
Research Article
A Strongly A-Stable Time Integration Method for Solving the
Nonlinear Reaction-Diffusion Equation

Wenyuan Liao

Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

Correspondence should be addressed to Wenyuan Liao; wliao@ucalgary.ca

Received 28 July 2014; Accepted 17 October 2014

Academic Editor: Santanu Saha Ray

Copyright © 2015 Wenyuan Liao.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The semidiscrete ordinary differential equation (ODE) system resulting from compact higher-order finite difference spatial
discretization of a nonlinear parabolic partial differential equation, for instance, the reaction-diffusion equation, is highly stiff.
Therefore numerical time integration methods with stiff stability such as implicit Runge-Kutta methods and implicit multistep
methods are required to solve the large-scale stiff ODE system. However those methods are computationally expensive, especially
for nonlinear cases. Rosenbrock method is efficient since it is iteration-free; however it suffers from order reduction when it is used
for nonlinear parabolic partial differential equation. In this work we construct a new fourth-order Rosenbrock method to solve the
nonlinear parabolic partial differential equation supplemented with Dirichlet or Neumann boundary condition. We successfully
resolved the phenomena of order reduction, so the new method is fourth-order in time when it is used for nonlinear parabolic
partial differential equations. Moreover, it has been shown that the Rosenbrock method is strongly A-stable hence suitable for the
stiff ODE system obtained from compact finite difference discretization of the nonlinear parabolic partial differential equation.
Several numerical experiments have been conducted to demonstrate the efficiency, stability, and accuracy of the new method.

1. Introduction

Let us consider the following parabolic partial differential
equation:

𝑢
𝑡
= 𝐷𝑢
𝑥𝑥
+ 𝑓 (𝑢, 𝑥, 𝑡) , (𝑥, 𝑡) ∈ (𝑎, 𝑏) × (0, 𝑇] , (1)

with the initial condition:

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (2)

where 𝐷 is a positive constant describing the diffusion
property and𝑓(𝑢, 𝑥, 𝑡) is a function representing the reaction
term, which is nonlinear on 𝑢. The unknown function 𝑢
represents, depending on the applications, variables such as
mass concentration in chemical reaction process, tempera-
ture in heat conduction, neutron flux in nuclear reactors,
and population density in population dynamics. On the
boundary, either Dirichlet condition

𝑢 (𝑎, 𝑡) = 𝑔
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑔

2
(𝑡) , 0 ≤ 𝑡 ≤ 𝑇 (3)

or Neumann condition

𝑢
𝑥
(𝑎, 𝑡) = 𝑔

3
(𝑡) , 𝑢

𝑥
(𝑏, 𝑡) = 𝑔

4
(𝑡) , 0 ≤ 𝑡 ≤ 𝑇 (4)

is specified, where 𝑔
1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
are sufficiently smooth

functions. Here in this paper we restrict our attention on
Dirichlet and Neumann boundary conditions, while the
developed techniques can be easily extended toRobin bound-
ary condition.

Efficient and accurate numerical methods for solving (1)
had attracted great attentions from scientists and engineers,
as for many application problems in science and engineer-
ing, it is preferable to use high-order compact numerical
algorithms to compute accurate solutions. In the past several
decades a great deal of work has been done in the develop-
ment of efficient, accurate, and robust numerical algorithm
for solving such problem. For more details, the reader is
referred to [1–4].

Since both temporal and spatial derivatives are involved
in the equation, we discuss the numerical treatments in

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 539652, 12 pages
http://dx.doi.org/10.1155/2015/539652

http://dx.doi.org/10.1155/2015/539652

2 Abstract and Applied Analysis

time and space separately. Here we first apply the high-
order compact finite difference approximation to the spatial
derivative, so a semidiscrete ODE system is obtained, which
is then solved by a fourth-order Rosenbrockmethod that will
be discussed later.

Recently there have been attempts to develop high-order
compact scheme for the spatial derivative. In [5], a three-
point combined compact difference scheme was proposed
to approximate the first and second derivatives for problem
with periodic boundary condition. The resulting scheme has
up to sixth-order accuracy at all grid points including the
boundary nodes for periodic boundaries; however it is only
fourth-order accurate for nonperiodic boundary condition.

Because the semidiscrete ODE system obtained from
spatial discretization, such as method of lines, of the nonlin-
ear parabolic partial differential equation is highly stiff, the
choices of time integration methods are limited to implicit
methods only. Explicit algorithm is efficient in a single time
step but suffers from strict step size restriction, which makes
it less efficient. Implicit method, on the other side, is less
efficient in a single step but the unconditional stability allows
the use of larger time step; hence the overall computational
efficiency can be significantly improved. One issue, however,
is that the iteration is usually slow when large step size Δ𝑡
is used. Also, due to the stiffness of the ODE system, only
Newton-type iterative methods are applicable to solve the
nonlinear algebraic system. Furthermore, strong A-stability
or L-stability of the time integration method is necessary
for error damping. A great deal of work has been done in
the development of efficient time stepping methods for the
stiff ODE system. In [6] explicit exponential Rosenbrock
methods of order five have been constructed to solve the
large-scale stiff ODE system. Through the derivation of stiff
order condition, new pairs of embedded methods of higher-
order can be obtained. Similarly, fifth-order explicit expo-
nential Runge-Kutta methods were constructed to efficiently
integrate the semilinear stiff problems in [7].The authors have
also shown that there does not exist an explicit exponential
Runge-Kutta method of order 5 with less than or equal to 6
stages; therefore the resultant methods are 8-stage methods.
In [8] a fourth-order time stepping method, which is a
modification of the exponential time-differencing fourth-
order Runge-Kutta method, has been developed for stiff
ODEs. These methods are efficient and accurate. However,
A-stability of the time stepping method is not sufficient for
highly stiff problem. To overcome these difficulties, it is
desirable to construct new algorithms with strong A-stability
or L-stability that are free of solving nonlinear equations.
It turns out that the Rosenbrock method, which was firstly
reported by Rosenbrock [9] and then improved by Haines
[10], responded to these issues with considerably satisfying
and promising results.

The objective herein is to develop a strongly A-stable
Rosenbrock method to solve the semidiscrete stiff ODEs
resulting from compact high-order finite difference approx-
imation of a semilinear parabolic partial differential equa-
tion. The rest of the paper is organized as the following.
In Section 2, we discretize the spatial derivatives of the
semilinear parabolic partial differential equation using a

fourth-order compact finite difference scheme, which is then
combined with a newly proposed compact fourth-order
boundary condition treatment to form the semidiscrete ODE
system. In Section 3 we focus on the development of a fourth-
order strongly A-stable Rosenbrock method and the stability
analysis. Several numerical examples are used to demonstrate
the accuracy and efficiency of the new algorithm in Section 4,
which is followed by conclusions and possible future work.

2. Compact Fourth-Order
Spatial Discretization

For the sake of simplicity, we assume that the 1D spatial
domain Ω = [𝑎, 𝑏] is divided into𝑀 subintervals with equal
length ℎ = (𝑏 − 𝑎)/𝑀. Let 𝑥

𝑖
= 𝑎 + 𝑖 ⋅ ℎ, 𝑖 = 0, 1, . . . ,𝑀, be the

grid points. A variety of compact high-order discretizations
can be utilized to approximate the second derivative 𝑢

𝑥𝑥
in

(1).
Here we introduce a compact finite difference scheme to

approximate 𝑢
𝑥𝑥
, such that the resulting semidiscrete ODE

system is an accurate and compact approximation to the
original semilinear parabolic partial differential equation.
This operator-approximation based method has been widely
used to solve various multidimensional problems. We first
define the central finite difference operator 𝛿2

𝑥
as

𝛿
2

𝑥
𝑢
𝑖
= 𝑢
𝑖+1
− 2𝑢
𝑖
+ 𝑢
𝑖−1
; (5)

then𝛿2
𝑥
/ℎ
2 gives second-order accurate approximation to𝑢

𝑥𝑥
.

Using Taylor series to expand all terms on the right-hand side
of (5), under the assumption that 𝑢(𝑥) is sufficiently smooth,
we have

𝛿
2

𝑥

ℎ
2
𝑢
𝑖
= 𝑢
𝑥𝑥
(𝑥
𝑖
) +

ℎ
2

12

𝑢
𝑥𝑥𝑥𝑥
(𝑥
𝑖
) + 𝑂 (ℎ

4
) , 1 ≤ 𝑖 ≤ 𝑀 − 1.

