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We give a total graph interpretation of the numbers of the Fibonacci type. This graph interpretation relates to an edge colouring by
monochromatic paths in graphs. We will show that it works for almost all numbers of the Fibonacci type. Moreover, we give the
lower bound and the upper bound for the number of all (𝐴

1
, 2𝐴
1
)-edge colourings in trees.

1. Introduction and Preliminary Results

For general concepts about combinatory graph theory and
online encyclopedia of integer sequences, see, for example,
[1], [2], and [3], respectively. By numbers of the Fibonacci
type we mean numbers defined recursively by the 𝑘th-order
linear recurrence relation of the form

𝑎
𝑛
= 𝑏
1
𝑎
𝑛−1

+ 𝑏
2
𝑎
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑏
𝑘
𝑎
𝑛−𝑘 (1)

for 𝑛 ≥ 𝑘, where 𝑘 ≥ 2 and 𝑏
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑘, are integers and

𝑎
0
, . . . , 𝑎

𝑘−1
are given integers. For special values of 𝑘 and 𝑏

𝑖
,

𝑖 = 1, . . . , 𝑘, the equality (1) gives the well-known recurrences
which define the numbers of the Fibonacci type. They are
listed below.

(a) Fibonacci numbers 𝐹
𝑛
:

𝐹
𝑛
= 𝐹
𝑛−1

+ 𝐹
𝑛−2
, 𝑛 ≥ 2

with 𝐹
0
= 𝐹
1
= 1.

(2)

(b) Lucas numbers 𝐿
𝑛
:

𝐿
𝑛
= 𝐿
𝑛−1

+ 𝐿
𝑛−2
, 𝑛 ≥ 2

with 𝐿
0
= 2, 𝐿

1
= 1.

(3)

(c) Pell numbers 𝑃
𝑛
:

𝑃
𝑛
= 2𝑃
𝑛−1

+ 𝑃
𝑛−2
, 𝑛 ≥ 2

with 𝑃
0
= 0, 𝑃

1
= 1.

(4)

(d) Pell-Lucas numbers 𝑄
𝑛
:

𝑄
𝑛
= 2𝑃
𝑛−1

+ 𝑃
𝑛−2
, 𝑛 ≥ 2

with 𝑃
0
= 𝑃
1
= 1.

(5)

(e) Jacobsthal numbers 𝐽
𝑛
:

𝐽
𝑛
= 𝐽
𝑛−1

+ 2𝐽
𝑛−2
, 𝑛 ≥ 2

with 𝐽
0
= 0, 𝐽

1
= 1.

(6)

(f) Jacobsthal-Lucas numbers 𝑗
𝑛
:

𝑗
𝑛
= 𝑗
𝑛−1

+ 2𝑗
𝑛−2
, 𝑛 ≥ 2

with 𝑗
0
= 2, 𝑗

1
= 1.

(7)

(g) Padovan numbers Pv(𝑛):

Pv (𝑛) = Pv (𝑛 − 2) + Pv (𝑛 − 3) , 𝑛 ≥ 3

with Pv (0) = Pv (1) = Pv (2) = 1.
(8)
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(h) Perrin numbers Pr(𝑛):

Pr (𝑛) = Pr (𝑛 − 2) + Pr (𝑛 − 3) , 𝑛 ≥ 3

with Pr (0) = 3, Pr (1) = 0, Pr (2) = 2.
(9)

(i) Tribonacci numbers of the first kind 𝑇
𝑛
:

𝑇
𝑛
= 𝑇
𝑛−1

+ 𝑇
𝑛−2

+ 𝑇
𝑛−3
, 𝑛 ≥ 3

with 𝑇
0
= 𝑇
1
= 𝑇
2
= 1.

(10)

(j) Tribonacci numbers of the second kind 𝑇∗
𝑛
:

𝑇
∗

𝑛
= 𝑇
∗

𝑛−1
+ 𝑇
∗

𝑛−2
+ 𝑇
∗

𝑛−3
, 𝑛 ≥ 3

with 𝑇
∗

0
= 0, 𝑇

∗

1
= 𝑇
∗

2
= 1.

(11)

These numbers are intensively studied in the literature;
they havemany interesting interpretations also in graphs.The
graph interpretation of the Fibonacci numbers was initiated
by Prodinger and Tichy in [4]. In that paper, among others,
they showed connections between the Fibonacci and the
Lucas numbers and the number of all independent sets in
special graphs. Let NI(𝐺) be the number of all independent
sets in a graph𝐺. ByP(𝑚),C(𝑚), T(𝑚), andS(𝑚)wedenote a
path, a cycle, a tree, and a star of size𝑚 for𝑚 ≥ 1, respectively.
Then, NI(P(𝑚)) = 𝐹

𝑚+2
and NI(C(𝑚)) = 𝐿

𝑚
; for details, see

[4].This simple observation gave an impetus for studying the
graph parameterNI(𝐺) in different classes of graphs and their
products, from the pure mathematical point of view. This
interest was multiplied by the fact that the parameter NI(𝐺)
of a molecular graph was introduced to the combinatorial
chemistry by showing some relations between NI(𝐺) and
some physicochemical properties of chemical compounds.
For these reasons, the parameter NI(𝐺) is intensively studied
in graphs.

Theorem 1 (see [4]). Let 𝑚 ≥ 1 be an integer. For a tree
T(𝑚) of size 𝑚, 𝐹

𝑚+2
≤ 𝑁𝐼(T(𝑚)) ≤ 2𝑚 + 1 holds. Moreover,

𝑁𝐼(T(𝑚)) = 𝐹
𝑚+2

iff T(𝑚) = P(𝑚) and 𝑁𝐼(T(𝑚)) = 2𝑚 + 1

iff T(𝑚) = S(𝑚).

The graph parameter NI(𝐺) relates to other numbers of
the Fibonacci type. For Jacobsthal numbers 𝐽

𝑛
and Jacobsthal-

Lucas numbers 𝑗
𝑛
, the following has been proved.

Theorem 2 (see [5, 6]). Let 𝑚 ≥ 1 be an integer. Then,
𝑁𝐼(P(𝑚)[𝐾

2
]) = 𝐽
𝑚+3

and𝑁𝐼(C(𝑚)[𝐾
2
]) = 𝑗
𝑚
.

