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We give an overview on some results concerning the unique solvability of the Dirichlet problem in𝑊2,𝑝, 𝑝 > 1, for second-order
linear elliptic partial differential equations in nondivergence form and with singular data in weighted Sobolev spaces. We also
extend such results to the planar case.

1. Introduction

Let Ω be an open subset of R𝑛, 𝑛 ≥ 2. Consider in Ω the
Dirichlet problem

𝑢 ∈ 𝑊
2,𝑝
(Ω) ∩

∘

𝑊

1,𝑝

(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝
(Ω) ,

(1)

where 𝑝 ∈]1, +∞[ and 𝐿 is the second-order linear elliptic
differential operator in nondivergence form defined by

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥

𝑗

+

𝑛

∑

𝑖=1

𝑎
𝑖

𝜕

𝜕𝑥
𝑖

+ 𝑎. (2)

If 𝑛 ≥ 3 and Ω is a bounded set with a suitable regularity
property, the well-posedness of the Dirichlet problem (1)
has been largely studied by several authors under various
hypotheses of discontinuity on the coefficients. It must be
mentioned the classical contribution by Miranda [1], where
the author assumed that the 𝑎

𝑖𝑗
belong to 𝑊

1,𝑛
(Ω) and

considered the case𝑝 = 2.This result was later on generalized
in [2, 3] by considering the coefficients 𝑎

𝑖𝑗
belonging to the

wider class of spaces VMO and 𝑝 ∈]1, +∞[.
In the framework of open sets, nonnecessarily bounded,

whose boundary has various singularities, for example, cor-
ners or edges, in accordance with the linear theory, it is
natural to assume that the lower order coefficients and the

right-hand side of the equation of problem (1) belong to
some weighted Sobolev spaces, where the weight is usually
a power of the distance function from the “singular set” of
the boundary of domain. In these cases, near to the “singular
set,” the solution 𝑢 of the boundary value problem may have
a singularity which can be often characterized by a weight
of mentioned type. For instance, if 𝜌 is a bounded weight
function related to the distance function from nonempty
subset 𝑆

𝜌
of the boundary of an arbitrary domain Ω, not

necessarily bounded and regular (see Section 2 for the defi-
nition of such weight function), a problem similar to (1) has
been studied, in the weighted case, by several authors under
suitable hypotheses on the weight function 𝜌 and when the
coefficients of lower order terms are singular near to 𝑆

𝜌
. This

kind of Dirichlet problem has been dealt, for example, in [4–
6] under hypotheses as those in [2, 3] with 𝑝 ∈]1, +∞[. To be
more precise, in [4–6], the authors consider the problem

𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝

𝑠
(Ω) ,

(3)

where 𝑛 ≥ 3,𝑊2,𝑝

𝑠
(Ω),

∘

𝑊

1,𝑝

𝑠−1
(Ω) and 𝐿𝑝

𝑠
(Ω)(𝑝 ∈ ]1, +∞[ , 𝑠 ∈

R) are someweighted Sobolev spaces whose weight functions
are suitable powers of 𝜌. The existence and uniqueness of
problem (3) have been firstly proved in [4, 5] when 𝑝 ≥ 2.
Such results have been later on used in [6] to get the unique
solvability also for 1 < 𝑝 < 2. We point out that in this last
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case we needed to employ some variational results (see [6]
and its bibliography).

The aim of this work is to give an overview on the above-
mentioned results concerning the solvability of (3) when 𝑝 ∈
]1, +∞[ as well as to extend such results to the planar case.
Here we note also that, for 𝑝 = 2, if 𝑛 ≥ 3 the required
summability on (𝑎

𝑖𝑗
)
𝑥
ℎ

can be equal to 𝑛while if 𝑛 = 2we have
to take a summability greater than 𝑛 (see hypothesis (ℎ

2
)).

At last, we observe that the existence and uniqueness
result for the problem (3) are based on the unique solvability
of the problem (3) for 𝑝 = 2 and of a problem similar to (3)
whose associated operator 𝐿

𝑠−1
differs from that in (2) for a

compact operator (see Section 4).
For further results concerning elliptic boundary value

problems similar to (3), involving different classes ofweighted
Sobolev spaces, we refer the reader also to [7, 8].

2. Notation and Function Spaces

In this section we recall the definitions and the main prop-
erties of the class of weights we are interested in and of
certain classes of function spaces where the coefficients of our
operator belong. Thus, from now on, let Ω be an unbounded
open subset of R𝑛, 𝑛 ≥ 2. By Σ (𝐹) we denote the 𝜎-algebra
of all Lebesgue measurable subsets 𝐹 of Ω. For 𝐸 ∈ Σ (𝐹),
𝜒

𝐸
is its characteristic function, |𝐸| is its Lebesgue measure

and 𝐸 (𝑥, 𝑟) = 𝐸 ∩ 𝐵 (𝑥, 𝑟) (𝑥 ∈ R𝑛
, 𝑟 ∈ R

+
), where 𝐵 (𝑥, 𝑟)

is the open ball with center in 𝑥 and radius 𝑟. The class
of restrictions to 𝐸 of functions 𝜁 ∈ 𝐶

