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Themain motivation of this paper is to introduce the notion of cubic linear space.This inspiration is received from the structure of
cubic sets. The notions of R-intersection, R-union, P-intersection, and P-union of cubic linear spaces are defined and we provide
some results on these. We further introduce the notion of internal cubic linear space and external cubic linear space and establish
some results on them.

1. Introduction

The notion of fuzzy sets introduced by Zadeh [1] in 1965 laid
the foundation for the development of fuzzy Mathematics.
This theory has a wide range of application in several
branches of Mathematics such as logic, set theory, group
theory, semigroup theory, real analysis, measure theory, and
topology. After a decade, the notion of interval-valued fuzzy
sets was introduced by Zadeh [2] in 1975, as an extension of
fuzzy sets, that is, fuzzy sets with interval-valuedmembership
functions. Lubczonok and Murali [3] introduced an inter-
esting theory of flags and fuzzy subspaces of vector spaces.
Katsaras and Liu [4] introduced the concepts of fuzzy vector
and fuzzy topological vector spaces. Fuzzy bases of vector
spaces and fuzzy vector spaces have been studied in [5, 6].
Nanda [7] introduced the notion of fuzzy field and fuzzy
linear space over a fuzzy field.Wenxiang and Lu [8] redefined
the concepts of fuzzy field and fuzzy linear space. Vijayabalaji
et al. [9] introduced the notion of interval-valued fuzzy
linear subspace and interval-valued fuzzy 𝑛-normed linear
space. They have also proved that the intersection of two
interval-valued fuzzy linear spaces is again an interval-valued
fuzzy linear space. Atanassov [10] introduced the notion of
intuitionistic fuzzy sets as a generalization of fuzzy sets.

Jun et al. [11] have introduced a remarkable theory, name-
ly, the theory of cubic sets. This structure is comprised of an

interval-valued fuzzy set and a fuzzy set. In the same paper
they introduced the notion of cubic subalgebras/ideals in
BCK/BCI algebras and investigated some of their properties.
Moreover, Jun et al. [12] introduced the notion of cubic sub-
groups. They also studied images or inverse images of
cubic subgroups. Furthermore, Jun et al. [13] introduced the
concept of an internal cubit set and an external cubic set.
Recently, Yaqoob et al. [14] introduced the notion of cubic
𝐾𝑈 ideals of 𝐾𝑈-algebras.

Attracted by the theory of cubic sets we introduce the
notion of cubic linear space.The concept of𝑅-intersection,𝑅-
union, 𝑃-intersection, and 𝑃-union of cubic linear space are
introduced and some properties are studied. We prove that
the 𝑅-intersection of two cubic linear spaces is again a cubic
linear space. It is shown by means of counter examples that
the 𝑅-union, 𝑃-intersection, and 𝑃-union of two cubic linear
spaces need not be a cubic linear space. We also introduce
the notions of internal cubic linear space and external cubic
linear space. It is established that the 𝑅-intersection of two
internal (resp., external) cubic linear spaces is again an
internal (resp., external) cubic linear space. We conclude the
paper by providing examples to show that the 𝑃-intersection,
𝑃-union, and the 𝑅-union of two internal (resp., external)
cubic linear spaces are not internal (resp., external) cubic
linear spaces.
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2. Preliminaries

In the following we provide the essential definitions and
results necessary for the development of our theory.

Definition 1 (see [2]). An interval number on [0, 1], say 𝑎,
is a closed subinterval of [0, 1]; that is, 𝑎 = [𝑎

−

, 𝑎
+

], where
0 ≤ 𝑎

−

≤ 𝑎
+

≤ 1. Let 𝐷[0, 1] denote the set of all closed
subintervals of [0, 1]; that is,

𝐷[0, 1]

= {𝑎 = [𝑎
−

, 𝑎
+

] : 𝑎
−

≤ 𝑎
+ and 𝑎

−

, 𝑎
+

∈ [0, 1]} .

(1)

Definition 2 (see [2]). Let 𝑎
𝑖

= [𝑎
−

𝑖

, 𝑎
+

𝑖

] ∈ 𝐷[0, 1] for all 𝑖 ∈ Ω,
Ω, the index set. Define

(a) inf𝑖{𝑎
𝑖

: 𝑖 ∈ Ω} = [inf
𝑖∈Ω

𝑎
−

𝑖

, inf
𝑖∈Ω

𝑎
+

𝑖

];

(b) sup𝑖{𝑎
𝑖

: 𝑖 ∈ Ω} = [sup
𝑖∈Ω

𝑎
−

𝑖

, sup
𝑖∈Ω

𝑎
+

𝑖

].

