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An epidemic model that describes the dynamics of the spread of infectious diseases is proposed. Two different types of infectious
diseases that spread throughboth horizontal and vertical transmission in the host population are considered.Thebasic reproduction
number 𝑅

0
is determined. The local and the global stability of all possible equilibrium points are achieved. The local bifurcation

analysis and Hopf bifurcation analysis for the four-dimensional epidemic model are studied. Numerical simulations are used to
confirm our obtained analytical results.

1. Introduction

Mathematical models can be defined as a method of emu-
lating real life situations with mathematical equations to
expect their future behavior. In epidemiology, mathematical
models play role as a tool in analyzing the spread and control
of infectious diseases. Although one of the most famous
principles of ecology is the competitive exclusion principle
that stipulates “two species competing for the same resources
cannot coexist indefinitely with the same ecological niche” [1,
2], Volterra was the first scientist who used the mathematical
modeling and showed that the indefinite coexistence of two
or more species limited by the same resource is impossible
[3]. Moreover, Ackleh and Allen [4] were the first who used
the competitive exclusion principle of the infectious disease
with different levels in single host population.

It is well known that one of the most useful parameters
concerning infectious diseases is called basic reproduction
number. It can be specific to each strain of an epidemicmodel.
In fact the basic reproduction number of themodel is defined
as the maximum reproduction numbers of other strains [5–
7]. Diekmann et al. [8] had studied epidemicmodels with one
strain, while Martcheva in [9] studied the 𝑆𝐼𝑆-type of disease
with multistrain. However, Ackleh and Allen [10] studied
𝑆𝐼𝑅-type of disease with n strain and vertical transmission.

Keeping the above in view, in our proposed model two
strains with two different types of infectious diseases are

considered. Accordingly two different reproduction numbers
are obtained and then competitive exclusion principle is pre-
sented. It is assumed that two different types of diseases trans-
mission, say horizontal and vertical transmission, are used
too. The horizontal transmission occurs by direct contact
between infected and susceptible individuals, while vertical
transmission occurs when the parasite is transmitted from
parent to offspring [11–13]. The incidence of an epidemiolog-
ical model is defined as the rate at which susceptible becomes
infectious. Different types of incidence rates are introduced
into literatures [14–17]. Finally two types of incidence rates,
say bilinearmass action and nonlinear type, are used with the
horizontal and vertical transmission, respectively. The local
and global stability for all possible equilibria are carried out
with the help of Lyapunov function and LaSalle’s invariant
principle [18]. An application of Sotomayor theorem [19, 20]
for local bifurcations is used to study the occurrence of local
bifurcations near the equilibria.TheHopf bifurcation [21, 22]
conditions are derived. Finally, numerical simulations are
used to confirm our obtained analytical results and specify
the control set of parameters.

2. Model Formulation

Consider a real world system consisting of a host population
𝑁(𝑡) that is divided into four compartments: 𝑆(𝑡) which
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represents the number of susceptible individuals at time
𝑡; 𝐼
1
(𝑡) and 𝐼

2
(𝑡) that represent the number of infected

individuals at time 𝑡 for 𝑆𝐼𝑅𝑆-type of disease and 𝑆𝐼𝑆-type of
disease, respectively; finally 𝑅(𝑡) that represents the number
of recovered individuals at time 𝑡, thus 𝑁(𝑡) = 𝑆(𝑡) + 𝐼

1
(𝑡) +

𝐼
2
(𝑡) + 𝑅(𝑡). Now in order to formulate the dynamics of

the above system mathematically, the following assumptions
have been adopted:

(1) There is a constant number of the host populations
entering to the system with recruitment rate Λ > 0.

(2) There is a vertical transmission of both of the diseases;
that is, the infectious host gives birth to a new infected
host of rates 0 ≤ 𝑝

1
≤ 1 and 0 ≤ 𝑝

2
≤ 1 for the

diseases 𝐼
1
and 𝐼
2
, respectively. Consequently𝑝

1
𝐼
1
and

𝑝
2
𝐼
2
individuals enter into infected compartments

𝐼
1
and 𝐼

2
, respectively, and the same quantities are

disappearing from recruitment in the susceptible
compartment.

(3) The diseases are transmitted by contact, according to
the mass action law, between the individuals in the 𝑆-
compartment and those in 𝐼

𝑖
(𝑖 = 1, 2) compartments

with nonlinear incidence rate for 𝐼
1
that is given

by 𝛽
1
𝑆𝐼
1
/(1 + 𝐼

1
), in which 𝛽

1
> 0 represents the

infection force rate while 1/(1 + 𝐼
1
) represents the

inhibition effect of the crowding effect of the infected
individuals, and linear incidence rate for 𝐼

2
that is

given by 𝛽
2
𝑆𝐼
2
, where 𝛽

2
> 0 represents the infection

rate.
(4) The individuals in the 𝐼

1
compartment are facing

death due to the disease with infection death rate 𝛼
1
≥

0. They recover from disease and get immunity with
a recovery rate 𝛿 > 0.

(5) The individuals in the 𝐼
2
compartment are facing

death due to the disease with infection death rate 𝛼
2
≥

0. They also recover from the disease but return back
to be susceptible with recovery rate 𝛾 > 0.

(6) The individuals in the 𝑅 compartment are losing the
immunity from the 𝐼

1
disease and return back to be

susceptible again with losing immunity rate 0 ≤ 𝜂 <

1.
(7) There is a natural death rate 𝜇 > 0 for the individuals

in the host population. Finally, it is assumed that
both the diseases cannot be transmitted to the same
individual simultaneously.

According to these assumptions the dynamics of the above
real world system can be represented mathematically by the
following set of differential equations:

𝑑𝑆

𝑑𝑡
= Λ − (

𝛽
1
𝐼
1

1 + 𝐼
1

+ 𝛽
2
𝐼
2
) 𝑆 + (𝛾 − 𝑝

2
) 𝐼
2
− 𝜇𝑆 − 𝑝

1
𝐼
1

+ 𝜂𝑅,

𝑑𝐼
1

𝑑𝑡
=

𝛽
1
𝑆𝐼
1

1 + 𝐼
1

− (𝜇 + 𝛼
1
+ 𝛿 − 𝑝

1
) 𝐼
1
,

𝑑𝐼
2

𝑑𝑡
= 𝛽
2
𝑆𝐼
2
− (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
) 𝐼
2
,

𝑑𝑅

𝑑𝑡
= 𝛿𝐼
1
− (𝜂 + 𝜇) 𝑅

(1)

with the initial condition 𝑆(0) > 0, 𝐼
1
(0) > 0, 𝐼

2
(0) > 0,

and 𝑅(0) > 0. Moreover to insure that the recruitment Λ in
the susceptible compartment is always positive the following
hypotheses are assumed to be holding always:

𝛿 ≥ 𝑝
1
,

𝛾 ≥ 𝑝
2
.

(2)

Theorem 1. The closed setΩ = {(𝑆, 𝐼
1
, 𝐼
2
, 𝑅) ∈ R4

+
: 𝑁 ≤ Λ/𝜇}

is positively invariant and attracting with respect to model (1).

Proof. Let (𝑆(𝑡), 𝐼
1
(𝑡), 𝐼
2
(𝑡), 𝑅(𝑡)) be any solution of system

(1) with any given initial condition. Then by adding all the
equations in system (1) we obtain that

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑆 − (𝜇 + 𝛼

1
) 𝐼
1
− (𝜇 + 𝛼

2
) 𝐼
2
− 𝜇𝑅

≤ Λ − 𝜇𝑁.

(3)

Thus, from standard comparison theorem [20], we obtain

𝑁(𝑡) ≤ 𝑁 (0) 𝑒
−𝜇𝑡

+
Λ

𝜇
(1 − 𝑒

−𝜇𝑡
) . (4)

Consequently it is easy to verify that

𝑁(𝑡) ≤
Λ

𝜇
, when (0) ≤

Λ

𝜇
. (5)

Thus, Ω is positively invariant. Further, when 𝑁(0) > Λ/𝜇,
then either the solution enters Ω in finite time, or 𝑁(𝑡)

approaches Λ/𝜇 as 𝑡 → ∞. Hence, Ω is attracting (i.e., all
solutions inR4

+
eventually approach, enter, or stay inΩ).

Therefore, the system of equations given in model (1)
is mathematically well-posed and epidemiologically reason-
able, since all the variables remain nonnegative ∀𝑡 ≥ 0.
Further since the equations of model (1) are continuous
and have continuously partial derivatives then they are
Lipschitzian. In addition to that from Theorem 1, model (1)
is uniformly bounded. Therefore the solution of it exists and
is unique. Hence, from now onward it is sufficient to consider
the dynamics of model (1) in Ω.

3. Equilibrium Points and
Basic Reproduction Number

Model (1) has four equilibrium points that are obtained by
setting the right hand sides of this model equal to zero. The
first equilibrium point is the disease-free equilibrium (DFE)
point that is denoted by 𝐸

0
= (𝑆
0
, 0, 0, 0) with 𝑆

0
= Λ/𝜇.