(6)

To improve the above finite difference approximation to
fourth-order accurate, one just needs to eliminate the second-
order error term. Applying 𝛿2

𝑥
/12 to both sides of (6), we have

𝛿
2

𝑥

ℎ
2

𝛿
2

𝑥

12

𝑢
𝑖
= 𝑢
𝑥𝑥𝑥𝑥
(𝑥
𝑖
) + 𝑂 (ℎ

4
) , 1 ≤ 𝑖 ≤ 𝑀 − 1. (7)

Combining (6) with (7), neglecting 𝑂(ℎ4), we obtain the
following fourth-order accurate approximation to𝑢

𝑥𝑥
at node

𝑥
𝑖
:

𝑢
𝑥𝑥
(𝑥
𝑖
) ≈

1

ℎ
2
𝛿
2

𝑥
(1 −

𝛿
2

𝑥

12

)𝑢
𝑖
, 1 ≤ 𝑖 ≤ 𝑀 − 1. (8)

The drawback is that a five-point stencil is required; therefore
the compactness is destroyed so the method becomes less
efficient. Further investigation shows that the difference
between 1 − 𝛿2

𝑥
/12 and (1 + 𝛿2

𝑥
/12)
−1 is 𝑂(ℎ4), so a natural

way is to approximate 𝑢
𝑥𝑥
(𝑥
𝑖
) as 𝛿2
𝑥
(1 + 𝛿

2

𝑥
/12)
−1
𝑢
𝑖
, which is

fourth-order accurate and compact.

Abstract and Applied Analysis 3

Applying the fourth-order Padé approximation to 𝑢
𝑥𝑥

in
(1), we obtain the following ODE system

𝑢
󸀠

𝑖
(𝑡) =

𝐷

ℎ
2

𝛿
2

𝑥

1 + 𝛿
2

𝑥
/12

𝑢
𝑖
(𝑡) + 𝑓 (𝑢

𝑖
(𝑡) , 𝑥
𝑖
, 𝑡) ,

1 ≤ 𝑖 ≤ 𝑀 − 1,

(9)

which is a fourth-order accurate approximation (in space) to
the original semilinear parabolic partial differential equation
defined in (1).

However, the above algorithm is difficult to implement,
so we multiply 1+𝛿2

𝑥
/12 to both sides to obtain the following

implicit ODE system:

(1 +

𝛿
2

𝑥

12

)𝑢
󸀠

𝑖
(𝑡) =

𝐷

ℎ
2
𝛿
2

𝑥
𝑢
𝑖
(𝑡) + (1 +

𝛿
2

𝑥

12

)𝑓 (𝑢
𝑖
(𝑡) , 𝑥
𝑖
, 𝑡) ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 0 < 𝑡 ≤ 𝑇,

(10)

which can be written in vector form as

𝐴𝑈
󸀠
(𝑡) = 𝐹 (𝑈,𝑋, 𝑡) , 0 < 𝑡 ≤ 𝑇, (11)

where 𝑈(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑀−1
(𝑡)) is the discrete

solution of (1) at time 𝑡, with 𝑢
𝑖
(𝑡) = 𝑢(𝑥

𝑖
, 𝑡),𝐴 is an (𝑀−1)×

(𝑀− 1) tridiagonal matrix, and 𝐹 is a vector-valued function
defined through (10). To complete the ODE system, we need
the boundary conditions at 𝑥 = 𝑥

0
and 𝑥 = 𝑥

𝑀
, which can be

derived from the original boundary conditions defined in (3)
or (4).

First, if the Dirichlet boundary condition (3) is specified,
one can add the following two ODEs to (9):

𝑢
󸀠

0
(𝑡) = 𝑔

󸀠

1
(𝑡) , 𝑢

󸀠

𝑀
(𝑡) = 𝑔

󸀠

2
(𝑡) . (12)

Consequently the matrix is modified as

𝐴 =

(

(

(

(

1 0 0 0 ⋅ ⋅ ⋅ 0 0 0

1

12

5

6

1

12

0 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅

0 0 0 0 ⋅ ⋅ ⋅

1

12

5

6

1

12

0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

)

)

)

)

, (13)

while the vector-valued function 𝐹(𝑈,𝑋, 𝑡), after modifica-
tions, is defined as

𝐹
0
= 𝑔
󸀠

1
(𝑡) ,

𝐹
𝑖
=

𝐷

ℎ
2
𝛿
2

𝑥
𝑢
𝑖
(𝑡) + (1 +

𝛿
2

𝑥

12

)𝑓 (𝑢
𝑖
(𝑡) , 𝑥
𝑖
, 𝑡) ,

1 ≤ 𝑖 ≤ 𝑀 − 1,

𝐹
𝑀
= 𝑔
󸀠

2
(𝑡) .

(14)

Alternatively, we can incorporate the boundary condition
by replacing 𝑢

0
(𝑡) and 𝑢

𝑀
(𝑡) in (10) with 𝑔

1
(𝑡) and 𝑔

2
(𝑡),

respectively, so the ODE system equation (11) has only𝑀− 2
equations.

As one can imagine, the situation is more complicated
when the Neumann boundary condition (4) is specified. To
complete the ODE system and maintain the higher-order
overall accuracy, a compact fourth-order approximation of
the Neumann boundary condition is needed. Let us use the
boundary condition at 𝑥 = 𝑎 as the example to demonstrate
the idea of the new algorithm.

Unlike the Dirichlet boundary condition, which specifies
the solution 𝑢 on the boundary point explicitly, the Neumann
boundary condition defines 𝑢

𝑥
at the boundary points; thus

𝑢
0
(𝑡) and 𝑢

𝑀
(𝑡) need to be calculated along with solution

at the interior grid points. Consequently, the range for 𝑖 in
(10) should be changed to 0 ≤ 𝑖 ≤ 𝑀, so 𝐴 is an (𝑀 +
1) × (𝑀 + 1) matrix. To approximate the derivative at 𝑥

0
,

we introduce a ghost point 𝑥
−1
= 𝑎 − ℎ and assume that

(1) holds and the solution 𝑢 is sufficiently smooth on the
extended domain [𝑎 − ℎ, 𝑏]. Let 𝑢

−1
(𝑡) denote the solution at

𝑥
−1
= 𝑎 − ℎ and then apply the second-order central finite

difference approximation to 𝑢
𝑥
(𝑎, 𝑡),

𝑢
1
(𝑡) − 𝑢

−1
(𝑡)

2ℎ

= 𝑢
𝑥
(𝑎, 𝑡) +

ℎ
2

6

𝑢
𝑥𝑥𝑥
(𝑎, 𝑡) + 𝑂 (ℎ

4
) . (15)

Taking partial derivative with respect to 𝑥 on both sides
of (1), we have

𝑢
𝑥𝑥𝑥
=

1

𝐷

(𝑢
𝑥𝑡
− 𝑓
𝑥
− 𝑓
𝑢
⋅ 𝑢
𝑥
) . (16)

Letting 𝑥 → 𝑎 in (16) and then applying the Neumann
boundary condition (4), we obtain

𝑢
𝑥𝑥𝑥
(𝑎)

=

1

𝐷

(𝑔
󸀠

3
(𝑡) − 𝑓

𝑥
(𝑢
0
(𝑡) , 𝑎, 𝑡) − 𝑓

𝑢
(𝑢
0
(𝑡) , 𝑎, 𝑡) ⋅ 𝑔

3
(𝑡)) .

(17)

Combining (15) with (17), we obtain the following fourth-
order compact approximation for 𝑢

−1
(𝑡):

𝑢
−1
(𝑡) = 𝑢

1
(𝑡) − 2ℎ𝑔

3
(𝑡) −

ℎ
3

3𝐷

(𝑔
󸀠

3
(𝑡) − 𝑓

𝑥
(𝑢
0
(𝑡) , 𝑎, 𝑡)

− 𝑓
𝑢
(𝑢
0
(𝑡) , 𝑎, 𝑡) ⋅ 𝑔

3
(𝑡)) ,

(18)

which involves 𝑢
0
(𝑡) and 𝑢

1
(𝑡) only, so the compact structure

is preserved.

4 Abstract and Applied Analysis

Similarly, the fourth-order compact approximation for
𝑢
𝑀+1
(𝑡) can be derived as

𝑢
𝑀+1
(𝑡) = 𝑢

𝑀−1
(𝑡) + 2ℎ𝑔

4
(𝑡)

+

ℎ
3

3𝐷

(𝑔
󸀠

4
(𝑡) − 𝑓

𝑥
(𝑢
𝑀
(𝑡) , 𝑏, 𝑡)

− 𝑓
𝑢
(𝑢
𝑀
(𝑡) , 𝑏, 𝑡) ⋅ 𝑔

4
(𝑡)) .

(19)

Now the matrix 𝐴 involves 𝑡 and 𝑈, and the first and last
rows are modified as

𝐴
0,0⋅⋅⋅𝑀
= (

10

12

+

ℎ
3

36𝐷

(𝑓
𝑥𝑢
(𝑢
0
, 𝑎, 𝑡)

+𝑓
𝑢𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

3
(𝑡)) ,

1

6

, . . . , 0) ,

𝐴
𝑀,0⋅⋅⋅𝑀
= (0, . . . ,

1

6

,

10

12

−

ℎ
3

36𝐷

(𝑓
𝑥𝑢
(𝑢
𝑀
, 𝑏, 𝑡)

+𝑓
𝑢𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
(𝑡))) .

