that the driven systems closely
track the evolution of the driver systems at least for a finite
time interval.

3. Preliminaries and Abstract Formulation of
the Problem

In this section, by choosing an appropriate Hilbert space, we
discuss some preliminaries and set our problem as an abstract
ordinary differential equation. Let us start considering the
Hilbert space𝐻 fl 𝐿2((0, 𝑙),R𝑛)with the usual inner product;
that is, if Φ = (Φ1, . . . , Φ𝑛)𝑇, Ψ = (Ψ1, . . . , Ψ𝑛)𝑇 ∈ 𝐻, then

⟨Φ,Ψ⟩ = ∫𝑙
0
( 𝑛∑
𝑖=1

Φ𝑖 (𝑥)Ψ𝑖 (𝑥))𝑑𝑥 (10)

and the induced norm is given by

‖Φ‖2 = ∫𝑙
0
( 𝑛∑
𝑖=1

[Φ𝑖 (𝑥)]2)𝑑𝑥. (11)

Next, we consider the linear unbounded operator 𝐴 :𝐷(𝐴) ⊂ 𝐻 → 𝐻 defined by

𝐴Φ fl −𝐷 𝑑2𝑑𝑥2Φ, (12)

where

𝐷 (𝐴) = 𝐻10 ((0, 𝑙) ,R𝑛) ∩ 𝐻2 ((0, 𝑙) ,R𝑛) . (13)

We summarize some very well-known important properties
related to the operator 𝐴:

(i) 𝐴 is a sectorial operator. As a consequence −𝐴
generates an analytic semigroup, 𝑒−𝐴𝑡, which is, for
each 𝑡 > 0, compact.

(ii) The spectrum 𝜎(𝐴), of 𝐴, consists of just eigenvalues𝜆𝑖,𝑗 = 𝑑𝑗(𝑖𝜋/𝑙)2, with 𝑖 = 1, 2, . . . and 𝑗 = 1, 2, . . . , 𝑛.
We order the set of eigenvalues {𝜆𝑖,𝑗} according to the
sequence 0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ → ∞, where

𝜆1 = min {𝑑1, 𝑑2, . . . , 𝑑𝑛} (𝜋𝑙 )2 . (14)

(iii) There exists a complete orthonormal set {Φ𝑖}∞𝑖=1, of
eigenvectors of 𝐴, such that

𝐴Φ = ∞∑
𝑖=1

𝜆𝑖 ⟨Φ,Φ𝑖⟩Φ𝑖, Φ ∈ 𝐷 (𝐴) . (15)

(iv) 𝑒−𝐴𝑡 is given by

𝑒−𝐴𝑡Φ = ∞∑
𝑖=1

𝑒−𝜆𝑖𝑡 ⟨Φ,Φ𝑖⟩Φ𝑖, Φ ∈ 𝐻. (16)

In the remainder of this section we mainly follow [14, 15]
and the notations used come from [15]. In order to study
the nonlinear part of the abstract equation corresponding
to (8)-(9), we consider the fractional power spaces and the
interpolation spaces associated with the operator 𝐴. For any
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𝛼 ≥ 0, the domain𝐷(𝐴𝛼) of the fractional power operator𝐴𝛼
is defined by

𝑉2𝛼 fl 𝐷(𝐴𝛼)
fl {Φ ∈ 𝐻 : ∞∑

𝑖=1

𝜆𝑖2𝛼 󵄨󵄨󵄨󵄨⟨Φ,Φ𝑖⟩󵄨󵄨󵄨󵄨2 < ∞} , (17)

and the operator 𝐴𝛼 is given by

𝐴𝛼Φ = ∞∑
𝑖=1

𝜆𝛼𝑖 ⟨Φ,Φ𝑖⟩Φ𝑖, ∀Φ ∈ 𝐷 (𝐴𝛼) . (18)

𝑉𝛼 itself becomes a Hilbert space with the 𝑉𝛼-inner product
given by ⟨Φ,Ψ⟩𝛼 fl ∑∞𝑖=1 𝜆𝛼𝑖 ⟨Φ,Φ𝑖⟩⟨Ψ,Φ𝑖⟩ and the 𝑉𝛼-norm
is the graph norm associated with𝐴𝛼; that is, ‖Φ‖𝛼 = ‖𝐴𝛼Φ‖.
Moreover, if 𝛼 ≥ 𝛽, then 𝑉𝛼 is a continuous embedding into𝑉𝛽 that verifies the estimate ‖Φ‖2𝛽 ≤ 𝜆𝛽−𝛼1 ‖Φ‖2𝛼, for allΦ ∈ 𝑉𝛼.
In particular,

