
Research Article
Fixed Point Theorems for SiriT-Berinde Type Contractive
Multivalued Mappings

Seong-Hoon Cho

Department of Mathematics, Hanseo University, Chungnam 356-706, Republic of Korea

Correspondence should be addressed to Seong-Hoon Cho; shcho@hanseo.ac.kr

Received 24 April 2014; Revised 24 September 2014; Accepted 28 October 2014

Academic Editor: Salvador Romaguera

Copyright © 2015 Seong-Hoon Cho. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We give a Ćirić-Berinde type contractive condition for multivalued mappings and analyze the existence of fixed point for these
mappings.

1. Introduction and Preliminaries

In 2012, Samet et al. [1] introduced the notions of 𝛼-𝜓-
contractive mapping and 𝛼-admissible mappings in metric
spaces and obtained corresponding fixed point results, which
are generalizations of ordered fixed point results (see [1]).
Since then, by using their idea, some authors investigated
fixed point results in the field. Asl et al. [2] extended some
of results in [1] to multivalued mappings by introducing
the notions of 𝛼

∗
-𝜓-contractive mapping and 𝛼

∗
-admissible

mapping.
Recently, Salimi et al. [3] modified the notions of 𝛼-𝜓-

contractive mapping and 𝛼-admissible mappings by intro-
ducing another function 𝜂. And then, they gave generaliza-
tions of the results of Samet et al. [1] andKarapınar and Samet
[4]. Hussain et al. [5] extended these modified notions to
multivalued mappings.That is, they introduced the notion of
𝛼-𝜂-contractive multifunctions and gave fixed point results
for these multifunctions.

Very recently, Ali et al. [6] generalized and extended the
notion of𝛼-𝜓-contractivemapping by introducing the notion
of (𝛼, 𝜓, 𝜉)-contractive multivalued mappings and obtained
fixed point theorems for these mappings in complete metric
spaces.

The purpose of this paper is to introduce the notion of
Ćirić-Berinde type contractive multivalued mappings and to
generalize and extend the notion of 𝛼-𝜂-contractive multi-
functions and to establish fixed point theorems for Ćirić-
Berinde type contractive multivalued mappings.

Let (𝑋, 𝑑) be a metric space. We denote by 𝐶𝐵(𝑋) the
class of nonempty closed and bounded subsets of 𝑋 and by
𝐶𝐿(𝑋) the class of nonempty closed subsets of 𝑋. Let 𝐻(⋅, ⋅)
be the generalized Hausdorff distance on 𝐶𝐿(𝑋); that is, for
all 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋),

𝐻(𝐴, 𝐵) =

{
{
{
{

{
{
{
{

{

max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)} ,

if the maximum exists,
∞, otherwise,

(1)

where 𝑑(𝑎, 𝐵) = inf{𝑑(𝑎, 𝑏) : 𝑏 ∈ 𝐵} is the distance frompoint
𝑎 to subset 𝐵.

For 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋), let𝐷(𝐴, 𝐵) = sup
𝑥∈𝐴

inf
𝑦∈𝐵

𝑑(𝑥, 𝑦).
Then, we have𝐷(𝐴, 𝐵) ≤ 𝐻(𝐴, 𝐵) for all 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋).
From now on, we denote by

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

1

2

{𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)}}

(2)

for a multivalued map 𝑇 : 𝑋 → 𝐶𝐿(𝑋) and 𝑥, 𝑦 ∈ 𝑋.
We denote by Ξ the class of all functions 𝜉 : [0,∞) →

[0,∞) such that

(1) 𝜉 is continuous;
(2) 𝜉 is nondecreasing on [0,∞);
(3) 𝜉(𝑡) = 0 if and only if 𝑡 = 0;
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(4) 𝜉 is subadditive.