Moreover the basic reproduction number ofmodel (1), which
is denoted by 𝑅

0
, is the maximum eigenvalue of the next
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generation matrix (i.e., the maximum of the reproduction
numbers, those computed of each disease). That is,

𝑅
0
= max {𝑅

1
, 𝑅
2
} . (6)

Here 𝑅
1
= (𝛽
1
𝑆
0
+𝑝
1
)/(𝜇 +𝛼

1
+𝛿) and 𝑅

2
= (𝛽
2
𝑆
0
+𝑝
2
)/(𝜇 +

𝛼
2
+ 𝛾).
The other three equilibrium points can be described as

follows.
The first disease-free equilibrium point, which is located

in the boundary 𝑆𝐼
2
-plane, is denoted by 𝐸

1
= (𝑆, 0, 𝐼

2
, 0)

where

𝑆 =
𝑆
0

𝑇
2

,

𝐼
2
=

Λ

(𝜇 + 𝛼
2
)
(1 −

1

𝑇
2

) ,

(7)

and here𝑇
2
= 𝛽
2
𝑆
0
/(𝜇+𝛼

2
+𝛾−𝑝

2
). Clearly𝐸

1
exists uniquely

in the interior of 𝑆𝐼
2
-plane provided that

𝑇
2
> 1. (8)

The second disease-free equilibrium point that is located in
the boundary 𝑆𝐼

1
𝑅-space is given by 𝐸

2
= (𝑆̃, 𝐼̃

1
, 0, 𝑅̃) where

𝑆̃ =

𝑆
0
(1 + 𝐼̃

1
)

𝑇
1

;

𝐼̃
1
=

Λ (1 − 1/𝑇
1
)

(𝜇 + 𝛼
1
+ 𝛿) − 𝜂𝛿/ (𝜂 + 𝜇) + Λ/𝑇

1

,

𝑅̃ =
𝐼̃
1

𝜂 + 𝜇
,

(9)

and here 𝑇
1

= 𝛽
1
𝑆
0
/(𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
). Obviously 𝐸

2

exists uniquely in the interior of positive octant of 𝑆𝐼
1
𝑅-space

provided that

𝑇
1
> 1. (10)

Finally, the endemic equilibrium point, which is denoted by
𝐸
3
= (𝑆
∗
, 𝐼
∗

1
, 𝐼
∗

2
, 𝑅
∗
), where

𝑆
∗
=

𝑆
0

𝑇
2

;

𝐼
∗

1
= (

𝑇
1

𝑇
2

− 1) ;

𝑅
∗
=

𝛿 ((𝑇
1
/𝑇
2
) − 1)

𝜂 + 𝜇
,

𝐼
∗

2
=

Λ

(𝜇 + 𝛼
2
)
(1 −

1

𝑇
2

)

−
((𝑇
1
/𝑇
2
) − 1)

(𝜇 + 𝛼
2
)

[(𝜇 + 𝛼
1
+ 𝛿) −

𝜂𝛿

𝜂 + 𝜇
] ,

(11)

exists uniquely in the interior ofΩprovided that the following
conditions hold:

𝑇
1
> 𝑇
2
> 1,

Λ >
Λ

𝑇
2

+ 𝐼
∗

1
((𝜇 + 𝛼

1
+ 𝛿) −

𝜂𝛿

𝜂 + 𝜇
) .

(12)

Keeping the above in view, it is easy to verify with the help of
condition (2) that

𝑇
𝑖
> 1 (𝑇

𝑖
< 1) ⇐⇒ 𝑅

𝑖
> 1 (𝑅

𝑖
< 1) , 𝑖 = 1, 2. (13)

Then directly we obtain 𝑇
𝑖
> 1 (𝑇

𝑖
< 1) ⇔ 𝑅

0
> 1 (𝑅

0
<

1). Consequently, 𝑇
𝑖
represent the threshold parameters for

the existence of the last three equilibrium points of model
(1). Moreover, it is well known that the basic reproduction
number (𝑅

0
) is representing the average number of secondary

infections that occur from one infected individual in contact
with susceptible individuals. Therefore if 𝑅

0
< 1, then

each infected individual in the entire period of infectivity
will produce less than one infected individual on average,
which shows the disease will be wiped out of the population.
However, if𝑅

0
> 1, then each infected individual in the entire

infection period having contact with susceptible individuals
will produce more than one infected individual; this leads to
the disease invading the susceptible population.

4. Local Stability Analysis

In this section, the local stability analyses of all possible
equilibrium points of model (1) are discussed by determining
the Jacobian matrix with their eigenvalues. Now the general
Jacobian matrix of model (1) can be written:

𝐽 =

[
[
[
[
[
[
[
[
[
[
[
[

[

−
𝛽
1
𝐼
1

1 + 𝐼
1

− 𝛽
2
𝐼
2
− 𝜇 −

𝛽
1
𝑆

(1 + 𝐼
1
)
2
− 𝑝
1

−𝛽
2
𝑆 + (𝛾 − 𝑝

2
) 𝜂

𝛽
1
𝐼
1

1 + 𝐼
1

−
𝛽
1
𝑆𝐼
1

(1 + 𝐼
1
)
2
+ 𝑓 (𝑆, 𝐼

1
) 0 0

𝛽
2
𝐼
2

0 𝛽
2
𝑆 − (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
) 0

0 𝛿 0 − (𝜂 + 𝜇)

]
]
]
]
]
]
]
]
]
]
]
]

]

, (14)
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where 𝑓(𝑆, 𝐼
1
) = 𝛽
1
𝑆/(1+𝐼

1
)− (𝜇+𝛼

1
+𝛿−𝑝

1
). Therefore the

local stability results near the above equilibrium points can
be presented in the following theorems.

Theorem 2. The disease-free equilibrium 𝐸
0

= (𝑆
0
, 0, 0, 0) is

locally asymptotically stable when𝑅
0
< 1 and unstable for𝑅

0
>

1.

Proof. The characteristic equation of the Jacobian matrix of
model (1) at the disease-free equilibrium can be written as

(𝜆 + 𝜇) (𝜆 − 𝛽
1
𝑆
0
+ (𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
))

⋅ (𝜆 − 𝛽
2
𝑆
0
+ (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)) (𝜆 + (𝜂 + 𝜇)) = 0.

(15)

So, if 𝑅
0
< 1, then according to (6), (15) has four negative real

roots (eigenvalues). Hence, the DFE is locally asymptotically
stable. Further, for 𝑅

0
> 1 (15) has at least one positive

eigenvalue and then the DFE is a saddle point.

Theorem 3. The first disease-free equilibrium point 𝐸
1

=

(𝑆, 0, 𝐼
2
, 0) of model (1) is locally asymptotically stable provided

that

𝑇
2
> 1 > 𝑇

1
. (16)

Proof. The characteristic equation of the Jacobian matrix of
model (1) at 𝐸

1
can be written as

[𝜆 − 𝛽
1
𝑆 + (𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
)] [𝜆 + (𝜂 + 𝜇)]

⋅ [𝜆
2

− 𝑇𝑟
1
𝜆 + 𝐷

1
] = 0;

(17)

here 𝑇𝑟
1

= −(𝛽
2
𝐼
2
+ 𝜇) < 0 and 𝐷

1
= 𝛽
2
𝐼
2
(𝛽
2
𝑆 − (𝛾 −

𝑝
1
)) > 0 due to condition (16). Hence both the eigenvalues 𝜆

𝑆

and 𝜆
𝐼
2

, which describe the dynamics in the 𝑆-direction and
𝐼
2
-direction, respectively, have negative real parts. Moreover,

from (17), the eigenvalue in the 𝐼
1
-direction can be written as

𝜆
𝐼
1

= 𝛽
1
𝑆 − (𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
) = (1 −

𝑇
2

𝑇
1

)𝛽
1
𝑆. (18)

Thus under the given condition (16), we have 𝜆
𝐼
1

< 0, while
𝜆
𝑅

= −(𝜂 + 𝜇) is always negative. Hence, 𝐸
1
is locally

asymptotically stable.

Theorem 4. The second disease-free equilibrium point 𝐸
2

=

(𝑆̃, 𝐼̃
1
, 0, 𝑅̃) ofmodel (1) is locally asymptotically stable provided

that

𝑇
1
> 1 > 𝑇

2
(1 + 𝐼̃

1
) , (19a)

𝑃̃
2
> 𝛿, (19b)

where 𝑃̃
2
is given in the proof.

Proof. The characteristic equation of the Jacobian matrix of
model (1) at 𝐸

2
can be written as

[𝜆̃ − 𝛽
2
𝑆̃ + (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)] [𝜆̃
3

+ 𝐴𝜆̃
2

+ 𝐵𝜆̃ + 𝐶]

= 0;

(20)

here

𝐴 = (𝑃̃
1
+ 𝑃̃
2
) + (𝜂 + 𝜇) ,

𝐵 = (𝑃̃
1
+ 𝑃̃
2
) (𝜂 + 𝜇) + (𝑃̃

1
𝑃̃
2
+ 𝑃̃
3
) ,

𝐶 = (𝜂 + 𝜇) (𝑃̃
1
𝑃̃
2
+ 𝑃̃
3
) − 𝑃̃
4

(21)

with

𝑃̃
1
= (

𝛽
1
𝐼̃
1

1 + 𝐼̃
1

+ 𝜇) > 0,

𝑃̃
2
=

𝛽
1
𝑆̃ 𝐼̃
1

(1 + 𝐼̃
1
)
2

> 0,

𝑃̃
3
= (

𝛽
1
𝐼̃
1

1 + 𝐼̃
1

(
𝛽
1
𝐼̃
1

(1 + 𝐼̃
1
)
2
+ 𝑝
1
)) > 0,

𝑃̃
4
=

𝜂𝛿𝛽
1
𝐼̃
1

1 + 𝐼̃
1

> 0.

(22)

Clearly, the eigenvalue 𝜆̃
𝐼
2

in the 𝐼
2
-direction can be written

as

𝜆̃
𝐼
2

= 𝛽
2
𝑆̃ − (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)

= (1 −
𝑇
1

𝑇
2
(1 + 𝐼̃

1
)

)𝛽
2
𝑆̃,

(23)

and thus 𝜆̃
𝐼
2

< 0 under the condition (19a). In addition from
(20) we have 𝐴 > 0 always, while 𝐶 can be written as

𝐶 = 𝑝̃
5

𝑝̃
2

𝛿
+ 𝜇𝑝̃
5

𝑝̃
2

𝛿
+ 𝑝̃
2
(𝛽
2
𝐼
∗

2
(𝜂 + 𝜇))

+ 𝑝̃
2
𝜇 (𝜂 + 𝜇) + 𝑝̃

3
(𝜂 + 𝜇) + 𝑝̃

4
(𝑝̃
2
+ (𝜂 + 𝜇))

− 𝑝̃
5
.

(24)

Hence, 𝐶 > 0 provided that the sufficient condition (19b)
holds. Further it is easy to verify that

𝐴𝐵 − 𝐶 = (𝑃̃
1
+ 𝑃̃
2
) (𝐵 + (𝜂 + 𝜇)

2
) + 𝑃̃
4
> 0. (25)

Hence, due to the Routh-Hurwitz criterion the third-degree
polynomial term in (20) has roots (eigenvalues) with negative
real parts. Hence 𝐸

2
is locally asymptotically stable.