(20)

Consequently the first and last components of 𝐹 are

𝐹
0
=

𝐷

ℎ
2
(2𝑢
1
− 2𝑢
0
− 2ℎ𝑔

3
)

+

1

12

(10𝑓 (𝑢
0
, 𝑎, 𝑡) + 𝑓 (𝑢

1
, 𝑎 + ℎ, 𝑡))

−

ℎ

3

(𝑔
󸀠

3
− 𝑓
𝑥
(𝑢
0
, 𝑎, 𝑡) − 𝑓

𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

3
) +

ℎ

6

𝑔
󸀠

3

+

ℎ
3

36𝐷

(𝑔
󸀠󸀠

3
− 𝑓
𝑥𝑡
(𝑢
0
, 𝑎, 𝑡) − 𝑓

𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

󸀠

3

−𝑓
𝑢𝑡
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

3
)

+

1

12

𝑓(𝑢
1
− 2ℎ𝑔

3
−

ℎ
3

3𝐷

× (𝑔
󸀠

3
− 𝑓
𝑥
(𝑢
0
, 𝑎, 𝑡) − 𝑓

𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

3
) ,

𝑎 − ℎ, 𝑡) ,

𝐹
𝑀
=

2𝐷

ℎ
2
(𝑢
𝑀−1
− 𝑢
𝑀
+ ℎ𝑔
4
)

+

1

12

(10𝑓 (𝑢
𝑀
, 𝑏, 𝑡) + 𝑓 (𝑢

𝑀−1
, 𝑏 − ℎ, 𝑡))

−

ℎ

3

(𝑔
󸀠

4
− 𝑓
𝑥
(𝑢
𝑀
, 𝑏, 𝑡) − 𝑓

𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
) −

ℎ

6

𝑔
󸀠

4

−

ℎ
3

36𝐷

(𝑔
󸀠󸀠

4
− 𝑓
𝑥𝑡
(𝑢
𝑀
, 𝑏, 𝑡) − 𝑓

𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

󸀠

4

−𝑓
𝑢𝑡
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
)

+

1

12

𝑓(𝑢
𝑀−1
+ 2ℎ𝑔

4
+

ℎ
3

3𝐷

× (𝑔
󸀠

4
− 𝑓
𝑥
(𝑢
𝑀
, 𝑏, 𝑡) − 𝑓

𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
) ,

𝑏 + ℎ, 𝑡) .

(21)

Finally, the ODE system is written in the form of𝐴(𝑡, 𝑈)𝑈󸀠 =
𝐹(𝑈, 𝑡). Apparently, the matrix𝐴 preserves tridiagonal struc-
ture, but it depends on 𝑡 and 𝑈; hence the development of
Rosenbrockmethod becomes difficult. Fortunately, we notice
that 𝑡 and𝑈 are involved in two entries: 𝐴

0,0
and 𝐴

𝑀,𝑀
only.

Further investigation shows that the extra terms in (20) are

ℎ
3

36𝐷

(𝑓
𝑥𝑢
(𝑢
0
, 𝑎, 𝑡) + 𝑓

𝑢𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

1
(𝑡)) , (22)

−

ℎ
3

36𝐷

(𝑓
𝑥𝑢
(𝑢
𝑀
, 𝑏, 𝑡) + 𝑓

𝑢𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
(𝑡)) , (23)

respectively. We can eliminate these two extra terms by
incorporating them into vector 𝐹; therefore 𝐹

0
and 𝐹

𝑀
are

modified as

𝐹
0
= 𝐹
0

−

ℎ
3

36𝐷

[(𝑓
𝑥𝑢
(𝑢
0
, 𝑎, 𝑡) + 𝑓

𝑢𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

3
(𝑡))] ⋅ 𝑢

󸀠

0
(𝑡) ,

(24)

𝐹
𝑀
= 𝐹
𝑀

+

ℎ
3

36𝐷

[(𝑓
𝑥𝑢
(𝑢
𝑀
, 𝑏, 𝑡) + 𝑓

𝑢𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
(𝑡))]

⋅ 𝑢
󸀠

𝑀
(𝑡) .

(25)

Using (1), we have

𝑢
󸀠

0
(𝑡) =

2𝐷

ℎ
2
(𝑢
1
(𝑡) − 𝑢

0
(𝑡) − ℎ𝑔

3
(𝑡))

+ 𝑓 (𝑢
0
(𝑡) , 𝑎, 𝑡) + 𝑂 (ℎ) ,

(26)

𝑢
󸀠

𝑀
(𝑡) =

2𝐷

ℎ
2
(𝑢
𝑀−1
(𝑡) − 𝑢

𝑀
(𝑡) + ℎ𝑔

4
(𝑡))

+ 𝑓 (𝑢
𝑀
(𝑡) , 𝑏, 𝑡) + 𝑂 (ℎ) .

(27)

Abstract and Applied Analysis 5

Inserting (26) into (24) and then ignoring the fourth-
order error term 𝑂(ℎ4), we obtain

𝐹
0
= 𝐹
0
−

ℎ
3

36𝐷

[(𝑓
𝑥𝑢
(𝑢
0
, 𝑎, 𝑡) + 𝑓

𝑢𝑢
(𝑢
0
, 𝑎, 𝑡) ⋅ 𝑔

3
(𝑡))]

× (

2𝐷

ℎ
2
(𝑢
1
− 𝑢
0
− ℎ𝑔
3
(𝑡)) + 𝑓 (𝑢

0
, 𝑎, 𝑡)) .

(28)

Similarly, inserting (27) into (25) and then ignoring the
fourth-order error term, we obtain

𝐹
𝑀
= 𝐹
𝑀
−

ℎ
3

36𝐷

[(𝑓
𝑥𝑢
(𝑢
𝑀
, 𝑏, 𝑡) + 𝑓

𝑢𝑢
(𝑢
𝑀
, 𝑏, 𝑡) ⋅ 𝑔

4
(𝑡))]

× (

2𝐷

ℎ
2
(𝑢
𝑀−1
(𝑡) − 𝑢

𝑀
(𝑡) + ℎ𝑔

4
(𝑡))

+𝑓 (𝑢
𝑀
(𝑡) , 𝑏, 𝑡)) .

(29)

We then obtain the closed ODE system 𝐴𝑈󸀠(𝑡) = 𝐹(𝑈, 𝑡),
where the vector-valued function is given as 𝐹 =
(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑀−1
, 𝐹
𝑀
), and𝐴 is a nonsingular (𝑀+1)×(𝑀+1)

constant matrix given as

𝐴 =

(

(

(

(

(

(

(

(

5

6

1

12

0 0 ⋅ ⋅ ⋅ 0 0 0

1

12

5

6

1

12

0 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅

0 0 0 0 ⋅ ⋅ ⋅

1

12

5

6

1

12

0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1

12

5

6

)

)

)

)

)

)

)

)

. (30)

If the Robin boundary condition is specified, a similar
numerical technique can be used to derive the semidiscrete
ODE system.

Here we mention, without theoretical proof, that the
resulting semidiscrete ODE system (9) is a fourth-order
accurate approximation to the original semilinear parabolic
partial differential equation given in (1), supplemented with
eitherDirichlet orNeumann boundary conditions. Interested
readers can find a similar theorem and proof in [11].

3. Fourth-Order Strongly A-Stable
Rosenbrock Method

Various numerical methods can be used to solve the ODE
system in (11). However, due to the stiffness of the problem,
only stiffly stable methods are applicable; thus the choices are
limited to the subclass of implicit methods such as implicit
linear multistepmethods and implicit Runge-Kutta methods.
It is known that A-stability is necessary for stiff problem,
and in general strong A-stable or even L-stable methods are
preferred. The A-stability was firstly introduced and defined
by Dahlquist [12] as the following.

Definition 1. A numerical method is called A-stable if there is
no restriction on the step size, when it is applied to solve the
test equation 𝑦󸀠 = 𝜆𝑦, where Re(𝜆) < 0.

For a single-step method such as Runge-Kutta method
that can be written as 𝑦

𝑛+1
= 𝑅(𝑦

𝑛
), the A-stability is equi-

valent to the condition |𝑅(𝑧)| ≤ 1 for any 𝑧 ∈ C−1, where
𝑅(𝑧) is called the stability function of the method. Although
successfully used in various applications, an A-stable linear
multistep method has the highest order of 2. In fact, the
second-order A-stable linear multistep method with optimal
error constant is the Trapezium rule [12]. Further, Gourlay
[13] pointed out that an A-stable method is necessary but
not sufficient for very stiff system as it has the incorrect
damping rate. For example, the widely used Trapezium rule
has stability function𝑅(𝑧) = (1+𝑧)/(1−𝑧) satisfying |𝑅(𝑧)| <
1 for any 𝑧 ∈ C−1, but its damping rate converges to −1 when
𝑧 → −∞. To overcome this difficulty, strong A-stability was
introduced.

Definition 2. A numerical method is called strongly A-stable
if it is A-stable and |𝑅(−∞)| < 1.

It has been shown that a numerical method with strong
A-stability is effective in damping numerical oscillations for
highly stiff system. Formore details about the description and
comparison of A-stability and strong A-stability, the readers
are referred to [14].