For other results related to the parameter NI(𝐺) and
their applications, see the last survey [7]. In this survey the
authors collect and classify the results concerning the graph
parameter NI(𝐺), most of which are obtained quite recently.
Actually for the chemical applications, the index NI(𝐺) is
named as the Merrifield-Simmons index.

Considering the Fibonacci numbers and numbers of the
Fibonacci type, we can collect other graph parameters related
to the numbers of the Fibonacci type.

Let 𝑍(𝐺) be the number of all matchings of 𝐺. Then,
𝑍(P(𝑚) ∘ 𝐾

1
) = 𝑃

𝑚+2
and 𝑍(C(𝑚) ∘ 𝐾

1
) = 2𝑄

𝑚
, where

𝐺 ∘ 𝐻 is the corona of two graphs. The index 𝑍(𝐺) is well-
known by the Hosoya index. Let NI

𝐿
(𝐺) be the number of all

independent sets in 𝐺 including the set of leaves as a subset.
Then, NI

𝐿
(P(𝑚)) = Pv(𝑚 − 2). For this graph parameter, see

more details in [8].

Theorem 3 (see [8]). Let 𝑚 ≥ 2 be an integer. Then, for a
tree T(𝑚) of size𝑚,𝑁𝐼

𝐿
(T(𝑚)) ≤ 𝑃V(𝑚 − 2) holds. Moreover,

P(𝑚) is the extremal graph achieving the maximum value of
𝑁𝐼
𝐿
(T(𝑚)).

For the classical Fibonacci numbers and numbers of the
Fibonacci type, there are many generalizations with respect
to one or more parameters. We list some of these generalized
numbers of the Fibonacci type. Let 𝑘 and 𝑛 be integers. We
have the following.

(1) 𝑘-generalized Fibonacci numbers 𝑓
𝑛
(Miles Jr. [9]):

𝑓
𝑛
= 𝑓
𝑛−1

+ 𝑓
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑓
𝑛−𝑘

, 𝑘 ≥ 2, 𝑛 > 𝑘, (12)

with 𝑓
𝑗
= 0 for 0 ≤ 𝑗 ≤ 𝑘 − 2 and 𝑓

𝑘−1
= 𝑓
𝑘
= 1.

(2) Generalized Fibonacci numbers𝐹(𝑘, 𝑛) (Kwaśnik and
Włoch [10]):

𝐹 (𝑘, 𝑛) = 𝐹 (𝑘, 𝑛 − 1) + 𝐹 (𝑘, 𝑛 − 𝑘) , 𝑘 ≥ 2, 𝑛 ≥ 𝑘, (13)

with 𝐹(𝑘, 𝑛) = 𝑛 + 1 for 𝑛 = 0, 1, . . . , 𝑘 − 1.
(3) 𝑘-Fibonacci numbers 𝐹

𝑘
(𝑛) (Falcón and Plaza [11]):

𝐹
𝑘
(𝑛) = 𝑘𝐹

𝑘
(𝑛 − 1) + 𝐹

𝑘
(𝑛 − 2) , 𝑘 ≥ 1, 𝑛 ≥ 2, (14)

with 𝐹
𝑘
(0) = 0 and 𝐹

𝑘
(1) = 1.

(4) Generalized Pell numbers 𝑃(𝑘, 𝑛) (Włoch [12]):

𝑃 (𝑘, 𝑛) = 𝑃 (𝑘, 𝑛 − 1) + 𝑃 (𝑘, 𝑛 − 𝑘 + 1)

+ 𝑃 (𝑘, 𝑛 − 𝑘) , 𝑘 ≥ 2, 𝑛 ≥ 𝑘 + 1,
(15)

with 𝑃(2, 0) = 0 and 𝑃(𝑘, 0) = 1 for 𝑘 ≥ 3 and
𝑃(𝑘, 1) = 1, 𝑃(𝑘, 𝑛) = 2𝑛 − 2 for 2 ≤ 𝑛 ≤ 𝑘.

(5) 𝑘-Lucas numbers 𝐿
𝑘
(𝑛) (Falcon [13]):

𝐿
𝑘
(𝑛) = 𝑘𝐿

𝑘
(𝑛 − 1) + 𝐿

𝑘
(𝑛 − 2) , 𝑘 ≥ 1, 𝑛 ≥ 2, (16)

with 𝐿
𝑘
(0) = 2 and 𝐿

𝑘
(1) = 𝑘.

(6) 𝑘-Pell numbers 𝑃
𝑘
(𝑛) (Catarino [14]):

𝑃
𝑘
(𝑛) = 2𝑃

𝑘
(𝑛 − 1) + 𝑘𝑃

𝑘
(𝑛 − 2) , 𝑘 ≥ 1, 𝑛 ≥ 2, (17)

with 𝑃
𝑘
(0) = 0 and 𝑃

𝑘
(1) = 1.

(7) 𝑘-Pell-Lucas numbers 𝑄
𝑘
(𝑛) (Catarino and Vasco

[15]):

𝑄
𝑘
(𝑛) = 2𝑄

𝑘
(𝑛 − 1) + 𝑘𝑄

𝑘
(𝑛 − 2) , 𝑘 ≥ 1, 𝑛 ≥ 2, (18)

with 𝑄
𝑘
(0) = 𝑄

𝑘
(1) = 2.
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(8) Generalized Lucas numbers 𝐿(𝑘, 𝑛) (Włoch [16]):

𝐿 (𝑘, 𝑛) = 𝐿 (𝑘, 𝑛 − 1) + 𝐿 (𝑘, 𝑛 − 𝑘) , 𝑘 ≥ 2, 𝑛 ≥ 2𝑘, (19)

with 𝐿(𝑘, 𝑛) = 𝑛 + 1 for 𝑛 = 0, 1, . . . , 2𝑘 − 1.
(9) Distance Pell numbers Pd(𝑘, 𝑛) (Szynal-Liana and

Włoch [5]):

Pd (𝑘, 𝑛) = Pd (𝑘, 𝑛 − 1) + Pd (𝑘, 𝑛 − 2)

+ Pd (𝑘, 𝑛 − 𝑘) , 𝑘 ≥ 1, 𝑛 ≥ 𝑘,
(20)

with Pd(𝑘, 0) = 0 and Pd(𝑘, 𝑖) = 1 for 𝑘 ≤ 𝑖 + 2, 𝑖 ≥ 1,
and Pd(𝑘, 𝑖) = 0 for 𝑘 > 𝑖 + 2, 𝑖 ≥ 1.