In particular, whenever 𝑎 = [𝑎
−

, 𝑎
+

], 𝑏 = [𝑏
−

, 𝑏
+

] in 𝐷[0, 1],
one defines

(i) 𝑎 ≤ 𝑏 if and only if 𝑎− ≤ 𝑏
− and 𝑎

+

≤ 𝑏
+;

(ii) 𝑎 = 𝑏 if and only if 𝑎− = 𝑏
− and 𝑎

+

= 𝑏
+;

(iii) 𝑎 < 𝑏 if and only if 𝑎− < 𝑏
− and 𝑎

+

< 𝑏
+;

(iv) min𝑖{𝑎, 𝑏} = [min{𝑎−, 𝑏−},min{𝑎+, 𝑏+}];
(v) max𝑖{𝑎, 𝑏} = [max{𝑎−, 𝑏−},max{𝑎+, 𝑏+}].

Definition 3 (see [2]). Let 𝑋 be a set. A mapping 𝐴 : 𝑋 →

𝐷[0, 1] is called an interval-valued fuzzy set (briefly, an i-v
fuzzy set) of 𝑋, where 𝐴(𝑥) = [𝐴

−

(𝑥), 𝐴
+

(𝑥)], for all 𝑥 ∈ 𝑋,
and 𝐴

− and 𝐴
+ are fuzzy sets in 𝑋 such that 𝐴−(𝑥) ≤ 𝐴

+

(𝑥)

for all 𝑥 ∈ 𝑋.

Definition 4 (see [4]). A fuzzy linear space is a pairV = (𝑉, 𝜇),
where 𝑉 is a vector space over a field 𝐹, and 𝜇 : 𝑉 → [0, 1]

is a mapping satisfying 𝜇(𝛼𝑥 + 𝛽𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦) for any
𝑥, 𝑦 ∈ 𝑉, 𝛼, 𝛽 ∈ 𝐹. Here ∧ stands for intersection.

Definition 5 (see [9]). Let𝑉 denote a vector space over a field
𝐹. Let 𝜇 : 𝑉 → 𝐷[0, 1] be an interval-valued fuzzy subset of
𝑉. Then 𝜇 is said to be an interval-valued fuzzy linear space
if 𝜇(𝛼𝑥 + 𝛽𝑦) ≥ min𝑖{𝜇(𝑥), 𝜇(𝑦)}; 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹.

Theorem 6 (see [9]). The intersection of two interval-valued
fuzzy linear spaces is again an interval-valued fuzzy linear
space.

Definition 7 (see [11]). Let𝑋 be a nonempty set. A cubic setA
is a structure of the formA = {⟨𝑥, 𝜇

𝐴

(𝑥), 𝜆(𝑥)⟩ : 𝑥 ∈ 𝑋} and
denoted byA = ⟨𝜇

𝐴

, 𝜆⟩. 𝜇
𝐴

= [𝜇
−

𝐴

, 𝜇
+

𝐴

] is an interval-valued
fuzzy set (briefly, IVF) in𝑋 and 𝜆 : 𝑋 → [0, 1] is a fuzzy set
in𝑋.

Definition 8 (see [13]). Let 𝑋 be a nonempty set. A cubic set
A = ⟨𝜇

𝐴

, 𝜆⟩ is said to be an internal cubic set (briefly, ICS) if
𝜇
−

𝐴

(𝑥) ≤ 𝜆(𝑥) ≤ 𝜇
+

𝐴

(𝑥) for all 𝑥 ∈ 𝑋.

Definition 9 (see [13]). Let 𝑋 be a nonempty set. A cubic set
A = ⟨𝜇

𝐴

, 𝜆⟩ is said to be an external cubic set (briefly, ECS)
if 𝜆(𝑥) ∉ (𝜇

−

𝐴

(𝑥), 𝜇
+

𝐴

(𝑥)) for all 𝑥 ∈ 𝑋.