Also, we denote by Ψ the family of all nondecreasing
functions 𝜓 : [0,∞) → [0,∞) such that ∑∞

𝑛=1
𝜓
𝑛

(𝑡) < ∞

for each 𝑡 > 0, where 𝜓𝑛 is the 𝑛th iterate of 𝜓.
Note that if 𝜓 ∈ Ψ, then 𝜓(0) = 0 and 0 < 𝜓(𝑡) < 𝑡 for all

𝑡 > 0.
Let (𝑋, 𝑑) be a metric space, and let 𝛼 : 𝑋 × 𝑋 → [0,∞)

be a function.
We consider the following conditions:

(1) for any sequence {𝑥
𝑛
} in𝑋with 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N and lim
𝑛→∞

𝑥
𝑛
= 𝑥, we have

𝛼 (𝑥
𝑛
, 𝑥) ≥ 1 ∀𝑛 ∈ N; (3)

(2) for any sequence {𝑥
𝑛
} in𝑋with 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N and a cluster point 𝑥 of {𝑥
𝑛
}, we have

lim
𝑛→∞

inf 𝛼 (𝑥
𝑛
, 𝑥) ≥ 1; (4)

(3) for any sequence {𝑥
𝑛
} in 𝑋 with 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 ∈ N and a cluster point 𝑥 of {𝑥
𝑛
}, there exists a

subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that

𝛼 (𝑥
𝑛(𝑘)
, 𝑥) ≥ 1 ∀𝑘 ∈ N. (5)

Remark 1. (1) implies (2) and (2) implies (3).

Note that if (𝑋, 𝑑) is a metric space and 𝜉 ∈ Ξ, then (𝑋, 𝜉 ∘
𝑑) is a metric space.

Let (𝑋, 𝑑) be a metric space, and let 𝑇 : 𝑋 → 𝐶𝐿(𝑋) be
a multivalued mapping. Then, we say that

(1) 𝑇 is called 𝛼
∗
-admissible [2] if

𝛼 (𝑥, 𝑦) ≥ 1 implies 𝛼
∗
(𝑇𝑥, 𝑇𝑦) ≥ 1, (6)

where 𝛼
∗
(𝑇𝑥, 𝑇𝑦) = inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝑇𝑥, 𝑏 ∈ 𝑇𝑦};

(2) 𝑇 is called 𝛼-admissible [7] if, for each 𝑥 ∈ 𝑋 and 𝑦 ∈
𝑇𝑥 with 𝛼(𝑥, 𝑦) ≥ 1, we have 𝛼(𝑦, 𝑧) ≥ 1 for all 𝑧 ∈
𝑇𝑦.

Lemma 2. Let (𝑋, 𝑑) be a metric space, and let 𝑇 : 𝑋 →

𝐶𝐿(𝑋) be a multivalued mapping. If 𝑇 is 𝛼
∗
-admissible, then

it is 𝛼-admissible.

Proof. Suppose that 𝑇 is an 𝛼
∗
-admissible mapping.

Let 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥 be such that 𝛼(𝑥, 𝑦) ≥ 1.
Let 𝑧 ∈ 𝑇𝑦 be given.
Since 𝑇 is 𝛼

∗
-admissible, 𝛼(𝑦, 𝑧) ≥ 𝛼

∗
(𝑇𝑥, 𝑇𝑦) ≥ 1.

Lemma 3. Let (𝑋, 𝑑) be a metric space, and let 𝜉 ∈ Ξ and
𝐵 ∈ 𝐶𝐿(𝑋).

If 𝑎 ∈ 𝑋 and 𝜉(𝑑(𝑎, 𝐵)) < 𝑐, then there exists 𝑏 ∈ 𝐵 such
that 𝜉(𝑑(𝑎, 𝑏)) < 𝑐.

Proof. Let 𝜖 = 𝑐 − 𝜉(𝑑(𝑎, 𝐵)).
Since 𝜉(𝑑(𝑎, 𝐵)) < 𝑐 and 𝜉 ∘ 𝑑 is metric on 𝑋, there exists

𝑏 ∈ 𝐵 such that 𝜉(𝑑(𝑎, 𝑏)) < 𝜉(𝑑(𝑎, 𝐵)) + 𝜖 by definition of
infimum. Hence, 𝜉(𝑑(𝑎, 𝑏)) < 𝑐.