∞

0
(R𝑛

) (resp., 𝜁 ∈

𝐶
0

0
(R𝑛

)) with 𝐸 ∩ supp 𝜁 ⊆ 𝐸 is D (𝐸) (resp., D0
(𝐸)). For

𝑝 ∈ [1, +∞], 𝐿𝑝

loc (𝐸) is the class of all functions 𝑔, defined on
𝐸, such that 𝜁 𝑔 ∈ 𝐿𝑝

(𝐸) for all 𝜁 ∈ D (𝐸).
We denote by A(Ω) the class of all measurable weight

functions 𝜌 : Ω → R
+
such that

𝛾
−1
𝜌 (𝑦) ≤ 𝜌 (𝑥) ≤ 𝛾𝜌 (𝑦) ∀𝑦 ∈ Ω, ∀𝑥 ∈ Ω (𝑦, 𝜌 (𝑦)) ,

(4)

where 𝛾 ∈ R
+
is independent on 𝑥 and 𝑦. Given 𝜌 ∈ A(Ω),

we put

𝑆
𝜌
= {𝑧 ∈ 𝜕Ω | lim

𝑥→𝑧
𝜌 (𝑥) = 0} . (5)

It is known that

𝜌 ∈ 𝐿
∞

loc (Ω) , 𝜌
−1
∈ 𝐿

∞

loc (Ω \ 𝑆
𝜌
) , (6)

and if 𝑆
𝜌

̸= 0,

𝜌 (𝑥) ≤ dist (𝑥, 𝑆
𝜌
) ∀𝑥 ∈ Ω, (7)

(see [9, 10] for further details).
For 𝑘 ∈ N

0
, 1 ≤ 𝑝 ≤ +∞, 𝑠 ∈ R and 𝜌 ∈ A(Ω), the

related weighted Sobolev space𝑊𝑘,𝑝

𝑠
(Ω) is made up of all the

distributions 𝑢 onΩ such that 𝜌𝑠+|𝛼|−𝑘
𝜕
𝛼
𝑢 ∈ 𝐿

𝑝
(Ω) for |𝛼| ≤

𝑘. We observe that𝑊𝑘,𝑝

𝑠
(Ω) is a Banach space with the norm

defined by

‖𝑢‖
𝑊
𝑘,𝑝

𝑠
(Ω)

= ∑

|𝛼|≤𝑘

󵄩󵄩󵄩󵄩󵄩
𝜌

𝑠+|𝛼|−𝑘
𝜕
𝛼
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

. (8)

Moreover, it is separable if 1 ≤ 𝑝 < +∞, reflexive if 1 <
𝑝 < +∞, and, in particular,𝑊𝑘,2

𝑠
(Ω) is an Hilbert space. We

also denote by
∘

𝑊

𝑘,𝑝

𝑠
(Ω) the closure of𝐶∞

0
(Ω) in𝑊𝑘,𝑝

𝑠
(Ω) and

we put𝑊0,𝑝

𝑠
(Ω) = 𝐿

𝑝

𝑠
(Ω).

Clearly the following embeddings hold:

∘

𝑊

𝑘,𝑝

𝑠
(Ω) 󳨅→ 𝑊

𝑘,𝑝

𝑠
(Ω) 󳨅→ 𝐿

𝑝

𝑠−𝑘
(Ω) . (9)

A more detailed account of the properties of the above-
defined weighted Sobolev spaces can be found in [11–13].

For 𝑝 ∈ [1, +∞[, 𝑠 ∈ R and 𝜌 ∈ A(Ω), let 𝐾𝑝

𝑠
(Ω) be the

set of all the functions 𝑔 ∈ 𝐿𝑝

loc(Ω \ 𝑆
𝜌
) such that

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐾
𝑝

𝑠
(Ω)

= sup
Ω

(𝜌
𝑠−(𝑛/𝑝)

(𝑥)
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝(Ω(𝑥,𝜌(𝑥)))

) < +∞, (10)

equipped with the norm defined in (10). Obviously, the space
𝐾

𝑝

𝑠
(Ω) is a Banach space containing 𝐿∞

𝑠
(Ω) and 𝐶∞

0
(Ω) as

well (see [10]). Therefore, we denote by 𝐾̃𝑝

𝑠
(Ω) (resp.,

∘

𝐾

𝑝

𝑠
(Ω))

the closure of 𝐿∞

𝑠
(Ω) (resp., 𝐶∞

0
(Ω)) in𝐾𝑝

𝑠
(Ω).

Now, let us define the moduli of continuity of functions
belonging to 𝐾̃𝑝

𝑠
(Ω) or

∘

𝐾

𝑝

𝑠
(Ω).

Given a function 𝑔 in 𝐾𝑝

𝑠
(Ω), the following characteriza-

tion holds:

𝑔 ∈ 𝐾̃
𝑝

𝑠
(Ω)

⇐⇒ lim
ℎ→+∞

( sup
𝐸∈Σ(Ω)

sup
𝑥∈Ω
(|Ω(𝑥,𝜌(𝑥))∩𝐸|/𝜌

𝑛

(𝑥))≤1/ℎ

󵄩󵄩󵄩󵄩𝑔𝜒𝐸

󵄩󵄩󵄩󵄩𝐾
𝑝

𝑠
(Ω)
)

= 0,

(11)

(see [10]).
Thus, if 𝑔 is a function in 𝐾̃𝑝

𝑠
(Ω), amodulus of continuity

of 𝑔 in 𝐾̃𝑝

𝑠
(Ω) is a map 𝜔̃𝑝

𝑠
[𝑔] : R

+
→ R

+
such that

sup
𝐸∈Σ(Ω)

sup
𝑥∈Ω
(|Ω(𝑥,𝜌(𝑥))∩𝐸|/𝜌

𝑛

(𝑥))≤1/ℎ

󵄩󵄩󵄩󵄩𝑔𝜒𝐸

󵄩󵄩󵄩󵄩𝐾
𝑝

𝑠
(Ω)

≤ 𝜔̃
𝑝

𝑠
[𝑔] (ℎ) ,

lim
ℎ→+∞

𝜔̃
𝑝

𝑠
[𝑔] (ℎ) = 0.

