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It has been proved that, in the classical planar circular restricted three-body problem, the degenerate saddle point processes
transverse homoclinic orbits. Since the standard Smale-Birkhoff theoremcannot be directly applied to indicate the chaotic dynamics
of the Smale horseshoe type, we in this note alternatively apply the Conley-Moser conditions to analytically prove the existence of
a Smale horseshoe in this classical restricted three-body problem.

1. Introduction and Preliminaries

Few bodies problems [1–7] have been studied for long time
in celestial mechanics, either as simplified models of more
complex planetary systems or as benchmark models where
new mathematical theories can be tested. The three-body
problemhas been the source of inspiration and study in celes-
tial mechanics since Newton and Euler [8–14]. Especially,
the following classical planar circular restricted three-body
model has been extensively studied in the literature. Let two
particles 𝑃

1
and 𝑃

2
, of mass 1 − 𝜇 and 𝜇, move uniformly

in a circular orbit about their common center of mass with
angular velocity𝜔.The orbit is located in the𝑂𝑥𝑦 plane of the
inertial frame of reference and the common center of mass is
in the origin. The particle 𝑃

3
of infinitesimal mass 𝑚

3
moves

in the gravitational field generated by 𝑃
1
and 𝑃

2
. Note that

since the mass of 𝑃
3
is so small, its effects on other three

particles can be ignored. Without loss of generality, assume
that, in the 𝑂𝑥𝑦 plane of the rotating frame of reference, the
particles 𝑃

1
and 𝑃

2
rest at the points (𝜇, 0) and (𝜇 − 1, 0),

respectively. By denoting their polar coordinates by 𝜌 and
𝜑 and using the polar angle 𝜏 = 𝜔𝑡 as a new independent
variable, the equation of motion of the infinitesimal particle
𝑃
3
can be written as follows:

𝑑𝜌

𝑑𝜏
= 𝑝
𝜌
,

𝑑𝑝
𝜌

𝑑𝜏
=

𝑝
2

𝜑

𝜌3
−

(1 − 𝜇) (𝜌 − 𝜇 cos𝜑)

(𝜌2 + 𝜇2 − 2𝜌𝜇 cos𝜑)3/2

−
𝜇 [𝜌 + (1 − 𝜇) cos𝜑]

[𝜌2 + (1 − 𝜇)
2

+ 2𝜌 (1 − 𝜇) cos𝜑]
3/2

,

𝑑𝜑

𝑑𝜏
=

𝑝
𝜑

𝜌2
− 1,

𝑑𝑝
𝜑

𝑑𝜏
= −𝜇 (1 − 𝜇)

× 𝜌 sin𝜑[

[

1

[𝜌2 + 𝜇2 − 2𝜌𝜇 cos𝜑]3/2

−
1

[𝜌2 + (1 − 𝜇)
2

+ 2𝜌 (1 − 𝜇) cos𝜑]
3/2

]

]

,

(1)

where 𝑝
𝜌
and 𝑝

𝜑
are momenta canonically conjugate to the

coordinates 𝜌 and 𝜑, respectively.
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The Hamiltonian of the system (1) is

𝐻 =
1

2
(𝑝
2

𝜌
+

𝑝
2

𝜑

𝜌2
− 2𝑝
𝜑
)

−
1 − 𝜇

(𝜌2 + 𝜇2 − 2𝜌𝜇 cos𝜑)1/2

−
𝜇

(𝜌2 + (1 − 𝜇)
2

+ 2𝜌 (1 − 𝜇) cos𝜑)
1/2

.

(2)

For the above classical model, Xia [4] has showed, by
proper coordinate change for transforming the points at
infinity to the origin (i.e, the McGehee transformation [2]),
that there is a periodic solution at infinity. Moreover, from
[2, 4], we know that this periodic solution is a degenerate
saddle in the sense [2] that, for the Poincaré map of the
periodic orbit introduced at infinity, its derivative (i.e., the
Jacobian) at the origin is the identity.

Further, Xia [4] and Zhu and Xiang [12] both proved the
existence of transversal homoclinic orbits by the Melnikov
method to the periodic solution at infinity, which corre-
sponds to the origin under the coordinate change. However,
since the origin is a degenerate fixed point, the standard
Smale-Birkhoff theorem [15] cannot be directly applied to
indicate the existence of a Smale horseshoe. This problem
has also been pointed out by Dankowicz and Holmes [6]
and Llibre and Perez-Chavela [8].Thus, in this present note,
we try to alternatively apply the Conley-Moser conditions
to analytically prove the existence of a Smale horseshoe in
the above classical model. For this, we introduce the Conley-
Moser conditions [16] as follows.

Let𝑓 : 𝐷 󳨃→ R2 be an invertiblemap, where𝐷 = {(𝑥, 𝑦) ∈

R2 | 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1}, and 𝑓 is at least 𝐶1. For two given
𝜇V > 0 and 𝜇

ℎ
> 0, let 𝐾 = {1, 2, . . . , 𝑁} (𝑁 ≥ 2) be an index

set, let𝐻
1
, . . . , 𝐻

𝑁
be the𝑁 disjoint 𝜇

ℎ
-horizontal strips, and

𝑉
1
, . . . , 𝑉

𝑁
be the𝑁 disjoint 𝜇V-vertical strips. For each 𝑖, 𝑗 ∈

𝐾, denote𝑓(𝐻
𝑖
)⋂𝐻

𝑗
as𝑉
𝑗𝑖
and𝐻

𝑖
⋂𝑓
−1
(𝐻
𝑗
) as𝐻

𝑖𝑗
. Clearly,

𝐻
𝑖𝑗
= 𝑓
−1
(𝑉
𝑗𝑖
). DefineH = ⋃

𝑖,𝑗∈𝐾
𝐻
𝑖𝑗
andV = ⋃

𝑖,𝑗∈𝐾
𝑉
𝑗𝑖
. It

is also obvious that 𝑓(H) = V.
For an arbitrary point 𝑧

0
= (𝑥

0
, 𝑦
0
) ∈ H⋃V, let

(𝜉
𝑧0
, 𝜂
𝑧0
) be a vector emanating from the point 𝑧

0
in the

tangent space of 𝑧
0
. The stable sector at 𝑧

0
is then defined as

S𝑠
𝑧0
= {(𝜉
𝑧0
, 𝜂
𝑧0
) ∈ R2 | |𝜂

𝑧0
| ≤ 𝜇
ℎ
|𝜉
𝑧0
|}. Similarly, the unstable

sector at 𝑧
0
is defined as S𝑢

𝑧0
= {(𝜉

𝑧0
, 𝜂
𝑧0
) ∈ R2 | |𝜉

𝑧0
| ≤

𝜇V|𝜂𝑧0 |}. By taking the union of the stable and unstable sectors
over all points in H and V, we can define sector bundles as
follows:

S
𝑠

H = ⋃

𝑧0∈H

S
𝑠

𝑧0
, S

𝑠

V = ⋃

𝑧0∈V

S
𝑠

𝑧0
;

S
𝑢

H = ⋃

𝑧0∈H

S
𝑢

𝑧0
, S

𝑢

V = ⋃

𝑧0∈V

S
𝑢

𝑧0
.