Implicit Runge-Kutta method is usually unconditionally
stable but suffers from the issue of high computational com-
plexity, especially for nonlinear ODE system. For example,
during each time step, an algebraic system with 𝑠 × 𝑀
unknown variables needs to be solved, if an 𝑠-stage implicit
Runge-Kutta method is used to solve an ODE system with
𝑀 equations. Therefore, fully implicit Runge-Kutta methods
are too computationally expensive to be useful for large-
scale problems. In the past several decades, efforts have
been made to reduce the computational cost, which results
in various modified implicit Runge-Kutta methods, such as
diagonally implicit Runge-Kutta method, singly diagonally
implicit Runge-Kutta method, explicit-implicit Runge-Kutta
method, to name a few. For more details of these methods,
the reader is referred to [15–19].

To completely avoid solving a nonlinear algebraic system,
Rosenbrock method, which is a special class of Runge-Kutta
method, had been proposed. Since the spatial discretization is
fourth-order, our aim herein is to develop a strongly A-stable
fourth-order Rosenbrockmethod for solving theODE system
(11), so the new algorithm is fourth-order accurate in both
temporal and spatial dimensions.

3.1. Rosenbrock Method for Scalar Equation. We first derive
the Rosenbrock method based on an autonomous scalar
equation 𝑦󸀠 = 𝑓(𝑦), for which the initial condition is given
as 𝑦(𝑡

0
) = 𝑦

0
. Nonautonomous equations can be converted

to autonomous form by adding an extra equation to the
system. Some previous research [20] suggested that it is
unlikely to find a 3-stage fourth-order Rosenbrock method
with strong A-stability or L-stability, so herein we focus on

6 Abstract and Applied Analysis

the development of a 4-stage Rosenbrock method. Suppose
the numerical solution at time 𝑡

𝑛
is known as 𝑦

𝑛
, the 4-stage

Rosenbrock method calculates the numerical solution at 𝑡
𝑛+1

as

𝑦
𝑛+1
= 𝑦
𝑛
+ 𝑏
1
𝑘
1
+ 𝑏
2
𝑘
2
+ 𝑏
3
𝑘
3
+ 𝑏
4
𝑘
4
, (31)

𝑘
𝑖
= Δ𝑡𝑓(𝑦

𝑛
+

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
𝑘
𝑗
) + Δ𝑡𝐽 (𝑦

𝑛
)

𝑖

∑

𝑗=1

𝛾
𝑖𝑗
𝑘
𝑗
,

𝑖 = 1, 2, 3, 4,

(32)

where 𝑏
𝑖
, 𝛼
𝑖𝑗
, and 𝛾

𝑖𝑗
are coefficients to be determined and

𝐽(𝑦
𝑛
) = 𝑓
𝑦
(𝑦
𝑛
).

To extend the above algorithm to the nonautonomous
problems 𝑦󸀠 = 𝑓(𝑦, 𝑡), we first convert it to autonomous form
by adding a new equation 𝑡󸀠 = 1 and then apply the algorithm
(31) to the augmented system. Note that the components
corresponding to the last variable can be computed explicitly;
thus we can derive the modified algorithm as the following:

𝑦
𝑛+1
= 𝑦
𝑛
+ 𝑏
1
𝑘
1
+ 𝑏
2
𝑘
2
+ 𝑏
3
𝑘
3
+ 𝑏
4
𝑘
4
,

𝑘
𝑖
= Δ𝑡𝑓(𝑦

𝑛
+

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
𝑘
𝑗
, 𝑡
𝑛
+ 𝛼
𝑖
Δ𝑡)

+ 𝛾
𝑖
Δ𝑡
2
𝑓
𝑡
(𝑦
𝑛
, 𝑡
𝑛
) + Δ𝑡𝑓

𝑦
(𝑦
𝑛
, 𝑡
𝑛
)

𝑖

∑

𝑗=1

𝛾
𝑖𝑗
𝑘
𝑗
,

𝑖 = 1, 2, 3, 4,

(33)

where

𝛼
𝑖
=

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
, 𝛾

𝑖
=

𝑖

∑

𝑗=1

𝛾
𝑖𝑗
. (34)

A Rosenbrock method of order 𝑝 is obtained through
choosing coefficients in (31)-(32) so that the local error
satisfies 𝑦(𝑡

𝑛
+ Δ𝑡) − 𝑦

𝑛+1
= 𝑂(Δ𝑡

𝑝+1
). This can be done

either by solving the so-called Butcher Series [14] or by
straightforward differentiation. Here we derive the order
conditions for the fourth-order Rosenbrock method in a
different way using Taylor series. First, both 𝑦(𝑡

𝑛
+Δ𝑡) and 𝑘

𝑖

are expanded as Taylor series so that the difference𝑦(𝑡
𝑛
+Δ𝑡)−

𝑦
𝑛+1

can be expressed as a Taylor series and its coefficients of
the terms up to 𝑂(Δ𝑡4) are set to 0, which results in a set of
equations involving these coefficients.

Given 𝑦(𝑡
𝑛
) = 𝑦

𝑛
, the Taylor series of 𝑦(𝑡

𝑛
+ Δ𝑡) at 𝑡

𝑛
is

expanded as

𝑦 (𝑡
𝑛
+ Δ𝑡) = 𝑦

𝑛
+ Δ𝑡𝑓
𝑛
+

Δ𝑡
2

2

𝐽
𝑛
𝑓
𝑛
+

Δ𝑡
3

6

(𝐽
2

𝑛
𝑓
𝑛
+ 𝐽
󸀠

𝑛
𝑓
2

𝑛
)

+

Δ𝑡
4

24

(𝐽
󸀠󸀠

𝑛
𝑓
3

𝑛
+ 2𝐽
󸀠

𝑛
𝐽
𝑛
𝑓
2

𝑛
+ 2𝐽
𝑛
𝐽
󸀠

𝑛
𝑓
2

𝑛
+ 𝐽
3

𝑛
𝑓
𝑛
)

+ 𝑂 (Δ𝑡
5
) ,

(35)

where 𝑓
𝑛
= 𝑓(𝑦

𝑛
), 𝐽
𝑛
= (𝜕𝑓/𝜕𝑦)(𝑦

𝑛
), 𝐽󸀠
𝑛
= (𝜕
2
𝑓/𝜕𝑦
2
)(𝑦
𝑛
), and

𝐽
󸀠󸀠

𝑛
= (𝜕
3
𝑓/𝜕𝑦
3
)(𝑦
𝑛
). For the sake of simplicity, let𝛽

𝑖𝑗
= 𝛼
𝑖𝑗
+𝛾
𝑖𝑗

and 𝛼
𝑖𝑖
= 0.

Letting 𝑖 = 1 in (32) we have

𝑘
1
= Δ𝑡 (1 − Δ𝑡𝛾

11
𝐽
𝑛
)
−1

𝑓
𝑛

= Δ𝑡𝑓
𝑛
+ Δ𝑡
2
𝛾
11
𝐽
𝑛
𝑓
𝑛
+ Δ𝑡
3
𝛾
2

11
𝐽
2

𝑛
𝑓
𝑛

+ Δ𝑡
4
𝛾
3

11
𝐽
3

𝑛
𝑓
𝑛
+ 𝑂 (Δ𝑡

5
) .

(36)

Similarly, letting 𝑖 = 2 in (32) we have

𝑘
2
= Δ𝑡 (1 − Δ𝑡𝛾

22
𝐽
𝑛
)
−1

(𝑓 (𝑦
𝑛
+ 𝛼
21
𝑘
1
) + 𝛾
21
𝐽
𝑛
𝑘
1
) . (37)

Combining it with the Taylor series of 𝑘
1
in (36), we

obtain

𝑘
2
= Δ𝑡𝑓

𝑛
+ Δ𝑡
2
(𝛼
21
+ 𝛾
21
+ 𝛾
22
) 𝐽
𝑛
𝑓
𝑛

+ Δ𝑡
3
[(𝛾
11
+ 𝛾
22
) (𝛼
21
+ 𝛾
21
) + 𝛾
2

22
] 𝐽
2

𝑛
𝑓
𝑛
+

Δ𝑡
3

2

𝛼
2

21
𝐽
󸀠

𝑛
𝑓
2

𝑛

+ Δ𝑡
4
[(𝛾
11
𝛾
22
+ 𝛾
2

11
+ 𝛾
2

22
) (𝛼
21
+ 𝛾
21
) + 𝛾
3

22
] 𝐽
3

𝑛
𝑓
𝑛

+ Δ𝑡
4
𝛾
11
𝛼
2

21
𝐽
󸀠

𝑛
𝐽
𝑛
𝑓
2

𝑛
+

Δ𝑡
4

2

𝛾
22
𝛼
2

21
𝐽
𝑛
𝐽
󸀠

𝑛
𝑓
2

𝑛

+

Δ𝑡
4

6

𝛼
3

21
𝐽
󸀠󸀠

𝑛
𝑓
3

𝑛
+ 𝑂 (Δ𝑡

5
) .