(12)

Next, we introduce a class of mappings needed to define
a modulus of continuity of 𝑔 in

∘

𝐾

𝑝

𝑠
(Ω). Fix 𝑓 in D(R

+
)

satisfying the conditions

0 ≤ 𝑓 ≤ 1, 𝑓 (𝑡) = 1 if 𝑡 ≤
1

2
, 𝑓 (𝑡) = 0 if 𝑡 ≥ 1,

(13)

and 𝛼 ∈ 𝐶
∞
(Ω) ∩ 𝐶

0,1
(Ω) equivalent to dist (⋅, 𝜕Ω) (for

more details on the existence of such an 𝛼 see, for instance,
Theorem 2, Chapter VI in [14] and Lemma 3.6.1 in [15]).
Hence, for 𝑘 ∈ N we define the functions

𝜓
𝑘
: 𝑥 ∈ Ω 󳨀→ (1 − 𝑓 (𝑘𝛼 (𝑥))) 𝑓 (

|𝑥|

2𝑘
) . (14)
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It is easy to prove that each 𝜓
𝑘
belongs toD(Ω \ 𝑆

𝜌
) and

0 ≤ 𝜓
𝑘
≤ 1, (𝜓

𝑘
)
|Ω
𝑘

= 1, supp𝜓
𝑘
⊂ Ω

2𝑘
, (15)

whereΩ
𝑘
= {𝑥 ∈ Ω | |𝑥| < 𝑘, 𝛼(𝑥) > 1/𝑘}.

Given 𝑔 in𝐾𝑝

𝑠
(Ω), it is known (see [10]) that

𝑔 ∈
∘

𝐾

𝑝

𝑠
(Ω) ⇐⇒ lim

ℎ→+∞

󵄩󵄩󵄩󵄩(1 − 𝜓ℎ
) 𝑔
󵄩󵄩󵄩󵄩𝐾
𝑝

𝑠
(Ω)

= 0. (16)

Thus, a modulus of continuity of 𝑔 in
∘

𝐾

𝑝

𝑠
(Ω) is a map

∘

𝜔
𝑝

𝑠
[𝑔] : N → N such that
󵄩󵄩󵄩󵄩(1 − 𝜓ℎ

) 𝑔
󵄩󵄩󵄩󵄩𝐾
𝑝

𝑠
(Ω)

+ sup
𝐸∈Σ(Ω)

sup
𝑥∈Ω
|Ω(𝑥,𝜌(𝑥))∩𝐸|≤1/ℎ

󵄩󵄩󵄩󵄩𝜓ℎ
𝑔𝜒

𝐸

󵄩󵄩󵄩󵄩𝐾
𝑝

𝑠
(Ω)

≤
∘

𝜔

𝑝

𝑠
[𝑔] (ℎ) ,

lim
ℎ→+∞

∘

𝜔
𝑝

𝑠
[𝑔] (ℎ) = 0.

(17)

Further properties of the spaces 𝐾
𝑝

𝑠
(Ω), 𝐾̃𝑝

𝑠
(Ω), and

∘

𝐾

𝑝

𝑠
(Ω) can be found in [10].
In the end, we recall the definitions of two other classes of

function spaces where the leading coefficients of our operator
belong.

If Ω has the property

|Ω (𝑥, 𝑟)| ≥ 𝐴𝑟
𝑛

∀𝑥 ∈ Ω, ∀𝑟 ∈ ]0, 1] , (18)

where 𝐴 is a positive constant independent of 𝑥 and 𝑟, it
is possible to consider the space BMO(Ω, 𝑡) (𝑡 ∈ R

+
) of

functions 𝑔 ∈ 𝐿1

loc (Ω) such that

[𝑔]BMO(Ω,𝑡)

= sup
𝑥∈Ω

𝑟∈]0,𝑡]

−∫

Ω(𝑥,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 − −∫

Ω(𝑥,𝑟)

𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< +∞,

(19)

where

−∫

Ω(𝑥,𝑟)

𝑔 = |Ω (𝑥, 𝑟)|
−1
−∫

Ω(𝑥,𝑟)

𝑔. (20)

If 𝑔 ∈ BMO(Ω) = BMO(Ω, 𝑡
𝐴
), where

𝑡
𝐴
= sup

𝑡∈R
+

( sup
𝑥∈Ω

𝑟∈]0,𝑡]

𝑟
𝑛

|Ω (𝑥, 𝑟)|
≤
1

𝐴
) , (21)

we say that 𝑔 ∈ VMO(Ω) if [𝑔]BMO(Ω,𝑡)
→ 0 for 𝑡 → 0

+. A
function 𝜂[𝑔] : R

+
→ R

+
is called amodulus of continuity of

𝑔 in VMO(Ω) if

[𝑔]BMO(Ω,𝑡)
≤ 𝜂 [𝑔] (𝑡) ∀𝑡 ∈ R

+
, lim

𝑡→0
+

𝜂 [𝑔] (𝑡) = 0.

(22)

A more detailed account of properties of the above-
defined spaces BMO(Ω, 𝑡) and VMO(Ω) can be found in [16]
or in some general reference books, for example, [17].