Let (𝑋, 𝑑) be a metric space.
A function 𝑓 : 𝑋 → [0,∞) is called upper semicontinu-

ous if, for each 𝑥 ∈ 𝑋 and {𝑥
𝑛
} ⊂ 𝑋 with lim

𝑛→∞
𝑥
𝑛
= 𝑥, we

have lim
𝑛→∞

𝑓(𝑥
𝑛
) ≤ 𝑓(𝑥).

A function 𝑓 : 𝑋 → [0,∞) is called lower semicontinu-
ous if, for each 𝑥 ∈ 𝑋 and {𝑥

𝑛
} ⊂ 𝑋 with lim

𝑛→∞
𝑥
𝑛
= 𝑥, we

have 𝑓(𝑥) ≤ lim
𝑛→∞

𝑓(𝑥
𝑛
).

For a multivalued map 𝑇 : 𝑋 → 𝐶𝐿(𝑋), let 𝑓
𝑇
: 𝑋 →

[0,∞) be a function defined by 𝑓
𝑇
(𝑥) = 𝑑(𝑥, 𝑇𝑥).

2. Fixed Point Theorems

In this section, we establish fixed point theorems for Ćirić-
Berinde type contractive multivalued mappings.

Theorem 4. Let (𝑋, 𝑑) be a complete metric space, and let 𝛼 :
𝑋 × 𝑋 → [0,∞) be a function. Suppose that a multivalued
mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋) is 𝛼-admissible.

Assume that, for all 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦) ≥ 1 implies

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) , (7)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing.
Also, suppose that the following are satisfied:

(1) there exists 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥

1;
(2) either 𝑇 is continuous or 𝑓

𝑇
is lower semicontinuous.

Then 𝑇 has a fixed point in𝑋.

Proof. Let 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇𝑥
0
be such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1.

Let 𝑐 be a real number with 𝜉(𝑑(𝑥
0
, 𝑥
1
)) < 𝜉(𝑐).

If 𝑥
0
= 𝑥
1
, then 𝑥

1
is a fixed point.

Let 𝑥
0
̸= 𝑥
1
.

If 𝑥
1
∈ 𝑇𝑥
1
, then 𝑥

1
is a fixed point. Let 𝑥

1
∉ 𝑇𝑥
1
. Then

𝑑(𝑥
1
, 𝑇𝑥
1
) > 0.

From (7) we obtain

0 < 𝜉 (𝑑 (𝑥
1
, 𝑇𝑥
1
))

≤ 𝜉 (𝐻 (𝑇𝑥
0
, 𝑇𝑥
1
))

≤ 𝜓(𝜉 (max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

0
, 𝑇𝑥
0
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
) ,

1

2

{𝑑 (𝑥
0
, 𝑇𝑥
1
) + 𝑑 (𝑥

1
, 𝑇𝑥
0
)}}))

+ 𝐿𝜉 (𝑑 (𝑥
1
, 𝑇𝑥
0
))

≤ 𝜓(𝜉 (max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
) ,

1

2

{𝑑 (𝑥
0
, 𝑇𝑥
1
) + 𝑑 (𝑥

1
, 𝑥
1
)}}))

+ 𝐿𝜉 (𝑑 (𝑥
1
, 𝑥
1
))
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≤ 𝜓(𝜉 (max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
) ,

1

2

{𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑇𝑥
1
)}}))

= 𝜓 (𝜉 (max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
)})) .

(8)

If max{𝑑(𝑥
0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑇𝑥
1
)} = 𝑑(𝑥

1
, 𝑇𝑥
1
), then we have

0 < 𝜉(𝑑(𝑥
1
, 𝑇𝑥
1
)) ≤ 𝜓(𝜉(𝑑(𝑥

1
, 𝑇𝑥
1
))) < 𝜉(𝑑(𝑥

1
, 𝑇𝑥
1
)), which

is a contradiction.
Thus, max{𝑑(𝑥

0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑇𝑥
1
)} = 𝑑(𝑥

0
, 𝑥
1
), and hence

we have

0 < 𝜉 (𝑑 (𝑥
1
, 𝑇𝑥
1
)) ≤ 𝜓 (𝜉 (𝑑 (𝑥

0
, 𝑥
1
))) < 𝜓 (𝜉 (𝑐)) . (9)