Definition 10 (see [13]). For anyA
𝑖

= {⟨𝑥, 𝜇
𝑖

(𝑥), 𝜆
𝑖

(𝑥)⟩ | 𝑥 ∈

𝑋} where 𝑖 ∈ Λ (index set), one defines

(i) ∪
𝑃,𝑖∈Λ

A
𝑖

= {⟨𝑥, (∪
𝑖∈Λ

𝜇
𝑖

)(𝑥), (∪
𝑖∈Λ

𝜆
𝑖

)(𝑥)⟩ | 𝑥 ∈ 𝑋}

(𝑃-union);
(ii) ∩
𝑃,𝑖∈Λ

A
𝑖

= {⟨𝑥, (∩
𝑖∈Λ

𝜇
𝑖

)(𝑥), (∩
𝑖∈Λ

𝜆
𝑖

)(𝑥)⟩ | 𝑥 ∈ 𝑋}

(𝑃-intersection);
(iii) ∪

𝑅,𝑖∈Λ

A
𝑖

= {⟨𝑥, (∪
𝑖∈Λ

𝜇
𝑖

)(𝑥), (∩
𝑖∈Λ

𝜆
𝑖

)(𝑥)⟩ | 𝑥 ∈ 𝑋}

(𝑅-union);
(iv) ∩

𝑅,𝑖∈Λ

A
𝑖

= {⟨𝑥, (∩
𝑖∈Λ

𝜇
𝑖

)(𝑥), (∪
𝑖∈Λ

𝜆
𝑖

)(𝑥)⟩ | 𝑥 ∈ 𝑋}

(𝑅-intersection).

Definition 11 (see [13]). The complement of A = ⟨𝜇
𝐴

, 𝜆⟩ is
defined to be the cubic set

A
𝑐

= {⟨𝑥, (𝜇
𝐴

)
𝑐

(𝑥) , 1 − 𝜆 (𝑥)⟩ | 𝑥 ∈ 𝑋} . (2)

Theorem 12 (see [14]). LetA = ⟨𝜇, 𝜆⟩ be a cubic subset in 𝑋,
then A = ⟨𝜇, 𝜆⟩ in a cubic 𝐾𝑈-ideal of 𝑋 if and only if for all
𝑡̃ ∈ 𝐷[0, 1] and 𝑠 ∈ [0, 1], the set 𝑈(A; 𝑡̃, 𝑠) is either empty or
a 𝐾𝑈-ideal of 𝑋.

3. A Cubic Set Theoretical Approach to
Linear Space

In this section, we introduce the notion of cubic linear space
as follows.

Definition 13. Let 𝑉 be a linear space over a field 𝐹, (𝑉, 𝜇) an
interval-valued fuzzy linear space, and (𝑉, 𝜂) a fuzzy linear
space. A cubic set A = ⟨𝜇, 𝜂⟩ in 𝑉 is called a cubic linear
space of 𝑉 if for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹,

(i) 𝜇(𝛼𝑥 ∗ 𝛽𝑦) ≥ min{𝜇(𝑥), 𝜇(𝑦)},
(ii) 𝜂(𝛼𝑥 ∗ 𝛽𝑦) ≤ max{𝜂(𝑥), 𝜂(𝑦)}.

Example 14. Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group defined
by the binary operation ∗ as follows:

∗ 𝑒 𝑥 𝑦 𝑧

𝑒 𝑒 𝑥 𝑦 𝑧

𝑥 𝑥 𝑒 𝑧 𝑦

𝑦 𝑦 𝑧 𝑒 𝑥

𝑧 𝑧 𝑦 𝑥 𝑒

(3)

Let 𝐹 be the field GF(2). Let (0)𝑤 = 𝑒, (1)𝑤 = 𝑤 for all𝑤 ∈ 𝑉.
Then 𝑉 is a linear space over 𝐹.

Define an interval-valued fuzzy set 𝜇 in 𝑉 by

𝜇 (𝑒) = [0.7, 0.9] ,

𝜇 (𝑥) = [0.4, 0.5] = 𝜇 (𝑦) ,

𝜇 (𝑧) = [0.6, 0.8] .

(4)

Then 𝜇 is an interval-valued fuzzy linear space.
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Define a fuzzy set 𝜂 in 𝑉 by

𝜂 (𝑥) =

{

{

{

0.5, if 𝑥 = 𝑒

0.9, otherwise.
(5)

Note that 𝜂 is a fuzzy linear space of 𝑉.
HenceA = ⟨𝜇, 𝜂⟩ is a cubic linear space of 𝑉.