3. Preliminary Results

In this section we recall some embedding and compactness
estimates for a multiplication operator as well as a regularity
result which will be also extended to the planar case.

Let us assume that Ω has the segment property (for all
definitions of regularity properties of open subsets of R𝑛 we
will refer to [18]) and fix 𝜌 ∈ A(Ω)∩𝐿∞

(Ω) such that 𝑆
𝜌

̸= 0.
For our purposes, we suppose that the following condi-

tion onΩ holds.

(ℎ
0
) There exists an open subset Ω

𝑜
of R𝑛 with the

uniform 𝐶
1,1-regularity property such that

Ω ⊂ Ω
𝑜
, 𝜕Ω \ 𝑆

𝜌
⊂ 𝜕Ω

𝑜
. (23)

We note that since the required segment property gives
that Ω lies on one side of the “singular” part 𝑆

𝜌
of its

boundary the hypothesis (ℎ
𝑜
), roughly speaking, means that

it is possible to “widen” suitably Ω on the other side of 𝑆
𝜌
.

Remark 1. Weobserve that, as a result of condition (ℎ
0
), there

exists 𝜃 ∈]0, 𝜋/2[ such that

∀𝑥 ∈ Ω ∃𝐶
𝜃
(𝑥) : 𝐶

𝜃
(𝑥, 𝜌(𝑥)) ⊂ Ω, (24)

where 𝐶
𝜃
(𝑥) is an open infinite cone with vertex in 𝑥 and

opening 𝜃 and 𝐶
𝜃
(𝑥, 𝜌(𝑥)) = 𝐶

𝜃
(𝑥) ∩ 𝐵(𝑥, 𝜌(𝑥)) (see

Remark 5.1 in [10]). As a consequence, there exists a function
𝜎 ∈ A(Ω) ∩ 𝐶∞

(Ω) ∩ 𝐶
0,1
(Ω) which is equivalent to 𝜌 and

such that
󵄨󵄨󵄨󵄨𝜕

𝛼
𝜎 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑐𝛼𝜎
1−|𝛼|

(𝑥) ∀𝑥 ∈ Ω, ∀𝛼 ∈ N
𝑛

0
, (25)

where 𝑐
𝛼
∈ R

+
is independent of 𝑥 (see [9]).

Let us start collecting two results of [10]which provide the
boundedness and compactness of themultiplication operator

𝑢 󳨀→ 𝑔𝑢, (26)

where the function 𝑔 belongs to suitable spaces 𝐾𝑝

𝑠
(Ω).

Theorem 2. Let 𝑟, 𝑠, 𝑝, 𝑞 be numbers such that

𝑟 ∈ N, 𝑠 ∈ R, 1 ≤ 𝑝 ≤ 𝑞 < +∞, 𝑞 ≥
𝑛

𝑟
,

𝑞 >
𝑛

𝑟
𝑖𝑓

𝑛

𝑟
= 𝑝 > 1.

(27)

If condition (ℎ
0
) holds, then for all 𝑢 ∈ 𝑊

𝑟,𝑝

𝑠
(Ω) and for

any 𝑔 ∈ 𝐾𝑞

−𝑠+𝑟
(Ω) we have 𝑔𝑢 ∈ 𝐿

𝑝
(Ω) and

󵄩󵄩󵄩󵄩𝑔𝑢
󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

≤ 𝑐
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐾
𝑞

−𝑠+𝑟

(Ω)
‖𝑢‖

𝑊
𝑟,𝑝

𝑠
(Ω)

, (28)

where the constant 𝑐 ∈ R
+
is independent of 𝑔 and 𝑢.

Furthermore, if 𝑔 ∈
∘

𝐾

𝑞

−𝑠+𝑟
(Ω) then for any 𝜖 ∈ R

+
there

exist a constant 𝑐(𝜖) ∈ R
+
and a bounded open set Ω

𝜖
⊂⊂ Ω

with the cone property such that
󵄩󵄩󵄩󵄩𝑔𝑢

󵄩󵄩󵄩󵄩𝐿𝑝(Ω)
≤ 𝜖 ‖𝑢‖

𝑊
𝑟,𝑝

𝑠
(Ω)

+ 𝑐 (𝜖) ‖𝑢‖
𝐿
𝑝

(Ω
𝜖
)

∀𝑢 ∈ 𝑊
𝑟,𝑝

𝑠
(Ω) ,

(29)
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and we have that the multiplication operator

𝑢 ∈ 𝑊
𝑟,𝑝

𝑠
(Ω) 󳨀→ 𝑔𝑢 ∈ 𝐿

𝑝
(Ω) (30)

is compact.

We go on collecting a density result, an a priori estimate,
and a regularity result, which will be some of the crucial
analytic tools of our main results.

Let 𝑝 ∈]1, +∞[, 𝑠 ∈ R. At first we recall a density result
(see Lemma 3.2 in [6]).

Lemma 3. If Ω verifies condition (ℎ
0
), then for every 𝑢 ∈

𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) there exists a sequence (𝑢

𝑘
)
𝑘∈N such that

𝑢
𝑘
∈ 𝑊

2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,2

𝑠−1
(Ω) ∩D

0
(Ω \ 𝑆

𝜌
) ,

𝑢
𝑘
󳨀→ 𝑢 𝑖𝑛 𝑊

2,𝑝

𝑠
(Ω) .