‖Φ‖2 ≤ 𝜆−𝛼1 ‖Φ‖2𝛼 , ∀Φ ∈ 𝑉𝛼. (19)

Also, according to Theorem 1.6.1 in [14] and the discussion
given there, for 1/4 < 𝛼 ≤ 1 we have that 𝑉2𝛼 is a continuous
embedding into 𝐶((0, 𝑙),R𝑛). Thus, there exists a positive
constant 𝐶 such that

sup
𝑥∈(0,𝑙)

|Φ (𝑥)| ≤ 𝐶 ‖Φ‖2𝛼 , ∀Φ ∈ 𝑉2𝛼. (20)

The next proposition, whose proof is similar to the one
given in [7], contains estimates relating the semigroup {𝑒−𝐴𝑡}
with norms ‖ ⋅ ‖𝛼 and ‖ ⋅ ‖. Also, it will play an important role
in the discussion of our main theoretical results.

Proposition 1. For each Φ ∈ 𝑉𝛼, 𝛼 > 0, one has the following
estimates: 󵄩󵄩󵄩󵄩󵄩𝑒−𝐴𝑡Φ󵄩󵄩󵄩󵄩󵄩2𝛼 ≤ 𝑒−2𝜆1𝑡 ‖Φ‖2𝛼 , 𝑡 ≥ 0,

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴𝑡Φ󵄩󵄩󵄩󵄩󵄩2𝛼 ≤ 𝑡−𝛼𝛼𝛼𝑒−𝛼𝑒−𝜆1𝑡 ‖Φ‖2 , 𝑡 > 0. (21)

Now, we associate with system (8)-(9) an abstract ordi-
nary differential equation on𝐻 with an initial condition

Φ̇ + 𝐴Φ = 𝐹 (𝑡, Φ) , 𝑡 > 0;
Φ (0) = Φ0, (22)

where 𝐹, acting on [0,∞) × 𝑉2𝛼, is defined by

𝐹 (𝑡, Φ) (𝑥) fl 𝑔 (𝑥, 𝑡, Φ (𝑥)) . (23)

For some 𝑟 > 0 and 1/4 < 𝛼 < 1, we assume 𝐹maps [0,∞) ×𝑈𝑟 into𝐻, where 𝑈𝑟 = {Φ ∈ 𝑉2𝛼 : ‖Φ‖2𝛼 ≤ 𝑟}.
The following lemma establishes that 𝐹 is Lipschitz

continuous in the second variable on 𝑈𝑟.
Lemma 2. There exists a constant 𝐿 = 𝐿(𝑈𝑟) such that forΦ1, Φ2 ∈ 𝑈𝑟, 𝑡 > 0,󵄩󵄩󵄩󵄩𝐹 (𝑡, Φ1) − 𝐹 (𝑡, Φ2)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩Φ1 − Φ2󵄩󵄩󵄩󵄩2𝛼 . (24)

Proof. Given a ball 𝐵𝑟(0) of radius 𝑟 and center 0 inR𝑛, there
exists a positive constant 𝐿 = 𝐿(𝑟) such that |𝑓(𝑧2) − 𝑓(𝑧1)| ≤𝐿|𝑧2 − 𝑧1| for all 𝑧1, 𝑧2 ∈ 𝐵𝑟(0).

For any Φ1, Φ2 ∈ 𝑈𝑟, we consider Δ fl |𝐹(𝑡, Φ1)(𝑥) −𝐹(𝑡, Φ2)(𝑥)|, 0 < 𝑥 < 𝑙, and 𝑡 > 0. Now, let us consider𝑁 and𝐶 as in (4) and (20), respectively. If we choose 𝑟 = 𝐶𝑟 + 𝑁,
then there exists 𝐿 = 𝐿(𝑟) such that

Δ ≤ 𝐿 󵄨󵄨󵄨󵄨Φ1 (𝑥) − Φ2 (𝑥)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑝 (𝑥)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨Φ1 (𝑥) − Φ2 (𝑥)󵄨󵄨󵄨󵄨
≤ (𝐿 + 󵄨󵄨󵄨󵄨𝑝 (𝑥)󵄨󵄨󵄨󵄨) sup

𝑥∈(0,𝑙)

󵄨󵄨󵄨󵄨Φ1 (𝑥) − Φ2 (𝑥)󵄨󵄨󵄨󵄨
≤ (𝐿 + 󵄨󵄨󵄨󵄨𝑝 (𝑥)󵄨󵄨󵄨󵄨) 𝐶 󵄩󵄩󵄩󵄩Φ1 − Φ2󵄩󵄩󵄩󵄩2𝛼 .