Theorem 5. The endemic equilibrium point 𝐸
3

=

(𝑆
∗
, 𝐼
∗

1
, 𝐼
∗

2
, 𝑅
∗
) of model (1) is locally asymptotically stable

provided that

𝑇
1
> 𝑇
2
> 1, (26a)

𝑄 > 𝑞
5
> 𝛿, (26b)

where 𝑄 and 𝑞
5
are given in the proof.



Journal of Applied Mathematics 5

Proof. The characteristic equation of the Jacobian matrix of
model (1) at 𝐸

3
can be written as

𝜆
∗4

+ 𝐴
1
𝜆
∗3

+ 𝐵
1
𝜆
∗2

+ 𝐶
1
𝜆
∗
+ 𝐷
1
= 0. (27)

Here

𝐴
1
= (𝑞
1
+ 𝑞
2
) + (𝜂 + 𝜇) > 0,

𝐵
1
= (𝜂 + 𝜇) (𝑞

1
+ 𝑞
2
) + 𝑞
1
𝑞
2
+ 𝑞
3
+ 𝑞
4
> 0,

𝐶
1
= (𝑞
1
𝑞
2
+ 𝑞
3
) (𝜂 + 𝜇) + 𝑞

4
(𝑞
2
+ (𝜂 + 𝜇)) − 𝑞

5
,

𝐷
1
= 𝑞
4
𝑞
2
(𝜂 + 𝜇) > 0

(28)

with

𝑞
1
=

𝛽
1
𝐼
∗

1

1 + 𝐼
∗

1

+ 𝛽
2
𝐼
∗

2
+ 𝜇;

𝑞
2
=

𝛽
1
𝑆
∗
𝐼
∗

1

(1 + 𝐼
∗

1
)
2
;

𝑞
3
=

𝛽
1
𝐼
∗

1

1 + 𝐼
∗

1

(
𝛽
1
𝑆
∗

(1 + 𝐼
∗

1
)
2
+ 𝑝
1
) ,

𝑞
4
= 𝛽
2
𝐼
∗

2
[𝛽
2
𝑆
∗
− (𝛾 − 𝑝

2
)] ;

𝑞
5
=

𝜂𝛿𝛽
1
𝐼
∗

1

1 + 𝐼
∗

1

.

(29)

Obviously, 𝑞
𝑖

> 0, 𝑖 = 1, 2, 3, 5, while 𝑞
4
is positive under

condition (26a). Now, by using the values of 𝑞
𝑖
and the

sufficient condition (26b), then straightforward computation
gives

𝐶
1
= 𝑄 + 𝑞

4
(𝑞
2
+ (𝜂 + 𝜇)) − 𝑞

5
> 0, (30)

and here 𝑄 = (𝑞
1
𝑞
2
+ 𝑞
3
)(𝜂 + 𝜇). Moreover we have

𝐴
1
𝐵
1
𝐶
1
= [𝑄 + (𝑞

1
+ 𝑞
2
)
2
(𝜂 + 𝜇) + 𝑞

4
𝑞
1

+ (𝑞
1
𝑞
2
+ 𝑞
3
+ (𝜂 + 𝜇)

2
) (𝑞
1
+ 𝑞
2
)] [𝑄 − 𝑞

5
] ,

𝐶
2

1
+ 𝐴
2

1
𝐷
1
= (𝑄 − 𝑞

5
)
2
+ [(𝑞
1
+ 𝑞
2
) + (𝜂 + 𝜇)]

2

⋅ (𝑞
4
𝑞
2
(𝜂 + 𝜇)) ,

(31)

where 𝑄 = 𝑄 + 𝑞
4
(𝑞
2
+ (𝜂 + 𝜇)). Therefore we obtain that

𝐴
1
𝐵
1
𝐶
1
− 𝐶
2

1
− 𝐴
2

1
𝐷
1

= 𝐹𝑄 + 𝑞
4
𝑄 (𝑞
1
+ 𝑞
2
) + 𝑞
4
𝑞
1
𝐴
1
(𝜂 + 𝜇)

2

+ 𝑞
2

4
𝑞
1
(𝑞
2
+ (𝜂 + 𝜇))

+ 𝑞
4
𝑞
2
(𝑞
1
+ 𝑞
2
) (𝑞
1
𝑞
2
+ 𝑞
3
) − 𝐹𝑞

5
+ 𝐶
1
𝑞
5
.

(32)

Here𝐹 = (𝑞
1
+𝑞
2
)
2
(𝜂+𝜇)+(𝑞

1
𝑞
2
+𝑞
3
+(𝜂+𝜇)

2
)(𝑞
1
+𝑞
2
)+𝑞
4
𝑞
1
.

Hence, according to condition (26b) it is easy to verify
that 𝐴

1
𝐵
1
𝐶
1
− 𝐶
2

1
− 𝐴
2

1
𝐷
1
> 0. Therefore, all the coefficients

of (27) are positive and 𝐴
1
𝐵
1
𝐶
1

− 𝐶
2

1
− 𝐴
2

1
𝐷
1

> 0.
Hence, due to the Routh-Hurwitz criterion all the eigenvalues
(𝜆
∗

𝑆
, 𝜆
∗

𝐼
1

, 𝜆
∗

𝐼
2

and 𝜆
∗

𝑅
) of the Jacobianmatrix near the endemic

equilibrium point 𝐸
3
have negative real parts.Thus, the proof

is complete.

5. Global Stability Analysis

This section deals with the global stability of the equilibrium
points of model (1) using Lyapunov methods with LaSalle’s
invariant principle. The obtained results are presented in the
following theorems.

Theorem 6. Assume that DFE 𝐸
0

= (𝑆
0
, 0, 0, 0) of model (1)

is locally asymptotically stable; then it is global asymptotically
stable in Ω.

Proof. Consider 𝑉̂ : Ω → R that is defined by

𝑉̂ (𝑆, 𝐼
1
, 𝐼
2
, 𝑅) =

2

∑

𝑖=1

𝐼
𝑖
. (33)

Computing the derivative of this positive semidefinite func-
tion with respect to time along the solution of model (1) and
then simplifying the resulting terms give

𝑑𝑉̂

𝑑𝑡
= (

𝛽
1
𝑆

1 + 𝐼
1

− (𝜇 + 𝛼
1
+ 𝛿 − 𝑝

1
)) 𝐼
1

+ (𝛽
2
𝑆 − (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)) 𝐼
2
.

(34)

Since the solution of model (1) is bounded by 𝑆
0

= Λ/𝜇 as
𝑡 → ∞,

𝑑𝑉̂

𝑑𝑡
≤ (𝛽
1
𝑆
0
− (𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
)) 𝐼
1

+ (𝛽
2
𝑆
0
− (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)) 𝐼
2

= (𝜇 + 𝛼
1
+ 𝛿 − 𝑝

1
) (𝑇
1
− 1) 𝐼
1

+ (𝜇 + 𝛼
2
+ 𝛾 − 𝑝

2
) (𝑇
2
− 1) 𝐼
2
.

(35)

Since 𝑇
𝑖
< 1, 𝑖 = 1, 2, due to the local stability condition of

𝐸
0
then 𝑑𝑉̂/𝑑𝑡 < 0. Also we have that 𝑑𝑉̂/𝑑𝑡 = 0 on the

set {(𝑆, 𝐼
1
, 𝐼
2
, 𝑅) ∈ Ω : 𝐼

1
= 𝐼
2

= 0}, so 𝑑𝑉̂/𝑑𝑡 is negative
semidefinite and hence according to Lyapunov first theorem
𝐸
0
is globally stable point. Now, since on this set we have

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 + 𝜂𝑅 = 0, (36)

if and only if 𝑆 = 𝑆
0
, 𝑅 = 0, thus the largest invariant set

contained in this set is reduced to the disease-free equilibrium
point𝐸

0
. Hence according to LaSalle’s invariant principle [18],

𝐸
0
is attractive point and hence it is globally asymptotically

stable in Ω.

Theorem 7. Assume that the first disease-free equilibrium
point 𝐸

1
= (𝑆, 0, 𝐼

2
, 0) is locally asymptotically stable; then it

is global asymptotically stable in Ω provided that

𝐼
2
> 𝐼
2
. (37)
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Proof. Consider that 𝐿 : Ω → R that is defined by

𝐿 (𝑆, 𝐼
1
, 𝐼
2
, 𝑅) =

1

2
[(𝑆 − 𝑆) + 𝐼

1
+ (𝐼
2
− 𝐼
2
) + 𝑅]

2

+
(2𝜇 + 𝛼

1
)

𝛽
1

𝐼
1

+
(2𝜇 + 𝛼

2
)

𝛽
2

(𝐼
2
− 𝐼
2
− 𝐼
2
ln 𝐼
2

𝐼
2

)

+
(2𝜇 + 𝛼

1
)

2𝛿
𝑅
2
.

(38)

Clearly 𝐿 is continuous and positive definite function. Now
by taking the derivative of 𝐿 with respect to time along the
solution of model (1), we get after simplifying the resulting
terms that

𝑑𝐿

𝑑𝑡
= −𝜇 (𝑆 − 𝑆)

2

− 𝜇𝑅
2
− 2𝜇𝑅 (𝑆 − 𝑆)

− (2𝜇 + 𝛼
1
) (𝑆 − 𝑆) 𝐼

1

− (2𝜇 + 𝛼
2
) (𝑆 − 𝑆) (𝐼

2
− 𝐼
2
)

− (2𝜇 + 𝛼
1
+ 𝛼
2
) (𝐼
2
− 𝐼
2
) 𝐼
1

− (2𝜇 + 𝛼
1
) 𝐼
1
𝑅 − (𝜇 + 𝛼

2
) (𝐼
2
− 𝐼
2
)
2

− (2𝜇 + 𝛼
2
) (𝐼
2
− 𝐼
2
) 𝑅 − (𝜇 + 𝛼

1
) 𝐼
2

1
,

𝑑𝐿

𝑑𝑡
≤ −𝜇 [(𝑆 − 𝑆) + 𝑅]

2

− 𝜇 [𝐼
1
+ (𝐼
2
− 𝐼
2
)]
2

− 2𝜇 (𝐼
2
− 𝐼
2
) 𝑅

+
2𝜇 (𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
)

𝛽
1

[
𝑇
1

𝑇
2

− 1] 𝐼
1

−
𝜇 (𝜂 + 𝜇)

𝛿
𝑅
2
.