Hence, there exists 𝑥
2
∈ 𝑇𝑥
1
such that

𝜉 (𝑑 (𝑥
1
, 𝑥
2
)) < 𝜓 (𝜉 (𝑐)) . (10)

Since 𝑇 is 𝛼-admissible, from condition (1) and 𝑥
2
∈ 𝑇𝑥
1
,

we have

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1. (11)

If 𝑥
2
∈ 𝑇𝑥
2
, then 𝑥

2
is a fixed point. Let 𝑥

2
∉ 𝑇𝑥
2
.

Then 𝑑(𝑥
2
, 𝑇𝑥
2
) > 0, and so 𝜉(𝑑(𝑥

2
, 𝑇𝑥
2
)) > 0.

From (7) we obtain

0 < 𝜉 (𝑑 (𝑥
2
, 𝑇𝑥
2
))

≤ 𝜉 (𝐻 (𝑇𝑥
1
, 𝑇𝑥
2
))

≤ 𝜓(𝜉 (max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
) , 𝑑 (𝑥

2
, 𝑇𝑥
2
) ,

1

2

{𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)}}))

+ 𝐿𝜉 (𝑑 (𝑥
2
, 𝑇𝑥
1
))

≤ 𝜓(𝜉 (max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑇𝑥
2
) ,

1

2

{𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑥
2
)}}))

+ 𝐿𝜉 (𝑑 (𝑥
2
, 𝑥
2
))

≤ 𝜓(𝜉 (max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑇𝑥
2
) ,

1

2

{𝑑 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
2
)}}))

= 𝜓 (𝜉 (max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑇𝑥
2
)})) .

(12)

If max{𝑑(𝑥
1
, 𝑥
2
), 𝑑(𝑥
2
, 𝑇𝑥
2
)} = 𝑑(𝑥

2
, 𝑇𝑥
2
), then we have

𝜉(𝑑(𝑥
2
, 𝑇𝑥
2
)) ≤ 𝜓(𝜉(𝑑(𝑥

2
, 𝑇𝑥
2
))) < 𝜉(𝑑(𝑥

2
, 𝑇𝑥
2
)), which is a

contradiction.
Thus, max{𝑑(𝑥

1
, 𝑥
2
), 𝑑(𝑥
2
, 𝑇𝑥
2
)} = 𝑑(𝑥

1
, 𝑥
2
), and hence

we have

𝜉 (𝑑 (𝑥
2
, 𝑇𝑥
2
)) ≤ 𝜓 (𝜉 (𝑑 (𝑥

1
, 𝑥
2
))) < 𝜓

2

(𝜉 (𝑐)) . (13)

Hence, there exists 𝑥
3
∈ 𝑇𝑥
2
such that

𝜉 (𝑑 (𝑥
2
, 𝑥
3
)) < 𝜓

2

(𝜉 (𝑐)) . (14)

Since 𝑇 is 𝛼-admissible, from 𝑥
2
∈ 𝑇𝑥
1
and 𝛼(𝑥

1
, 𝑥
2
) ≥ 1,

we have

𝛼 (𝑥
2
, 𝑥
3
) ≥ 1. (15)

By induction, we obtain a sequence {𝑥
𝑛
} ⊂ 𝑋 such that,

for all 𝑛 ∈ N ∪ {0},

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1,

𝑥
𝑛+1

∈ 𝑇𝑥
𝑛
, 𝑥
𝑛

̸= 𝑥
𝑛+1
, 𝜉 (𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)) < 𝜓

𝑛

(𝜉 (𝑐)) .