(25)

Therefore,

∫𝑙
0
Δ2𝑑𝑥 ≤ ∫𝑙

0
𝐶2 (𝐿 + 󵄨󵄨󵄨󵄨𝑝 (𝑥)󵄨󵄨󵄨󵄨)2 󵄩󵄩󵄩󵄩Φ1 − Φ2󵄩󵄩󵄩󵄩22𝛼 𝑑𝑥

≤ 2𝐶2 (𝑙𝐿2 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2) 󵄩󵄩󵄩󵄩Φ1 − Φ2󵄩󵄩󵄩󵄩22𝛼 .
(26)

Thus, 󵄩󵄩󵄩󵄩𝐹 (𝑡, Φ1) − 𝐹 (𝑡, Φ2)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩Φ1 − Φ2󵄩󵄩󵄩󵄩2𝛼 (27)

with

𝐿 = √2𝐶(𝑙𝐿2 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2)1/2 . (28)

We finish this section with a lemma that will be used to
obtain ourmain theoretical results. It can be established as an
application of Lemma 3.3.2 in [14].

Lemma 3. A continuous function Φ : (0, 𝑡1) → 𝑉2𝛼 is a
solution of the integral equation

Φ (𝑡) = 𝑒−𝐴𝑡Φ0 + ∫𝑡
0
𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Φ (𝑠)) 𝑑𝑠,

𝑡 ∈ (0, 𝑡1) ,
(29)

if and only if Φ is a solution of (22).

4. Main Theoretical Results

Theorem 4. For anyΦ0 ∈ int(𝑈𝑟) there exists 𝑡1 = 𝑡1(Φ0) > 0
such that (22) has a unique solution Φ on (0, 𝑡1) with initial
condition Φ(0) = Φ0.
Proof. By Lemma 3, it suffices to prove the corresponding
result for integral equation (29).

Choose 𝜌 > 0, with 𝜌 + ‖Φ0‖2𝛼 < 𝑟, such that the set

𝑉 = {Φ ∈ 𝑉2𝛼 : 󵄩󵄩󵄩󵄩Φ − Φ0󵄩󵄩󵄩󵄩2𝛼 ≤ 𝜌} (30)

is contained in 𝑈𝑟. We have, applying Lemma 2, that 𝐹 is
Lipschitz continuous, in the second variable, on𝑉. Moreover,
for the estimate󵄩󵄩󵄩󵄩𝐹 (𝑡, Φ1) − 𝐹 (𝑡, Φ2)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩Φ1 − Φ2󵄩󵄩󵄩󵄩2𝛼 ,

for 𝑡 > 0, Φ1, Φ2 ∈ 𝑉, (31)
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we choose𝐿 = √2𝐶(𝑙𝐿2+‖𝑝‖2)1/2, with𝐿 = 𝐿(𝐶(𝜌+‖Φ0‖2𝛼)+𝑁). Next, we select 𝑡1 > 0 such that

󵄩󵄩󵄩󵄩󵄩(𝑒−𝐴𝑡 − 𝐼)Φ0󵄩󵄩󵄩󵄩󵄩2𝛼 ≤ 𝜌2 ,
0 ≤ 𝑡 ≤ 𝑡1, (32)

(2𝛼𝑒 )𝛼 𝐿 (𝜌 + 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼) ∫𝑡1
0

𝑢−𝛼𝑒−(𝜆1/2)𝑢𝑑𝑢 ≤ 𝜌2 . (33)

Let us define 𝑆 as the set of continuous functions Ψ :[0, 𝑡1] → 𝑉2𝛼 such that ‖Ψ(𝑡) − Φ0‖2𝛼 ≤ 𝜌 on [0, 𝑡1]. If 𝑆 is
endowed with the supreme norm ‖Ψ‖𝑡1 fl sup0≤𝑡≤𝑡1‖Ψ(𝑡)‖2𝛼,
then it is a complete metric space.