(39)

Hence according to local stability condition (16) along with
the sufficient condition (37) it obtains that 𝑑𝐿/𝑑𝑡 is negative
definite function. Thus due to Lyapunov second theorem 𝐸

1

is global asymptotically stable in Ω.

Theorem 8. Assume that the second disease-free equilibrium
point 𝐸

2
= (𝑆̃, 𝐼̃

1
, 0, 𝑅̃) of model (1) is locally asymptotically

stable; then it is global asymptotically stable in Ω if

𝑞
2

12
< 𝑞
11
𝑞
22
, (40a)

𝑞
2

14
< 𝑞
11
𝑞
44
, (40b)

𝑞
2

23
< 𝑞
22
𝑞
33
, (40c)

𝑞
2

34
< 𝑞
33
𝑞
44
, (40d)

where

𝑞
11

= 𝜇;

𝑞
22

= (𝜇 + 𝛼
1
) +

𝑆̃

(1 + 𝐼̃
1
) (1 + 𝐼

1
)

;

𝑞
33

= (𝜇 + 𝛼
2
) ;

𝑞
44

=
(2𝜇 + 𝛼

1
) (𝜂 + 𝜇)

2𝛿
+ 𝜇;

𝑞
12

=
1

1 + 𝐼
1

− (2𝜇 + 𝛼
1
) ;

𝑞
14

= 2𝜇;

𝑞
23

= (2𝜇 + 𝛼
1
+ 𝛼
2
) ;

𝑞
34

= (2𝜇 + 𝛼
2
) .

(41)

Proof. Consider the function 𝑊: Ω → R that is defined by

𝑊(𝑆, 𝐼
1
, 𝐼
2
, 𝑅)

=
1

2
[(𝑆 − 𝑆̃) + (𝐼

1
− 𝐼̃
1
) + 𝐼
2
+ (𝑅 − 𝑅̃)]

2

+
1

𝛽
1

(𝐼
1
− 𝐼̃
1
− 𝐼̃
1
ln 𝐼
1

𝐼̃
1

) +
(2𝜇 + 𝛼

2
)

𝛽
2

𝐼
2

+
(2𝜇 + 𝛼

1
)

2𝛿
(𝑅 − 𝑅̃)

2

.

(42)

Clearly 𝑊 is continuous and positive definite function. Now
by taking the derivative of 𝑊 with respect to time along the
solution of model (1), we get after simplifying the resulting
terms that

𝑑𝑊

𝑑𝑡
= −𝑞
11

(𝑆 − 𝑆̃)
2

+ 𝑞
12

(𝑆 − 𝑆̃) (𝐼
1
− 𝐼̃
1
)

− 𝑞
14

(𝑆 − 𝑆̃) (𝑅 − 𝑅̃) − 𝑞
22

(𝐼
1
− 𝐼̃
1
)
2

− 𝑞
23

(𝐼
1
− 𝐼̃
1
) 𝐼
2
− 𝑞
33
𝐼
2

2
− 𝑞
34

(𝑅 − 𝑅̃) 𝐼
2

− 𝑞
44

(𝑅 − 𝑅̃)
2

+
2𝜇 (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)

𝛽
2

[

𝑇
2
(1 + 𝐼̃

1
)

𝑇
1

− 1] 𝐼
2
.

(43)

Now by using the given conditions (40a)–(40d) we get that

𝑑𝑊

𝑑𝑡
≤ − [√

𝑞
11

2
(𝑆 − 𝑆̃) − √

𝑞
22

2
(𝐼
1
− 𝐼̃
1
)]

2

− [√
𝑞
22

2
(𝐼
1
− 𝐼̃
1
) + √

𝑞
33

2
𝐼
2
]

2
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− [√
𝑞
11

2
(𝑆 − 𝑆̃) + √

𝑞
44

2
(𝑅 − 𝑅̃)]

2

− [√
𝑞
44

2
(𝑅 − 𝑅̃) + √

𝑞
33

2
𝐼
2
]

2

+
2𝜇 (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)

𝛽
2

[

𝑇
2
(1 + 𝐼̃

1
)

𝑇
1

− 1] 𝐼
2
.

(44)

Hence according to local stability condition (19a) it obtains
that 𝑑𝑊/𝑑𝑡 is negative definite function. Thus due to Lya-
punov second theorem 𝐸

1
is global asymptotically stable in

Ω.

Theorem 9. Assume that the endemic equilibrium point 𝐸
3
=

(𝑆
∗
, 𝐼
∗

1
, 𝐼
∗

2
, 𝑅
∗
) ofmodel (1) is locally asymptotically stable; then

it is global asymptotically stable in Ω if

𝛼
2

14
< 𝛼
11
𝛼
44
, (45a)

𝛼
2

12
< 𝛼
11
𝛼
22
, (45b)

𝛼
2

24
< 𝛼
22
𝛼
44
, (45c)

where

𝛼
11

= (
𝛽
1
𝐼
1

1 + 𝐼
1

+ 𝛽
2
𝐼
2
+ 𝜇) ,

𝛼
22

= 𝛽
1
𝑆
∗
,

𝛼
44

= (𝜂 + 𝜇) ,

𝛼
12

=
𝛽
1

1 + 𝐼
1

− (
𝛽
1
𝑆
∗

(1 + 𝐼
1
) (1 + 𝐼

∗

1
)
+ 𝑝
1
) ,

𝛼
24

= 𝛿,

𝛼
14

= 𝜂.

(46)

Proof. Consider the function 𝑉 : Ω → R that is defined by

𝑉 (𝑆, 𝐼
1
, 𝐼
2
, 𝑅) =

(𝑆 − 𝑆
∗
)
2

2
+ (𝐼
1
− 𝐼
∗

1
− 𝐼
∗

1
ln 𝐼
1

𝐼
∗

1

)

+
(2𝜇 + 𝛼

2
)

𝛽
2

(𝐼
2
− 𝐼
∗

2
− 𝐼
∗

2
ln 𝐼
2

𝐼
∗

2

)

+
(𝑅 − 𝑅

∗
)
2

2
.

(47)

Clearly the function 𝑉 is continuous and positive definite
function. By taking the derivative of 𝑉 with respect to time

along the solution of model (1), we get after simplifying the
resulting terms that

𝑑𝑉

𝑑𝑡
= −𝛼
11

(𝑆 − 𝑆
∗
)
2
− 𝛼
22

(𝐼
1
− 𝐼
∗

1
)
2

− 𝛼
44

(𝑅 − 𝑅
∗
)
2
+ 𝛼
12

(𝑆 − 𝑆
∗
) (𝐼
1
− 𝐼
∗

1
)

+ 𝛼
14

(𝑅 − 𝑅
∗
) (𝑆 − 𝑆

∗
)

+ 𝛼
24

(𝐼
1
− 𝐼
∗

1
) (𝑅 − 𝑅

∗
) .

(48)

Thenby using the given conditions (45a)–(45c)we obtain that

𝑑𝑉

𝑑𝑡
< − [√𝛼

11
(𝑆 − 𝑆

∗
) + √𝛼

22
(𝐼
1
− 𝐼
∗

1
)]
2

− [√𝛼
11

(𝑆 − 𝑆
∗
) + √𝛼

44
(𝑅 − 𝑅

∗
)]
2

− [√𝛼
44

(𝑅 − 𝑅
∗
) + √𝛼

22
(𝐼
1
− 𝐼
∗

1
)]
2
.

(49)

Hence, 𝑑𝑉/𝑑𝑡 is negative semidefinite, and 𝑑𝑉/𝑑𝑡 = 0 on the
set {(𝑆, 𝐼

1
, 𝐼
2
, 𝑅) ∈ Ω : 𝑆 = 𝑆

∗
, 𝐼
1

= 𝐼
∗

1
, 𝐼
2

> 0, 𝑅 = 𝑅
∗
},

so according to Lyapunov first theorem 𝐸
3
is globally stable

point. Further, since on this set we have

𝑑𝑆

𝑑𝑡
= Λ − (

𝛽
1
𝐼
∗

1

1 + 𝐼
∗

1

+ 𝛽
2
𝐼
2
) 𝑆
∗
+ (𝛾 − 𝑝

2
) 𝐼
2
− 𝜇𝑆
∗

− 𝑝
1
𝐼
∗

1
+ 𝜂𝑅
∗
= 0,

(50)

if and only if 𝐼
2

= 𝐼
∗

2
, then the largest compact invariant set

contained in this set is reduced to the endemic equilibrium
point𝐸

3
. Hence according to LaSalle’s invariant principle [18],

𝐸
3
is attractive point and hence it is globally asymptotically

stable in Ω.

6. Bifurcation Analysis

In this section the local bifurcations near the equilibrium
points of model (1) are investigated as shown in the following
theorems with the help of Sotomayor theorem [20]. Note that
model (1) can be rewritten in a vector form 𝑑𝑋/𝑑𝑡 = 𝑓(𝑋),
where 𝑋 = (𝑆, 𝐼

1
, 𝐼
2
, 𝑅)
𝑇 and 𝑓 = (𝑓

1
, 𝑓
2
, 𝑓
3
, 𝑓
4
)
𝑇 with

𝑓
𝑖
, 𝑖 = 1, 2, 3, 4, are given in the right hand side of model (1).