(31)

Now consider in Ω the second-order linear differential
operator in nondivergence form

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥

𝑗

+

𝑛

∑

𝑖=1

𝑎
𝑖

𝜕

𝜕𝑥
𝑖

+ 𝑎. (32)

Assume that the leading coefficients satisfy the hypothe-
sis.

(ℎ
1
) There exist extensions 𝑎𝑜

𝑖𝑗
of 𝑎

𝑖𝑗
to Ω

𝑜
such that

𝑎
𝑜

𝑖𝑗
= 𝑎

𝑜

𝑗𝑖
∈ 𝐿

∞
(Ω

𝑜
) ∩ VMO (Ω

𝑜
) , 𝑖, 𝑗 = 1, . . . 𝑛,

∃]
𝑜
∈ R

+
:

𝑛

∑

𝑖,𝑗=1

𝑎
𝑜

𝑖𝑗
𝜉
𝑖
𝜉
𝑗
≥ ]

𝑜

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2 a.e. in Ω
𝑜
, ∀𝜉 ∈ R

𝑛
.

(33)

We note that the assumption (ℎ
1
) holds if the coefficients

𝑎
𝑖𝑗
are restrictions toΩ of functions in VMO (see also [2, 3]).
For the lower order terms coefficients suppose that

(𝑖
2
)

𝑎
𝑖
∈ 𝐾̃

𝑡
1

1
(Ω) , 𝑖 = 1, . . . , 𝑛, where 𝑡

1
≥ 𝑝, 𝑡

1
≥ 𝑛,

𝑡
1
> 𝑝 if 𝑝 = 𝑛,

𝑎 ∈ 𝐾̃
𝑡
2

2
(Ω) , where 𝑡

2
≥ 𝑝, 𝑡

2
≥
𝑛

2
,

𝑡
2
> 𝑝 if 𝑝 = 𝑛

2
.

(34)

Weobserve that, in viewofTheorem 2, under the assump-
tions (ℎ

0
), (ℎ

1
), and (𝑖

2
), the operator 𝐿 : 𝑊2,𝑝

𝑠
(Ω) → 𝐿

𝑝

𝑠
(Ω)

is bounded.
The following a priori estimate holds.

Lemma 4. Let 𝐿 be defined in (32). If hypotheses (ℎ
0
), (ℎ

1
),

and (𝑖
2
) are satisfied, then there exists 𝑐 ∈ R

+
such that

‖𝑢‖
𝑊
2,𝑝

𝑠
(Ω)

≤ 𝑐 (‖𝐿𝑢‖
𝐿
𝑝

𝑠
(Ω)

+ ‖𝑢‖
𝐿
𝑝

𝑠−2

(Ω)
)

∀𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) ,

(35)

where 𝑐 depends onΩ, 𝑛,𝑝, 𝑡
1
, 𝑡

2
, 𝑠,𝜌, ]

𝑜
, 󵄩󵄩󵄩󵄩󵄩𝑎

𝑜

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω
𝑜
)
, 󵄩󵄩󵄩󵄩𝑎𝑖

󵄩󵄩󵄩󵄩𝐾
𝑡
1

1

(Ω)
,

‖𝑎‖
𝐾
𝑡
2

2

(Ω)
, 𝜂[𝑎𝑜

𝑖𝑗
], 𝜔̃𝑡

1

1
[𝑎

𝑖
], and 𝜔̃𝑡

2

2
[𝑎].

The proof of (35) can be found in [19] in the case 𝑛 ≥ 3

and it can be easily extended to the planar case, taking care to
use Lemma 3.1 in [20] in place of Theorem 5.1 in [21].

In the next Lemma we recall a regularity result of [5] (see
Theorem 3.4) and we extend it to the case 𝑛 = 2.

Lemma 5. Let 𝐿 be defined in (32). Suppose that conditions
(ℎ

0
), (ℎ

1
), and (𝑖

2
) hold with 𝑡

1
> 𝑛 and 𝑡

2
> 𝑛/2. Then any

solution 𝑢 of the problem

𝑢 ∈ 𝑊
2,𝑞

loc (Ω \ 𝑆
𝜌
) ∩

∘

𝑊

1,𝑞

loc (Ω \ 𝑆
𝜌
) ∩ 𝐿

𝑝
𝑜

𝑠
𝑜
−2
(Ω) ,

𝐿𝑢 ∈ 𝐿
𝑝

𝑠
(Ω) ,

(36)

with 𝑞, 𝑝
𝑜
∈]1, 𝑝] and 𝑠

𝑜
= 𝑠 − 𝑛((1/𝑝

𝑜
) − (1/𝑝)), belongs to

the space𝑊2,𝑝

𝑠
(Ω) and verifies the bound

‖𝑢‖
𝑊
2,𝑝

𝑠
(Ω)

≤ 𝑐 (‖𝐿𝑢‖
𝐿
𝑝

𝑠
(Ω)

+ ‖𝑢‖
𝐿
𝑝
𝑜

𝑠
𝑜
−2

(Ω)
) , (37)

where 𝑐 ∈ R
+
depends only on Ω, 𝑛, 𝑝, 𝑝

𝑜
, 𝑡

1
, 𝑡

2
, 𝑠, 𝜌, ]

𝑜
,

󵄩󵄩󵄩󵄩󵄩
𝑎

𝑜

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω
𝑜
)
, 󵄩󵄩󵄩󵄩𝑎𝑖

󵄩󵄩󵄩󵄩𝐾
𝑡
1

1

(Ω)
, ‖𝑎‖

𝐾
𝑡
2

2

(Ω)
, 𝜂[𝑎𝑜

𝑖𝑗
], 𝜔̃𝑡

1

1
[𝑎

𝑖
], and 𝜔̃𝑡

2

2
[𝑎].