Now, for Ψ ∈ 𝑆 we define 𝑇(Ψ) acting on [0, 𝑡1] as
𝑇 (Ψ) (𝑡) = 𝑒−𝐴𝑡Φ0 + ∫𝑡

0
𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Ψ (𝑠)) 𝑑𝑠. (34)

First, we show that 𝑇maps 𝑆 into itself. In fact,

󵄩󵄩󵄩󵄩𝑇 (Ψ) (𝑡) − Φ0󵄩󵄩󵄩󵄩2𝛼 ≤ 󵄩󵄩󵄩󵄩󵄩(𝑒−𝐴𝑡 − 𝐼)Φ0󵄩󵄩󵄩󵄩󵄩2𝛼
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Ψ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠 ≤ 𝜌2
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Ψ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠 ≤ 𝜌2 + (2𝛼𝑒 )𝛼
⋅ ∫𝑡
0
(𝑡 − 𝑠)−𝛼 𝑒−(𝜆1/2)(𝑡−𝑠) ‖𝐹 (𝑠, Ψ (𝑠))‖ 𝑑𝑠 ≤ 𝜌2

+ (2𝛼𝑒 )𝛼 ∫𝑡
0
(𝑡 − 𝑠)−𝛼 𝑒−(𝜆1/2)(𝑡−𝑠)𝐿 ‖Ψ (𝑠)‖2𝛼 𝑑𝑠

≤ 𝜌2 + (2𝛼𝑒 )𝛼 𝐿 (𝜌 + 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼)
⋅ ∫𝑡1
0

(𝑡 − 𝑠)−𝛼 𝑒−(𝜆1/2)(𝑡−𝑠)𝑑𝑠 ≤ 𝜌, for 0 ≤ 𝑡 ≤ 𝑡1.

(35)

The fact that 𝑇(Ψ) is continuous from [0, 𝑡1] to 𝑉2𝛼 is easily
proved.

Next, we shall prove that 𝑇 is a contraction. In fact, ifΨ1, Ψ2 ∈ 𝑆 and 0 ≤ 𝑡 ≤ 𝑡1, then for Δ fl ‖𝑇(Ψ1)(𝑡) −𝑇(Ψ2)(𝑡)‖2𝛼 we have that
Δ ≤ ∫𝑡

0

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝑠) (𝐹 (𝑠, Ψ1 (𝑠)) − 𝐹 (𝑠, Ψ2 (𝑠)))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠
≤ (2𝛼𝑒 )𝛼 ∫𝑡

0
(𝑡 − 𝑠)−𝛼

⋅ 𝑒−(𝜆1/2)(𝑡−𝑠) 󵄩󵄩󵄩󵄩𝐹 (𝑠, Ψ1 (𝑠)) − 𝐹 (𝑠, Ψ2 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠
≤ (2𝛼𝑒 )𝛼 ∫𝑡

0
𝐿 (𝑡 − 𝑠)−𝛼

⋅ 𝑒−(𝜆1/2)(𝑡−𝑠) 󵄩󵄩󵄩󵄩Ψ1 (𝑠) − Ψ2 (𝑠)󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠 ≤ (2𝛼𝑒 )𝛼

⋅ 𝐿 (∫𝑡
0
(𝑡 − 𝑠)−𝛼 𝑒−(𝜆1/2)(𝑡−𝑠)𝑑𝑠) 󵄩󵄩󵄩󵄩Ψ1 − Ψ2󵄩󵄩󵄩󵄩𝑡1

≤ 𝜌2 (𝜌 + 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼) 󵄩󵄩󵄩󵄩Ψ1 − Ψ2󵄩󵄩󵄩󵄩𝑡1 .
(36)

Therefore, ‖𝑇(Ψ1)−𝑇(Ψ2)‖𝑡1 ≤ (1/2)‖Ψ1−Ψ2‖𝑡1 for allΨ1, Ψ2 ∈𝑆.
Finally, by the Banach fixed point theorem,𝑇has a unique

fixed point Φ in 𝑆, which is a continuous solution of integral
equation (29). By Lemma 3, this is the unique solution of (22)
on (0, 𝑡1) with initial valueΦ(0) = Φ0.

The previous theorem does not tell anything about the
maximal interval where Φ is defined. In this regard we have
the following.

Theorem 5. Assume that for every closed set 𝐵 ⊂ int(𝑈𝑟),𝐹([0,∞) × 𝐵) is bounded in 𝐻. If Φ is a solution of (22) on(0, 𝑡1) and 𝑡1 is maximal, then either 𝑡1 = +∞ or else there
exists a sequence 𝑡𝑛 → 𝑡−1 as 𝑛 → ∞ such that Φ(𝑡𝑛) → 𝜕𝑈𝑟.
Proof. Suppose 𝑡1 < ∞ and there is not neighborhood 𝑁 of𝜕𝑈𝑟 such thatΦ(𝑡) enters𝑁 for 𝑡 in an interval [𝑡1−𝜖, 𝑡1), with𝜖 small enough.Wemay take𝑁 of the form𝑁 = 𝑈𝑟−𝐵where𝐵 is a closed subset of int(𝑈𝑟), andΦ(𝑡) ∈ 𝐵 for 𝑡 ∈ [𝑡1 −𝜖, 𝑡1).