(10) Distance companion Pell numbers 𝑄𝑑(𝑘, 𝑛) (Szynal-
Liana et al. [6]):

𝑄𝑑 (𝑘, 𝑛) = 𝑄𝑑 (𝑘, 𝑛 − 1) + 𝑄𝑑 (𝑘, 𝑛 − 2)

+ 𝑄𝑑 (𝑘, 𝑛 − 𝑘) , 𝑘 ≥ 1, 𝑛 ≥ 𝑘,
(21)

with 𝑄𝑑(𝑘, 0) = 𝑘, 𝑄𝑑(1, 1) = 1, and 𝑄𝑑(𝑘, 𝑛) = 𝐿
𝑛

for 𝑛 = 1, . . . , 𝑘 − 1.
(11) Distance Jacobsthal numbers 𝐽(𝑘, 𝑡, 𝑛) (Szynal-Liana

et al. [6]):

𝐽 (𝑘, 𝑡, 𝑛) = 𝐽 (𝑘, 𝑡, 𝑛 − 1) + 𝑡𝐽 (𝑘, 𝑡, 𝑛 − 𝑘) ,

𝑘 ≥ 2, 𝑛 ≥ 𝑘 + 1,
(22)

with 𝐽(𝑘, 𝑡, 0) = 0 and 𝐽(𝑘, 𝑡, 𝑛) = 1 for 𝑛 = 1, . . . , 𝑘.
(12) Distance Jacobsthal-Lucas numbers JL(𝑘, 𝑡, 𝑛) (Szy-

nal-Liana et al. [6]):

JL (𝑘, 𝑡, 𝑛) = JL (𝑘, 𝑡, 𝑛 − 1) + 𝑡JL (𝑘, 𝑡, 𝑛 − 𝑘) ,

𝑘 ≥ 2, 𝑛 ≥ 𝑘,
(23)

with JL(𝑘, 𝑡, 0) = 𝑘 and JL(𝑘, 𝑡, 𝑛) = 1 for 𝑛 = 1, . . . , 𝑘−
1.

(13) (2, 𝑘)-distance Fibonacci numbers 𝐹(2)
2
(𝑘, 𝑛) of the

second kind (Bednarz et al. [17]):

𝐹
(2)

2
(𝑘, 𝑛) = 𝐹

(2)

2
(𝑘, 𝑛 − 2) + 𝐹

(2)

2
(𝑘, 𝑛 − 𝑘) ,

𝑘 ≥ 1, 𝑛 ≥ 𝑘 + 1,
(24)

with𝐹(2)
2
(𝑘, 𝑛) = 0 if 𝑛 is odd and 𝑛 ≤ 𝑘−1,𝐹(2)

2
(𝑘, 𝑛) =

1 if 𝑛 is even and 𝑛 ≤ 𝑘 − 1, 𝐹(2)
2
(𝑘, 𝑘) = 0 if 𝑘 = 1,

𝐹
(2)

2
(𝑘, 𝑘) = 1 if 𝑘 is odd and 𝑘 ≥ 3, and 𝐹(2)

2
(𝑘, 𝑘) = 2

if 𝑘 is even.
(14) (2, 𝑘)-distance Lucas numbers 𝐿(2)

2
(𝑘, 𝑛) of the second

kind (Bednarz et al. [17]):

𝐿
(2)

2
(𝑘, 𝑛) = 𝐿

(2)

2
(𝑘, 𝑛 − 2) + 𝐿

(2)

2
(𝑘, 𝑛 − 𝑘) ,

𝑘 ≥ 1, 𝑛 ≥ 𝑘 + 2,
(25)

with 𝐿
(2)

2
(1, 0) = 2 and 𝐿

(2)

2
(𝑘, 0) = 𝑘 for 𝑘 ≥ 2,

𝐿
(2)

2
(𝑘, 1) = 0, 𝐿(2)

2
(1, 2) = 3, and 𝐿(2)

2
(𝑘, 𝑘) = 𝑘 if 𝑘 is

odd and 𝐿(2)
2
(𝑘, 𝑘) = 𝑘+2 if 𝑘 is even, 𝐿(2)

2
(𝑘, 𝑘+1) = 2

if 𝑘 is odd and 𝑘 ̸= 1, 𝐿(2)
2
(𝑘, 𝑘 + 1) = 0 if 𝑘 is even,

𝐿
(2)

2
(𝑘, 𝑛) = 0 if 𝑛 is odd and 3 ≤ 𝑛 ≤ 𝑘 − 1, and

𝐿
(2)

2
(𝑘, 𝑛) = 2 if 𝑛 is even and 2 ≤ 𝑛 ≤ 𝑘 − 1.

For most of these numbers also some graph interpreta-
tions with respect to distance independent sets or matchings
were studied (see, e.g., [5, 6, 8, 10, 12, 18–20]).

2. Main Results

The main purpose of this section is to give a total graph
interpretation for numbers of the Fibonacci type with respect
to a special edge colouring of some graphs.

Let𝐺 be an undirected, connected, simple graph. LetI =

{1, . . . , 𝑘}, 𝑘 ≥ 2, and letI
𝑖
= {1, . . . , 𝑏

𝑖
}, 𝑏
𝑖
≥ 1. In particular,

I
𝑖
can be empty (then we put 𝑏

𝑖
= 0). Let C = ⋃

𝑖∈I C
𝑖

be a nonempty family of colours, where C
𝑖
= {𝑖𝐴

𝑗
; 𝑗 ∈ I

𝑖
}

for 𝑖 = 1, . . . , 𝑘. The set C
𝑖
will be called the set of 𝑏

𝑖
shades

of the colour 𝑖. Consequently, for all 𝑖 ̸= 𝑝, 1 ≤ 𝑖, 𝑝 ≤ 𝑘,
𝑖𝐴
𝑗

̸= 𝑝𝐴
𝑗
holds and this implies that the familyChas exactly

∑
𝑘

𝑖=1
|C
𝑖
| = ∑
𝑘

𝑖=1
𝑏
𝑖
colours.