Theorem 15. LetA
1

= (𝜇
1

, 𝜂
1

) andA
2

= (𝜇
2

, 𝜂
2

) be two cubic
linear spaces. Then their 𝑅-intersection (A

1

∩ A
2

)
𝑅

= (𝜇
1

∩

𝜇
2

, 𝜂
1

∪ 𝜂
2

) is a cubic linear space.

Proof. Define 𝜇
1

∩ 𝜇
2

as follows

(𝜇
1

∩ 𝜇
2

) (𝛼𝑥 ∗ 𝛽𝑦)

= min {𝜇
1

(𝛼𝑥 ∗ 𝛽𝑦) , 𝜇
2

(𝛼𝑥 ∗ 𝛽𝑦)} .

(6)

Now,

(𝜇
1

∩ 𝜇
2

) (𝛼𝑥 ∗ 𝛽𝑦)

= min {𝜇
1

(𝛼𝑥 ∗ 𝛽𝑦) , 𝜇
2

(𝛼𝑥 ∗ 𝛽𝑦)}

≥ min {min [𝜇
1

(𝑥) , 𝜇
1

(𝑦)] ,min [𝜇
2

(𝑥) , 𝜇
2

(𝑦)]}

= min {min [𝜇
1

(𝑥) , 𝜇
2

(𝑥)] ,min [𝜇
1

(𝑦) , 𝜇
2

(𝑦)]}

= min {(𝜇
1

∩ 𝜇
2

) (𝑥) , (𝜇
1

∩ 𝜇
2

) (𝑦)}

󳨐⇒ (𝜇
1

∩ 𝜇
2

) (𝛼𝑥 ∗ 𝛽𝑦)

≥ min {(𝜇
1

∩ 𝜇
2

) (𝑥) , (𝜇
1

∩ 𝜇
2

) (𝑦)} .

(7)

Also define 𝜂
1

∪ 𝜂
2

by

(𝜂
1

∪ 𝜂
2

) (𝛼𝑥 ∗ 𝛽𝑦)

= max {𝜂
1

(𝛼𝑥 ∗ 𝛽𝑦) , 𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦)} .

(8)

So,

(𝜂
1

∪ 𝜂
2

) (𝛼𝑥 ∗ 𝛽𝑦)

= max {𝜂
1

(𝛼𝑥 ∗ 𝛽𝑦) , 𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦)}

≤ max {max [𝜂
1

(𝑥) , 𝜂
1

(𝑦)] ,max [𝜂
2

(𝑥) , 𝜂
2

(𝑦)]}

= max {max [𝜂
1

(𝑥) , 𝜂
2

(𝑥)] ,max [𝜂
1

(𝑦) , 𝜂
2

(𝑦)]}

= max {(𝜂
1

∪ 𝜂
2

) (𝑥) , (𝜂
1

∪ 𝜂
2

) (𝑦)}

󳨐⇒ (𝜂
1

∪ 𝜂
2

) (𝛼𝑥 ∗ 𝛽𝑦)

≤ max {(𝜂
1

∪ 𝜂
2

) (𝑥) , (𝜂
1

∪ 𝜂
2

) (𝑦)} .

(9)

Thus (A
1

∩A
2

)
𝑅

= (𝜇
1

∩𝜇
2

, 𝜂
1

∪𝜂
2

) is a cubic linear space.

Remark 16. (i) Let A
1

= (𝜇
1

, 𝜂
1

) and A
2

= (𝜇
2

, 𝜂
2

) be two
cubic linear spaces. Then their 𝑅-union (A

1

∪ A
2

)
𝑅

= (𝜇
1

∪

𝜇
2

, 𝜂
1

∩ 𝜂
2

) need not be a cubic linear space.
(ii) Let A

1

= (𝜇
1

, 𝜂
1

) and A
2

= (𝜇
2

, 𝜂
2

) be two cubic
linear spaces. Then their 𝑃-intersection (A

1

∩ A
2

)
𝑃

= (𝜇
1

∩

𝜇
2

, 𝜂
1

∩ 𝜂
2

) need not be a cubic linear space.