(16)

Let 𝜖 > 0 be given.
Since ∑∞

𝑛=0
𝜓
𝑛

(𝜉(𝑐)) < ∞, there exists𝑁 ∈ N such that

∑

𝑛≥𝑁

𝜓
𝑛

(𝜉 (𝑐)) < 𝜉 (𝜖) . (17)

For all𝑚 > 𝑛 ≥ 𝑁, we have

𝜉 (𝑑 (𝑥
𝑛
, 𝑥
𝑚
)) ≤

𝑚−1

∑

𝑘=𝑛

𝜓
𝑘

(𝜉 (𝑐))

< ∑

𝑛≥𝑁

𝜓
𝑛

(𝜉 (𝑐)) < 𝜉 (𝜖)

(18)

which implies 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜖 for all 𝑚 > 𝑛 ≥ 𝑁. Hence, {𝑥

𝑛
}

is a Cauchy sequence in 𝑋.
It follows from the completeness of𝑋 that there exists

𝑥
∗
= lim
𝑛→∞

𝑥
𝑛
∈ 𝑋. (19)

Suppose that 𝑇 is continuous.
We have

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) ≤ 𝑑 (𝑥

∗
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
∗
)

≤ 𝑑 (𝑥
∗
, 𝑥
𝑛+1
) + 𝐻 (𝑥

𝑛
, 𝑇𝑥
∗
) .

(20)

By letting 𝑛 → ∞ in the above inequality, we obtain
𝑑(𝑥
∗
, 𝑇𝑥
∗
) = 0, and so 𝑥

∗
∈ 𝑇𝑥
∗
.

Assume that 𝑓
𝑇
is lower semicontinuous.

Then, 𝑓
𝑇
(𝑥
∗
) ≤ lim

𝑛→∞
𝑓
𝑇
(𝑥
𝑛
). Hence, 𝑑(𝑥

∗
, 𝑇𝑥
∗
) ≤

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) = 0. Thus, 𝑥

∗
∈

𝑇𝑥
∗
.

Corollary 5. Let (𝑋, 𝑑) be a complete metric space, and let 𝛼 :
𝑋×𝑋 → [0,∞) be a function. Suppose that𝑇 : 𝑋 → 𝐶𝐿(𝑋)

is an 𝛼-admissible mapping.
Assume that, for all 𝑥, 𝑦 ∈ 𝑋,

𝜉 (𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) ,

(21)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing.
Also, suppose that conditions (1) and (2) of Theorem 4 are

satisfied.
Then 𝑇 has a fixed point in𝑋.
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Remark 6. If we have 𝜉(𝑡) = 𝑡 for all 𝑡 ≥ 0, 𝐿 = 0, and 𝑇 is
continuous, then Corollary 5 reduces to Theorem 3.4 of [7].

Let (𝑋, ⪯) be an ordered set and 𝐴, 𝐵 ⊂ 𝑋. We say that
𝐴 ⪯ 𝐵 whenever, for each 𝑎 ∈ 𝐴, there exists 𝑏 ∈ 𝐵 such that
𝑎 ⪯ 𝑏.

Corollary 7. Let (𝑋, ⪯, 𝑑) be a complete ordered metric space.
Suppose that a multivalued mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋) satisfies

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) (22)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑇𝑥 ⪯ 𝑇𝑦 (resp., 𝑇𝑦 ⪯ 𝑇𝑥), where 𝐿 ≥ 0,
𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing.

Assume that, for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥 with 𝑇𝑥 ⪯ 𝑇𝑦

(resp., 𝑇𝑦 ⪯ 𝑇𝑥), we have 𝑇𝑦 ⪯ 𝑇𝑧 (resp., 𝑇𝑧 ⪯ 𝑇𝑦) for all
𝑧 ∈ 𝑇𝑦.

Also, suppose that the following are satisfied:

(1) there exists 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇𝑥
0
such that 𝑇𝑥

0
⪯ 𝑇𝑥
1

(resp., 𝑇𝑥
1
⪯ 𝑇𝑥
0
);

(2) either 𝑇 is continuous or 𝑓
𝑇
is lower semicontinuous.

Then 𝑇 has a fixed point in𝑋.

Remark 8. If we have 𝜉(𝑡) = 𝑡 for all 𝑡 ≥ 0, 𝐿 = 0, and 𝑇 is
continuous, then Corollary 7 reduces to Corollary 3.6 of [7].

FromTheorem 4 we obtain the following result.