A graph 𝐺 is (𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge coloured by

monochromatic paths if for every maximal 𝑖𝐴
𝑗
-monochro-

matic subgraph 𝐻 of 𝐺, where 𝑖𝐴
𝑗
∈ C
𝑖
, 1 ≤ 𝑖 ≤ 𝑘,

1 ≤ 𝑗 ≤ 𝑏
𝑖
, there is a partition of𝐻 into edge disjoint paths of

the length 𝑖. Clearly, if 𝑏
1

̸= 0 then (𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge

colouring by monochromatic paths always exists. With this
type of edge colouring of a graph, we associate the following
graph parameter.

Let 𝐺 be a graph which can be (𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-

edge coloured by monochromatic paths. LetF be a family of
distinct (𝑖𝐴

𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge coloured graphs obtained

by colouring of a graph 𝐺 and

F = {𝐺
(1)
, 𝐺
(2)
, . . . , 𝐺

(𝑙)
} , 𝑙 ≥ 1, (26)

where 𝐺(𝑝), 1 ≤ 𝑝 ≤ 𝑙, denotes a graph obtained by (𝑖𝐴
𝑗
;

𝑖 ∈ I, 𝑗 ∈ I
𝑖
)-edge colouring by monochromatic paths of a

graph 𝐺.
For (𝑖𝐴

𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge coloured graph 𝐺(𝑝) by

𝜃(𝐺(𝑝)), we denote the number of all partitions of𝐺(𝑝) for 1 ≤
𝑝 ≤ 𝑙. Let

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(𝐺) =

𝑙

∑
𝑝=1

𝜃 (𝐺
(𝑝)
) . (27)

Considering the 𝑘th-order linear recurrence relation
(1), we will show that there is a connection between this
recurrence equation and the parameter 𝜎

(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)
(𝐺) for

a special graph 𝐺.
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Theorem 4. Let 𝑘 ≥ 2 and𝑚 ≥ 𝑘 be integers. Then,

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚))

= 𝑏
1
𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 1)) + ⋅ ⋅ ⋅

+ 𝑏
𝑘
𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 𝑘)) .

(28)

Proof. Assume that 𝑚 ≥ 𝑘 and let us consider (𝑖𝐴
𝑗
; 𝑖 ∈ I,

𝑗 ∈ I
𝑖
)-edge colouring bymonochromatic paths of the graph

P(𝑚) with the numbering of its edges in the natural fashion.
Let us denote by 𝜎𝑟

(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)
(P(𝑚)) the number of all

(𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge colourings by monochromatic

paths of the graph P(𝑚), such that the last edge of P(𝑚) is
coloured by the colour from the fixed setC

𝑟
, where 1 ≤ 𝑟 ≤ 𝑘.

It is clear that

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚)) =
𝑘

∑
𝑟=1

𝜎
𝑟

(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)
(P (𝑚)) . (29)

If the edge 𝑒
𝑚
∈ P(𝑚) is coloured by one of the shades of

colour 𝑟, that is, by 𝑟𝐴
𝑗
, 1 ≤ 𝑟 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑏

𝑟
, then, according

to the definition of (𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge colouring

by monochromatic paths, the number 𝜎𝑟
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P(𝑚)) =

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P(𝑚 − 𝑟)) is the number of all (𝑖𝐴
𝑗
; 𝑖 ∈ I,

𝑗 ∈ I
𝑖
)-edge colourings by monochromatic paths of the

graphP(𝑚−𝑟). Taking into account thatwe consider 𝑏
𝑟
shades

of every colour 𝑟, we get

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚))

= 𝑏
1
𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 1)) + ⋅ ⋅ ⋅

+ 𝑏
𝑘
𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 𝑘)) ,

(30)

which ends the proof.

For the special case of 𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P(𝑚)), we can prove
the following.

Theorem 5. Let 𝑘 and𝑚 be integers. Then,

(1) 𝜎
(𝐴1 ,2𝐴1)

(P(𝑚)) = 𝐹
𝑚
for𝑚 ≥ 1,

(2) 𝜎
(𝐴1 ,𝐴2,2𝐴1)

(P(𝑚)) = 𝑃
𝑚+1

for𝑚 ≥ 1,
(3) 𝜎
(𝐴1 ,2𝐴1,2𝐴2)

(P(𝑚)) = 𝐽
𝑚+1

for𝑚 ≥ 1,

(4) 𝜎
(𝐴1 ,2𝐴1,3𝐴1)

(P(𝑚)) = 𝑇∗
𝑚+1

for𝑚 ≥ 1,
(5) 𝜎
(2𝐴1 ,3𝐴1)

(P(𝑚)) = 𝑃V(𝑚 − 2) for𝑚 ≥ 2,
(6) 𝜎
(𝐴1 ,2𝐴1,...,𝑘𝐴1)

(P(𝑚)) = 𝑓
𝑚+𝑘−1

for 𝑘 ≥ 2 and𝑚 ≥ 𝑘−1,
(7) 𝜎
(𝐴1 ,𝑘𝐴1)

(P(𝑚)) = 𝐹(𝑘,𝑚 − 𝑘 + 1) for 𝑘 ≥ 2 and 𝑚 ≥

𝑘 − 1,
(8) 𝜎
(𝐴1 ,...,𝐴𝑘,2𝐴1)

(P(𝑚)) = 𝐹
𝑘
(𝑚 + 1) for 𝑘 ≥ 1 and𝑚 ≥ 1,

(9) 𝜎
(𝐴1 ,(𝑘−1)𝐴1 ,𝑘𝐴1)

(P(𝑚)) = 𝑃(𝑘,𝑚− 𝑘+ 3) for 𝑘 ≥ 2 and
𝑚 ≥ 𝑘 − 3,

(10) 𝜎
(𝐴1 ,𝐴2,2𝐴1,...,2𝐴𝑘)

(P(𝑚)) = 𝑃
𝑘
(𝑚 + 1) for 𝑘 ≥ 1 and

𝑚 ≥ 1,

(11) 𝜎
(𝐴1 ,2𝐴1,𝑘𝐴1)

(P(𝑚)) = 𝑃𝑑(𝑘,𝑚 + 𝑘 − 2) for 𝑘 ≥ 1 and
𝑚 ≥ 𝑘 − 2,

(12) 𝜎
(𝐴1 ,𝑘𝐴1,𝑘𝐴2 ,...,𝑘𝐴𝑡)

(P(𝑚)) = 𝐽(𝑘, 𝑡, 𝑚 + 1) for 𝑘 ≥ 2 and
𝑚 ≥ 1,

(13) 𝜎
(2𝐴1 ,𝑘𝐴1)

(P(𝑚)) = 𝐹
(2)

2
(𝑘,𝑚) for 𝑘 ≥ 1 and𝑚 ≥ 1.