(38)

Following the same way, we have

𝑘
3
= Δ𝑡𝑓

𝑛
+ Δ𝑡
2
(𝛽
31
+ 𝛽
32
+ 𝛾
33
) 𝐽
𝑛
𝑓
𝑛

+ Δ𝑡
3
[

[

3

∑

𝑗=1

((𝛼
3𝑗
+ 𝛾
3𝑗
) ⋅

𝑗

∑

𝑙=1

(𝛼
𝑗𝑙
+ 𝛾
𝑗𝑙
))
]

]

𝐽
2

𝑛
𝑓
𝑛

+

Δ𝑡
3

2

𝛼
2

3
𝐽
󸀠

𝑛
𝑓
2

𝑛

+ Δ𝑡
4
[

[

3

∑

𝑖=1

((𝛼
3𝑖
+ 𝛾
3𝑖
) ⋅

𝑖

∑

𝑗=1

((𝛼
𝑖𝑗
+ 𝛾
𝑖𝑗
)

⋅

𝑗

∑

𝑙=1

(𝛼
𝑗𝑙
+ 𝛾
𝑗𝑙
)))
]

]

𝐽
3

𝑛
𝑓
𝑛

+

Δ𝑡
4

2

[𝛼
2

2
𝛽
32
+ 𝛾
33
𝛼
2

3
] 𝐽
𝑛
𝐽
󸀠

𝑛
𝑓
2

𝑛

+ Δ𝑡
4
[𝛼
3
((𝛽
21
+ 𝛾
22
) 𝛼
32
+ 𝛾
11
𝛼
31
)] 𝐽
󸀠

𝑛
𝐽
𝑛
𝑓
2

𝑛

+

Δ𝑡
4

6

(𝛼
31
+ 𝛼
32
)
3

𝐽
󸀠󸀠

𝑛
𝑓
3

𝑛
+ 𝑂 (Δ𝑡

5
) ,

Abstract and Applied Analysis 7

𝑘
4
= Δ𝑡𝑓

𝑛
+ Δ𝑡
2
(𝛽
41
+ 𝛽
42
+ 𝛽
42
+ 𝛾
44
) 𝐽
𝑛
𝑓
𝑛

+ Δ𝑡
3
[

[

4

∑

𝑗=1

((𝛼
4𝑗
+ 𝛾
4𝑗
) ⋅

𝑗

∑

𝑙=1

(𝛼
𝑗𝑙
+ 𝛾
𝑗𝑙
))
]

]

𝐽
2

𝑛
𝑓
𝑛

+

Δ𝑡
3

2

𝛼
2

4
𝐽
󸀠

𝑛
𝑓
2

𝑛

+ Δ𝑡
4
[

[

4

∑

𝑖=1

((𝛼
4𝑖
+ 𝛾
4𝑖
) ⋅

𝑖

∑

𝑗=1

((𝛼
𝑖𝑗
+ 𝛾
𝑖𝑗
)

⋅

𝑗

∑

𝑙=1

(𝛼
𝑗𝑙
+ 𝛾
𝑗𝑙
)))
]

]

𝐽
3

𝑛
𝑓
𝑛

+ Δ𝑡
4
[𝛼
4
((𝛾
33
+ 𝛽
32
+ 𝛽
31
) 𝛼
43

+ (𝛾
22
+ 𝛽
21
) 𝛼
42
+ 𝛾
11
𝛼
41
)] 𝐽
󸀠

𝑛
𝐽
𝑛
𝑓
2

𝑛

+

Δ𝑡
4

2

[𝛾
44
𝛼
2

4
+ 𝛽
43
𝛼
2

3
+ 𝛽
42
𝛼
2

2
] 𝐽
𝑛
𝐽
󸀠

𝑛
𝑓
2

𝑛

+

Δ𝑡
4

6

(𝛼
41
+ 𝛼
42
+ 𝛼
43
)
3

𝐽
󸀠󸀠

𝑛
𝑓
3

𝑛
+ 𝑂 (Δ𝑡

5
) .

(39)

Inserting the four Taylor series into (35) andmatching the
coefficients of Δ𝑡𝑝 for 𝑝 = 0, 1, 2, 3, 4 on both sides of (31), we
obtain the following order conditions:

1 =

4

∑

𝑖=1

𝑏
𝑖
, (40)

1

2

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (𝛾
𝑖𝑖
+

𝑖−1

∑

𝑗=1

𝛽
𝑖𝑗
) , (41)

1

6

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⋅

𝑗

∑

𝑙=1

𝛽
𝑗𝑙
) , (42)

1

3

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
)

2

, (43)

1

4

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
)

3

, (44)

1

24

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (𝛼
𝑖

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
⋅ (𝛾
𝑗𝑗
+

𝑗−1

∑

𝑙=1

𝛽
𝑗𝑙
)) , (45)

1

12

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⋅ (

𝑗−1

∑

𝑙=1

𝛼
𝑗𝑙
)

2

) , (46)

1

24

=

4

∑

𝑖=1

𝑏
𝑖
⋅ (

𝑖

∑

𝑗=1

(𝛽
𝑖𝑗
⋅

𝑗

∑

𝑙=1

(𝛽
𝑗𝑙
⋅

𝑙

∑

𝑘=1

𝛽
𝑙𝑘
))) . (47)

Note that the set of order conditions obtained by using
Butcher series [14, page 108] is a special case herewhen 𝛾

𝑖𝑖
= 𝛾.

Also it is worthy to point out that if 𝑓(𝑦) is a scalar
function of a single variable, 𝐽

𝑛
𝐽
󸀠

𝑛
= 𝐽
󸀠

𝑛
𝐽
𝑛
, thus conditions (45)

and (46) can be combined to one single condition. However
here since the method is developed for ODE system, both
conditions should be satisfied individually.

Apparently there are 12 degrees of freedom to determine
the method defined in (32) since there are 20 parameters
while only 8 constraints are given by (40)–(47). To simplify
the procedure of determining these parameters and reduce
the number of matrix inversion, we assume that 𝛽

𝑖𝑖
= 𝛾, for

𝑖 = 1, 2, 3, 4, so that only one matrix inversion is required to
solve all 𝑘

𝑖
during each time step. After this simplification,

there are 17 parameters left, and the order conditions are
simplified as well.

It is known that the Rosenbrock method suffers from
order reduction when applied to nonlinear parabolic partial
differential equations; see [20, 21]. In order to avoid such
reduction of accuracy, the following two extra order condi-
tions, simplified after taking into account the previous order
conditions, should be satisfied [22]:

𝑏
4
𝛽
43
𝛽
32
𝛼
2

2
= −2𝛾

4
+ 4𝛾
3
−

5

3

𝛾
2
+

𝛾

6

, (48)

𝑏
4
𝛽
43
𝛽
32
𝛼
2

2
= −

8𝛾
4

3

+ 5𝛾
3
− 2𝛾
2
+

7𝛾

36

, (49)

which imply

𝛾
3
−

3

2

𝛾
2
+

𝛾

2

−

1

24

= 0. (50)

Solving (50) results in three distinct real roots, while stability
analysis shows that only one (𝛾 = 1.06857902130162885) can
ensure A-stability for the Rosenbrock method. More details
regarding stability will be provided later.

To perform step size control and error estimation, we
need a third-order embedded formula [23] defined as 𝑦

𝑛+1
=

𝑦
𝑛
+∑
𝑠

𝑗=1

̃
𝑏
𝑗
𝑘
𝑗
which uses the same values of 𝑘

𝑗
’s as the Rosen-

brock method in (31) but coefficients of 𝑘
𝑗
’s are different.

To ensure the existence of such embedded formula, we need
Det(𝐴) = 0, where 𝐴 is a 4 × 4 square matrix defined as

𝐴 =(

1 1 1 1

𝛽
1
𝛽
2

𝛽
3

𝛽
4

𝛽
2

1

2

∑

𝑖=1

𝛽
2𝑖
⋅ 𝛽
𝑖

3

∑

𝑖=1

𝛽
3𝑖
⋅ 𝛽
𝑖

4

∑

𝑖=1

𝛽
4𝑖
⋅ 𝛽
𝑖

0 𝛼
2

2
𝛼
2

3
𝛼
2

4

) (51)

and 𝛽
𝑖
= ∑
𝑖

𝑗=1
𝛽
𝑖𝑗
.

Taking into account the order conditions, we obtain the
simplified condition as 𝛽

2

3
𝛼
2

2
𝛽
43
= 0, which unfortunately

contradicts the order condition given in (47). Thus one can
either sacrifices efficiency by relaxing the condition 𝛾

𝑖𝑖
=

𝛾 for the existence of a third-order embedded formula or
simply skip the condition and then ignore step size control
and error estimation. In this work, we are interested in the

8 Abstract and Applied Analysis

Table 1: Coefficients of the 4th-order Rosenbrock method.

𝑏
1
= 0.4074074074074 𝑏

2
= −0.2568608534470 𝑏

3
= 0.2

𝑏
4
= 0.6494534460396 𝛼

21
= 0.75 𝛼

31
= 0.75

𝛼
32
= 0 𝛼

41
= 2.9193596398302 𝛼

42
= 0.4

𝛼
43
= −2.5693596398302 𝛾

21
= −0.75 𝛾

31
= −1.3152686912402

𝛾
32
= 0.75 𝛾

41
= −2.8738466294648 𝛾

42
= −3.3778743470341

𝛾
43
= 4.5693596398302 𝛾 = 1.068579021301629

efficiency and order reduction of the Rosenbrock method, so
the condition for step size control is bypassed.