Corollary 9. Let (𝑋, 𝑑) be a complete metric space, and let 𝛼 :
𝑋×𝑋 → [0,∞) be a function. Suppose that𝑇 : 𝑋 → 𝐶𝐿(𝑋)

is an 𝛼
∗
-admissible mapping.

Assume that, for all 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦) ≥ 1 implies

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) , (23)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing.
Also, suppose that conditions (1) and (2) of Theorem 4 are

satisfied.
Then 𝑇 has a fixed point in𝑋.

Remark 10. If we have 𝐿 = 0 in Corollary 9, then Corollary 9
reduces to Theorem 2.5 of [6].

Corollary 11. Let (𝑋, 𝑑) be a complete metric space, and let 𝛼 :
𝑋×𝑋 → [0,∞) be a function. Suppose that𝑇 : 𝑋 → 𝐶𝐿(𝑋)

is an 𝛼
∗
-admissible mapping.

Assume that, for all 𝑥, 𝑦 ∈ 𝑋,

𝜉 (𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) ,

(24)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing.
Also, suppose that conditions (1) and (2) of Theorem 4 are

satisfied.
Then 𝑇 has a fixed point in𝑋.

Remark 12. In Corollary 11, let 𝜉(𝑡) = 𝑡 for all 𝑡 ≥ 0 and
𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0,
where 𝑘 ∈ [0, 1). If 𝑇 is single valued map, then Corollary 11
reduces to Theorem 2.2 of [8].

Theorem 13. Let (𝑋, 𝑑) be a complete metric space, and let 𝛼 :
𝑋 × 𝑋 → [0,∞) be a function. Suppose that a multivalued
mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋) is 𝛼-admissible.

Assume that, for all 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦) ≥ 1 implies

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) , (25)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing and upper
semicontinuous function. Also, suppose that the following are
satisfied:

(1) there exists 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥

1;
(2) for a sequence {𝑥

𝑛
} in 𝑋 with 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N ∪ {0} and a cluster point 𝑥 of {𝑥
𝑛
}, there exists a

subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that, for all 𝑘 ∈ N∪{0},

𝛼 (𝑥
𝑛(𝑘)
, 𝑥) ≥ 1. (26)

Then 𝑇 has a fixed point in𝑋.

Proof. Following the proof of Theorem 4, we obtain a
sequence {𝑥

𝑛
} ⊂ 𝑋 with lim

𝑛→∞
𝑥
𝑛
= 𝑥
∗
∈ 𝑋 such that,

for all 𝑛 ∈ N ∪ {0},

𝑥
𝑛+1

∈ 𝑇𝑥
𝑛
, 𝑥
𝑛

̸= 𝑥
𝑛+1
, 𝛼 (𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1. (27)

From (2) there exists a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such

that

𝛼 (𝑥
𝑛(𝑘)
, 𝑥
∗
) ≥ 1. (28)

Thus, we have

𝜉 (𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
∗
)) = 𝜉 (𝐻 (𝑇𝑥

𝑛(𝑘)
, 𝑇𝑥
∗
))

≤ 𝜓 (𝜉 (𝑀 (𝑥
𝑛(𝑘)
, 𝑥
∗
)))

+ 𝐿𝜉 (𝑑 (𝑥
∗
, 𝑥
𝑛(𝑘)+1

)) ,

(29)

where

𝑀(𝑥
𝑛(𝑘)
, 𝑥
∗
)

= max {𝑑 (𝑥
𝑛(𝑘)
, 𝑥
∗
) , 𝑑 (𝑥

𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1

) , 𝑑 (𝑥
∗
, 𝑇𝑥
∗
) ,

1

2

{𝑑 (𝑥
𝑛(𝑘)
, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑥
𝑛(𝑘)+1

)}} .

(30)

We have

lim
𝑘→∞

𝑀(𝑥
𝑛(𝑘)
, 𝑥
∗
) = 𝑑 (𝑥

∗
, 𝑇𝑥
∗
) , (31)

and so

lim
𝑘→∞

𝜉 (𝑀 (𝑥
𝑛(𝑘)
, 𝑥
∗
)) = 𝜉 (𝑑 (𝑥

∗
, 𝑇𝑥
∗
)) . (32)

Suppose that 𝑑(𝑥
∗
, 𝑇𝑥
∗
) ̸= 0.