Proof. Let 𝑚 be as in each statement of the theorem. For
the initial terms in each case, we determine the number
𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(𝐺) by inspection. We will analyze some cases.
(1) Consider (𝐴

1
, 2𝐴
1
)-edge colouring by monochro-

matic paths of P(𝑚). If 𝑚 = 1 then the unique edge of
P(1) is coloured by colour 𝐴

1
. If 𝑚 = 2 then we have a

path with two edges. So there are exactly two (𝐴
1
, 2𝐴
1
)-edge

colourings of P(2) in the first case using colour 𝐴
1
and in

the second case using the colour 2𝐴
1
. In each case, the graph

P(2) is monochromatic. Then, 𝜎
(𝐴1 ,2𝐴1)

(P(1)) = 1 = 𝐹
1
and

𝜎
(𝐴1 ,2𝐴1)

(P(2)) = 2 = 𝐹
2
.

(2) Now consider (𝐴
1
, 𝐴
2
, 2𝐴
1
)-edge colouring by

monochromatic paths of P(𝑚). If 𝑚 = 1 then there are
exactly two (𝐴

1
, 𝐴
2
, 2𝐴
1
)-edge colourings of P(1). The

unique edge can be coloured either by 𝐴
1
or by 𝐴

2
. Thus,

𝜎
(𝐴1 ,𝐴2,2𝐴1)

(P(1)) = 2 = 𝑃
2
. Let 𝑚 = 2. Then, using only

colours 𝐴
1
and 𝐴

2
we can colour edges of the graph P(2)

as follows: 𝐴
1
𝐴
1
, 𝐴
1
𝐴
2
, 𝐴
2
𝐴
1
, 𝐴
2
𝐴
2
. Moreover, there is

the unique colouring of the graph P(2) using the colour
2𝐴
1
. Then, P(2) is 2𝐴

1
-monochromatic. Consequently,

𝜎
(𝐴1 ,𝐴2,2𝐴1)

(P(2)) = 5 = 𝑃
3
.

(7) Consider (𝐴
1
, 𝑘𝐴
1
)-edge colouring by monochro-

matic paths of P(𝑚). If 𝑚 = 𝑘 − 1, then there is a unique
(𝐴
1
, 𝑘𝐴
1
)-edge colouring using only colour𝐴

1
. Let𝑚 = 𝑘+𝑖,

where 𝑖 = 0, . . . , 𝑘 − 1. Then, in the path P(𝑚), one 𝑘𝐴
1
-

monochromatic subpath can exist at most or P(𝑚) is 𝐴
1
-

monochromatic. Because 𝑘𝐴
1
-monochromatic path can be

chosen on 𝑖 + 1 ways, 𝜎
(𝐴1 ,𝑘𝐴1)

(P(𝑚)) = 𝑖 + 2 = 𝐹(𝑘, 𝑖 + 1).
In the sameway, we can verify the initial conditions in the

remaining cases (3)–(6) and (8)–(13).
By the initial conditions and by Theorem 4 the result

follows.

Analogously as for pathsP(𝑚)we can prove the following
theorem for the cycle C(𝑚).

Theorem 6. Let 𝑘 ≥ 2 and𝑚 ≥ 𝑘 − 1 be integers. Then,

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(C (𝑚))

=

𝑘

∑
𝑟=1

𝑏
𝑟
𝑟𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 𝑟)) .

(31)

Proof. Let C(𝑚) be a cycle of a size 𝑚 with the numbering
of its edges in the natural fashion. Let 𝜎𝑟

(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)
(C(𝑚))

denote the number of all (𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge colourings

by monochromatic paths of C(𝑚) such that the edge 𝑒
1
∈

𝐸(C(𝑚)) has the colour from the fixed C
𝑟
, where 1 ≤ 𝑟 ≤ 𝑘.

Clearly,

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(C (𝑚)) =

𝑘

∑
𝑟=1

𝜎
𝑟

(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)
(C (𝑚)) . (32)
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If the edge 𝑒
1
∈ 𝐸(C(𝑚)) is coloured by the colour 𝑟𝐴

𝑗
, where

1 ≤ 𝑟 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑏
𝑟
, then

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(C (𝑚)) = 𝑟𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 𝑟)) . (33)
The factor 𝑟 follows from the fact that the edge 𝑒

1
can belong

to an 𝑟𝐴
𝑗
-monochromatic path (of length 𝑟) on 𝑟 ways, 1 ≤

𝑟 ≤ 𝑖.
Moreover, in the setC

𝑟
, we have 𝑏

𝑟
shades of the colour 𝑟

and 𝑟 can be chosen on 𝑘 ways; thus,

𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(C (𝑚))

=

𝑘

∑
𝑟=1

𝑏
𝑟
𝑟𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(P (𝑚 − 𝑟)) ,

(34)

which ends the proof.

Using the above theorem, we can give a graph interpreta-
tion for the cyclic version of the Fibonacci type. Firstly, we
recall some identities given in [6, 13, 16, 17] which will be
useful to prove the next theorem.

For 𝑛 ≥ 1 and 𝑘 ≥ 1,
𝐿
𝑘
(𝑛) = 𝐹

𝑘
(𝑛 − 1) + 𝐹

𝑘
(𝑛 + 1) (35)

(see [13]). For 𝑘 ≥ 2 and 𝑛 ≥ 2𝑘,
𝐿 (𝑘, 𝑛) = 𝑘𝐹 (𝑘, (𝑛 − 2𝑘 + 1)) + 𝐹 (𝑘, 𝑛 − 𝑘) (36)

(see [16]). For 𝑘 ≥ 3 and 𝑛 ≥ 𝑘,
𝑄𝑑 (𝑘, 𝑛) = Pd (𝑘, 𝑛 + 𝑘 − 3) + 2Pd (𝑘, 𝑛 + 𝑘 − 4)

+ 𝑘Pd (𝑘, 𝑛 − 2)
(37)

(see [6]). For 𝑘 ≥ 3, 𝑛 ≥ 𝑘 − 1, and 𝑡 ≥ 1,
JL (𝑘, 𝑡, 𝑛) = 𝐽 (𝑘, 𝑡, 𝑛 + 1) + 𝑡 (𝑘 − 1) 𝐽 (𝑘, 𝑡, 𝑛 − 𝑘 + 1) (38)

(see [6]). For 𝑘 ≥ 2 and 𝑛 ≥ 𝑘,

𝐿
(2)

2
(𝑘, 𝑛) = 2𝐹

(2)

2
(𝑘, 𝑛 − 2) + 𝑘𝐹

(2)

2
(𝑘, 𝑛 − 𝑘) (39)

(see [17]).
To prove the next theorem, we need the following lemma.