Let us give an overview of the proof of Lemma 5. The
idea is to use a local regularity result which is based on an
analogous result for solutions of boundary value problems
in classical Sobolev spaces defined on regular domains. The
mentioned regularity result has been proved in [19] when
𝑛 ≥ 3 (see, Theorem 5.1 of [19]) and it can be easily extended
to the planar case, taking into account to apply, at right time,
Lemma 4.2 in [20] in place of Lemma 4.2 in [22].

4. Main Results

Let 𝐿 be the operator defined in (32). Suppose that the
coefficients of operator 𝐿 satisfy the assumptions (ℎ

1
),

(ℎ
2
)

(𝑎
𝑖𝑗
)
𝑥
ℎ

, 𝑎
𝑖
∈
∘

𝐾

𝑡
1

1
(Ω) , 𝑖, 𝑗, ℎ = 1, . . . , 𝑛, (38)

(ℎ
3
)

𝑎 = 𝑎
󸀠
+ 𝑏, 𝑎

󸀠
∈
∘

𝐾

𝑡
2

2
(Ω) , 𝑏 ∈ 𝐾̃

𝑡
2

2
(Ω) ,

ess inf
Ω

(𝜎
2
𝑏) = 𝑏

𝑜
> 0,

(39)

where 𝑡
1
, 𝑡

2
are as in (𝑖

2
) and 𝜎 is the function defined in

Remark 1.
Moreover, suppose that the following condition on 𝜌

holds:

(ℎ
4
)

lim
𝑥→𝑥

𝑜

𝜎
𝑥
(𝑥) = lim

|𝑥|→+∞

𝜎
𝑥
(𝑥) = 0 ∀𝑥

𝑜
∈ 𝑆

𝜌
. (40)
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We are interested in the study of the Dirichlet problem:

𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝

𝑠
(Ω) ,

(41)

with 𝑝 ∈ ]1, +∞[ and 𝑠 ∈ R.
We point out that the unique solvability of (41) has been

firstly proved in [4, 5] for 𝑝 ≥ 2 and 𝑛 ≥ 3. Later on, the
results of [4, 5] have been used in [6] to get the existence and
uniqueness of solution also for 1 < 𝑝 < 2. Here, we collect
the main results of the above-mentioned papers and we also
extend them to the case 𝑛 = 2.

For the case where the assumptions (ℎ
0
)–(ℎ

4
) are taken

into account, with 𝑡
1
> 𝑛, 𝑡

2
> 𝑛/2 and 𝑎󸀠

= 0, and for 𝑝 = 2,
the unique solvability of (41) has been proved in Lemma
4.1 of [5], which can be easily extended to the planar case,
applying our Lemmas 4 and 5 at the right time. If 𝑝 ̸= 2, the
idea is to exploit the previous case and the unique solvability
of a problem similar to (41), whose associated differential
operator 𝐿

𝑠−1
differs from that in (32) for a compact operator.

Let 𝑝 ∈]1, +∞[, 𝑠 ∈ R and consider in Ω the differential
operator

𝐿
𝑠−1

= −

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥

𝑗

−

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

((𝑎
𝑖𝑗
)
𝑥
𝑗

+ 2 (𝑠 − 1)

× 𝑎
𝑖𝑗
𝜎

−1
𝜎

𝑥
𝑗

))
𝜕

𝜕𝑥
𝑖

+ 𝑏.

(42)

In the following Lemma we put together some results of
[4–6], showing an a priori estimate for the operator 𝐿

𝑠−1
and

the unique solvability of its associated Dirichlet problem.

Lemma 6. Suppose that conditions (ℎ
0
)–(ℎ

4
) hold. Then for

any 𝑝 ∈]1, +∞[ and 𝑠 ∈ R there exists 𝑐 ∈ R
+
such that

‖𝑢‖
𝑊
2,𝑝

𝑠
(Ω)

≤ 𝑐
󵄩󵄩󵄩󵄩𝐿 𝑠−1

𝑢
󵄩󵄩󵄩󵄩𝐿
𝑝

𝑠
(Ω)

∀𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) ,

(43)

where 𝑐 ∈ R
+
depends on Ω, 𝑛, 𝑝, 𝑡

1
, 𝑡

2
, 𝑠, 𝜌, ]

𝑜
, 󵄩󵄩󵄩󵄩󵄩𝑎

𝑜

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω
𝑜
)
,

󵄩󵄩󵄩󵄩󵄩
(𝑎

𝑖𝑗
)
𝑥
ℎ

󵄩󵄩󵄩󵄩󵄩𝐾
𝑡
1

1

(Ω)
, ‖𝑏‖

𝐾
𝑡
2

2

(Ω)
, 𝜂[𝑎𝑜

𝑖𝑗
], 𝜔̃𝑡

1

1
[(𝑎

𝑖𝑗
)
𝑥
ℎ

], and 𝜔̃𝑡
2

2
[𝑏].

Furthermore, if 𝑡
1
> 𝑛 and 𝑡

2
> 𝑛/2 then the problem

𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) ,

𝐿
𝑠−1
𝑢 = 𝑓, 𝑓 ∈ 𝐿

𝑝

𝑠
(Ω) ,

(44)

is uniquely solvable.