(iii) Let A
1

= (𝜇
1

, 𝜂
1

) and A
2

= (𝜇
2

, 𝜂
2

) be two cubic
linear spaces.Then their 𝑃-union (A

1

∪A
2

)
𝑃

= (𝜇
1

∪𝜇
2

, 𝜂
1

∪

𝜂
2

) need not be a cubic linear space.

Proof. We will prove the above three statements by means of
an example.

(i) Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in
Example 14.

Let 𝐹 be the field GF(2). Let (0)𝑤 = 𝑒, (1)𝑤 = 𝑤 for all
𝑤 ∈ 𝑉. Then 𝑉 is a linear space over 𝐹.

Define two interval-valued fuzzy sets𝜇
1

and𝜇
2

as follows:

𝜇
1

(𝑒) = [0.6, 0.9] ,

𝜇
1

(𝑥) = [0.3, 0.4] = 𝜇
1

(𝑦) ,

𝜇
1

(𝑧) = [0.5, 0.8] ,

𝜇
2

(𝑒) = [0.5, 0.8] ,

𝜇
2

(𝑥) = [0.4, 0.7] ,

𝜇
2

(𝑦) = [0.2, 0.3] = 𝜇
2

(𝑧) .

(10)

Observe that 𝜇
1

and 𝜇
2

are interval-valued fuzzy linear spaces
of 𝑉.

Define 𝜇
1

∪𝜇
2

by (𝜇
1

∪𝜇
2

)(𝑥) = max{𝜇
1

(𝑥), 𝜇
2

(𝑥)} for all
𝑥, 𝑦 ∈ 𝑉.

So, (𝜇
1

∪ 𝜇
2

)(𝑒) = [0.6, 0.9], (𝜇
1

∪ 𝜇
2

)(𝑥) = [0.4, 0.7],
(𝜇
1

∪ 𝜇
2

)(𝑦) = [0.3, 0.4], (𝜇
1

∪ 𝜇
2

)(𝑧) = [0.5, 0.8].
Thus 𝜇

1

∪ 𝜇
2

is an interval-valued fuzzy subset of 𝑉.
When 𝛼 = 𝛽 = 1 we have

(𝜇
1

∪ 𝜇
2

) (𝑥 ∗ 𝑧)

≥ min {(𝜇
1

∪ 𝜇
2

) (𝑥) , (𝜇
1

∪ 𝜇
2

) (𝑧)}

󳨐⇒ (𝜇
1

∪ 𝜇
2

) (𝑦) ≥ min {[0.4, 0.7] , [0.5, 0.8]}

= [0.4, 0.7] .

(11)

But (𝜇
1

∪ 𝜇
2

)(𝑦) = [0.3, 0.4] ≥ [0.4, 0.7], which is absurd.
This shows that the union of two interval-valued fuzzy

linear spaces need not be an interval-valued fuzzy linear
space.

Now define two fuzzy sets 𝜂
1

and 𝜂
2

in 𝑉 by

𝜂
1

(𝑒) = 0.3,

𝜂
1

(𝑥) = 𝜂
1

(𝑦) = 0.9,

𝜂
1

(𝑧) = 0.7,

𝜂
2

(𝑒) = 0.4,

𝜂
2

(𝑥) = 0.5,

𝜂
2

(𝑦) = 𝜂
2

(𝑧) = 0.85.

(12)

We observe that 𝜂
1

and 𝜂
2

are fuzzy linear spaces over 𝑉.
Define 𝜂

1

∩ 𝜂
2

by (𝜂
1

∩ 𝜂
2

)(𝑥) = min{𝜂
1

(𝑥), 𝜂
2

(𝑦)}.
Then (𝜂

1

∩ 𝜂
2

)(𝑒) = 0.3, (𝜂
1

∩ 𝜂
2

)(𝑥) = 0.5, (𝜂
1

∩ 𝜂
2

)(𝑦) =

0.85, and (𝜂
1

∩ 𝜂
2

)(𝑧) = 0.7.
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So (𝜂
1

∩ 𝜂
2

) is fuzzy subset of 𝑉.
When 𝛼 = 𝛽 = 1 we have

(𝜂
1

∩ 𝜂
2

) (𝑥 ∗ 𝑧)

≤ max {(𝜂
1

∩ 𝜂
2

) (𝑥) , (𝜂
1

∩ 𝜂
2

) (𝑧)}

󳨐⇒ (𝜂
1

∩ 𝜂
2

) (𝑦) ≤ max {0.5, 0.7} = 0.7.