Moreover, straightforward computation gives that the general
second derivative of the Jacobian matrix (14) can be written:

𝐷
2
𝑓 (𝑋, 𝛽) (𝑈,𝑈)

=

[
[
[
[
[
[
[
[
[
[
[

[

−2𝛽
1
𝜁
1
𝜁
2

(1 + 𝐼
1
)
2

− 2𝛽
2
𝜁
1
𝜁
3
+

2𝛽
1
𝑆 (𝜁
2
)
2

(1 + 𝐼
1
)
3

2𝛽
1
𝜁
1
𝜁
2

(1 + 𝐼
1
)
2
−

2𝛽
1
𝑆 (𝜁
2
)
2

(1 + 𝐼
1
)
3

2𝛽
2
𝜁
1
𝜁
3

0

]
]
]
]
]
]
]
]
]
]
]

]

,

(51)

where 𝛽 is any bifurcation parameter and 𝑈 = (𝜁
1
, 𝜁
2
, 𝜁
3
, 𝜁
4
)
𝑇

is any eigenvector.
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Theorem 10. Assume that 𝑇
2

< 1; then as 𝑇
1
passes through

the value 𝑇
1

= 1, model (1) near the disease-free equilibrium
𝐸
0
has

(1) no saddle-node bifurcation;

(2) a transcritical bifurcation;

(3) no pitchfork bifurcation.

Proof. Since 𝑇
1

= 𝛽
1
𝑆
0
/(𝜇 + 𝛼

1
+ 𝛿 − 𝑝

1
) = 1; then 𝛽

1
=

(𝜇 + 𝛼
1
+ 𝛿 − 𝑝

1
)/𝑆
0
= 𝛽
∗

1
. Now straightforward computation

shows that the Jacobianmatrix ofmodel (1) at𝐸
0
with𝛽

1
= 𝛽
∗

1

has zero eigenvalue (𝜆
𝐼
1

= 0) and can be written as follows:

𝐽
0

=

[
[
[
[

[

−𝜇 −𝛽
∗

1
𝑆
0
− 𝑝
1

−𝛽
2
𝑆
0
+ (𝛾 − 𝑝

2
) 𝜂

0 0 0 0

0 0 𝛽
2
𝑆
0
− (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
) 0

0 𝛿 0 − (𝜂 + 𝜇)

]
]
]
]

]

.

(52)

Let 𝑉 = (V
1
, V
2
, V
3
, V
4
)
𝑇 be the eigenvector corresponding to

𝜆
𝐼
1

= 0. Thus 𝐽
0
𝑉 = 0 gives

𝑉 =

[
[
[
[
[

[

𝑎V
2

V
2

0

𝑏V
2

]
]
]
]
]

]

, (53)

where V
2
is any nonzero real number, 𝑎 = (𝜂𝛿/(𝜂 + 𝜇) − (𝜇 +

𝛼
1
+ 𝛿))/𝜇, and 𝑏 = 𝛿/(𝜂 + 𝜇).
Similarly, 𝑊 = (𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
)
𝑇 represents the eigen-

vector corresponding to eigenvalue 𝜆
𝐼
1

= 0 of 𝐽
𝑇

0
. Hence

𝐽
𝑇

0
𝑊 = 0 gives that

𝑊 =

[
[
[
[
[

[

0

𝑤
2

0

0

]
]
]
]
]

]

, (54)

and here 𝑤
2
is any nonzero real number. Now, since

𝑑𝑓

𝑑𝛽
1

= 𝑓
𝛽
1

(𝑋, 𝛽
1
) = (

−𝐼
1
𝑆

1 + 𝐼
1

,
𝐼
1
𝑆

1 + 𝐼
1

, 0, 0)

𝑇

, (55)

thus 𝑓
𝛽
1

(𝐸
0
, 𝛽
∗

1
) = (0, 0, 0, 0)

𝑇, which gives 𝑊
𝑇
𝑓
𝛽
1

(𝐸
0
, 𝛽
∗

1
) =

0.

Thus, according to Sotomayor’s theorem for local bifur-
cation, model (1) has no saddle-node bifurcation near DFE at
𝛽
1
= 𝛽
∗

1
.

Now since

𝐷𝑓
𝛽
1

(𝐸
0
, 𝛽
∗

1
) =

[
[
[
[

[

0 −𝑆
0

0 0

0 𝑆
0

0 0

0 0 0 0

0 0 0 0

]
]
]
]

]

, (56)

then,𝑊𝑇(𝐷𝑓
𝛽
1

(𝐸
0
, 𝛽
∗

1
)𝑉) = 𝑆

0
V
2
𝑤
2

̸= 0. Now, by substituting
𝐸
0
and 𝛽

∗

1
in (51) we get

𝐷
2
𝑓 (𝐸
0
, 𝛽
∗

1
) ⋅ (𝑉, 𝑉)

=

[
[
[
[
[

[

−2𝛽
∗

1
V
1
V
2
− 2𝛽
2
V
1
V
3
+ 2𝛽
∗

1
𝑆
0
(V
2
)
2

2𝛽
∗

1
V
1
V
2
− 2𝛽
∗

1
𝑆
0
(V
2
)
2

2𝛽
2
V
1
V
3

0

]
]
]
]
]

]

.

(57)

Therefore,

𝑊
𝑇
(𝐷
2
𝑓 (𝐸
0
, 𝛽
∗

1
) ⋅ (𝑉, 𝑉))

= (2𝛽
∗

1
V
1
V
2
− 2𝛽
∗

1
𝑆
0
(V
2
)
2
)𝑤
2

= [2𝛽
∗

1
(V
2
)
2
(𝑎 − 𝑆

0
)] 𝑤
2

̸= 0.

(58)

So, according to Sotomayor’s theorem model (1) has a
transcritical bifurcation at 𝐸

0
with parameter 𝛽

1
= 𝛽
∗

1
≈

(𝑇
1
= 1), while the pitchfork bifurcation cannot occur.

Note that similar results as those of Theorem 10 are
obtained at 𝑇

2
= 1 or 𝛽

2
= 𝛽
∗

2
= (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)/𝑆
0
.

Theorem 11. Assume that 𝑇
1

= 𝑇
2
; then model (1) near the

first disease-free equilibrium point 𝐸
1
= (𝑆, 0, 𝐼

2
, 0) has

(1) no saddle-node bifurcation;
(2) a transcritical bifurcation;
(3) no pitchfork bifurcation.

Proof. There are two cases; in the first case, it is assumed that
𝑇
1

= 𝑇
2

= 1; then straightforward computation shows that
𝐽(𝐸
1
) = 𝐽(𝐸

0
); that is, 𝐼

2
= 0. So (by Theorem 10) model (1)

has no bifurcation and then the proof is complete.
Now in the second case it is assumed that 𝑇

1
= 𝑇
2

̸= 1 or
equivalently𝛽

1
= 𝛽
∗∗

1
= 𝛽
2
(𝜇+𝛼
1
+𝛿−𝑝

1
)/(𝜇+𝛼

2
+𝛾−𝑝

2
). So

straightforward computation shows that the Jacobian matrix
of model (1) at 𝐸

1
with 𝛽

1
= 𝛽
∗∗

1
has zero eigenvalue (𝜆

𝐼
1

= 0)

and can be written as follows:

𝐽
1
=

[
[
[
[
[

[

−𝛽
2
𝐼
2
− 𝜇 −𝛽

∗∗

1
𝑆 − 𝑝
1

−𝛽
2
𝑆 + (𝛾 − 𝑝

2
) 𝜂

0 0 0 0

𝛽
2
𝐼
2

0 𝛽
2
𝑆 − (𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
) 0

0 𝛿 0 − (𝜂 + 𝜇)

]
]
]
]
]

]

. (59)
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Let 𝑋 = (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)
𝑇 be the eigenvector corresponding to

𝜆
𝐼
1

= 0, which satisfies 𝐽
1
𝑋 = 0, so we get

𝑋 =

[
[
[
[

[

0

𝑥
2

𝑎
1
𝑥
2

𝑏𝑥
2

]
]
]
]

]

, (60)

where 𝑥
2
is any nonzero real number, 𝑎

1
= −[(𝛽

1
𝑆 + 𝑝
1
) −

𝜂𝛿/(𝜂 + 𝜇)]/𝛽
1
𝑆 − (𝛾 − 𝑝

2
), and 𝑏 = 𝛿/(𝜂 + 𝜇).

Similarly the eigenvector 𝑌 = (𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
)
𝑇 that is

corresponding to the eigenvalue 𝜆
𝐼
1

= 0 of 𝐽𝑇
1
satisfies 𝐽𝑇

1
𝑌 =

0, so we get

𝑌 =

[
[
[
[

[

0

𝑦
2

0

0

]
]
]
]

]

, (61)

and here 𝑦
2
is any nonzero real number. Now, since

𝑑𝑓

𝑑𝛽
1

= 𝑓
𝛽
1

(𝑋, 𝛽
1
) = (

−𝐼
1
𝑆

1 + 𝐼
1

,
𝐼
1
𝑆

1 + 𝐼
1

, 0, 0)

𝑇

(62)

then by substituting the values of 𝐸
1
and 𝛽

∗∗

1
we obtain

that 𝑓
𝛽
1

(𝐸
1
, 𝛽
∗∗

1
) = (0, 0, 0, 0)

𝑇 and hence we get that
𝑌
𝑇
𝑓
𝛽
1

(𝐸
1
, 𝛽
∗∗

1
) = 0.

Thus according to Sotomayor’s theorem for local bifur-
cation, model (1) has no saddle-node bifurcation near 𝐸

1
at

𝛽
1
= 𝛽
∗∗

1
. Now since

𝐷𝑓
𝛽
1

(𝐸
1
, 𝛽
1
) =

[
[
[
[
[
[

[

0 −𝑆 0 0

0 𝑆 0 0

0 0 0 0

0 0 0 0

]
]
]
]
]
]

]

, (63)

then 𝑌
𝑇
(𝐷𝑓
𝛽
1

(𝐸
1
, 𝛽
∗∗

1
)𝑋) = 𝑆𝑥

2
𝑦
2

̸= 0. Thus by substituting
𝐸
1
and 𝛽

∗∗

1
in (51) we get

𝐷
2
𝑓 (𝐸
1
, 𝛽
∗∗

1
) ⋅ (𝑋,𝑋)

=

[
[
[
[
[
[

[

−2𝛽
∗∗

1
𝑥
1
𝑥
2
− 2𝛽
2
𝑥
1
𝑥
3
+ 2𝛽
∗∗

1
𝑆 (𝑥
2
)
2

2𝛽
∗∗

1
𝑥
1
𝑥
2
− 2𝛽
∗∗

1
𝑆 (𝑥
2
)
2

2𝛽
2
𝑥
1
𝑥
3

0

]
]
]
]
]
]

]

.