Upon the determination of 𝛾, there are 17 free parameters
remaining while the order conditions are simplified as the
following:

𝑏
1
+ 𝑏
2
+ 𝑏
3
+ 𝑏
4
= 1, (52)

𝑏
2
𝛽
2
+ 𝑏
3
𝛽
3
+ 𝑏
4
𝛽
4
=

1

2

− 𝛾, (53)

𝑏
3
𝛽
32
𝛽
2
+ 𝑏
4
(𝛽
42
𝛽
2
+ 𝛽
43
𝛽
3
) =

1

6

− 𝛾 + 𝛾
2
, (54)

𝑏
2
𝛼
2

21
+ 𝑏
3
𝛼
2

3
+ 𝑏
4
𝛼
2

4
=

1

3

, (55)

𝑏
2
𝛼
3

21
+ 𝑏
3
𝛼
3

3
+ 𝑏
4
𝛼
3

4
=

1

4

, (56)

𝑏
3
𝛼
3
𝛼
32
𝛽
2
+ 𝑏
4
𝛼
4
(𝛼
42
𝛽
2
+ 𝛼
43
𝛽
3
) =

1

8

−

𝛾

3

, (57)

𝑏
3
𝛽
32
𝛼
2

2
+ 𝑏
4
(𝛽
42
𝛼
2

2
+ 𝛽
43
𝛼
2

3
) =

1

12

−

𝛾

3

, (58)

𝑏
4
𝛽
43
𝛽
32
𝛽
2
=

1

24

−

𝛾

2

+

3

2

𝛾
2
− 𝛾
3
, (59)

which are equivalent to those given in [14, page 108], where
𝛽
𝑖
= ∑
𝑖−1

𝑗=1
𝛽
𝑖𝑗
.

Since 𝛾 is a root of (50), 𝑏
4
𝛽
43
𝛽
32
𝛽
2
= 0, but 𝑏

4
𝛽
43
𝛽
32
𝛼
2

2
̸=

0, thus 𝛽
21
= 0.Then the order conditions in (52)–(58) can be

further simplified.
We now choose the coefficients 𝛼

𝑖𝑗
with the purpose of

reducing the number of functional evaluations. Particularly,
letting 𝛼

2
= 𝛼
3
= 𝛼
4
, (55)-(56) imply that 𝛼

21
= 𝛼
2
= 3/4,

which further implies 𝑏
2
+ 𝑏
3
+ 𝑏
4
= 16/27, so 𝑏

1
= 11/27.

Letting 𝛼
31
= 𝛼
21
and 𝛼

32
= 0, we can reduce the number of

functional evaluation by 1.
We choose 𝛽

43
as a free parameter, so

𝑏
4
𝛽
3
=

1 − 6𝛾 + 6𝛾
2

6𝛽
43

,

𝛼
43
=

(1 − 8𝛾/3) 𝛽
43

1 − 6𝛾 + 6𝛾
2
.

(60)

By choosing 𝛼
42
as a free parameter, we have

𝛼
41
=

3

4

− 𝛼
42
−

(1 − 8𝛾/3) 𝛽
43

1 − 6𝛾 + 6𝛾
2
. (61)

Letting 𝛽
32
be a free parameter, we obtain

𝑏
4
=

16 (−2𝛾
4
+ 4𝛾
3
− 5𝛾
2
/3 + 𝛾/6)

9𝛽
43
𝛽
32

,

𝛽
31
=

1 − 6𝛾 + 6𝛾
2

6𝛽
43
𝑏
4

− 𝛽
32
.

(62)

Finally, choose 𝑏
3
as free parameter, so we have 𝑏

2
= 16/27 −

𝑏
3
− 𝑏
4
and

𝛽
42
=

(4 − 16𝛾 − 27𝑏
3
𝛽
32
)

(27𝑏
4
)

− 𝛽
43
,

𝛽
41
=

(1/2 − 𝛾 − 𝑏
3
(𝛽
31
+ 𝛽
32
))

𝑏
4

− 𝛽
42
− 𝛽
43
.

(63)

In summary, the coefficients of the Rosenbrock method
are listed in Table 1.

Note that one can also use these free parameters to
eliminate some fifth-order truncation error terms, so the
truncation error constant can be further optimized.

3.2. Extend the Rosenbrock Method to ODE System. We
now extend the Rosenbrock algorithm to the ODE system
𝐴𝑈
󸀠
(𝑡) = 𝐹(𝑈, 𝑡). Suppose that 𝑈𝑛 = (𝑢𝑛

0
, 𝑢
𝑛

1
, . . . , 𝑢

𝑛

𝑀
) is the

numerical solution of (10) at time 𝑡
𝑛
; then 𝑈𝑛+1 is calculated

as

𝑈
𝑛+1
= 𝑈
𝑛
+ 𝑏
1
𝐾
1
+ 𝑏
2
𝐾
2
+ 𝑏
3
𝐾
3
+ 𝑏
4
𝐾
4
, (64)

(𝐴 − 𝛾Δ𝑡𝐽
𝑛
)𝐾
𝑖
= 𝐹(𝑈

𝑛
+

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
𝐾
𝑗
, 𝑡
𝑛
+ 𝜎
𝑖
Δ𝑡)

+ 𝜇
𝑖
Δ𝑡
2 𝜕𝐹

𝜕𝑡

(𝑈
𝑛
, 𝑡
𝑛
) + Δ𝑡J

𝑛
(

𝑖−1

∑

𝑗=1

𝛾
𝑖𝑗
𝐾
𝑗
) ,

𝑖 = 1, 2, 3, 4,

(65)

where 𝐽
𝑛
= (𝜕𝐹/𝜕𝑈)(𝑈

𝑛
, 𝑡
𝑛
) is the Jacobi matrix 𝜎

𝑖
and 𝜇

𝑖
are

defined through (34).

Abstract and Applied Analysis 9

Obviously, each stage of this method consists of solving
a linear system of𝑀 + 1 equations. Since 𝛾

11
= ⋅ ⋅ ⋅ = 𝛾

44
=

𝛾, only one LU-decomposition is required during each time
step.

3.3. Stability of the Rosenbrock Method. We now study the
stability of the Rosenbrock method defined by (31)-(32)
with coefficients given in Table 1. Applying the Rosenbrock
method to the linear test equation 𝑦󸀠 = 𝜆𝑦, 𝜆 < 0, and taking
into account the order condition equation (49), we obtain the
stability function of the Rosenbrock method as

𝑅 (𝑧) = (1 + (1 − 4𝛾) 𝑧 + (

1

2

− 4𝛾 + 6𝛾
2
) 𝑧
2

−(

5𝛾
2

4

−

5𝛾

8

+

1

16

) 𝑧
4
)

× ((1 − 𝛾𝑧)
4
)

−1

,

(66)

where 𝑧 = 𝜆Δ𝑡.
In order for the Rosenbrock method to be strongly A-

stable, we need

|𝑅 (𝑧)| ≤ 1, ∀𝑧 ∈ C
−
, (67)

lim
𝑧→−∞
|𝑅 (𝑧)| < 1. (68)

Apparently,

lim
𝑧→−∞

|𝑅 (𝑧)| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

5𝛾
2
/4 − 5𝛾/8 + 1/16

𝛾
4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0.6304149382 < 1,

(69)

so (68) is satisfied.
To prove (67), we can substitute 𝑧 with 𝑥 + 𝑖𝑦 and then

show that |𝑅(𝑥 + 𝑖𝑦)| ≤ 1 for any 𝑥 < 0. However such
proof is technically tedious although possible. Here we use
the Boundary-Locus method to draw the region of absolute
stability of themethod, which is shown in Figure 1. Obviously,
the region of absolute stability contains the whole half-plane
C−, so the Rosenbrock method is A-stable. Combined with
(69), we can prove that the Rosenbrock method is strongly
A-stable.

4. Numerical Examples and Discussions

We solve three numerical examples to demonstrate the
accuracy and efficiency of the new algorithm. The first and
second examples are reaction-diffusion equations supple-
mented with Dirichlet and Neumann boundary conditions,
respectively.The two examples are solved by the newmethod
to demonstrate the fourth-order accuracy in time and space.
The third example is used to demonstrate that the new
algorithm is free of order reduction and more efficient than
several other existing fourth-order Rosenbrock methods.
For comparison, the rate of convergence is compared with
several other fourth-order methods which suffer from order
reduction. In what follows, we use HOC-ROSB4 to represent

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

x

y

−4 −3 −2 −1
−8

−7

−6

−5

−4

−3

−2

−1

Stable

Stable

Stable Unstable

Figure 1: Absolute stable region of the Rosenbrock method.

the new algorithm developed in this paper andHOC-GRK4A
to represent the fourth-order method that combines high-
order compact finite difference scheme and fourth-order
GRK4A [23]. HOC-SHAMP represents the algorithm that
combines high-order compact finite difference scheme with
the fourth-order Rosenbrock method Shampine [24]. HOC-
LSTAB represents the algorithm that combines the high-
order compact finite difference scheme in space and the L-
stable fourth-order Rosenbrock method [14] in time. Finally,
we useHOC-VELD to represent the algorithm that combines
the high-order compact finite difference scheme in spacewith
fourth-order Rosenbrock method proposed in [25].