(3)

Then, the Conley-Moser conditions for the map 𝑓 are
described by the following two assumptions.

Assumption 1. 0 ≤ 𝜇V𝜇ℎ < 1 and, for each 𝑖 ∈ {1, 2, . . . , 𝑁},
𝑓 maps 𝐻

𝑖
homeomorphically onto 𝑉

𝑖
; that is, 𝑓(𝐻

𝑖
) = 𝑉

𝑖
.

Moreover, the horizontal boundaries of𝐻
𝑖
are mapped to the

horizontal boundaries of𝑉
𝑖
and the vertical boundaries of𝐻

𝑖

are mapped to the vertical boundaries of 𝑉
𝑖
.

Assumption 2. 𝐷𝑓(S𝑢H) ⊂ S𝑢V and 𝐷𝑓
−1
(S𝑠V) ⊂ S𝑠H.

Moreover, there exists a positive number 𝜆 satisfying 0 < 𝜆 <

1 − 𝜇V𝜇ℎ such that

(1) if (𝜉
𝑧0
, 𝜂
𝑧0
) ∈ S𝑢

𝑧0
and (𝜉

𝑓(𝑧0)
, 𝜂
𝑓(𝑧0)

) ≐ 𝐷𝑓(𝑧
0
)(𝜉
𝑧0
,

𝜂
𝑧0
) ∈ S𝑢
𝑓(𝑧0)

, then |𝜂
𝑓(𝑧0)

| ≥ (1/𝜆)|𝜂
𝑧0
|;

(2) if (𝜉
𝑧0
, 𝜂
𝑧0
) ∈ S𝑠

𝑧0
and (𝜉

𝑓
−1
(𝑧0)

, 𝜂
𝑓
−1
(𝑧0)

) ≐ 𝐷𝑓
−1
(𝑧
0
)

(𝜉
𝑧0
, 𝜂
𝑧0
) ∈ S𝑠
𝑓
−1
(𝑧0)

, then |𝜉
𝑓
−1
(𝑧0)

| ≥ (1/𝜆)|𝜉
𝑧0
|.

Based on Assumptions 1 and 2, we directly have the
following.

Lemma3 (see [16]). If themap𝑓 satisfiesAssumptions 1 and 2,
then 𝑓 has an invariant Cantor set, on which it is topologically
conjugate to a full shift on𝑁 symbols and has

(i) a countable infinity of periodic orbits of arbitrarily high
period;

(ii) an uncountable infinity of nonperiodic orbits;

(iii) a dense orbit.

Remark 4 (see [16–18]). If 𝑓 satisfies Assumption 2, we call
that 𝑓 satisfies the (𝜇

ℎ
, 𝜇V)-cone condition.

2. Main Result

In this section, we will analytically prove the existence of
a Smale horseshoe in the classical planar circular restricted
three-body problem introduced in Section 1, arriving at the
following theorem.

Theorem 5. For the classical planar circular restricted three-
body problem introduced in Section 1, when the mass ratio 𝜇 is
sufficiently small, there exists a Smale horseshoe and thus the
system (1) processes chaotic dynamics of the Smale horseshoe
type.

In order to proveTheorem 5, we will construct an invert-
ible map 𝑓 and then verify that this 𝑓 satisfies the Conley-
Moser conditions.

2.1. Construction of an Invertible Map 𝑓. According to
the McGehee transformation 𝜌 = 1/𝑥

2, 𝑝
𝜌

= 𝑦 [2],
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the Hamiltonian of the system (1) can be reformulated as
follows:

𝐻 =
1

2
(𝑦
2
+ 𝑥
4
𝑝
2

𝜑
− 2𝑝
𝜑
)

−
(1 − 𝜇) 𝑥

2

(1 + 𝑥4𝜇2 − 2𝑥2𝜇 cos𝜑)1/2

−
𝜇𝑥
2

[1 + 𝑥4(1 − 𝜇)
2

+ 2𝑥2 (1 − 𝜇) cos𝜑]
1/2

.

(4)

Thus, the system (1) can be reformulated as

𝑑𝑥

𝑑𝜏
= −

1

2
𝑥
3
𝑦,

𝑑𝑦

𝑑𝜏
= 𝑝
2

𝜑
𝑥
6
−

(1 − 𝜇) (1 − 𝜇𝑥
2 cos𝜑) 𝑥4

(1 + 𝜇2𝑥4 − 2𝜇𝑥2 cos𝜑)3/2

−

𝜇 [1 + (1 − 𝜇) 𝑥
2 cos𝜑] 𝑥4

[1 + (1 − 𝜇)
2

𝑥4 + 2 (1 − 𝜇) 𝑥2 cos𝜑]
3/2

,

𝑑𝜑

𝑑𝜏
= 𝑝
𝜑
𝑥
4
− 1,

𝑑𝑝
𝜑

𝑑𝜏
= 𝜇 (1 − 𝜇) 𝑥

4

× sin𝜑[

[

1

[1 + (1 − 𝑢)
2
𝑥4 + 2 (1 − 𝜇) 𝑥2 cos𝜑]

3/2

−
1

(1 + 𝜇2𝑥4 − 2𝜇𝑥2 cos𝜑)3/2
]

]

.

(5)

For the energy surface 𝐻 = ℎ, where ℎ is a constant,
there exists a 2𝜋-periodic solution with respect to 𝜑; that is,
(𝑥, 𝑦, 𝑝

𝜑
) = (0, 0, −ℎ). Further, near this periodic solution,

by solving the Jacobi integral for 𝑝
𝜑
, we have 𝑝

𝜑
= −ℎ +

]
1
(𝑥, 𝑦, 𝜑), where ]

1
(𝑥, 𝑦, 𝜑) is second order in 𝑥 and 𝑦 and

2𝜋-periodic with respect to 𝜑.
Thus, the system (5) can be further reformulated as

𝑑𝑥

𝑑𝜏
= −

1

2
𝑥
3
𝑦,

𝑑𝑦

𝑑𝜏
= − (1 − 2𝜇) (𝑥

4
+ 𝑔
1
(𝑥, 𝑦, 𝜑, 𝜇)) ,

𝑑𝜑

𝑑𝜏
= −1 + 𝑔

2
(𝑥, 𝑦, 𝜑, 𝜇) ,

(6)

where 𝑔
1
and 𝑔

2
are 2𝜋-periodic with respect to 𝜑, 𝑔

1
is the

third order in (𝑥, 𝑦), and 𝑔
2
is fourth order in (𝑥, 𝑦).