Lemma 7. Let 𝑘 ≥ 1 and𝑚 ≥ 1 be integers. Then,
2𝑃
𝑘
(𝑚) + 2𝑘𝑃

𝑘
(𝑚 − 1) = 𝑄

𝑘
(𝑚) . (40)

Proof (by induction on𝑚). If𝑚 = 1, then 2𝑃
𝑘
(1) + 2𝑘𝑃

𝑘
(0) =

2 = 𝑄
𝑘
(1). Assume that formula (40) holds for an arbitrary

𝑚. We will prove it for𝑚+1. By the recurrence definitions of
the numbers 𝑃

𝑘
(𝑚) and 𝑄

𝑘
(𝑚) and by induction hypothesis,

we have
𝑄
𝑘
(𝑚 + 1) = 2𝑄

𝑘
(𝑚) + 𝑘𝑄

𝑘
(𝑚 − 1)

= 2 (2𝑃
𝑘
(𝑚) + 2𝑘𝑃

𝑘
(𝑚 − 1))

+ 𝑘 (2𝑃
𝑘
(𝑚 − 1) + 2𝑘𝑃

𝑘
(𝑚 − 2))

= 2 (2𝑃
𝑘
(𝑚) + 𝑘𝑃

𝑘
(𝑚 − 1))

+ 2𝑘 (2𝑃
𝑘
(𝑚 − 1) + 𝑘𝑃

𝑘
(𝑚 − 2))

= 2𝑃
𝑘
(𝑚 + 1) + 2𝑘𝑃

𝑘
(𝑚) ,

(41)

which ends the proof of Lemma 7.

Theorem 8. Let 𝑘 and𝑚 be integers. Then,

(1) 𝜎
(𝐴1 ,2𝐴1)

(C(𝑚)) = 𝐿
𝑚
, for𝑚 ≥ 3,

(2) 𝜎
(𝐴1 ,2𝐴1,2𝐴2)

(C(𝑚)) = 𝑗
𝑚
, for𝑚 ≥ 3,

(3) 𝜎
(2𝐴1 ,3𝐴1)

(C(𝑚)) = 𝑃𝑟(𝑚), for𝑚 ≥ 5,
(4) 𝜎
(𝐴1 ,...,𝐴𝑘,2𝐴1)

(C(𝑚)) = 𝐿
𝑘
(𝑚), for 𝑘 ≥ 1 and𝑚 ≥ 3,

(5) 𝜎
(𝐴1 ,𝐴2,2𝐴1 ,...,2𝐴𝑘)

(C(𝑚)) = 𝑄
𝑘
(𝑚), for 𝑘 ≥ 1 and 𝑚 ≥

3,
(6) 𝜎
(𝐴1 ,𝑘𝐴1)

(C(𝑚)) = 𝐿(𝑘,𝑚), for 𝑘 ≥ 2 and𝑚 ≥ 2𝑘 − 1,
(7) 𝜎
(𝐴1 ,2𝐴1,𝑘𝐴1)

(C(𝑚)) = 𝑄𝑑(𝑘,𝑚), for 𝑘 ≥ 3 and𝑚 ≥ 𝑘,
(8) 𝜎
(𝐴1 ,𝑘𝐴1,...,𝑘𝐴𝑡)

(C(𝑚)) = 𝐽𝐿(𝑘, 𝑡, 𝑚), for 𝑘 ≥ 3 and 𝑚 ≥

𝑘 + 1,
(9) 𝜎
(2𝐴1 ,𝑘𝐴1)

(C(𝑚)) = 𝐿
(2)

2
(𝑘,𝑚), for 𝑘 ≥ 2 and𝑚 ≥ 𝑘+1.

Proof. Let 𝑘 and𝑚 be as in each statement of the theorem.
(1) FromTheorem 6, we have that

𝜎
(𝐴1 ,2𝐴1)

(C (𝑚)) = 𝜎
(𝐴1 ,2𝐴1)

(P (𝑚 − 1))

+ 2𝜎
(𝐴1 ,2𝐴1)

(P (𝑚 − 2)) .
(42)

Moreover, by Theorem 5, by the recurrence relation of
Fibonacci numbers and the well-known identity for Lucas
numbers follows

𝜎
(𝐴1 ,2𝐴1)

(C (𝑚)) = 𝐹
𝑚−1

+ 2𝐹
𝑚−2

= 𝐹
𝑚
+ 𝐹
𝑚−2

= 𝐿
𝑚
, (43)

which ends the proof of (1).
(2) From Theorems 5 and 6, by the recurrence relation

of Jacobsthal numbers and the well-known identity for
Jacobsthal numbers, we obtain

𝜎
(𝐴1 ,2𝐴1,2𝐴2)

(C (𝑚)) = 𝜎
(𝐴1 ,2𝐴1,2𝐴2)

(P (𝑚 − 1))

+ 4𝜎
(𝐴1 ,2𝐴1,2𝐴2)

(P (𝑚 − 2))

= 𝐽
𝑚
+ 4𝐽
𝑚−1

= 𝐽
𝑚+1

+ 2𝐽
𝑚−1

= 𝑗
𝑚

(44)

which ends the proof of (2).
Analogously, like in the previous cases, using Theorems

5 and 6 and Lemma 7 and applying known identities for
considered numbers, we prove the other conditions such as
in what follows.