Since 𝜓 is upper semicontinuous,

lim
𝑘→∞

𝜓 (𝜉 (𝑀 (𝑥
𝑛(𝑘)
, 𝑥
∗
))) ≤ 𝜓 (𝜉 (𝑑 (𝑥

∗
, 𝑇𝑥
∗
))) . (33)
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Letting 𝑘 → ∞ in inequality (29) and using continuity
of 𝜉, we obtain

0 < 𝜉 (𝑑 (𝑥
∗
, 𝑇𝑥
∗
))

≤ lim
𝑘→∞

𝜓 (𝜉 (𝑀 (𝑥
𝑛(𝑘)
, 𝑥
∗
))) + lim
𝑘→∞

𝐿𝜉 (𝑑 (𝑥
∗
, 𝑥
𝑛(𝑘)+1

))

≤ 𝜓 (𝜉 (𝑑 (𝑥
∗
, 𝑇𝑥
∗
)))

< 𝜉 (𝑑 (𝑥
∗
, 𝑇𝑥
∗
))

(34)

which is a contradiction. Hence, 𝑑(𝑥
∗
, 𝑇𝑥
∗
) = 0, and hence

𝑥
∗
is a fixed point of 𝑇.

The following example shows that upper semicontinuity
of 𝜓 cannot be dropped inTheorem 13.

Example 14. Let 𝑋 = [0,∞), and let 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all
𝑥, 𝑦 ≥ 0.

Define a mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋) by

𝑇𝑥 =

{
{
{
{
{
{

{
{
{
{
{
{

{

{

1

2

, 1} (𝑥 = 0) ,

{

3

4

𝑥} (0 < 𝑥 ≤ 1) ,

{2𝑥} (𝑥 > 1) .

(35)

Let 𝜉(𝑡) = 𝑡 for all 𝑡 ≥ 0, and let

𝜓 (𝑡) =

{
{
{

{
{
{

{

4

5

𝑡 (𝑡 ≥ 1) ,

3

4

𝑡 (0 ≤ 𝑡 < 1) .

(36)

Then, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ and 𝜓 is a strictly increasing
function.

Let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be defined by

𝛼 (𝑥, 𝑦) = {

4 (0 ≤ 𝑥, 𝑦 ≤ 1) ,

0 otherwise.
(37)

Obviously, condition (2) of Theorem 13 is satisfied. Con-
dition (1) of Theorem 13 is satisfied with 𝑥

0
= 1/4.

We show that (7) is satisfied.
Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝛼(𝑥, 𝑦) ≥ 1.
Then, 0 ≤ 𝑥, 𝑦 ≤ 1.
If 𝑥 = 𝑦, then obviously (7) is satisfied.
Let 𝑥 ̸= 𝑦.
If 𝑥 = 0 and 0 < 𝑦 ≤ 1, then we obtain

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) = 𝐻({

1

2

, 1} ,

3

4

𝑦)

≤

1

4

≤ 𝜓 (𝑑 (𝑥, 𝑇𝑥)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) .

(38)

Let 0 < 𝑥 ≤ 1 and 0 < 𝑦 ≤ 1.

Then, we have

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) = 𝑑 (𝑇𝑥, 𝑇𝑦) = 𝑑 (

3

4

𝑥,

3

4

𝑦)

=

3

4

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑥, 𝑦))

≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) .

(39)

Thus, (7) is satisfied.
We now show that 𝑇 is 𝛼-admissible.
Let 𝑥 ∈ 𝑋 be given, and let 𝑦 ∈ 𝑇𝑥 be such that 𝛼(𝑥,

𝑦) ≥ 1.
Then, 0 ≤ 𝑥, 𝑦 ≤ 1.
Obviously, 𝛼(𝑦, 𝑧) ≥ 1 for all 𝑧 ∈ 𝑇𝑦 whenever 0 < 𝑦 ≤ 1.
If 𝑦 = 0, then 𝑇𝑦 = {1/2, 1}. Hence, for all 𝑧 ∈ 𝑇𝑦,

𝛼(𝑦, 𝑧) ≥ 1.
Hence, 𝑇 is 𝛼-admissible. Thus, all hypotheses of

Theorem 13 are satisfied. However, 𝑇 has no fixed points.