4.1. Example 1. Consider the following reaction-diffusion
equation:

𝑢
𝑡
= 𝑢
𝑥𝑥
+ cos (𝑢) − cos (𝑒−𝑡 cos (𝑥)) ,

(𝑥, 𝑡) ∈ (0, 2) × (0, 1] ,

𝑢 (𝑥, 0) = cos (𝑥) , 𝑥 ∈ [0, 2] ,

𝑢 (0, 𝑡) = 𝑒
−𝑡
, 𝑢 (2, 𝑡) = cos (2) 𝑒−𝑡, 𝑡 ∈ [0, 1] ,

(70)

for which the analytical solution is 𝑢(𝑥, 𝑡) = 𝑒−𝑡 cos(𝑥).
We first show that the compact finite difference scheme

for spatial discretization and the compact boundary condi-
tion treatment are fourth-order accurate. In order to do so,
we fixed Δ𝑡 = 0.0001 so the truncation error from time
discretization is negligible. The results included in Table 2
clearly demonstrate the fourth-order convergence in space, as
the maximal error reduced by a factor of 16 (roughly) when
the grid size ℎ is halved.

We then show the fourth-order accuracy in time by
fixing ℎ = 0.001. The data in Table 3 confirmed that the
Rosenbrock method is fourth-order accurate in time, so the
new algorithm is free of order reduction.

Since themethod is fourth-order accurate in both tempo-
ral and spatial dimensions, we can write the leading term of

10 Abstract and Applied Analysis

Table 2: Numerical results of example 1 by HOC-ROSB4 with Δ𝑡 = 0.0001.

ℎ 1/10 1/20 1/40 1/80 1/160
𝐸(ℎ) 7.38𝑒 − 08 4.62𝑒 − 09 2.89𝑒 − 10 1.80𝑒 − 11 1.06𝑒 − 12

𝐸(ℎ)/𝐸(ℎ/2) — 15.9562 16.0049 16.0607 17.0153
Convergence rate — 3.9960 4.0004 4.0055 4.0888

Table 3: Numerical results of example 1 by HOC-ROSB4 with ℎ = 0.001.

Δ𝑡 1/10 1/20 1/40 1/80 1/160
𝐸(Δ𝑡) 9.03𝑒 − 06 6.16𝑒 − 07 3.96𝑒 − 08 2.45𝑒 − 09 1.49𝑒 − 10

𝐸(Δ𝑡)/𝐸(Δ𝑡/2) — 14.6679 15.5402 16.1607 16.4631
Convergence rate — 3.8746 3.9579 4.0144 4.0412

Table 4: Numerical results of example 1 by HOC-ROSB4 with ℎ/Δ𝑡 = 3.2.

ℎ 1/10 1/20 1/40 1/80 1/160
Δ𝑡 1/32 1/64 1/128 1/256 1/512
𝐸(Δ𝑡, ℎ) 5.94𝑒 − 08 4.09𝑒 − 09 2.73𝑒 − 10 1.78𝑒 − 11 1.15𝑒 − 12

𝐸(Δ𝑡, ℎ)/𝐸(Δ𝑡/2, ℎ/2) — 14.4970 14.9793 15.3189 15.4959
Convergence rate — 3.8577 3.9049 3.9372 3.9538

the truncation error as𝐸(ℎ, Δ𝑡) = 𝐶
1
ℎ
4
+𝐶
2
Δ𝑡
4, where𝐶

1
and

𝐶
2
are two constants. To obtain optimal performance, we can

adjust the ratio Δ𝑡/ℎ to balance the two error terms. To do so,
we adjust Δ𝑡 and ℎ so that the two error terms are balanced,
which is utilized by letting |𝐶

2
Δ𝑡
4
/𝐶
1
ℎ
4
| ≈ 1, from which we

can estimate the optimal ratio as (𝐶
1
/𝐶
2
)
1/4. To estimate 𝐶

1
,

we solve the example using small Δ𝑡 and then 𝐶
1
≈ 𝐸(ℎ)/ℎ

4.
Similarly, we can estimate 𝐶

2
using the same method.

Simple calculation based on numerical results from
Tables 2 and 3 suggests that the optimal ratio for this
example is ℎ/Δ𝑡 ≈ 3.2. We then solve the reaction-diffusion
equation using the optimal ratio to show that the new
algorithm is fourth-order accurate in both temporal and
spatial dimensions. The numerical results in Table 4 indicate
that the new algorithm is fourth-order accurate in both
temporal and spatial dimensions, as the maximal error is
reduced by a factor of 16 (roughly) when Δ𝑡 and ℎ are halved
simultaneously. We also notice that the algorithm is very
efficient as themaximal error drops to the level of 10−12 when
ℎ and Δ𝑡 are still reasonably large.

4.2. Example 2. We solve the following semilinear parabolic
partial differential equation with the Neumann boundary
conditions:
𝑢
𝑡
= 2𝑢
𝑥𝑥
+ 𝑢 + 𝑢

2
− 𝑒
−2𝑡cos2 (𝑥) , (𝑥, 𝑡) ∈ (0, 2) × (0, 1] ,

𝑢 (𝑥, 0) = cos (𝑥) , 𝑥 ∈ [0, 2] ,

𝑢
𝑥
(0, 𝑡) = 0, 𝑢

𝑥
(2, 𝑡) = − sin (2) 𝑒−𝑡, 𝑡 ∈ [0, 1] ,

(71)

for which the analytical solution is 𝑢(𝑥, 𝑡) = 𝑒−𝑡 cos(𝑥).
Notice that the boundary conditions are approximated by

the compact fourth-order boundary scheme given in (18)-
(19), so the compactness of the resulting linear system is

preserved; consequently, in each time step, only a tridiagonal
system is solved for each 𝑘

𝑖
, so the solution procedure is very

efficient. However we point out that some tedious work is
needed to form the semidiscrete ODE system, for instance,
the first and last rows of the matrix𝐴 in (20) and the first and
last components of 𝐹 in (28)-(29).

To obtain the optimal performance, we choose the opti-
mal ratio as Δ𝑡 as ℎ/Δ𝑡 = 2.5 to balance the two error terms.
The data in Table 5 shows that the method is fourth-order
accurate in both time and space, as the maximum error is
reduced by a factor of 16 (roughly), when ℎ andΔ𝑡 are halved.

It is worthy to mention that one can also use any other
one-sided formula to approximate the Neumann boundary
condition, which apparently reduces the effort to derive the
semidiscrete ODE system, but will destroy the tridiagonal
structure of the matrix 𝐴 and consequently affect the effi-
ciency of the algorithm. Another side-effect of using one-
sided approximation on the boundary is the stability issue
that may arise because the modifications to matrix 𝐴 may
result in positive eigenvalues of 𝐴.

4.3. Example 3. In this example we compare the new algo-
rithm with several other fourth-order Rosenbrock methods
in terms of the rate of convergence in time and efficiency.The
nonlinear parabolic partial differential equation to be solved
is defined as

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢
3
− 𝑒
−3𝑡cos3 (𝑥) , (𝑥, 𝑡) ∈ (0, 1) × (0, 1]

𝑢 (𝑥, 0) = cos (𝑥) , 𝑥 ∈ [0, 1] ,

𝑢 (0, 𝑡) = 𝑒
−𝑡
, 𝑢 (1, 𝑡) = cos (1) 𝑒−𝑡, 𝑡 ∈ [0, 1] ,

(72)

for which the exact solution is 𝑢(𝑥, 𝑡) = 𝑒−𝑡 cos(𝑥).
The data in Table 6 shows that HOC-ROSB4 is fourth-

order accurate and thus is free of order reduction, while the

Abstract and Applied Analysis 11

Table 5: Numerical results of example 2 by HOC-ROSB4 with ℎ/Δ𝑡 = 2.5.

ℎ 1/10 1/20 1/40 1/80 1/160
Δ𝑡 1/25 1/50 1/100 1/200 1/400
𝐸(ℎ, Δ𝑡) 6.27𝑒 − 06 4.40𝑒 − 07 2.95𝑒 − 08 1.96𝑒 − 09 1.31𝑒 − 10

𝐸(ℎ, Δ𝑡)/𝐸(ℎ/2, Δ𝑡/2) — 14.2495 14.9178 15.0510 15.0135
Convergence rate — 3.8328 3.8990 3.9118 3.9082

Table 6: Comparison of the rate of convergence among the five fourth-order Rosenbrock methods for example 3 with ℎ = 0.001. 𝐸(Δ𝑡)
represents the maximum error of the numerical solution obtained by using Δ𝑡.