We are going to prove that there exists Φ1 ∈ 𝐵 such thatΦ(𝑡) → Φ1 in 𝑉2𝛼 as 𝑡 → 𝑡−1 , and this implies that the
solution may be extended beyond time 𝑡1 (with Φ(𝑡1) = Φ1),
contradicting maximality of 𝑡1.

Now let 𝑀 fl sup{‖𝐹(𝑡, Φ)‖ : 𝑡 ≥ 0, Φ ∈ 𝐵}. We first
show that ‖Φ(𝑡)‖2𝛼 remains bounded on the interval (0, 𝑡1);
in fact

‖Φ (𝑡)‖2𝛼
≤ 󵄩󵄩󵄩󵄩󵄩𝑒−𝐴𝑡Φ0󵄩󵄩󵄩󵄩󵄩2𝛼 + ∫𝑡

0

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Φ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠
≤ 𝑒−𝜆1𝑡 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼

+ (2𝛼𝑒 )𝛼 ∫𝑡
0
(𝑡 − 𝑠)−𝛼 𝑒−(𝜆1/2)(𝑡−𝑠) ‖𝐹 (𝑠, Φ (𝑠))‖ 𝑑𝑠

≤ 𝑒−𝜆1𝑡 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼 + 𝑀(2𝛼𝑒 )𝛼 ∫𝑡
0
(𝑡 − 𝑠)−𝛼 𝑑𝑠

= 𝑒−𝜆1𝑡 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼 + 𝑀(2𝛼𝑒 )𝛼 𝑡1−𝛼1 − 𝛼 .

(37)

Now we consider the differenceΦ(𝑡)−Φ(𝜏)with 𝑡 and 𝜏 such
that 𝑡1 − 𝜖 ≤ 𝜏 < 𝑡 < 𝑡1. It is obtained that

Φ (𝑡) − Φ (𝜏)
= (𝑒−𝐴𝑡 − 𝑒−𝐴𝜏)Φ0 + ∫𝑡

𝜏
𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Φ (𝑠)) 𝑑𝑠

+ ∫𝜏
0
(𝑒−𝐴(𝑡−𝑠) − 𝑒−𝐴(𝜏−𝑠)) 𝐹 (𝑠, Φ (𝑠)) 𝑑𝑠.

(38)
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For each term in the right hand side we get an estimate. Let us
call 𝐼1 fl ‖(𝑒−𝐴𝑡−𝑒−𝐴𝜏)Φ0‖2𝛼, 𝐼2 fl ‖ ∫𝑡

𝜏
𝑒−𝐴(𝑡−𝑠)𝐹(𝑠, Φ(𝑠))𝑑𝑠‖2𝛼,

and 𝐼3 fl ‖ ∫𝜏
0
(𝑒−𝐴(𝑡−𝑠) −𝑒−𝐴(𝜏−𝑠))𝐹(𝑠, Φ(𝑠))𝑑𝑠‖2𝛼; now we have

𝐼1 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝜏
𝐴𝑒−𝐴𝑠Φ0𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2𝛼 ≤ ∫𝑡

𝜏

󵄩󵄩󵄩󵄩󵄩𝐴𝑒−𝐴𝑠Φ0󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠
= ∫𝑡
𝜏

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴𝑠𝐴Φ0󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠 ≤ ∫𝑡
𝜏
(2𝛼𝑒 )𝛼

⋅ 𝑠−𝛼𝑒−(𝜆1/2)𝑠 󵄩󵄩󵄩󵄩𝐴Φ0󵄩󵄩󵄩󵄩 𝑑𝑠 ≤ (2𝛼𝑒 )𝛼 󵄩󵄩󵄩󵄩𝐴Φ0󵄩󵄩󵄩󵄩
⋅ ∫𝑡
𝜏
𝑠−𝛼𝑑𝑠 = (2𝛼𝑒 )𝛼 󵄩󵄩󵄩󵄩𝐴Φ0󵄩󵄩󵄩󵄩 𝑡1−𝛼 − 𝜏1−𝛼1 − 𝛼 ,

𝐼2 ≤ ∫𝑡
𝜏

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Φ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠 ≤ ∫𝑡
𝜏
(2𝛼𝑒 )𝛼 (𝑡