(3) 𝜎
(2𝐴1 ,3𝐴1)

(C(𝑚)) = 2𝜎
(2𝐴1 ,3𝐴1)

(P(𝑚 − 2)) +

3𝜎
(2𝐴1 ,3𝐴1)

(P(𝑚 − 3)) = 2Pv(𝑚 − 4) + 3Pv(𝑚 − 5) = 2Pv(𝑚−

2) + Pv(𝑚 − 5) = Pr(𝑚).
(4) 𝜎
(𝐴1 ,...,𝐴𝑘,2𝐴1)

(C(𝑚)) = 𝑘𝜎
(𝐴1 ,...,𝐴𝑘,2𝐴1)

(P(𝑚 − 1)) +

2𝜎
(𝐴1 ,...,𝐴𝑘,2𝐴1)

(P(𝑚 − 2)) = 𝑘𝐹
𝑘
(𝑚) + 2𝐹

𝑘
(𝑚 − 1) = 𝑘𝐹

𝑘
(𝑚) +

𝐹
𝑘
(𝑚 − 1) + 𝐹

𝑘
(𝑚 − 1) = 𝐹

𝑘
(𝑚 + 1) + 𝐹

𝑘
(𝑚 − 1) = 𝐿

𝑘
(𝑚) by

(35).
(5) 𝜎
(𝐴1 ,𝐴2 ,2𝐴1,...,2𝐴𝑘)

(C(𝑚)) = 2𝜎
(𝐴1 ,𝐴2,2𝐴1 ,...,2𝐴𝑘)

(P(𝑚 −

1))+ 2𝑘𝜎
(𝐴1 ,𝐴2,2𝐴1 ,...,2𝐴𝑘)

(P(𝑚−2)) = 2𝑃
𝑘
(𝑚)+2𝑘𝑃

𝑘
(𝑚−1) =

𝑄
𝑘
(𝑚) by Lemma 7.
(6) 𝜎
(𝐴1 ,𝑘𝐴1)

(C(𝑚)) = 𝜎
(𝐴1 ,𝑘𝐴1)

(P(𝑚−1))+𝑘𝜎
(𝐴1 ,𝑘𝐴1)

(P(𝑚

− 𝑘)) = 𝐹(𝑘,𝑚 − 𝑘) + 𝑘𝐹(𝑘,𝑚 − 2𝑘 + 1) = 𝐿(𝑘,𝑚) by (36),
which ends the proof of (6).
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(7) 𝜎
(𝐴1 ,2𝐴1 ,𝑘𝐴1)

(C(𝑚)) = 𝜎
(𝐴1 ,2𝐴1,𝑘𝐴1)

(P(𝑚 − 1)) +

2𝜎
(𝐴1 ,2𝐴1 ,𝑘𝐴1)

(P(𝑚−2))+𝑘𝜎
(𝐴1 ,2𝐴1,𝑘𝐴1)

(P(𝑚−𝑘)) = Pd(𝑘,𝑚+
𝑘− 3) + 2Pd(𝑘,𝑚+ 𝑘− 4) + 𝑘Pd(𝑘,𝑚− 2) = 𝑄𝑑(𝑘,𝑚) by (37),
which ends the proof of (7).

(8) 𝜎
(𝐴1 ,𝑘𝐴1 ,...,𝑘𝐴𝑡)

(C(𝑚)) = 𝜎
(𝐴1 ,𝑘𝐴1 ,...,𝑘𝐴𝑡)

(P(𝑚 − 1)) +
𝑡𝑘𝜎
(𝐴1 ,𝑘𝐴1 ,...,𝑘𝐴𝑡)

(P(𝑚−𝑘)) = 𝐽(𝑘, 𝑡, 𝑚) + 𝑡𝑘𝐽(𝑘, 𝑡, 𝑚−𝑘+1) =

𝐽(𝑘, 𝑡, 𝑚) + 𝑡(𝑘 − 1)𝐽(𝑘, 𝑡, 𝑚 − 𝑘 + 1) + 𝑡𝐽(𝑘, 𝑡, 𝑚 − 𝑘 + 1) =
𝐽(𝑘, 𝑡, 𝑚 + 1) + 𝑡(𝑘 − 1)𝐽(𝑘, 𝑡, 𝑚 − 𝑘 + 1) = JL(𝑘, 𝑡, 𝑚) by (38),
which ends the proof of (8).

(9) 𝜎
(2𝐴1 ,𝑘𝐴1)

(C(𝑚)) = 2𝜎
(2𝐴1 ,𝑘𝐴1)

(P(𝑚 − 2)) +

𝑘𝜎
(2𝐴1 ,𝑘𝐴1)

(P(𝑚 − 𝑘)) = 2𝐹
(2)

2
(𝑘,𝑚 − 2) + 𝑘𝐹

(2)

2
(𝑘,𝑚 − 𝑘) =

𝐿
(2)

2
(𝑘,𝑚) by (39), which ends the proof of (9).
Thus, the theorem is proved.

3. (𝐴
1
,2𝐴
1
)-Edge Colouring in Trees

We can study (𝑖𝐴
𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-edge colouring

by monochromatic paths in distinct classes of graphs. For
arbitrary 𝑘 and 𝑏

𝑖
, 𝑖 ≥ 0, the problem seems to be difficult

but some interesting results can be obtained for fixed 𝑘 and
𝑏
𝑖
, 𝑖 = 1, . . . , 𝑘. Assume that 𝑘 = 2 and 𝑏

1
= 𝑏
2
= 1. Then, the

(𝐴
1
, 2𝐴
1
)-edge colouring always exists in an arbitrary graph

𝐺. In this section, we consider the number of all (𝐴
1
, 2𝐴
1
)-

edge colourings in trees.

Theorem 9. Let T(𝑚) be a tree of size𝑚,𝑚 ≥ 1. Then,

𝐹
𝑚
≤ 𝜎
(𝐴1 ,2𝐴1)

(T (𝑚))

≤ 1 + ∑
𝑗≥1

(
𝑚

2𝑗
)

𝑗−1

∏
𝑝=0

[2𝑗 − (2𝑝 + 1)] .
(45)

Moreover, for

𝜎
(𝐴1 ,2𝐴1)

(P (𝑚)) = 𝐹
𝑚
, T (𝑚) = P (𝑚) (46)

and for

𝜎
(𝐴1 ,2𝐴1)

(S (𝑚)) = 1 + ∑
𝑗≥1

(
𝑚

2𝑗
)

𝑗−1

∏
𝑝=0

[2𝑗 − (2𝑝 + 1)] ,

T (𝑚) = S (𝑚) .