From [4, 12], the origin (0, 0) can be regarded as a periodic
orbit 𝛾

𝜇
with period 2𝜋 with respect to 𝜑 in the system (6).

Moreover, the Poincaré map of the periodic orbit (𝑥, 𝑦) =

(0, 0) has the form

𝑃
0
: 𝑥 󳨀→ 𝑥 + 𝑘

1
𝑥
3
(𝑦 + 𝑟

1
(𝑥, 𝑦))

𝑦 󳨀→ 𝑦 + 𝑘
2
𝑥
3
(𝑥 + 𝑟

2
(𝑥, 𝑦)) ,

(7)

where 𝑘
1
= 𝜋, 𝑘

2
= 2𝜋(1−2𝜇), and 𝑟

1
, 𝑟
2
are real analytic and

contain terms of at least second order in (𝑥, 𝑦).
Using polar coordinates (𝜌, 𝜃), the Poincaré map 𝑃

0
can

be reformulated as

𝑃
0
: 𝑟 󳨀→ 𝑟 − 𝑘

1
𝑟
4cos4𝜃 ((4𝜇 − 3) sin 𝜃 + 𝑜 (𝑟))

𝜃 󳨀→ 𝜃 − 𝑘
2
𝑟
3cos3𝜃

× (
1

2 (1 − 2𝜇)
sin2𝜃 − cos2𝜃 + 𝑜 (𝑟)) .

(8)

According to formula (8), by making the following linear
transformation:

𝑥 = 𝑢 + V,

𝑦 = −√2 (1 − 2𝜇) (𝑢 − V) ,
(9)

the system (6) can be reformulated as follows:

𝑑𝑢

𝑑𝜏
= (𝑢 + V)3𝑘

3
𝑢,

𝑑V
𝑑𝜏

= −(𝑢 + V)3 (𝑘
3
V + ℎ
1
(𝑢, V, 𝜑, 𝜇)) ,

𝑑𝜑

𝑑𝜏
= −1 + ℎ

2
(𝑢, V, 𝜑, 𝜇) ,

(10)

where 𝑘
3

= √2(1 − 2𝜇)/2. Due to the symmetry of the
problem, we subsequently restrict our discussion to the
positive quadrant.

We neglect the higher order terms of (10) and then obtain
that 𝑑𝑢/𝑑V = −𝑢/V. It is clear that its solution remains on the
hyperbolae 𝑢V = 𝑐

0
> 0, where 𝑐

0
is a constant. We substitute

V = 𝑐
0
/𝑢 into the first expression of (10) andneglect the higher

order terms, arriving at 𝑑𝑢/𝑑𝜑 = −𝑘
3
((𝑢
2
+ 𝑐
0
)
3
/𝑢
2
).

Let Σ be a plane transversal to the periodic orbit 𝛾
𝜇
at the

origin (0, 0) and let 𝑈
0
be a sufficiently small neighborhood

of the origin (0, 0) in the plane Σ. For an arbitrary but fixed
point (𝑢

0
, V
0
) ∈ 𝑈

0
\ {(0, 0)}, we define 𝑇

𝜑
(𝑢
0
, V
0
) = (𝑢

𝜑
, V
𝜑
)

with 𝑇
0
(𝑢
0
, V
0
) = (𝑢

0
, V
0
).

Assume that 𝑢
𝜑

= √𝑐
0
tan(𝜙
𝜑
/4); then V

𝜑
=

√𝑐
0
cot(𝜙
𝜑
/4), where 𝜙

𝜑
is an auxiliary variable. Substituting

𝑢
𝜑
= √𝑐
0
tan(𝜙
𝜑
/4) into 𝑑𝑢/𝑑𝜑 = −𝑘

3
((𝑢
2
+ 𝑐
0
)
3
/𝑢
2
), we can

obtain

𝜙
𝜑
− sin𝜙

𝜑
= 𝑘
0
− 32𝑘𝑐

3/2

0
𝜑, 𝑘

0
= 𝜙
0
− sin𝜙

0
, (11)

where 𝑐
0
= 𝑢
0
V
0
and 𝜙

0
= 4 arctan√𝑢

0
/V
0
.
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Moreover, we can calculate

𝐷𝑇
𝜑
=

[
[
[
[

[

𝜕𝑢
𝜑

𝜕𝑢
0

𝜕𝑢
𝜑

𝜕V
0

𝜕V
𝜑

𝜕𝑢
0

𝜕V
𝜑

𝜕V
0

]
]
]
]

]

=

[
[
[

[

𝑢
𝜑

2𝑢
0

(1 + Δ − 3𝑘
3
(𝑢
𝜑
+ V
𝜑
)
3

𝜑)

𝑢
0
𝑢
𝜑

2𝑐
(1 − Δ − 3𝑘

3
(𝑢
𝜑
+ V
𝜑
)
3

𝜑)

𝑐

2𝑢
0
𝑢
𝜑

(1 − Δ + 3𝑘
3
(𝑢
𝜑
+ V
𝜑
)
3

𝜑)
𝑢
0

2𝑢
𝜑

(1 + Δ + 3𝑘
3
(𝑢
𝜑
+ V
𝜑
)
3

𝜑)

]
]
]

]

,

(12)

where Δ = ((𝑢
𝜑
+ V
𝜑
)/(𝑢
0
+ V
0
))
3. Clearly, det𝐷𝑇

𝜑
= Δ ̸= 0.

For the approximate system obtained by neglecting the
higher order terms in the system (10), we can describe the
Poincaré map 𝑃 defined over the plane Σ by using the
truncated flow near the degenerate saddle as follows:

𝑃 : (𝑢
0
, V
0
) 󳨃󳨀→ (𝑢

2𝜋
, V
2𝜋
) , where (𝑢

0
, V
0
) ∈ 𝑈
0
. (13)

Since the terms neglected in (10) are both 𝑜(𝑢
4
, V4) and 𝑂(𝜇),

we can use this Poincaré map 𝑃 to approximate 𝑃
0
.