− 𝑠)−𝛼 𝑒−(𝜆1/2)(𝑡−𝑠) ‖𝐹 (𝑠, Φ (𝑠))‖ 𝑑𝑠 ≤ 𝑀(2𝛼𝑒 )𝛼
⋅ ∫𝑡
𝜏
(𝑡 − 𝑠)−𝛼 𝑑𝑠 = 𝑀(2𝛼𝑒 )𝛼 (𝑡 − 𝜏)1−𝛼1 − 𝛼 ,

𝐼3 ≤ ∫𝜏−𝜖
0

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝜏−𝑠−𝜖) (𝑒−𝐴(𝑡−𝜏+𝜖) − 𝑒−𝐴𝜖)
⋅ 𝐹 (𝑠, Φ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠
+ ∫𝜏
𝜏−𝜖

󵄩󵄩󵄩󵄩󵄩(𝑒−𝐴(𝑡−𝑠) − 𝑒−𝐴(𝜏−𝑠)) 𝐹 (𝑠, Φ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠
≤ 𝑀(2𝛼𝑒 )𝛼 󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝜏+𝜖) − 𝑒−𝐴𝜖󵄩󵄩󵄩󵄩󵄩 ∫𝜏−𝜖

0
(𝜏 − 𝑠

− 𝜖)−𝛼 𝑑𝑠 + ∫𝜏
𝜏−𝜖

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝑠)𝐹 (𝑠, Φ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠
+ ∫𝜏
𝜏−𝜖

󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝜏−𝑠)𝐹 (𝑠, Φ (𝑠))󵄩󵄩󵄩󵄩󵄩2𝛼 𝑑𝑠 ≤ 𝑀(2𝛼𝑒 )𝛼

⋅ 󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝜏+𝜖) − 𝑒−𝐴𝜖󵄩󵄩󵄩󵄩󵄩 (𝜏 − 𝜖)1−𝛼1 − 𝛼 + 𝑀(2𝛼𝑒 )𝛼
⋅ ∫𝜏
𝜏−𝜖

((𝑡 − 𝑠)−𝛼 + (𝜏 − 𝑠)−𝛼) 𝑑𝑠 = 𝑀(2𝛼𝑒 )𝛼

⋅ 󵄩󵄩󵄩󵄩󵄩𝑒−𝐴(𝑡−𝜏+𝜖) − 𝑒−𝐴𝜖󵄩󵄩󵄩󵄩󵄩 (𝜏 − 𝜖)1−𝛼1 − 𝛼 + 𝑀(2𝛼𝑒 )𝛼
⋅ (𝑡 − 𝜏 + 𝜖)1−𝛼 − (𝑡 − 𝜏)1−𝛼 + 𝜖1−𝛼1 − 𝛼 .

(39)

Since 𝑒−𝐴𝑡 is compact for 𝑡 > 0, then {𝑒−𝐴𝑡} is a uni-
formly continuous semigroup,which implies that ‖𝑒−𝐴(𝑡−𝜏+𝜖)−𝑒−𝐴𝜖‖ → 0 as 𝑡 → 𝜏.

Finally from the estimates given for 𝐼1, 𝐼2, and 𝐼3 we
conclude that there existsΦ1 ∈ 𝐵 such that lim𝑡→𝑡−

1

Φ(𝑡) = Φ1,
and the proof is complete.

Corollary 6. There exists 𝜖 > 0 such that the solution Φ, of
problem (22), satisfies the estimate

‖Φ (𝑡)‖2𝛼 ≤ 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼 (40)

for all 𝑡 belonging to the interval [0, 𝜖).
Proof. Let 𝐵 a closed subset of 𝑉2𝛼 that contains the initial
condition Φ0 in its interior and 𝑀 fl sup{‖𝐹(𝑡, Φ)‖ : 𝑡 ≥0, Φ ∈ 𝐵}. There exists 𝑡̃1 > 0 such that

‖Φ (𝑡)‖2𝛼 ≤ 𝑒−𝜆1𝑡 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼 + 𝑀(2𝛼𝑒 )𝛼 𝑡1−𝛼1 − 𝛼 ,
for 0 < 𝑡 < 𝑡̃1.