(47)

Proof. Let T(𝑚) be a tree of size 𝑚, 𝑚 ≥ 1. Firstly, we will
show that

𝜎
(𝐴1 ,2𝐴1)

(T (𝑚)) ≥ 𝐹
𝑚
. (48)

We prove it by induction on 𝑚. If 𝑚 = 1, 2 then T(𝑚)

is isomorphic to P(𝑚) and the result is obvious. Let 𝑥 ∈

𝑉(T(𝑚)) be a leaf incident with the edge 𝑥𝑦 ∈ 𝐸(T(𝑚)) such
that 𝑦𝑧 ∈ 𝐸(T(𝑚)) and T(𝑚)\{𝑥𝑦, 𝑦𝑧} is isomorphic to either
T(𝑚 − 2) ∪ {𝑥, 𝑧} or T(𝑚 − 2) ∪ {𝑥, 𝑦}. Such leaf 𝑥 ∈ 𝑉(T(𝑚))
always exists in a tree, by the basic tree properties.Thismeans
that T(𝑚 − 2) is a tree. Since isolated vertices are not taken
into consideration in (𝐴

1
, 2𝐴
1
)-edge colourings, it suffices to

consider the tree T(𝑚 − 2).

Assume that 𝑥, 𝑦, and 𝑧 are as above and consider the
following possibilities.

(i) 𝑥𝑦 ∈ 𝐸(T(𝑚)) has the colour 𝐴
1
.

Then, the subgraph T(𝑚)\{𝑥𝑦} is isomorphic to T(𝑚−1)∪
{𝑥} andhas the (𝐴

1
, 2𝐴
1
)-edge colouring. By our assumption,

there is at least 𝐹
𝑚−1

such (𝐴
1
, 2𝐴
1
)-edge colourings of T(𝑚)

in this case.
(ii) 𝑥𝑦 ∈ 𝐸(T(𝑚)) has the colour 2𝐴

1
.

Then, by the definition of the (𝐴
1
, 2𝐴
1
)-edge colouring,

it immediately follows that there is a 2𝐴
1
-monochromatic

subgraph with a partition 𝜃 into 2𝐴
1
-monochromatic paths

of length 2.
Let 𝐻 ≤ T(𝑚) be a maximal 2𝐴

1
-monochromatic

subgraph with a partition 𝜃. Let 𝑦𝑧 ∈ 𝐸(𝐻) have the
colour 2𝐴

1
and the path 𝑥𝑦, 𝑦𝑧 belongs to 𝜃. Then, the

subgraph T(𝑚) \ {𝑥𝑦, 𝑦𝑧} also has (𝐴
1
, 2𝐴
1
)-edge colouring

and |𝐸(T(𝑚) \ {𝑥𝑦, 𝑦𝑧})| = 𝑚 − 2. Clearly, the edge 𝑥𝑦 ∈

𝐸(T(𝑚)) belongs to at least one partition 𝜃 of the 2𝐴
1
-

monochromatic subgraph of T(𝑚) into 2𝐴
1
-monochromatic

paths of length 2. Consequently, if 𝑥𝑦 ∈ 𝐸(T(𝑚)) has the
colour 2𝐴

1
, then the number of all (𝐴

1
, 2𝐴
1
)-edge colourings

ofT(𝑚) is greater than or equal to the number𝜎
(𝐴1,2𝐴1)

(T(𝑚)\

{𝑥𝑦, 𝑦𝑧}). Since T(𝑚) \ {𝑥𝑦, 𝑦𝑧} has two isolated vertices, it
suffices to consider T(𝑚 − 2), so 𝜎

(𝐴1 ,2𝐴1)
(T(𝑚) \ {𝑥𝑦, 𝑦𝑧}) ≥

𝜎
(𝐴1 ,2𝐴1)

(T(𝑚−2)) ≥ 𝐹
𝑚−2

by the induction hypothesis. From
the above,𝜎

(𝐴1 ,2𝐴1)
(T(𝑚)) ≥ 𝐹

𝑚−1
+𝐹
𝑚−2

= 𝐹
𝑚
. ByTheorem 5,

the equality is obvious.
Now we show that

𝜎
(𝐴1 ,2𝐴1)

(T (𝑚)) ≤ 1 + ∑
𝑗≥1

(
𝑚

2𝑗
)

𝑗−1

∏
𝑝=0

[2𝑗 − (2𝑝 + 1)] . (49)

Since T(𝑚) is a connected graph, the maximum value is
attained if both edges are adjacent. This means that T(𝑚) is
the star. Then, there is a maximum number of substars with
even number of edges. Consequently, it suffices to calculate
the number of all substars of a starwith even number of edges.
Since |𝐸(T(𝑚))| = 𝑚 and we choose even number of edges,
we have at least ∑

𝑗≥1
(
𝑚

2𝑗 ) possibilities of choosing of subset
of even edges. Moreover, 2𝑗 edges can be partitioned into
(2𝑗 − 1)(2𝑗 − 3) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 1 ways. Additionally, T(𝑚) can be
𝐴
1
-monochromatic.
All this together gives that 𝜎

(𝐴1 ,2𝐴1)
(T(𝑚)) ≤ 1 +

∑
𝑗≥1

(
𝑚

2𝑗 )∏
𝑗−1

𝑝=0
[2𝑗 − (2𝑝 + 1)]. The proof of equalities is

obvious.

4. Concluding Remarks

Studying the parameter 𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(𝐺), we can find the
graph interpretation with respect to (𝑖𝐴

𝑗
; 𝑖 ∈ I, 𝑗 ∈ I

𝑖
)-

edge colourings by monochromatic paths for other numbers
of the Fibonacci type not considered in this paper. For some
of them, such as the Tribonacci numbers 𝑇

𝑛
, it does not work

in paths and cycles. We can ask about the existence of a
graph 𝐺 for which 𝜎

(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)
(𝐺) = 𝑇

𝑛
. It is also inter-

esting to consider problems of determining the parameter
𝜎
(𝑖𝐴𝑗 ;𝑖∈I,𝑗∈I𝑖)

(𝐺) in distinct classes, clearly for a special (𝑖𝐴
𝑗
;

𝑖 ∈ I, 𝑗 ∈ I
𝑖
)-edge colouring by monochromatic paths.
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