Letting 𝑢
0
= √𝑐
0
tan(𝜙
0
/4) and V

0
= √𝑐
0
cot(𝜙
0
/4), then

we can obtain

𝑃
𝑘
(𝑢
0
, V
0
) ≗ (𝑢

𝑘
, V
𝑘
) = (√𝑐

0
tan

𝜙
2𝑘𝜋

4
,√𝑐
0
cot

𝜙
2𝑘𝜋

4
) . (14)

For the system (10), the coordinate axis V = 0 corresponds
to the local stablemanifold𝑊𝑠loc(𝛾𝜇) and 𝑢 = 0 corresponds to
the unstable manifold𝑊

𝑢

loc(𝛾𝜇), respectively. Moreover, from
[4, 12], when the mass ratio 𝜇 is sufficiently small, there exists
a transversal homoclinic orbit, denoted as 𝛾, of the periodic
orbit 𝛾

𝜇
. Thus, there exist two points 𝑝 and 𝑞 such that 𝑝 ∈

𝑊
𝑠

loc(𝛾𝜇), 𝑞 ∈ 𝑊
𝑢

loc(𝛾𝜇), and 𝑝, 𝑞 ∈ Σ⋂𝛾. For convenience,
by introducing a scale transformation, we can further assume
that 𝑝 = (1, 0) and 𝑞 = (0, 1).

We define 𝐵 = {(𝑢, V) | |𝑢 − 1| ≤ 𝛿
1
, |V| ≤ 𝛿

2
} and

𝐵 = {(𝑢, V) | |𝑢| ≤ 𝛿
2
, |V − 1| ≤ 𝛿

1
} as the corresponding

neighborhoods of 𝑝 and 𝑞, respectively. For sufficiently small
positive numbers 𝛿

1
and 𝛿

2
, 𝐵 and 𝐵 satisfy 𝑃𝐵⋂𝐵 = 0,

𝑃
−1
𝐵⋂𝐵 = 0. Let 𝐷

𝑘
= 𝑃
−𝑘
𝐵⋂𝐵. When 𝑘 is sufficiently

large,𝐷
𝑘

̸= 0. Moreover, we also can obtain𝐷
𝑘
⋂𝐷
𝑚
= 0 for

𝑘 ̸= 𝑚. Again let 𝐷
𝑘
= 𝑃
𝑘
𝐷
𝑘
. When 𝑘 is sufficiently large,

𝐷
𝑘

̸= 0. The relation between 𝐷
𝑘
and 𝐷

𝑘
can be seen from

Figure 1.
Since 𝑝, 𝑞 ∈ Σ⋂𝛾, when 𝛿

1
and 𝛿
2
are sufficiently small,

every positive half-orbit of the system (10) that starts from 𝐵

intersects a neighborhood𝑈
𝑝
of the point 𝑝 at a point, where

𝑈
𝑝
⊂ Σ. This can be depicted by the map 𝐹 : 𝐵 → 𝑈

𝑝
. It is

clear that 𝐹 is a 𝐶1 diffeomorphism. Let 𝐹(𝑢, V) = (𝐹
𝑈
, 𝐹
𝑉
).

Since the stable manifold and the unstable manifold of the
periodic orbit 𝛾

𝜇
transversally intersect along 𝛾, we can obtain

(𝜕𝐹
𝑉
/𝜕V)|
𝑞

̸= 0.
Let 𝐵
ℎ
= 𝐵⋂{V = 0}, 𝐵V = 𝐵⋂{𝑢 = 0}, 𝜕𝐵

ℎ
= {𝑢 =

1 ± 𝛿
1
, V = 0}, and 𝜕𝐵V = {𝑢 = 0, V = 1 ± 𝛿

1
}. Then,

there exists a sufficiently small 𝛿
1
such that 𝐹𝐵V ⋂𝐵

ℎ
= {𝑝},

(𝜕𝐹
𝑉
/𝜕V)|
𝐵V

̸= 0, 𝐹𝐵V ⋂𝜕𝐵
ℎ
= 0, 𝐹𝜕𝐵V ⋂𝐵

ℎ
= 0. Moreover,

let 𝜕V𝐵 = {(𝑢, V) ∈ 𝐵 | 𝑢 = 1 ± 𝛿
1
} and 𝜕

ℎ
𝐵 = {(𝑢, V) ∈

𝐵 | V = 1 ± 𝛿
1
}. We can further obtain that there exists a

sufficiently small 𝛿
2
such that (𝜕𝐹

𝑉
/𝜕V)|
𝐵

̸= 0, 𝐹𝐵⋂𝜕V𝐵 = 0,
𝐹(𝜕
ℎ
𝐵)⋂𝐵 = 0.
Based on 𝑃 and 𝐹, we construct a successor map Δ

𝑘
=

𝐹 ∘ 𝑃
𝑘

: 𝐷
𝑘

→ 𝑈
𝑝
. Further, we define another map 𝑓

over the set ⋃
𝑘
𝐷
𝑘
such that 𝑓|

𝐷𝑘
= Δ
𝑘
. Clearly, 𝑓 is also

a homeomorphism.

2.2. Proofs of Some Propositions for 𝑓. In order to prove
that 𝑓 satisfies the Conley-Moser conditions, we need to
introduce one lemma and then prove four propositions in this
subsection.

Lemma 6 (see [17, 18]). Consider two invertible linear opera-
tors of 𝑅1 × 𝑅

1 into itself:

𝐼 = [
𝑎 𝑏

𝑐 𝑑
] , 𝐽 = [

Λ 𝐸

𝐺 𝑀
] , (15)

where 𝑑𝑀 ̸= 0. Let 𝐿 > 0 be a constant such that the following
conditions hold:

‖𝐼‖ < 𝐿,
󵄩󵄩󵄩󵄩󵄩
𝐼
−1󵄩󵄩󵄩󵄩󵄩

< 𝐿,

󵄨󵄨󵄨󵄨󵄨
𝑑
−1󵄨󵄨󵄨󵄨󵄨

< 𝐿,

󵄨󵄨󵄨󵄨󵄨
𝐸𝑀
−1󵄨󵄨󵄨󵄨󵄨

< 𝐿.