Δ𝑡 1/10 1/20 1/40 1/80

HOC-ROSB4 𝐸(Δ𝑡) 9.59𝑒 − 06 6.94𝑒 − 0 4.58𝑒 − 08 2.88𝑒 − 09

Rate of Conv. — 3.78757 3.9221 3.9896

HOC-GRK4A 𝐸(Δ𝑡) 5.88𝑒 − 06 6.16𝑒 − 07 6.83𝑒 − 08 7.56𝑒 − 09

Rate of Conv. — 3.2552 3.1728 3.1757

HOC-LSTAB 𝐸(Δ𝑡) 3.96𝑒 − 06 4.56𝑒 − 07 5.23𝑒 − 08 6.19𝑒 − 09

Rate of Conv. — 3.1205 3.1223 3.0795

HOC-VELD 𝐸(Δ𝑡) 8.41𝑒 − 06 8.77𝑒 − 07 9.77𝑒 − 08 1.14𝑒 − 08

Rate of Conv. — 3.2613 3.1653 3.0996

HOC-SHAMP 𝐸(Δ𝑡) 6.35𝑒 − 06 6.34𝑒 − 07 6.92𝑒 − 08 8.01𝑒 − 09

Rate of Conv. — 3.3230 3.1965 3.1099

Table 7: Comparison of the efficiency among the five fourth-order Rosenbrock methods for example 3.

Method (Δ𝑡, ℎ) Max. error CPU time (seconds)
HOC-ROSB4 (1/180, 1/40) 7.72𝑒 − 011 0.107
HOC-GRK4A (1/256, 1/40) 7.28𝑒 − 011 0.134
HOC-LSTAB (1/360, 1/40) 7.83𝑒 − 011 0.174
HOC-VELD (1/400, 1/40) 7.77𝑒 − 011 0.188
HOC-SHAMP (1/360, 1/40) 7.60𝑒 − 011 0.170

other four fourth-order Rosenbrock methods, which obvi-
ously suffer from order reduction, show rates of convergence
ranging from 3.0 to 3.25. Note that ℎ = 0.001 is fixed and
the same spatial discretization method is used for all five
methods, so the demonstrated rate of convergence is in time.
One can see that the HOC-LSTAB method has the most
optimal error constant, while the HOC-ROSB4 method has
the largest error constant. However, due to the freedom in
determining those coefficients in Rosenbrock method, better
error constant can be accomplished by eliminating several
fifth-order truncation error terms.

Finally, we show that HOC-ROSB4 is the most efficient
method. For consistency, we adjust Δ𝑡 and ℎ for each method
to reach the same error level and record the average CPU
time of 5 simulation runs. Since all of the five methods use
the same spatial discretization, the same ℎ is used for all
methods; hence we adjust Δ𝑡 only. The comparison result
included in Table 7 clearly indicates that the new method
is the most efficient one. The higher efficiency apparently is
obtained from the fact that the new method is free of order
reduction; hence large time step can be used to reach the same
error level.

5. Conclusion

An efficient fourth-order numerical algorithm that combines
the Padé approximation in space and fourth-order accurate
Rosenbrock method in time is proposed in this paper. Our
investigation shows that many widely used fourth-order
Rosenbrock methods (A-stable or L-stable) suffer from order
reduction when they are used to solve nonlinear parabolic
partial differential equation. To avoid order reduction, extra
order conditions are required, which are implemented in
this paper to develop the new algorithm. Also, it has been
shown [26] that the extra condition to resolve order reduction
contradicts the L-stability of the Rosenbrock method, so
there is no L-stable Rosenbrock method that is also free
of order reduction. The new method can be used to solve
nonlinear parabolic partial differential equation with all
types of boundary conditions; however, for Neumann or
Robin boundary condition, extra efforts are needed to form
the semidiscrete ODE system. Two numerical examples are
solved to demonstrate that the new method is fourth-order
accurate in both time and space, while the third example
shows that the new method is free of order reduction and

12 Abstract and Applied Analysis

is very efficient. In the future, we plan to extend the new
method to multidimensional problems supplemented with
various types of boundary conditions.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work of was supported by the Natural Sciences & Engi-
neering Research Council of Canada (NSERC) through the
individual Discovery Grant program. The author gratefully
acknowledges the financial support from NSERC.

References

[1] Y. Adam, “Highly accurate compact implicit methods and
boundary conditions,” Journal of Computational Physics, vol. 24,
no. 1, pp. 10–22, 1977.

[2] A. R. Mitchell and D. F. Griffths, The Finite Difference Method
in Partial Differential Equations, JohnWiley & Sons, New York,
NY, USA, 1980.

[3] J. I. Ramos, “Linearization methods for reaction-diffusion
equations: multidimensional problems,” Applied Mathematics
and Computation, vol. 88, no. 2-3, pp. 225–254, 1997.

[4] J. I. Ramos, “Implicit, compact, linearized 𝜃-methods with fac-
torization for multidimensional reaction-diffusion equations,”
Applied Mathematics and Computation, vol. 94, no. 1, pp. 17–43,
1998.

[5] P. C. Chu and C. Fan, “A three-point combined compact differ-
ence scheme,” Journal of Computational Physics, vol. 140, no. 2,
pp. 370–399, 1998.

[6] V. Luan and A. Ostermann, “Exponential Rosenbrock methods
of order five—construction, analysis and numerical compar-
isons,” Journal of Computational and Applied Mathematics, vol.
255, no. 1, pp. 417–431, 2014.

[7] V. T. Luan and A. Ostermann, “Explicit exponential Runge-
Kutta methods of high order for parabolic problems,” Journal of
Computational and Applied Mathematics, vol. 256, pp. 168–179,
2014.

[8] A.-K. Kassam and L. N. Trefethen, “Fourth-order time-stepping
for stiff PDEs,” SIAM Journal on Scientific Computing, vol. 26,
no. 4, pp. 1214–1233, 2005.

[9] H.Rosenbrock, “Some general implicit processes for the numer-
ical solution of differential equations,” The Computer Journal,
vol. 5, pp. 329–330, 1963.

[10] C. F. Haines, “Implicit integration processes with error estimate
for the numerical solution of differential equations,” The Com-
puter Journal, vol. 12, no. 2, pp. 183–188, 1969.

[11] W. Liao and Y. Yan, “Singly diagonally implicit Runge-
Kuttamethod for time-dependent reaction-diffusion equation,”
NumericalMethods for Partial Differential Equations, vol. 27, no.
6, pp. 1423–1441, 2011.

[12] G. G. Dahlquist, “A special stability problem for linearmultistep
methods,” BIT Numerical Mathematics, vol. 3, pp. 27–43, 1963.

[13] A. R. Gourlay, “A note on trapezoidal methods for the solution
of initial value problems,”Mathematics of Computation, vol. 24,
pp. 629–633, 1970.

[14] E. Hairer and G. Wanner, Solving Ordinary Differential Equa-
tions, II, Stiff and Algebraic Problems, Springer, Berlin , Ger-
many, 2nd edition, 1996.

[15] R. Alexander, “Diagonally implicit Runge-Kutta methods for
stiff O.D.E.’s,” SIAM Journal on Numerical Analysis, vol. 14, no.
6, pp. 1006–1021, 1977.

[16] K. Burrage, J. C. Butcher, and F. H. Chipman, “An implemen-
tation of singly-implicit Runge-Kutta methods,” BIT Numerical
Mathematics, vol. 20, no. 3, pp. 326–340, 1980.

[17] H. Claus, “Singly-implicit Runge-Kutta methods for retarded
and ordinary differential equations,” Computing, vol. 43, no. 3,
pp. 209–222, 1990.

[18] W. Liniger andR. A.Willoughby, “Efficient integrationmethods
for stiff systems of ordinary differential equations,” SIAM
Journal on Numerical Analysis, vol. 7, pp. 47–66, 1970.

[19] J. G. Verwer, E. J. Spee, J. G. Blom, and W. Hundsdorfer, “A
second-order Rosenbrock method applied to photochemical
dispersion problems,” SIAM Journal on Scientific Computing,
vol. 20, no. 4, pp. 1456–1480, 1999.

[20] J. Lang and J. Verwer, “ROS3P—an accurate third-order Rosen-
brock solver designed for parabolic problems,” BIT Numerical
Mathematics, vol. 41, no. 4, pp. 731–738, 2001.

[21] W. H. Hundsdorfer, “Stability and B-convergence of linearly
implicit Runge-Kutta methods,” Numerische Mathematik, vol.
50, no. 1, pp. 83–95, 1986.

[22] C. Lubich and A. Ostermann, “Linearly implicit time dis-
cretization of non-linear parabolic equations,” IMA Journal of
Numerical Analysis, vol. 15, no. 4, pp. 555–583, 1995.

[23] P. Kaps and P. Rentrop, “Generalized Runge-Kutta methods of
order four with stepsize control for stiff ordinary differential
equations,” Numerische Mathematik, vol. 33, no. 1, pp. 55–68,
1979.

[24] L. F. Shampine, “Implementation of Rosenbrock methods,”
ACM Transactions on Mathematical Software, vol. 8, no. 2, pp.
93–113, 1982.

[25] M. van Veldhuizen, “𝐷-stability and Kaps-Rentrop-methods,”
Computing. Archives for Scientific Computing, vol. 32, no. 3, pp.
229–237, 1984.

[26] T. D. Bui, “On an 𝐿-stable method for stiff differential equa-
tions,” Information Processing Letters, vol. 6, no. 5, pp. 158–161,
1977.