(64)

Therefore, [𝑌𝑇(𝐷2𝑓(𝐸
1
, 𝛽
∗∗

1
)⋅(𝑋,𝑋))] = −2𝛽

∗∗

1
𝑆(𝑥
2
)
2
𝑦
2

̸= 0.
So, model (1) has a transcritical bifurcation at 𝐸

1
with

parameter 𝛽
1
= 𝛽
∗∗

1
≈ (𝑇
1
= 𝑇
2
= 1), while the pitchfork bi-

furcation cannot occur and hence the proof is complete.

Theorem 12. Assume that condition (19b) holds and let 𝑇
1

=

𝑇
2
(1 + 𝐼̃

1
); then model (1) near the second disease-free

equilibrium point 𝐸
2
= (𝑆̃, 𝐼̃

1
, 0, 𝑅̃) undergoes

(1) no saddle-node bifurcation;
(2) a transcritical bifurcation;
(3) no pitchfork bifurcation.

Proof. From 𝑇
1
= 𝑇
2
(1 + 𝐼̃

1
) it is obtained that

𝛽
2
= 𝛽
∗∗

2
=

𝛽
1
(𝜇 + 𝛼

2
+ 𝛾 − 𝑝

2
)

(𝜇 + 𝛼
1
+ 𝛿 − 𝑝

1
) (1 + 𝐼̃

1
)

, (65)

and then straightforward computation shows that the Jaco-
bian matrix of model (1) at 𝐸

2
with 𝛽

2
= 𝛽
∗∗

2
has zero

eigenvalue (𝜆
𝐼
2

= 0) and can be written as follows:

𝐽
2

=

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛽
1
𝐼̃
1

1 + 𝐼̃
1

− 𝜇
−𝛽
1
𝑆̃

(1 + 𝐼̃
1
)
2
− 𝑝
1

−𝛽
∗∗

2
𝑆̃ + (𝛾 − 𝑝

2
) 𝜂

𝛽
1
𝐼̃
1

1 + 𝐼̃
1

−𝛽
1
𝑆̃ 𝐼̃
1

(1 + 𝐼̃
1
)
2

0 0

0 0 0 0

0 𝛿 0 − (𝜂 + 𝜇)

]
]
]
]
]
]
]
]
]
]
]
]

]

.

(66)

Further the eigenvector 𝐿 = (𝑙
1
, 𝑙
2
, 𝑙
3
, 𝑙
4
)
𝑇 that is correspond-

ing to 𝜆
𝐼
2

= 0 satisfies 𝐽
2
𝐿 = 0, so we get

𝐿 =

[
[
[
[
[
[
[
[
[

[

𝑆̃

1 + 𝐼̃
1

𝑙
2

𝑙
2

−𝐸

𝛽
∗∗

2
𝑆̃ − (𝛾 − 𝑝

2
)

𝑙
2

𝑏𝑙
2

]
]
]
]
]
]
]
]
]

]

, (67)

where 𝑙
2
is any nonzero real number and 𝐸 = (𝛽

1
𝑆̃/(1 +

𝐼̃
1
)
2
)(𝐼̃
1
+ 1) + 𝜇𝑆̃/1 + 𝐼̃

1
+ 𝑝
1
− 𝜂𝑏.

Similarly the eigenvector 𝐾 = (𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
)
𝑇 that is

corresponding to eigenvalue 𝜆
𝐼
2

= 0 of 𝐽𝑇
2
satisfies 𝐽

𝑇

2
𝐾 = 0,

so we get

𝐾 =

[
[
[
[
[

[

0

0

𝑘
3

0

]
]
]
]
]

]

(68)

and here 𝑘
3
is any nonzero real number. Now, since 𝑑𝑓/𝑑𝛽

2
=

𝑓
𝛽
2

(𝑋, 𝛽
2
) = (−𝐼

2
𝑆, 𝐼
2
𝑆, 0, 0)

𝑇, therefore 𝑓
𝛽
2

(𝐸
2
, 𝛽
∗∗

2
) =

(0, 0, 0, 0)
𝑇, which yields 𝐾

𝑇
𝑓
𝛽
2

(𝐸
2
, 𝛽
∗∗

2
) = 0. Consequently

according to Sotomayor’s theorem for local bifurcation,
model (1) has no saddle-node bifurcation near 𝐸

2
at 𝛽
2
=

𝛽
∗∗

2
.
Now since

𝐷𝑓
𝛽
2

(𝐸
2
, 𝛽
2
) =

[
[
[
[
[
[

[

0 0 −𝑆̃ 0

0 0 0 0

0 0 𝑆̃ 0

0 0 0 0

]
]
]
]
]
]

]

(69)
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then 𝐾
𝑇
(𝐷𝑓
𝛽
2

(𝐸
2
, 𝛽
∗∗

2
)𝐿) = 𝑆̃𝑙

3
𝑘
3

̸= 0. Now, by substituting
𝐸
2
and 𝛽

∗∗

2
in (51) we get

𝐷
2
𝑓 (𝐸
2
, 𝛽
∗∗

2
) ⋅ (𝐿, 𝐿)

=

[
[
[
[
[
[
[
[
[
[
[

[

−𝛽
1

(1 + 𝐼̃
1
)
2
𝑙
1
𝑙
2
− 2𝛽
∗∗

2
𝑙
1
𝑙
3
−

𝛽
1
𝑙
1
𝑙
2

(1 + 𝐼̃
1
)
2
+

2𝛽
1
𝑆 (𝑙
2
)
2

(1 + 𝐼̃
1
)
3

𝛽
1
𝑙
2

(1 + 𝐼̃
1
)
2
𝑙
1
𝑙
2
+

𝛽
1

(1 + 𝐼̃
1
)
2
𝑙
1
𝑙
2
−

2𝛽
1
𝑆 (𝑙
2
)
2

(1 + 𝐼̃
1
)
3

2𝛽
∗∗

2
𝑙
1
𝑙
3

0

]
]
]
]
]
]
]
]
]
]
]

]

.

(70)

Therefore, [𝐾𝑇(𝐷2𝑓(𝐸
2
, 𝛽
∗∗

2
) ⋅ (𝐿, 𝐿))] = 2𝛽

∗∗

2
𝑙
1
𝑙
3
𝑘
3

̸= 0.
Thus model (1) undergoes a transcritical bifurcation at 𝐸

2

with parameter 𝛽
2

= 𝛽
∗∗

2
≈ (𝑇
1

= 𝑇
2
(1 + 𝐼̃

1
)), while the

pitchfork bifurcation cannot occur.

Moreover, the following results are obtained too:

(1) Although 𝑇
1
= 𝑇
2

̸= 1 gives 𝛽
2
= 𝛽̀
∗∗

2
, model (1) does

not undergo any of the above types of bifurcation near
the equilibrium point 𝐸

1
with parameter 𝛽

2
= 𝛽̀
∗∗

2
.

(2) Although 𝑇
1

= 𝑇
2
(1 + 𝐼̃

1
) gives 𝛽

1
= 𝛽̀
∗∗

1
, model (1)

does not undergo any of the above types of bifurcation
near the equilibrium point 𝐸

2
with parameter 𝛽

1
=

𝛽̀
∗∗

1
.

(3) The determinant of the Jacobian matrix at 𝐸
3
, say

𝐽(𝐸
3
), cannot be zero and hence it has no real zero

eigenvalue. So there is no bifurcation near 𝐸
3
.

Keeping the above in view, in the following theoremwe detect
of the possibility of having Hopf bifurcation.

Theorem 13. Assume that condition (26a) holds and let the
following conditions be satisfied. Then model (1) undergoes
Hopf bifurcation around the endemic equilibrium point when
the parameter 𝛽

2
crosses a critical positive value 𝛽̀

∗

2
,

𝑁
2
> 0,

𝑁
4
< 0,

(71a)

𝜎
1
> 2𝜎
2
, (71b)

𝛿 < 𝑞
5
< {𝑞
4
𝑞
2
, 𝑞
4
𝑞
1
} , (71c)

𝑞
2
> 1, (71d)

and here 𝜎
1
= 𝑞
2

1
+ 𝑞
2

2
+ (𝜂 + 𝜇)

2 and 𝜎
2
= (𝑞
1
+ 𝑞
2
)(𝜂 + 𝜇) +

2𝑞
1
𝑞
2
+ 2𝑞
3
+ 2𝑞
4
, while 𝑁

2
and 𝑁

4
are given in the proof.

Proof. It is well known that, in order for Hopf bifurcation in
four-dimensional systems to occur, the following conditions
should be satisfied [21, 22]:

(1) The characteristic equation given in (28) has two real
and negative eigenvalues and two complex eigenval-
ues, say, 𝜆∗(𝛽

2
) = 𝜏
1
(𝛽
2
) ± 𝜏
2
(𝛽
2
).

(2) 𝜏
1
(𝛽̀
∗

2
) = 0.

(3) (𝑑/𝑑𝛽
2
)𝜏
1
(𝛽
2
)|
𝛽
2
=𝛽̀
∗

2

̸= 0 (The transversality condi-
tion).

Accordingly the first two points are satisfied if and only if

Δ
2
(𝛽̀
∗

2
) = 𝐴

1
𝐵
1
𝐶
1
− 𝐶
2

1
− 𝐴
2

1
𝐷
1
= 0,

𝐴
3

1
− 4Δ
1
> 0,

(72)

while the third condition holds provided that

𝑑

𝑑𝛽
2

𝜏
1
(𝛽
2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽
2
=𝛽̀
∗

2

=
− (Ψ (𝛽

2
)Θ (𝛽

2
) + Φ (𝛽

2
) Γ (𝛽
2
))

Ψ (𝛽
2
)
2
+ Φ (𝛽

2
)
2

̸= 0.