(16)

Then, for arbitrary 0 < 𝜇
ℎ
< 𝜇
−1

V ≪ 1, there exists a positive
constant 𝛿

0
, which is dependent on 𝐿, 𝜇

ℎ
and 𝜇V, such that if

the following conditions hold:
󵄨󵄨󵄨󵄨󵄨
𝑀
−1󵄨󵄨󵄨󵄨󵄨

< 𝛿
0
,

󵄨󵄨󵄨󵄨󵄨
Λ − 𝐸𝑀

−1
𝐺
󵄨󵄨󵄨󵄨󵄨
< 𝛿
0
,

󵄨󵄨󵄨󵄨󵄨
Λ𝑀
−1󵄨󵄨󵄨󵄨󵄨

< 𝛿
0
,

󵄨󵄨󵄨󵄨󵄨
𝐺𝑀
−1󵄨󵄨󵄨󵄨󵄨

< 𝛿
0
,

󵄨󵄨󵄨󵄨󵄨
𝑐𝐸𝑀
−1󵄨󵄨󵄨󵄨󵄨

< 𝛿
0
,

(17)

the linear map 𝐴 = 𝐼𝐽 satisfies the (𝜇
ℎ
, 𝜇V)-cone condition.
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Figure 1: The relation between 𝐷
𝑘
and𝐷

𝑘
.

By Lemma 6, we have the following proposition.

Proposition 7. For two arbitrary constants 𝜇
ℎ
and 𝜇V with 0 <

𝜇
ℎ
< 𝜇
−1

V ≪ 1, when 𝑘 is sufficiently large, 𝑓|
𝐷𝑘

satisfies the
(𝜇
ℎ
, 𝜇V)-cone condition.

Proof. Based on the chain rule on the derivative of a compos-
ite function, we can obtain

𝐷𝑓|
𝐷𝑘

= 𝐷𝐹 ⋅ 𝐷𝑃
𝑘
= 𝐷𝐹 ⋅ 𝐷𝑇

𝜑

=

[
[
[

[

𝜕𝐹
𝑈

𝜕𝑢

𝜕𝐹
𝑈

𝜕V
𝜕𝐹
𝑉

𝜕𝑢

𝜕𝐹
𝑉

𝜕V

]
]
]

]

.

[
[
[
[

[

𝜕𝑢
𝜑

𝜕𝑢
0

𝜕𝑢
𝜑

𝜕V
0

𝜕V
𝜑

𝜕𝑢
0

𝜕V
𝜑

𝜕V
0

]
]
]
]

]

,

(18)

where 𝜑 = 2𝑘𝜋. Let 𝐿 = sup
𝛽∈𝐵

{‖𝐷𝐹(𝛽)‖ , ‖𝐷𝐹(𝛽)
−1
‖,

|𝜕𝐹
𝑉
/𝜕V|−1}. Since 𝜕𝐹

𝑉
/𝜕V|
𝐵

̸= 0 and𝐹 is𝐶1, we have𝐿 < +∞.
Let 𝑢
0
= 𝛿 ≈ 1 and V

0
= 𝑐
0
/𝛿 ≪ 1. Then (𝑢

𝑘
, V
𝑘
) ≈ (𝑐
0
/𝛿, 𝛿).

Let 𝐸 = 𝜕𝑢
𝜑
/𝜕V
0
, Λ = 𝜕𝑢

𝜑
/𝜕𝑢
0
, 𝐺 = 𝜕V

𝜑
/𝜕𝑢
0
, 𝑀 =

𝜕V
𝜑
/𝜕V
0
. Similar to the proof of Condition 1 in [19], after some

simple calculations, we can obtain that lim
𝑘→+∞

|𝐸𝑀
−1
| ≈

𝑐
0
/𝛿
2, lim

𝑘→+∞
|𝑀
−1
| = 0, lim

𝑘→+∞
|Λ − 𝐸𝑀

−1
𝐺| = 0,

lim
𝑘→+∞

|Λ𝑀
−1
| ≈ 𝑐

0
/𝛿
4, lim

𝑘→+∞
|𝐺𝑀
−1
| ≈ 𝑐

0
/𝛿
2, and

lim
𝑘→+∞

|𝐸𝑀
−1
| ≈ 𝑐

0
/𝛿
2. Further, when 𝑐

0
→ 0, we can

obtain that 𝑐
0
/𝛿
2
→ 0, 𝑐

0
/𝛿
4
→ 0 and (𝜕𝐹

𝑉
/𝜕𝑢)(𝑐

0
/𝛿
2
) →

0.
Thus, there exists a 𝛿 > 0 such that, for sufficiently large 𝑘,

inequalities (16) and (17) in Lemma 6hold.Thus, according to
Lemma 6,we obtain thatwhen 𝑘 is large enough,𝑓|

𝐷𝑘
satisfies

the (𝜇
ℎ
, 𝜇V)-cone condition.

In fact, we can further prove the following.

Proposition 8. When 𝑘 is sufficiently large, 𝑃𝑘 satisfies the
(𝜇
ℎ
, 𝜇V)-cone condition.

Proof. Let 𝑁 ≥ 2 be an arbitrary but fixed integer. For
sufficiently large 𝑘, let 𝐻

𝑙
= 𝐷
𝑙+𝑘−1

, 𝑉
𝑙
= 𝑓(𝐷

𝑙+𝑘−1
), 𝑉
𝑗𝑖

=

𝑃
𝑘
𝐻
𝑖
⋂𝐻
𝑗
, and 𝐻

𝑖𝑗
= 𝐻
𝑖
⋂𝑃
−𝑘
𝐻
𝑗
, where 1 ≤ 𝑙, 𝑖, 𝑗 ≤ 𝑁.

Moreover, letH = ⋃
𝑖,𝑗
𝐻
𝑖𝑗
andV = ⋃

𝑖,𝑗
𝑉
𝑖𝑗
.

For an arbitrary point 𝑧
0

∈ H⋃V, let (𝜉
𝑧0
, 𝜂
𝑧0
) be a

vector emanating from the point 𝑧
0
in the tangent space of 𝑧

0
.

In addition, for given 𝜇
ℎ
and 𝜇V, let S

𝑢

𝑧0
= {(𝜉
𝑧0
, 𝜂
𝑧0
) | |𝜉
𝑧0
| <

𝜇V|𝜂𝑧0 |} be the unstable sector at 𝑧0 and let S𝑠
𝑧0

= {(𝜉
𝑧0
, 𝜂
𝑧0
) |

|𝜂
𝑧0
| < 𝜇
ℎ
|𝜉
𝑧0
|} be the stable sector at 𝑧

0
. Similar to Section 1,

we also have S𝑢H, S𝑢V, S
𝑠

H, and S𝑠V.
In order to prove that 𝑃

𝑘 satisfies the (𝜇
ℎ
, 𝜇V)-cone

condition, by Remark 4, we need to prove that 𝑃𝑘 satisfies
Assumption 2. That is, we need to prove the following:

(1) 𝐷𝑃𝑘(S𝑢H) ⊂ S𝑢V and𝐷𝑃
−𝑘
(S𝑠V) ⊂ S𝑠H;