(41)

Therefore

‖Φ (𝑡)‖2𝛼 < 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼 + 𝑀(2𝛼𝑒 )𝛼 𝑡1−𝛼1 − 𝛼 , (42)

and the result follows due to the fact that
lim𝑡→0+𝑀(2𝛼/𝑒)𝛼(𝑡1−𝛼/(1 − 𝛼))𝑒𝜆1𝑡 = 0.
5. Example and Numerical Simulations

To illustrate our theoretical results we consider the particular
case of system (1)-(2):

𝜕𝑢1𝜕𝑡 = 𝑑1 𝜕2𝑢1𝜕𝑥2 − 𝑢1𝑢22 + 𝑎 (1 − 𝑢1) ,
𝜕𝑢2𝜕𝑡 = 𝑑2 𝜕2𝑢2𝜕𝑥2 + 𝑢1𝑢22 − (𝑎 + 𝑏) 𝑢2,

(43)

𝜕V1𝜕𝑡 = 𝑑1 𝜕2V1𝜕𝑥2 − V1V
2
2 + 𝑎 (1 − V1) + 𝑝 (𝑥) (V1 − 𝑢1) ,

𝜕V2𝜕𝑡 = 𝑑2 𝜕2V2𝜕𝑥2 + V1V
2
2 − (𝑎 + 𝑏) V2 + 𝑝 (𝑥) (V2 − 𝑢2) ,

(44)

where 0 < 𝑥 < 𝑙, 𝑡 > 0. System (43) corresponds
to the Gray-Scott cubic autocatalysis model [13] which is
related to two irreversible chemical reactions and exhibits
mixed mode spatiotemporal chaos. Here 𝑎, 𝑏, 𝑑1, and 𝑑2 are
dimensionless constants, where 𝑏 corresponds to the rate of
conversion of a component into another, 𝑎 is the rate of the
process that feeds a component and drains another, and 𝑑𝑖,𝑖 = 1, 2, are the diffusion rates. In the context of (1) the
function 𝑓 is defined as 𝑓 ( 𝑢1𝑢2 ) = ( −𝑢1𝑢22+𝑎(1−𝑢1)

𝑢1𝑢
2

2
−(𝑎+𝑏)𝑢2

) and the (8),
that is, 𝑒𝑡 = 𝐷𝑒𝑥𝑥 + 𝑔(𝑥, 𝑡, 𝑒), becomes in

(𝑒1𝑒2)𝑡 = ( 𝑑1 00 𝑑2 )(𝑒1𝑒2)𝑥𝑥 + (𝑒1𝑒22 + 2𝑢2 (𝑥, 𝑡) 𝑒1𝑒2
+ 𝑢22 (𝑥, 𝑡) 𝑒1 + 𝑢1𝑒22 + 2𝑢1 (𝑥, 𝑡) 𝑢2 (𝑥, 𝑡) 𝑒2)(−11 )
+ ( −𝑎 + 𝑝 (𝑥) 00 −𝑎 − 𝑏 + 𝑝 (𝑥) )(𝑒1𝑒2) .

(45)
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Proposition 7. There exists a real value function ℎ, continuous
and increasing on the interval (0,∞) such that |𝑔(𝑥, 𝑡, 𝑒)| ≤ℎ(|𝑒|) for all (𝑥, 𝑡, 𝑒) in (0, 𝑙) × (0,∞) ×R2.

Proof. The estimates

󵄨󵄨󵄨󵄨󵄨𝑒1𝑒22󵄨󵄨󵄨󵄨󵄨 ≤ |𝑒|3 ,
󵄨󵄨󵄨󵄨2𝑢2 (𝑥, 𝑡) 𝑒1𝑒2󵄨󵄨󵄨󵄨 ≤ 2𝑁 |𝑒|2 ,󵄨󵄨󵄨󵄨󵄨𝑢22 (𝑥, 𝑡) 𝑒1󵄨󵄨󵄨󵄨󵄨 ≤ 𝑁2 |𝑒| ,󵄨󵄨󵄨󵄨󵄨𝑢1𝑒22󵄨󵄨󵄨󵄨󵄨 ≤ 𝑁 |𝑒|2 ,

󵄨󵄨󵄨󵄨2𝑢1 (𝑥, 𝑡) 𝑢2 (𝑥, 𝑡) 𝑒2󵄨󵄨󵄨󵄨 ≤ 2𝑁2 |𝑒| ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(
−𝑎 + 𝑝 (𝑥) 00 −𝑎 − 𝑏 + 𝑝 (𝑥))(𝑒1𝑒2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ C |𝑒| ,

(46)

whereC is a constant that depends on 𝑎, 𝑏, and the function𝑝,
imply that |𝑔(𝑥, 𝑡, 𝑒)| ≤ √2(|𝑒|3+3𝑁|𝑒|2+3𝑁2|𝑒|)+C|𝑒|.Thus,ℎ could be defined by ℎ(𝑠) = √2(𝑠3 +3𝑁𝑠2 +3𝑁2s) +C𝑠.