(73)

That means Ψ(𝛽
2
)Θ(𝛽
2
) + Φ(𝛽

2
)Γ(𝛽
2
) ̸= 0.

Here

Ψ (𝛽
2
) = (4𝜏

3

1
− 12𝜏
1
𝜏
2

2
) + 3𝐴

1
(𝜏
2

1
− 𝜏
2

2
) + 2𝐵

1
𝜏
1

+ 𝐶
1
,

Φ (𝛽
2
) = (12𝜏

2

1
𝜏
2
− 4𝜏
3

2
) + 6𝐴

1
𝜏
1
𝜏
2
+ 2𝐵
1
𝜏
2
,

Θ (𝛽
2
) = ̇𝐴

1
(𝜏
3

1
− 3𝜏
1
𝜏
2

2
) + ̇𝐵
1
(𝜏
2

1
− 𝜏
2

2
) + 𝐶̇
1
𝜏
1

+ ̇𝐷
1
,

Γ (𝛽
2
) = ̇𝐴

1
(3𝜏
2

1
𝜏
2
− 𝜏
3

2
) + 2 ̇𝐵

1
𝜏
1
𝜏
2
+ 𝐶̇
1
𝜏
2
.

(74)

Now, straightforward computation shows the condition

Δ
2
(𝛽̀
∗

2
) = 0

gives that 𝑁
1
𝛽
3

2
+ 𝑁
2
𝛽
2

2
+ 𝑁
3
𝛽
2
+ 𝑁
4
= 0,

(75)

where

𝑁
1
= [𝑞
2
(𝜂 + 𝜇) ((𝜂 + 𝜇) + 𝑞

2
) + (𝜂 + 𝜇) (𝜇 + 𝛼

2
) ((𝜂

+ 𝜇) + 2𝑞
2
+ (𝜇 + 𝛼

2
))] 𝐼
∗3

2
> 0,

𝑁
2
= [(𝜂 + 𝜇) [𝑞

2
(𝜂 + 𝜇) (3𝑞

6
+ 2 + (𝜂 + 𝜇))

+ 𝑞
3
((𝜂 + 𝜇) + 2 (𝜇 + 𝛼

2
) + 2𝑞

2
) + (𝜇 + 𝛼

2
)

⋅ [𝑞
6
(2 (𝜂 + 𝜇) + (𝜇 + 𝛼

2
))

+ 𝑞
2
((𝜂 + 𝜇) + 4𝑞

6
+ 𝑞
2
)] + 𝑞

2

2
(3𝑞
6
+ 𝑞
2
) + (𝜇

+ 𝛼
2
) (𝜂 + 𝜇)

2
− 𝑞
5
] + (𝜇 + 𝛼

2
) [𝑞
2

2
(1 + 𝑞

2
)

+ 𝑞
2
(𝑞
3
+ 𝑞
6
(𝜇 + 𝛼

2
))] − 𝑞

2
𝑞
5
] 𝐼
∗2

2
,
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𝑁
3
= [(𝜂 + 𝜇)

2
[𝑞
3

2
+ 𝑞
3
(2𝑞
6
+ 2𝑞
2
+ (𝜂 + 𝜇))

+ 3𝑞
6
𝑞
2
− 𝑞
5
+ (𝑞
6
+ 𝑞
2
) 𝑞
6
(𝜇 + 𝛼

2
)] + (𝜂 + 𝜇)

⋅ [𝑞
6
𝑞
2

2
(3𝑞
6
+ 2𝑞
2
) + (2𝑞

6
+ 𝑞
2
) [2𝑞
2
𝑞
3

+ 𝑞
2
(𝜂 + 𝜇)

2
] + (𝜇 + 𝛼

2
) [1 + 𝑞

6
(𝜂 + 𝜇)

2

+ (2𝑞
6
+ 𝑞
2
) (𝑞
6
𝑞
2
+ 𝑞
3
− 2𝑞
6
𝑞
5
) − 𝑞
2
𝑞
5
]] + 𝑞

2
(𝜇

+ 𝛼
2
) [𝑞
6
𝑞
2
(1 + 𝑞

2
) + (𝑞

6
+ 𝑞
2
) 𝑞
3
+ 1] − (𝑞

2
(2𝑞
6

+ 𝑞
2
) + 𝑞
3
) 𝑞
5
] 𝐼
∗

2
,

𝑁
4
= [(𝜂 + 𝜇)

2
[𝑞
6
𝑞
2
(𝑞
2

6
+ 𝑞
6
𝑞
2
+ 𝑞
2

2
) + 𝑞
3
𝑞
6
(𝑞
6

+ 2𝑞
2
) + (𝑞

6
+ 𝑞
2
) (𝜂 + 𝜇) (𝑞

6
𝑞
2
+ 𝑞
3
) + 𝑞
3
𝑞
2

2

− 𝑞
2
] + (𝑞

6
+ 𝑞
2
) (𝜂 + 𝜇) [𝑞

2

6
𝑞
2

2
+ 2𝑞
6
𝑞
2
𝑞
3
+ 𝑞
2

3
]

+ ((𝜂 + 𝜇) (𝑞
3
− 𝑞
6
𝑞
2
) − 𝑞
6
(𝜂 + 𝜇) (𝑞

6
+ (𝜂 + 𝜇))

− 𝑞
2

2
(𝜂 + 𝜇) − (𝑞

6
+ 𝑞
2
) (𝑞
6
𝑞
2
+ 𝑞
3
)) 𝑞
5
− 𝑞
2

5
]

(76)

with 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, and 𝑞

5
given in (28) and 𝑞

6
= 𝑞
1
− 𝛽
2
𝐼
∗

2
.

Clearly, fromcondition (71a) there is unique positive root, say,
𝛽
2
= 𝛽̀
∗

2
. Consequently by using Δ

2
= 0 in the characteristic

equation and then doing some algebraic computation we get
four roots,

𝜆
1,2

(𝛽̀
∗

2
) = ±𝑖√

𝐶
1

𝐴
1

= 𝜏
2
(𝛽̀
∗

2
) ,

𝜆
3,4

=
1

2
(−𝐴
1
± √𝐴

2

1
− 4

Δ
1

𝐴
1

) .

(77)

Now, it is easy to verify that 𝜆
3
and 𝜆

4
are real and negative

provided that (71b).
Further for 𝛽

2
∈ (𝛽̀
∗

2
− 𝜖, 𝛽̀

∗

2
+ 𝜖) the general form of

complex eigenvalues can be written as

𝜆
1
= 𝜏
1
(𝛽
2
) + 𝑖𝜏
2
(𝛽
2
) ,

𝜆
2
= 𝜏
1
(𝛽
2
) − 𝑖𝜏
2
(𝛽
2
) .

(78)

Substituting 𝜆(𝛽
2
) = 𝜏

1
(𝛽
2
) + 𝑖𝜏

2
(𝛽
2
) into characteristic

equation and after that calculating the derivative with respect
to 𝛽
2
and then comparing the real and imaginary parts give

that

Ψ (𝛽
2
) ̇𝜏
1
(𝛽
2
) − Φ (𝛽

2
) ̇𝜏
2
(𝛽
2
) = −Θ (𝛽

2
) ,

Φ (𝛽
2
) ̇𝜏
1
(𝛽
2
) + Ψ (𝛽

2
) ̇𝜏
2
(𝛽
2
) = −Γ (𝛽

2
) .

(79)

Moreover, by solving the above linear system for ̇𝜏
1
(𝛽
2
) and

̇𝜏
2
(𝛽
2
) then we get that

Ψ (𝛽
2
)Θ (𝛽

2
) + Φ (𝛽

2
) Γ (𝛽
2
) = 𝑞
1
𝑞
2
[𝑞
3
(𝜇 + 𝛼

2
)

+ 2 (𝜂 + 𝜇)
3

+ (𝜇 + 𝛼
2
) (𝜂 + 𝜇) ((𝜂 + 𝜇) + (3𝑞

2
+ 3𝑞
1
− 1))]

+ 𝑞
2
𝑞
3
[𝑞
2
(𝜇 + 𝛼

2
)

+ (𝜂 + 𝜇) ((𝜇 + 𝛼
2
) + (2𝑞

2
+ 2𝑞
1
− 1))] + 𝑞

1
(𝜂

+ 𝜇) (𝜇 + 𝛼
2
) [(𝜂 + 𝜇) + 2𝑞

3
+ (𝜂 + 𝜇)

2
+ 𝑞
4
] + (𝜂

+ 𝜇)
3
[𝑞
2
(𝜇 + 𝛼

2
) + 𝑞
2

2
+ 𝑞
3
+ 𝑞
4
] + 𝑞
5
(𝜇 + 𝛼

2
)

⋅ [2𝑞
2
+ (𝜂 + 𝜇)] + 𝑞

1
𝑞
3
(𝜂 + 𝜇)

2
+ 𝑞
2
(𝜂 + 𝜇) (𝜇

+ 𝛼
2
) [𝑞
2
(𝑞
2
− 1) + (𝜂 + 𝜇) (2𝑞

2
+ 2𝑞
1
− 1)]

+ 𝑞
1
(𝜇 + 𝛼

2
) [𝑞
1
𝑞
2

2
+ 𝑞
3

2
+ 𝑞
2
𝑞
4
− 𝑞
5
] + 𝑞
1
(𝜂 + 𝜇)

⋅ [2𝑞
1
𝑞
2
(1 + 𝑞

2
) + 2𝑞

3

2
+ 𝑞
2
𝑞
4
− 𝑞
5
] + (𝑞

2
𝑞
4
− 𝑞
5
)

⋅ (𝑞
1
𝑞
2
+ 𝑞
2

2
) + (𝜂 + 𝜇)

2
[3𝑞
1
𝑞
2

2
+ 𝑞
3

2
+ 𝑞
1
𝑞
4
− 𝑞
5
] .

(80)

Thus it is easy to verify that Ψ(𝛽
2
)Θ(𝛽
2
) + Φ(𝛽

2
)Γ(𝛽
2
) ̸= 0

provided that (71c) and (71d).Thus, the proof is complete.