(2) there exists a constant 𝜆 satisfying 0 < 𝜆 < 1 − 𝜇
ℎ
𝜇V

such that |𝜂
𝑃
𝑘
(𝑧0)

| ≥ 𝜆
−1
|𝜂
𝑧0
| if (𝜉

𝑧0
, 𝜂
𝑧0
) ∈ S𝑢

𝑧0
and

(𝜉
𝑃
𝑘
(𝑧0)

, 𝜂
𝑃
𝑘
(𝑧0)

) ≐ 𝐷𝑃
𝑘
(𝑧
0
)(𝜉
𝑧0
, 𝜂
𝑧0
) ∈ S𝑢

𝑃
𝑘
(𝑧0)

, where
(𝜉
𝑃
𝑘
(𝑧0)

, 𝜂
𝑃
𝑘
(𝑧0)

) is a vector emanating from the point
𝑃
𝑘
(𝑧
0
) in the tangent space of 𝑃𝑘(𝑧

0
); |𝜉
𝑃
−𝑘
(𝑧0)

| ≥

𝜆
−1
|𝜉
𝑧0
| if (𝜉

𝑧0
, 𝜂
𝑧0
) ∈ S𝑠

𝑧0
and (𝜉

𝑃
−𝑘
(𝑧0)

, 𝜂
𝑃
−𝑘
(𝑧0)

) ≐

𝐷𝑃
−𝑘
(𝑧
0
)(𝜉
𝑧0
, 𝜂
𝑧0
) ∈ S𝑠

𝑃
−𝑘
(𝑧0)

, where (𝜉
𝑃
−𝑘
(𝑧0)

, 𝜂
𝑃
−𝑘
(𝑧0)

)

is a vector emanating from the point 𝑃−𝑘(𝑧
0
) in the

tangent space of 𝑃−𝑘(𝑧
0
).

First, we want to prove that𝐷𝑃𝑘(S𝑢H) ⊂ S𝑢V. For this, it is
sufficient to prove that, for an arbitrary 𝑧

0
= (𝑢
0
, V
0
) ∈ Hwith

(𝜉
𝑧0
, 𝜂
𝑧0
) = (1, 𝜗) ∈ S𝑢

𝑧0
, (𝜉
𝑃
𝑘
(𝑧0)

, 𝜂
𝑃
𝑘
(𝑧0)

) = 𝐷𝑃
𝑘
(𝑧
0
)(𝜉
𝑧0
, 𝜂
𝑧0
) ∈

S𝑢V.
Clearly, 𝑃𝑘(𝑧

0
) ∈ V and 𝜗 is bounded. According

to the definitions of 𝑇
𝜑

and 𝑃, 𝐷𝑃
𝑘
(𝑧
0
)(𝜉
𝑧0
, 𝜂
𝑧0
) =

𝐷𝑇
2𝑘𝜋

(𝑧
0
)(𝜉
𝑧0
, 𝜂
𝑧0
) = ((𝜕𝑢

2𝑘𝜋
/𝜕𝑢
0
) + (𝜕𝑢

2𝑘𝜋
/𝜕V
0
)𝜗,

(𝜕V
2𝑘𝜋

/𝜕𝑢
0
) + (𝜕V

2𝑘𝜋
/𝜕V
0
)𝜗).

Since 𝛿
1
and 𝛿

2
for defining 𝐵 and 𝐵 are chosen to be

sufficiently small, 𝑢
0
≈ 1 and V

0
≤ 𝛿
2
≪ 1. Letting 𝑢

0
= 𝛿

and 𝑐 = 𝑢
0
V
0
, then (𝑢

2𝑘𝜋
, V
2𝑘𝜋

) ≈ (𝑐/𝛿, 𝛿). According to 𝐷𝑇
𝜑

in Section 2.1, when 𝑘 is sufficiently large, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜕V
2𝑘𝜋

/𝜕𝑢
0
) + (𝜕V

2𝑘𝜋
/𝜕V
0
) 𝜗

(𝜕𝑢
2𝑘𝜋

/𝜕𝑢
0
) + (𝜕𝑢

2𝑘𝜋
/𝜕V
0
) 𝜗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝑐

𝑢
2

2𝑘𝜋

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(Δ (𝑢
0
𝜗 − V
0
) + (1 + 6𝑘

3
(𝑢
2𝑘𝜋

+ V
2𝑘𝜋

)
3

𝑘𝜋)

× (V
0
+ 𝑢
0
𝜗))

× (Δ (𝑢
0
𝜗 − V
0
) − (1 − 6𝑘

3
(𝑢
2𝑘𝜋

+ V
2𝑘𝜋

)
3

𝑘𝜋)

× (V
0
+ 𝑢
0
𝜗))
−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≈
𝛿
2

𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(Δ(𝛿𝜗 −
𝑐

𝛿
) + (1 + 6𝑘

3
(
𝛿
2
+ 𝑐

𝛿
)

3

𝑘𝜋)

×(𝛿𝜗 +
𝑐

𝛿
))

× (Δ(𝛿𝜗 −
𝑐

𝛿
) − (1 − 6𝑘

3
(
𝛿
2
+ 𝑐

𝛿
)

3

𝑘𝜋)

×(𝛿𝜗 +
𝑐

𝛿
))

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≈
𝛿
2

𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
1

3𝑘
3
𝛿3𝑘𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(19)

Clearly, lim
𝑘→+∞

(𝛿
2
/𝑐)|1 + 1/3𝑘

3
𝛿
3
𝑘𝜋| = 𝛿

2
/𝑐. More-

over, when 𝑐 → 0, 𝛿2/𝑐 → +∞. So, for sufficiently
large 𝑘 and sufficiently small 𝛿

1
and 𝛿

2
, |((𝜕V

2𝑘𝜋
/𝜕𝑢
0
) +

(𝜕V
2𝑘𝜋

/𝜕V
0
)𝜗)/((𝜕𝑢

2𝑘𝜋
/𝜕𝑢
0
) + (𝜕𝑢

2𝑘𝜋
/𝜕V
0
)𝜗)| > 1/𝜇V.

Thus, 𝐷𝑃𝑘(𝑧
0
)(𝜉
𝑧0
, 𝜂
𝑧0
) ∈ S𝑢V. This directly implies that

𝐷𝑃
𝑘
(S𝑢H) ⊂ S𝑢V.
Second, following the proof of 𝐷𝑃𝑘(S𝑢H) ⊂ S𝑢V, we want

to prove that there exists a constant 𝜆 satisfying 0 < 𝜆 < 1 −

𝜇
ℎ
𝜇V such that |𝜂

𝑃
𝑘
(𝑧0)

| ≥ 𝜆
−1
|𝜂
𝑧0
|.