Here, we only give an overview of the proof, pointing out
to the crucial aspects. Since the operator𝐿

𝑠−1
verifies the same

assumptions of the operator 𝐿, we can write for it the estimate
(35). Now a crucial point is to provide a bound for ‖𝑢‖

𝐿
𝑝

𝑠−2

(Ω)

in terms of 󵄩󵄩󵄩󵄩𝐿 𝑠−1
𝑢
󵄩󵄩󵄩󵄩𝐿
𝑝

𝑠
(Ω)

, when the function 𝑢 is more regular;

that is, 𝑢 ∈ 𝑊2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,2

𝑠−1
(Ω) ∩D0

(Ω \ 𝑆
𝜌
). To this aim, we

build the following bilinear form 𝑎
𝑠−1

related, in appropriate
way, to the operator 𝐿

𝑠−1
:

𝑎
𝑠−1

(𝑢, 𝑤) = ∫

Ω

(

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑢

𝑥
𝑖

𝑤
𝑥
𝑗

+ 𝑏𝑢𝑤)𝜎
2(𝑠−1)

𝑑𝑥, (45)

where 𝑢, 𝑤 ∈
∘

𝑊

1,2

𝑠−1
(Ω).

By simple computations, we get

𝑎
𝑠−1

(𝑢, 𝑤) = ∫

Ω

𝐿
𝑠−1
𝑢𝑤𝜎

2(𝑠−1)
𝑑𝑥. (46)

Nowwe study separately the cases 𝑝 ≥ 2 and 𝑝 < 2. If 𝑝 ≥
2, applying Lemma 4.1 of [4] in (46), with a suitable choice of
function𝑤, we easily deduce the claimed bound on ‖𝑢‖

𝐿
𝑝

𝑠−2

(Ω)
.

Thus, from Lemma 3 we get the estimate (43). Furthermore,
in this case, the uniqueness of the solution of problem (44)
easily follows from (43). For the existence of solution, we
refer toTheorem 4.2 in [5], whose analytic technique exploits
the bound (43), which also gives the closure of the range of
operator 𝐿

𝑠−1
, the unique solvability of our problem when

𝑝 = 2, and the regularity result of Lemma 5, which allow us
to go up in summability.

Suppose now 1 < 𝑝 < 2. In this case, in order to get a
bound on ‖𝑢‖

𝐿
𝑝

𝑠−2

(Ω)
, when 𝑢 is more regular, we use a varia-

tional result (see the proof of Lemma 3.3 in [6]) whose main
analytic tools exploit the existence and uniqueness result of
previous case and Lemma 5.Thementioned variational result
gives us a bound for ‖𝑤‖

𝐿
𝑝

󸀠

𝑠−2

(Ω)
, where𝑤 is the unique solution

of the Dirichlet problem associated with 𝑎
𝑠−1
(𝑢, 𝑤) and 𝑝󸀠 is

the conjugate exponent of 𝑝. From such estimate and (46),
with a suitable choice of function 𝑤, we obtain our claim.
Using again Lemma 3, we get (43) also in this case. Finally, for
the existence and uniqueness of problem (44) we can refer to
Lemma 3.4 of [6], whose proof can be easily extended also to
the planar case, in view of previous considerations.

In the following Theorem we collect two results of [4, 6],
giving an a priori bound for the operator 𝐿 when 𝑛 ≥ 2.

Theorem 7. Suppose that conditions (ℎ
0
)–(ℎ

4
) hold. Then for

any 𝑝 ∈]1, +∞[ and 𝑠 ∈ R there exist 𝑐 ∈ R
+
and a bounded

open set Ω
1
⊂⊂ Ω, with the cone property, such that

‖𝑢‖
𝑊
2,𝑝

𝑠
(Ω)

≤ 𝑐 (‖𝐿𝑢‖
𝐿
𝑝

𝑠
(Ω)

+ ‖𝑢‖𝐿𝑝(Ω
1
)
)

∀𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) ,

(47)

where 𝑐 ∈ R
+
and Ω

1
depend on Ω, 𝑛, 𝑝, 𝑡

1
, 𝑡

2
, 𝑠, 𝜌,

]
𝑜
, ‖𝑎𝑜

𝑖𝑗
‖
𝐿
∞

(Ω
𝑜
)
, ‖(𝑎

𝑖𝑗
)
𝑥
ℎ

‖
𝐾
𝑡
1

1

(Ω)
, ‖𝑎

𝑖
‖
𝐾
𝑡
1

1

(Ω)
, ‖𝑎󸀠

‖
𝐾
𝑡
2

2

(Ω)
, ‖𝑏‖

𝐾
𝑡
2

2

(Ω)
,

𝜂[𝑎
𝑜

𝑖𝑗
], ∘𝜔𝑡

1

1
[(𝑎

𝑖𝑗
)
𝑥
ℎ

], ∘𝜔𝑡
1

1
[𝑎

𝑖
], ∘𝜔𝑡

2

2
[𝑎

󸀠
], and 𝜔̃𝑡

2

2
[𝑏].

Proof. Fix 𝑢 ∈ 𝑊2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω). We observe that

𝐿 = 𝐿
𝑠−1

+

𝑛

∑

𝑖=1

𝑏
𝑖

𝜕

𝜕𝑥
𝑖

+ 𝑎
󸀠
, (48)
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where

𝑏
𝑖
=

𝑛

∑

𝑗=1

((𝑎
𝑖𝑗
)
𝑥
𝑗

+ 2 (𝑠 − 1) 𝑎
𝑖𝑗
𝜎

−1
𝜎

𝑥
𝑗

) + 𝑎
𝑖
,

𝑖 = 1, . . . , 𝑛.