7. Numerical Simulations

In this section, the global dynamics of model (1) is investi-
gated numerically for different sets of initial values and dif-
ferent sets of parameters values. The objectives of such inves-
tigation are to determine the effect of varying the parameters
values and confirm our obtained results. It is observed that,
for the following biologically feasible set of hypothetical
parameters values

Λ = 20,

𝛽
1
= 0.75,

𝛽
2
= 0.1,

𝛾 = 0.75,

𝑝
1
= 0.01,

𝑝
2
= 0.01

𝜇 = 0.3,

𝜂 = 0.5,

𝛼
1
= 0.1,

𝛼
2
= 0.6,

𝛿 = 0.7,

(81)
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Figure 1: Globally asymptotically stable positive equilibrium point of model (1) for the parameters set (81), started from different sets of initial
point.

the solution of model (1) approaches asymptotically to the
endemic equilibrium point 𝐸

3
= (16.4, 10.28, 9.18, 8.99) as

shown in Figure 1, started from different sets of initial points.
Clearly Figure 1 confirms our obtained analytical results

regarding existence of a globally asymptotically stable pos-
itive equilibrium point when the parameters values are
satisfying 𝑅

1
> 𝑅
2
> 1. On the other hand, model (1) for the

following set of hypothetical data approaches asymptotically
to the DFE as shown in Figure 2:

Λ = 20,

𝛽
1
= 0.05,

𝛽
2
= 0.05,

𝛾 = 0.6,

𝑝
1
= 0.01,

𝑝
2
= 0.03,

𝜂 = 0.5,

𝜇 = 0.9,

𝛼
1
= 0.1,

𝛼
2
= 0.1,

𝛿 = 0.3.

(82)
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Figure 2: Time series of the solution of model (1) that approaches
asymptotically to DFE for the data (82).

It is easy to verify that for the data (82) we have𝑅
0
= 0.86 < 1,

and the solution approaches to 𝐸
0
= (22.22, 0, 0, 0).

Now in order to investigate the effect of varying one
parameter value at a time on the dynamical behavior ofmodel
(1), the following results are observed.

(i) Varying of the parameters values (Λ, 𝛾, 𝑝
2
, 𝜂, 𝛼
1
, 𝛼
2
, 𝛿)

does not affect the dynamical behavior of model (1);
that is, the system still approaches to coexistence
equilibrium point.

(ii) For the data (81) with 𝛽
1

≤ 0.015, the solution
of model (1) approaches asymptotically to 𝐸

1
=

(𝑆, 0, 𝐼
2
, 0) in the interior of positive quadrant of 𝑆𝐼

2
-

plane with 𝑅
1

< 1 < 𝑅
2
. However for 0.015 <

𝛽
1
< 0.066 the solution of the model still approaches

asymptotically to 𝐸
1
even when 1 < 𝑅

1
< 𝑅
2
. Finally

when 𝛽
1
≥ 0.066 the solution of model (1) approaches

to coexistence equilibrium point with 1 < 𝑅
2
< 𝑅
1
as

shown in Figure 3.
(iii) Similar results are obtained in case of varying the

parameter 𝛽
2
keeping the rest of parameters values

in (81) fixed. In fact for 𝛽
2

≤ 0.024, we have 𝑅
2

<

1 < 𝑅
1
, and the solution of model (1) approaches

asymptotically to 𝐸
2

= (𝑆, 𝐼
1
, 0, 𝑅). However for

0.024 < 𝛽
2

< 0.06, we have 1 < 𝑅
2

< 𝑅
1
, and it is

observed that the solution of model (1) approaches
asymptotically to 𝐸

2
= (𝑆, 𝐼

1
, 0, 𝑅) too, while when

𝛽
2

≥ 0.06 the solution of model (1) approaches
asymptotically to 𝐸

3
= (𝑆, 𝐼

1
, 𝐼
2
, 𝑅) as shown in

Figure 4.
(iv) Now decreasing the parameter 𝜇, keeping the rest

of the parameters values in (81) fixed, gives similar
dynamical behavior as that of varying 𝛽

2
. Further it

is observed that when 𝜇 > 0.9, for which 𝑅
2
< 1 < 𝑅

1
,

the solution of model (1) approaches asymptotically
to 𝐸
2

= (𝑆, 𝐼
1
, 0, 𝑅); however when 0.57 < 𝜇 < 0.9,

we have 1 < 𝑅
2

< 𝑅
1
, and the solution of model

(1) still approaches to 𝐸
2

= (𝑆, 𝐼
1
, 0, 𝑅). Finally, for

𝜇 ≤ 0.57 that satisfies 1 < 𝑅
2

< 𝑅
1
, the solu-

tion of model (1) approaches asymptotically to 𝐸
3

=

(𝑆, 𝐼
1
, 𝐼
2
, 𝑅). Clearly this confirmed our obtained exis-

tence conditions (10) and (12) as well as stability
conditions of these points.

(v) Finally, varying the parameter 𝑝
1
, keeping the rest of

the parameters values in (81) fixed, showed that, for
𝑝
1

≥ 0.6, that satisfies 1 < 𝑅
2

< 𝑅
1
, the solution

of model (1) approaches asymptotically to 𝐸
2

= (𝑆,
𝐼
1
, 0, 𝑅); however when 𝑝

1
< 0.6, which satisfies

1 < 𝑅
2
< 𝑅
1
too, the solution of model (1) approaches

asymptotically to 𝐸
3

= (𝑆, 𝐼
1
, 𝐼
2
, 𝑅) as shown in

Figure 5.

8. Conclusion

In this paper, we proposed and analyzed an epidemic model
involving vertical and horizontal transmission of infection
with nonlinear incidence rate. It is assumed that the rates
of infections 𝑝

1
, 𝑝
2
are less than the recovery rates 𝛿

and 𝛾, respectively. According to the diseases in model (1)
the population is divided into four subclasses: susceptible
individuals that are represented by 𝑆(𝑡), infected individuals
for 𝑆𝐼𝑅𝑆-type of disease that are represented by 𝐼

1
(𝑡), infected

individuals for 𝑆𝐼𝑆-type of disease that are represented by
𝐼
2
(𝑡), and recovery individuals that are denoted by 𝑅(𝑡). The

boundedness and invariant of the model are discussed. The
basic reproduction number of the model and the associated
threshold parameter values, namely, 𝑇

𝑖
, 𝑖 = 1, 2, are deter-

mined. It is observed that if the basic reproduction number
is less than unity then the diseases are eradicated from
the model. The competitive exclusion principle occurred in
model (1) such that only the second disease-free equilibrium
point appeared in case of 𝑅

2
< 1 < 𝑅

1
. However only the first

disease-free equilibrium point appeared in case of 𝑅
1
< 1 <

𝑅
2
. Finally the coexistence of both the diseases occurred in

case of 1 < 𝑅
2

< 𝑅
1
and the sufficient condition (12) holds.

The dynamical behavior of model (1) has been investigated
locally as well as globally using Routh-Hurwitz criterion
and Lyapunov function, respectively. The local bifurcations
of model (1) and the Hopf bifurcation around the endemic
equilibriumpoint are studied. Finally to understand the effect
of varying each parameter on the global dynamics of system
(1) and to confirm our obtained analytical results, model (1)
has been solved numerically and the following results are
obtained for the set of hypothetical parameters values given
by (81).

(1) Model (1) approaches asymptotically to a globally
asymptotically stable point 𝐸

3
= (16.4, 10.28, 9.18,

8.99).
(2) Varying one of the parameters values (Λ, 𝛾, 𝑝

2
, 𝜂,

𝛼
1
, 𝛼
2
, 𝛿) at a time keeping other parameters fixed has

no effect on the dynamical behavior of the model.
(3) As the infection rate of the first disease (𝛽

1
) decreases

keeping other parameters fixed as in (81) the solution
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Figure 3: Time series of the solution ofmodel (1) for the data given by (81). (a) For 𝛽
1
= 0.015 themodel approaches to𝐸

1
= (16.4, 0, 16.75, 0).

(b) For 𝛽
1
= 0.06 the model approaches to the same point. (c) For 𝛽

1
= 0.3 the model approaches to 𝐸

3
= (16.4, 3.51, 14.1, 3.07).
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Figure 4: Time series of the solution of model (1) for the data given by (81). (a) For 𝛽
2

= 0.024 the model approaches to 𝐸
2

=

(27.33, 17.80, 0, 15.5). (b) For 𝛽
2

= 0.059 the model approaches to the same point. (c) For 𝛽
2

= 0.065 the model approaches to 𝐸
3

=

(25.2, 16.3, 1.76, 14.3).
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Figure 5: Time series of the solution ofmodel (1) for the data given by (81). (a) For𝑝
1
= 0.6 themodel approaches to𝐸

2
= (15.9, 22.9, 0, 20.08).

(b) For 𝑝
1
= 0.5 the model approaches to 𝐸

3
= (16.4, 19.5, 2.40, 17.06).

of model (1) approaches asymptotically to the equilib-
rium point 𝐸

1
= (16.4, 0, 16.75, 0). However in case

of increasing this parameter the model is still globally
asymptotically stable in the interior of R4

+
.

(4) As the infection rate of the second disease (𝛽
2
)

decreases keeping other parameters fixed as in (81)
the solution of model (1) approaches asymptotically
to the equilibrium point 𝐸

2
= (27.33, 17.80, 0, 15.5).

However in case of increasing this parameter the
model is still globally asymptotically stable in the
interior of R4

+
.

(5) As the mortality rate (𝜇) increases keeping other
parameters fixed as in (81) the solution of model (1)
approaches asymptotically to the equilibrium point
𝐸
2

= (13.8, 5.16, 0, 2.5) and when 𝜇 decreases the
model is still globally asymptotically stable in the
interior of R4

+
. Further, it is observed that 𝑝

1
has the

same effect as 𝜇 on the dynamical behavior of model
(1).

(6) For the parameter set given in (82) the solution of
model (1) approaches asymptotically to DFE.

(7) Finally, although for our selected parameters values
model (1) does not undergo periodic dynamics, the
model still has possibility to have periodic dynamics
for other sets of parameters, especially Hopf bifurca-
tion existing analytically.
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