Similarly, for the above (𝑢
0
, V
0
) and (𝑢

2𝑘𝜋
, V
2𝑘𝜋

), when 𝑘 is
sufficiently large,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
2𝑘𝜋

𝜕𝑢
0

+
𝜕V
2𝑘𝜋

𝜕V
0

𝜗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

2𝑢
2𝑘𝜋

󵄨󵄨󵄨󵄨Δ (𝑢
0
𝜗 − V
0
) + (1 + 6𝑘

3
(𝑢
2𝑘𝜋

+ V
2𝑘𝜋

)
3

𝑘𝜋)

× (V
0
+ 𝑢
0
𝜗)
󵄨󵄨󵄨󵄨

≈
1

2𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ (𝛿
2
𝜗 − 𝑐)

+ (1 + 6𝑘
3
(
𝛿
2
+ 𝑐

𝛿
)

3

𝑘𝜋)

× (𝑐 + 𝛿
2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≈
𝛿
2

𝑐

󵄨󵄨󵄨󵄨󵄨
(1 + 3𝑘

3
𝛿
3
𝑘𝜋) 𝜗

󵄨󵄨󵄨󵄨󵄨
.

(20)

For given 𝐵 and 𝐵, lim
𝑘→+∞

(𝛿
2
/𝑐)|1 + 3𝑘

3
𝛿
3
𝑘𝜋| = ∞.

So, for any constant 𝜆 satisfying 0 < 𝜆 < 1 − 𝜇
ℎ
𝜇V, when 𝑘

is sufficiently large, (𝛿2/𝑐)|1 + 3𝑘
3
𝛿
3
𝑘𝜋| > 𝜆

−1. Thus, we have
|(𝜕V
2𝑘𝜋

/𝜕𝑢
0
)+(𝜕V

2𝑘𝜋
/𝜕V
0
)𝜗| > 𝜆

−1
|𝜗|, implying that |𝜂

𝑃
𝑘
(𝑧0)

| ≥

𝜆
−1
|𝜂
𝑧0
|.

Third, we want to prove𝐷𝑃−𝑘(S𝑠V) ⊂ S𝑠H and |𝜉
𝑃
−𝑘
(𝑧0)

| ≥

𝜆
−1
|𝜉
𝑧0
|. For this, let 𝑇−1

𝜑
(𝑢
𝜑
, V
𝜑
) = (𝑢

0
, V
0
) be the inverse map

of 𝑇
𝜑
. Then,

𝐷𝑇
−1

𝜑
= (𝐷𝑇

𝜑
)
−1

=

[
[
[

[

𝜕𝑢
𝜑

𝜕𝑢
0

𝜕𝑢
𝜑

𝜕V
0

𝜕V
𝜑

𝜕𝑢
0

𝜕V
𝜑

𝜕V
0

]
]
]

]

−1

=
1

△

[
[
[

[

𝜕V
𝜑

𝜕V
0

−

𝜕𝑢
𝜑

𝜕V
0

−

𝜕V
𝜑

𝜕𝑢
0

𝜕𝑢
𝜑

𝜕𝑢
0

]
]
]

]

.

(21)

For any 𝑧
0
= (𝑢
0
, V
0
) ∈ V with (𝜉

𝑧0
, 𝜂
𝑧0
) = (𝜛, 1) ∈ S𝑠

𝑧0
,

(𝜉
𝑃
−𝑘
(𝑧0)

, 𝜂
𝑃
−𝑘
(𝑧0)

) = 𝐷𝑃
−𝑘
(𝜉
𝑧0
, 𝜂
𝑧0
) = 𝐷𝑇

−1

2𝑘𝜋
(𝜉
𝑧0
, 𝜂
𝑧0
) =

(1/△)((𝜕V
2𝑘𝜋

/𝜕V
0
)𝜛 − (𝜕𝑢

2𝑘𝜋
/𝜕V
0
), (−𝜕V

2𝑘𝜋
/𝜕𝑢
0
)𝜛 +

(𝜕𝑢
2𝑘𝜋

/𝜕𝑢
0
)). Similarly, we can prove that |(𝜕V

2𝑘𝜋
/𝜕V
0
)𝜛 −

(𝜕𝑢
2𝑘𝜋

/𝜕V
0
)/(−𝜕V

2𝑘𝜋
/𝜕𝑢
0
)𝜛 + (𝜕𝑢

2𝑘𝜋
/𝜕𝑢
0
)| > 𝜇

ℎ

and |(𝜕V
2𝑘𝜋

/𝜕V
0
)𝜛 − (𝜕𝑢

2𝑘𝜋
/𝜕V
0
)| > 𝜆

−1
|𝜛|. Thus,

𝐷𝑃
−𝑘
(S𝑠V) ⊂ S𝑠H and |𝜉

𝑃
−𝑘
(𝑧0)

| ≥ 𝜆
−1
|𝜉
𝑧0
|.

Based on all above analysis and Remark 4, we can then
obtain that when 𝑘 is sufficiently large, 𝑃

𝑘 satisfies the
(𝜇
ℎ
, 𝜇V)-cone condition.

Based on Proposition 8, we can prove that 𝑓 satisfies the
boundary condition.

Proposition 9. When 𝑖 and 𝑗 are sufficiently large,
𝑓(𝜕
ℎ
𝐷
𝑖
)⋂𝐷
𝑗

= 0 and 𝑓𝐷
𝑖
⋂𝜕V𝐷𝑗 = 0, where 𝜕

ℎ
𝐷
𝑖
is

the horizontal boundary of 𝐷
𝑖
and 𝜕V𝐷𝑗 is the vertical

boundary of𝐷
𝑗
.

Proof. Due to Proposition 8, when 𝑘 is sufficiently large, 𝑃𝑘

satisfies the (𝜇
ℎ
, 𝜇V)-cone condition. This implies that 𝑃

𝑘

contracts in the horizontal direction and expands in the
vertical direction.Moreover,𝜇V-vertical curves aremapped to
𝜇V-vertical curves under themap𝑃𝑘 and𝜇

ℎ
-horizontal curves

aremapped to 𝜇
ℎ
-horizontal curves under themap𝑃−𝑘.Thus,

for sufficiently large 𝑖 and 𝑗, 𝐷
𝑗
⊂ 𝐵, 𝑃𝑖𝐷

𝑖
⊂ 𝐵, 𝜕V𝐷𝑗 ⊂ 𝜕V𝐵

and 𝑃
𝑖
(𝜕
ℎ
𝐷
𝑖
) ⊂ 𝜕

ℎ
𝐵. In addition, 𝑓(𝜕

ℎ
𝐷
𝑖
)⋂𝐷
𝑗

= (𝐹 ∘

𝑃
𝑖
(𝜕
ℎ
𝐷
𝑖
))⋂𝐷

𝑗
= (𝐹 ∘ (𝑃

𝑖
(𝜕
ℎ
𝐷
𝑖
)))⋂𝐷

𝑗
. Thus, according to

the expression𝐹(𝜕
ℎ
𝐵)⋂𝐵 = 0 in Section 2.1,𝑓(𝜕

ℎ
𝐷
𝑖
)⋂𝐷
𝑗
=

0. Similarly, since 𝐹𝐵⋂𝜕V𝐵 = 0, we can obtain that
𝑓𝐷
𝑖
⋂𝜕V𝐷𝑗 = 0.

Finally, we can prove that 𝑓 satisfies the intersection
condition as follows.