To apply Theorem 4, we observe that for the abstract
problem the extended function given in (23) becomes in

𝐹 (𝑡, Φ) (𝑥) = 𝑔 (𝑥, 𝑡, Φ)
= (Ψ1 (𝑥, 𝑡) , Ψ2 (𝑥, 𝑡))𝑇 + 𝑝 (𝑥)Φ (𝑥) , (47)

where

Ψ1 (𝑥, 𝑡) = −Φ1 (𝑥)Φ22 (𝑥) − 2Φ1 (𝑥)Φ2 (𝑥) 𝑢2 (𝑥, 𝑡)
− Φ1 (𝑥) 𝑢22 (𝑥, 𝑡) − Φ22 (𝑥) 𝑢1 (𝑥, 𝑡)− 2Φ2 (𝑥) 𝑢1 (𝑥, 𝑡) 𝑢2 (𝑥, 𝑡) − 𝑎Φ1 (𝑥) ,

Ψ2 (𝑥, 𝑡) = Φ1 (𝑥)Φ22 (𝑥) + 2Φ1 (𝑥)Φ2 (𝑥) 𝑢2 (𝑥, 𝑡)
+ Φ1 (𝑥) 𝑢22 (𝑥, 𝑡) + Φ22 (𝑥) 𝑢1 (𝑥, 𝑡)+ 2Φ2 (𝑥) 𝑢1 (𝑥, 𝑡) 𝑢2 (𝑥, 𝑡)− (𝑎 + 𝑏)Φ2 (𝑥) ,

(48)

being Φ = (Φ1, Φ2)𝑇, 𝑢(𝑥, 𝑡) = (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡))𝑇.
Now, forΦ ∈ 𝑉2𝛼 using (20) and Proposition 7 we obtain

that

‖𝐹 (𝑡, Φ)‖ = 󵄩󵄩󵄩󵄩𝑔 (⋅, 𝑡, Φ)󵄩󵄩󵄩󵄩 ≤ ℎ (𝐶 ‖Φ‖2𝛼) . (49)

Hence 𝐹 maps bounded sets in [0,∞) × 𝑉2𝛼 into bounded
sets in𝐻.

In order to realize a numerical implementation to illus-
trate themain result, the values for the constants𝑑1,𝑑2, 𝑎, and𝑏 appearing in system (43)-(44) are chosen as 𝑑1 = 5 × 10−3,
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Figure 1: Synchronization error as function of the time and the
intensity of the perturbation defined as ‖𝑝(𝑥)‖𝐿2 .
𝑑2 = 5×10−4, 𝑎 = 0.028, and 𝑏 = 0.053, and initial conditions
are given by

𝑢1 (0, 𝑥) = sin(𝜋𝑥𝑙 ) ,
𝑢2 (0, 𝑥) = (𝑒−1000(𝑥−2𝑙/3)2 + 𝑒−10(𝑥−𝑙/3)2) sin(𝜋𝑥𝑙 ) ,
V1 (0, 𝑥) = 𝑒−10(𝑥−𝑙/2)2 sin(𝜋𝑥𝑙 ) ,
V2 (0, 𝑥) = 𝑒−10(𝑥−𝑙/2)2 sin(𝜋𝑥𝑙 ) .

(50)

In this case the Lipschitz constant 𝐿, appearing in (33), is
given by

𝐿 = √2𝐶(𝑙 (3√2 (𝐶 (𝜌 + 󵄩󵄩󵄩󵄩Φ0󵄩󵄩󵄩󵄩2𝛼) + 𝑁)2 + 𝑎 + 𝑏)2
+ 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2)1/2 .

(51)

Figure 1 shows a qualitative result of the synchronization
error as function of the time, defined as

𝐸 (𝑡) = [1𝑙 ∫𝑙
0

2∑
𝑖=1

(𝑢𝑖 (𝑥, 𝑡) − V𝑖 (𝑥, 𝑡))2 𝑑𝑥]1/2 , (52)

and the intensity of the perturbation defined as ‖𝑝(𝑥)‖𝐿2 .
There, for a fixed time, the error always is minor compared
with the initial error, consistent with our main result.

6. Concluding Remarks

We present a synchronization scheme of reaction-diffusion
equations connected by a localized one-directional coupling
function and give conditions that ensure the synchronization
at least for a finite time. Conditions for synchronization
depend on a sort of coupling intensity given by the 𝐿2 norm
of the coupling function.This norm is related to the intensity
of local perturbation and its spatial extension, suggesting
that this relation can be optimized in order to improve the
synchronization or design of a control scheme.

Finally, althoughwe have proven that the synchronization
occurs in an interval of time, the numerical simulations
suggest that this interval can be extended.
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