(13)

But (𝜂
1

∩ 𝜂
2

)(𝑦) = 0.85 ≤ 0.7, which is absurd.
So, the intersection of two fuzzy linear spaces need not be

a fuzzy linear space.
Hence the 𝑅-union (A

1

∪A
2

)
𝑅

= (𝜇
1

∪ 𝜇
2

, 𝜂
1

∩ 𝜂
2

) need
not be a cubic linear space.

(ii) Let 𝜇
1

, 𝜇
2

, 𝜂
1

and 𝜂
2

be as in (i).
Define 𝜇

1

∩𝜇
2

by (𝜇
1

∩𝜇
2

)(𝑥) = min{𝜇
1

(𝑥), 𝜇
2

(𝑥)} for all
𝑥, 𝑦 ∈ 𝑉.

So, (𝜇
1

∩ 𝜇
2

)(𝑒) = [0.5, 0.8], (𝜇
1

∩ 𝜇
2

)(𝑥) = [0.3, 0.4], and
(𝜇
1

∩ 𝜇
2

)(𝑦) = [0.2, 0.3] = (𝜇
1

∩ 𝜇
2

)(𝑧).
One can verify that 𝜇

1

∩ 𝜇
2

is an interval-valued fuzzy
linear space.

Also by (i), 𝜂
1

∩ 𝜂
2

is not a fuzzy linear space.
Hence the 𝑃-intersection (A

1

∩A
2

)
𝑃

= (𝜇
1

∩ 𝜇
2

, 𝜂
1

∩ 𝜂
2

)

is not a cubic linear space.
(iii) Let 𝜇

1

, 𝜇
2

, 𝜂
1

, and 𝜂
2

be as in (i).
Define (𝜂

1

∪ 𝜂
2

) by (𝜂
1

∪ 𝜂
2

)(𝑥) = max{𝜂
1

(𝑥), 𝜂
2

(𝑦)}.
Then (𝜂

1

∪ 𝜂
2

)(𝑒) = 0.4, (𝜂
1

∪ 𝜂
2

)(𝑥) = (𝜂
1

∪ 𝜂
2

)(𝑦) = 0.9,
and (𝜂

1

∪ 𝜂
2

)(𝑧) = 0.85.
By verification it can be seen that 𝜂

1

∪ 𝜂
2

is a fuzzy linear
space.

By (i), 𝜇
1

∪𝜇
2

is not an interval-valued fuzzy linear space.
Thus the 𝑃-union (A

1

∪ A
2

)
𝑃

= (𝜇
1

∪ 𝜇
2

, 𝜂
1

∪ 𝜂
2

) is not
a cubic linear space.

Definition 17. Let A = ⟨𝜇, 𝜂⟩ be a cubic linear space of 𝑉.
Define 𝑈(A; 𝑡̃, 𝑠) = {𝑥 ∈ 𝑉 | 𝜇(𝑥) ≥ 𝑡̃ and 𝜂(𝑥) ≤ 𝑠}, where
𝑡̃ ∈ 𝐷[0, 1], 𝑠 ∈ [0, 1], called the cubic level set ofA = ⟨𝜇, 𝜂⟩.

Theorem 18. Let 𝑉 be a linear space over a field 𝐹. A cubic
set A = ⟨𝜇, 𝜂⟩ is a cubic linear space of 𝑉 if and only if for all
𝑡̃ ∈ 𝐷[0, 1] and 𝑠 ∈ [0, 1], the set 𝑈(A; 𝑡̃, 𝑠) is either empty or
a linear space of 𝑉 over a field 𝐹.

Proof. Assume that A = ⟨𝜇, 𝜂⟩ is a cubic linear space of 𝑉
over a field 𝐹, let 𝑡̃ ∈ 𝐷[0, 1] and 𝑠 ∈ [0, 1] be such that
𝑈(A; 𝑡̃, 𝑠) ̸= 𝜙, and let 𝑥, 𝑦 ∈ 𝑉 be such that 𝑥, 𝑦 ∈ 𝑈(A; 𝑡̃, 𝑠);
then 𝜇(𝑥) ≥ 𝑡̃, 𝜇(𝑦) ≥ 𝑡̃ and 𝜂(𝑥) ≤ 𝑠, 𝜂(𝑦) ≤ 𝑠.