Proposition 10. When 𝑖 and 𝑗 are sufficiently large,
𝑓𝐷
𝑖
⋂𝐷
𝑗

̸= 0.

Proof. Let 𝐶𝑖V(𝑢) = {𝑢}× (𝐷
𝑖
)V be the family of vertical curves

in 𝐷
𝑖
, where 𝑢 ∈ 𝐵

ℎ
and (𝐷

𝑖
)V = {V | (𝑢, V) ∈ 𝐵, 𝑃

𝑖
(𝑢, V) ∈

𝐵}. FromProposition 8,𝑃𝑖 with sufficiently large 𝑖 satisfies the
(𝜇
ℎ
, 𝜇V)-cone condition. Thus, 𝑃𝑖𝐶𝑖V(𝑢) infinitely approaches
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𝐵V when 𝑖 → +∞. Similarly, letting 𝐶𝑖
ℎ
(V) = 𝐵

ℎ
× {V} be the

family of horizontal curves in 𝐷
𝑖
, where V ∈ (𝐷

𝑖
)V, we can

obtain that 𝐶𝑗
ℎ
(V) infinitely approaches 𝐵

ℎ
when 𝑗 → +∞.

Since 𝐹 is 𝐶
1, 𝐹(𝑃𝑖𝐶𝑖V(𝑢)) infinitely approaches 𝐹(𝐵V)

when 𝑖 → +∞. By the expression 𝐹𝐵V ⋂𝐵
ℎ

= {𝑝} in
Section 2.1, 𝐹(𝑃𝑖𝐶𝑖V(𝑢))⋂𝐶

𝑗

ℎ
(V) ̸= 0. Thus, 𝑓𝐷

𝑖
⋂𝐷
𝑗

̸=

0.

Remark 11. In fact, we can prove that when 𝑖, 𝑗 → +∞,
𝑓𝐶
𝑖

V(𝑢) and 𝐶
𝑗

ℎ
(V) intersect at a unique point near 𝑝.

2.3. Proof of OurTheorem 5. In order to prove ourTheorem 5,
similar to [19], we try to use Propositions 7, 9, and 10 to verify
that𝑓 satisfies Assumptions 1 and 2.Then, from Lemma 3, we
can obtain that 𝑓 is a horseshoe map as follows.

Proof. From Proposition 7, when 𝑘 is sufficiently large, 𝑓|
𝐷𝑘

satisfies the (𝜇
ℎ
, 𝜇V)-cone condition. Thus, the map 𝑓 con-

tracts in the horizontal direction and expands in the vertical
direction. Moreover, 𝜇V-vertical curves are mapped to 𝜇V-
vertical curves under the map𝑓 and 𝜇

ℎ
-horizontal curves are

mapped to 𝜇
ℎ
-horizontal curves under the map 𝑓

−1. There-
fore, from Propositions 9 and 10, for sufficiently large 𝑖 and
𝑗, 𝑓𝐷

𝑖
⋂𝐷
𝑗

̸= 0 is a (𝜇
ℎ
, 𝜇V)-curved rectangle and satisfies

𝜕
ℎ
(𝑓𝐷
𝑖
⋂𝐷
𝑗
) ⊂ 𝜕
ℎ
𝐷
𝑗
and 𝜕V(𝑓𝐷𝑖⋂𝐷

𝑗
) ⊂ 𝜕V(𝑓𝐷𝑖). Similarly,

for sufficiently large 𝑖 and 𝑗, 𝑓−1(𝑓𝐷
𝑖
⋂𝐷
𝑗
) ̸= 0 is also a

(𝜇
ℎ
, 𝜇V)-curved rectangle and satisfies 𝜕V𝑓

−1
(𝑓𝐷
𝑖
⋂𝐷
𝑗
) ⊂

𝜕V𝐷𝑖 and 𝜕
ℎ
𝑓
−1
(𝑓𝐷
𝑖
⋂𝐷
𝑗
) ⊂ 𝜕
ℎ
(𝑓
−1
𝐷
𝑗
).

Let 𝑁 ≥ 2 be an arbitrary but fixed positive integer.
For sufficiently large 𝑘, 𝑖, and 𝑗, by letting 𝐻

𝑙
= 𝐷
𝑙+𝑘−1

,
𝑉
𝑙
= 𝑓(𝐷

𝑙+𝑘−1
),𝑓𝐷
𝑖
⋂𝐷
𝑗
= 𝑉
(𝑗−𝑘+1)(𝑖−𝑘+1)

, and𝐷
𝑖
⋂𝑓
−1
𝐷
𝑗
=

𝐻
(𝑖−𝑘+1)(𝑗−𝑘+1)

, where 1 ≤ 𝑙 ≤ 𝑁, we can obtain that 𝑓 satisfies
Assumption 1. In addition, due to Remark 4, 𝑓 obviously
satisfies Assumption 2.

Thus, for an arbitrary but fixed 𝑁 ≥ 2, when 𝑘 is
sufficiently large, the map 𝑓 over the set ⋃𝑁−1

𝑖=0
𝐷
𝑘+𝑖

satisfies
Assumptions 1 and 2; that is, 𝑓 satisfies the Conley-Moser
conditions.

By Lemma 3, when 𝑘 is sufficiently large, 𝑓 has an
invariant Cantor set, on which it is topologically conjugate
to a full shift on 𝑁 symbols. This directly implies that 𝑓 is a
horseshoe map.

3. Conclusions

In this present note, we studied the existence of a Smale
horseshoe in a planar circular restricted three-body problem
by first defining an invertible map 𝑓 and then proving that
this𝑓 satisfies theConley-Moser conditions.This implies that
the planar circular restricted three-body problem processes
chaotic dynamics of the Smale horseshoe type.
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