Note that 𝜓 is not upper semicontinuous.

Corollary 15. Let (𝑋, 𝑑) be a completemetric space, and let 𝛼 :
𝑋×𝑋 → [0,∞) be a function. Suppose that𝑇 : 𝑋 → 𝐶𝐿(𝑋)

is an 𝛼-admissible mapping.
Assume that, for all 𝑥, 𝑦 ∈ 𝑋,

𝜉 (𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) ,

(40)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing and upper
semicontinuous function. Also, suppose that conditions (1) and
(2) of Theorem 13 are satisfied.

Then 𝑇 has a fixed point in𝑋.

Corollary 16. Let (𝑋, ⪯, 𝑑) be a complete orderedmetric space.
Suppose that a multivalued mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋) satisfies

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) (41)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑇𝑥 ⪯ 𝑇𝑦 (resp., 𝑇𝑦 ⪯ 𝑇𝑥), where
𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing and upper
semicontinuous function.

Assume that, for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥 with 𝑇𝑥 ⪯ 𝑇𝑦

(resp., 𝑇𝑦 ⪯ 𝑇𝑥), we have 𝑇𝑦 ⪯ 𝑇𝑧 (resp., 𝑇𝑧 ⪯ 𝑇𝑦) for all
𝑧 ∈ 𝑇𝑦.

Also, suppose that the following are satisfied:

(1) there exists 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇𝑥
0
such that 𝑇𝑥

0
⪯ 𝑇𝑥
1

(resp., 𝑇𝑥
1
⪯ 𝑇𝑥
0
);

(2) for a sequence {𝑥
𝑛
} in 𝑋 with 𝑥

𝑛
⪯ 𝑥
𝑛+1

(resp., 𝑥
𝑛+1

⪯

𝑥
𝑛
) for all 𝑛 ∈ N ∪ {0} and a cluster point 𝑥 of {𝑥

𝑛
},

there exists a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that, for

all 𝑘 ∈ N ∪ {0},

𝑥
𝑛(𝑘)

⪯ 𝑥 (𝑟𝑒𝑠𝑝., 𝑥 ⪯ 𝑥
𝑛(𝑘)
) . (42)

Then 𝑇 has a fixed point in𝑋.

Remark 17. Corollary 16 is a generalization and extension of
the result of [9] to multivalued mappings.
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Corollary 18. Let (𝑋, 𝑑) be a complete metric space, and let
𝛼 : 𝑋×𝑋 → [0,∞) be a function. Suppose that amultivalued
mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋) is 𝛼

∗
-admissible.

Assume that, for all 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦) ≥ 1 implies

𝜉 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) , (43)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing and upper
semicontinuous function.

Also, suppose that conditions (1) and (2) of Theorem 13 are
satisfied.

Then 𝑇 has a fixed point in𝑋.

Remark 19. By taking 𝐿 = 0 in Corollary 18 and by applying
Remark 1, Corollary 18 reduces to Theorem 2.6 of [6].

Corollary 20. Let (𝑋, 𝑑) be a complete metric space, and let
𝛼 : 𝑋 × 𝑋 → [0,∞) be a function. Suppose that 𝑇 : 𝑋 →

𝐶𝐿(𝑋) is an 𝛼
∗
-admissible mapping.

Assume that, for all 𝑥, 𝑦 ∈ 𝑋,

𝜉 (𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜉 (𝑀 (𝑥, 𝑦))) + 𝐿𝜉 (𝑑 (𝑦, 𝑇𝑥)) ,

(44)

where 𝐿 ≥ 0, 𝜉 ∈ Ξ, and 𝜓 ∈ Ψ is strictly increasing and upper
semicontinuous function.

Also, suppose that conditions (1) and (2) of Theorem 13 are
satisfied.

Then 𝑇 has a fixed point in𝑋.
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