(49)

Thus, from estimate (43) we deduce that there exists
𝑐 ∈ R

+
, depending on Ω, 𝑛, 𝑝, 𝑡

1
, 𝑡

2
, 𝑠, 𝜌, ]

𝑜
, ‖𝑎𝑜

𝑖𝑗
‖
𝐿
∞

(Ω
𝑜
)
,

‖(𝑎
𝑖𝑗
)
𝑥
ℎ

‖
𝐾
𝑡
1

1

(Ω)
, ‖𝑏‖

𝐾
𝑡
2

2

(Ω)
, 𝜂[𝑎𝑜

𝑖𝑗
], 𝜔̃𝑡

1

1
[(𝑎

𝑖𝑗
)
𝑥
ℎ

], and 𝜔̃𝑡
2

2
[𝑏], such

that

‖𝑢‖
𝑊
2,𝑝

𝑠
(Ω)

≤ 𝑐(‖𝐿𝑢‖
𝐿
𝑝

𝑠
(Ω)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑏
𝑖
𝑢

𝑥
𝑖

+ 𝑎
󸀠
𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝑠
(Ω)

) . (50)

On the other hand, by Theorem 2 it follows that for any
𝜖 ∈ R

+
there exist 𝑐(𝜖) ∈ R

+
and a bounded open set Ω

𝜖
⊂⊂

Ω, with the cone property, such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑏
𝑖
𝑢

𝑥
𝑖

+ 𝑎
󸀠
𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝑠
(Ω)

≤ 𝜖 ‖𝑢‖
𝑊
2,𝑝

𝑠
(Ω)

+ 𝑐 (𝜖) (
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩𝐿𝑝(Ω
𝜖
)
+ ‖𝑢‖𝐿𝑝(Ω

𝜖
)
) ,

(51)

where 𝑐(𝜖) and Ω
𝜖
depend on 𝜖, Ω, 𝑛, 𝑝, 𝑡

1
, 𝑡

2
, 𝑠, 𝜌,

‖(𝑎
𝑖𝑗
)
𝑥
ℎ

‖
𝐾
𝑡
1

1

(Ω)
, ‖𝑎

𝑖
‖
𝐾
𝑡
1

1

(Ω)
, ‖𝑎󸀠

‖
𝐾
𝑡
2

2

(Ω)
, ∘𝜔𝑡
1

1
[(𝑎

𝑖𝑗
)
𝑥
ℎ

], ∘𝜔𝑡
1

1
[𝑎

𝑖
], and

∘

𝜔
𝑡
2

2
[𝑎

󸀠
]. The result easily follows from relations (50) and

(51).

Finally, in the next theorem we put togetherTheorem 4.2
of [5] with Theorem 4.2 of [6], showing the existence and
uniqueness of problem (41) for 𝑝 ∈]1, +∞[ and 𝑛 ≥ 2.

Theorem 8. Under the same hypotheses of Theorem 7 with
𝑡
1
> 𝑛 and 𝑡

2
> 𝑛/2, for any 𝑝 ∈]1, +∞[ and 𝑠 ∈ R, the

problem (41) is an index problem with index equal to zero.
Moreover, if 𝑎󸀠

= 0, then the problem is uniquely solvable.

Proof. First we prove that the problem (41) is an index
problem with index equal to zero. In fact, from Lemma 6 we
deduce that the operator 𝐿

𝑠−1
is a Fredholm operator with

index zero. On the other hand, by Theorem 2 it follows that
the operator

𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω)

󳨀→

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

((𝑎
𝑖𝑗
)
𝑥
𝑗

+ 2 (𝑠 − 1) 𝑎
𝑖𝑗
𝜎

−1
𝜎

𝑥
𝑗

) + 𝑎
𝑖
)

× 𝑢
𝑥
𝑖

+ 𝑎
󸀠
𝑢 ∈ 𝐿

𝑝

𝑠
(Ω)

(52)

is a compact operator. Thus, from (48), (49), and well known
results of the classical Fredholm index theory, we deduce that
the problem (41) is an index problemwith index equal to zero.

Assume now 𝑎
󸀠
= 0. We prove only the uniqueness

of solution of problem (41); the existence will easily follow
from uniqueness and from what we have proved in the case

𝑎
󸀠

̸= 0. At first, suppose 𝑝 ≥ 2. Then, by the unique
solvability of problem (41) for 𝑝 = 2 there exists a unique
𝑢 ∈ 𝑊

2,2

𝑡
(Ω) ∩

∘

𝑊

1,2

𝑡−1
(Ω) such that 𝐿𝑢 = 0. Moreover, by our

Lemma 5 and by Lemma 3.2 of [5] it follows that 𝑢 belongs to
𝑊

2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) and thus we deduce that 𝑢 = 0. Now

let 1 < 𝑝 < 2 and 𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊

1,𝑝

𝑠−1
(Ω) such that

𝐿𝑢 = 0. Using again our Lemma 5 and Lemma 3.2 of [5] we
get 𝑢 ∈ 𝑊

2,2

𝑡
(Ω) ∩

∘

𝑊

1,2

𝑡−1
(Ω) with 𝑡 = 𝑠 + 𝑛 (1/𝑝 − 1/2) and

𝐿𝑢 = 0. Exploiting again the existence and uniqueness of (41)
for 𝑝 = 2, we obtain that 𝑢 = 0. This concludes the proof.
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