Therefore,

𝜇 (𝛼𝑥 ∗ 𝛽𝑦) ≥ min {𝜇 (𝑥) , 𝜇 (𝑦)} ≥ min {𝑡̃, 𝑡̃} = 𝑡̃

󳨐⇒ 𝜇 (𝛼𝑥 ∗ 𝛽𝑦) ≥ 𝑡̃.

(14)

Moreover,

𝜂 (𝛼𝑥 ∗ 𝛽𝑦) ≤ max {𝜂 (𝑥) , 𝜂 (𝑦)} ≤ max {𝑠, 𝑠} = 𝑠

󳨐⇒ 𝜂 (𝛼𝑥 ∗ 𝛽𝑦) ≤ 𝑠,

so that 𝛼𝑥 ∗ 𝛽𝑦 ∈ 𝑈 (A; 𝑡̃, 𝑠) .

(15)

Therefore, 𝑈(A; 𝑡̃, 𝑠) is a linear space over a field 𝐹.

Conversely, suppose that𝑈(A; 𝑡̃, 𝑠) is a linear space𝑉 over
a field 𝐹 and let 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹 be such that 𝜇(𝛼𝑥 ∗

𝛽𝑦) < min{𝜇(𝑥), 𝜇(𝑦)}, 𝜂(𝛼𝑥 ∗ 𝛽𝑦) > max{𝜂(𝑥), 𝜂(𝑦)}.
Taking̃

𝛽
1

= (1/2){𝜇(𝛼𝑥∗𝛽𝑦)+min{𝜇(𝑥), 𝜇(𝑦)}} and𝛽
2

=

(1/2){𝜂(𝛼𝑥 ∗ 𝛽𝑦) + max{𝜂(𝑥), 𝜂(𝑦)}}, we have ̃
𝛽
1

∈ 𝐷[0, 1],
𝛽
2

∈ [0, 1].
Also 𝜇(𝛼𝑥 ∗ 𝛽𝑦) <

̃
𝛽
1

< min{𝜇(𝑥), 𝜇(𝑦)}, 𝜂(𝛼𝑥 ∗ 𝛽𝑦) >

𝛽
2

> max{𝜂(𝑥), 𝜂(𝑦)}.
It follows that 𝑥, 𝑦 ∈ 𝑈(A;

̃
𝛽
1

, 𝛽
2

) and 𝛼𝑥 ∗ 𝛽𝑦 ∉

𝑈(A;
̃
𝛽
1

, 𝛽
2

).
This is a contradiction and hence A = ⟨𝜇, 𝜂⟩ is a cubic

linear space of 𝑉 over a field 𝐹.

Definition 19. LetA = ⟨𝜇
1

, 𝜂
1

⟩ andB = ⟨𝜇
2

, 𝜂
2

⟩ be two cubic
linear spaces of 𝑉 over the field 𝐹. The Cartesian product of
cubic linear spaces A and B is denoted by A × B = ⟨𝜇

1

×

𝜇
2

, 𝜂
1

× 𝜂
2

⟩ defined as

(i) (𝜇
1

× 𝜇
2

)(𝛼𝑥 ∗ 𝛽𝑦) = min{𝜇
1

(𝑥), 𝜇
2

(𝑦)},
(ii) (𝜂

1

×𝜂
2

)(𝛼𝑥∗𝛽𝑦) = max{𝜂
1

(𝑥), 𝜂
2

(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑉

and 𝛼, 𝛽 ∈ 𝐹.

Theorem 20. Let (𝜇
1

, 𝜂
1

) and (𝜇
2

, 𝜂
2

) be cubic linear spaces of
𝑉
1

and 𝑉
2

over the field 𝐹. Then (𝜇
1

× 𝜇
2

, 𝜂
1

× 𝜂
2

) is a cubic
linear space of 𝑉

1

× 𝑉
2

over 𝐹.

Proof. Let 𝜇 = 𝜇
1

× 𝜇
2

, 𝑥 = (𝑥
1

, 𝑥
2

), 𝑦 = (𝑦
1

, 𝑦
2

) ∈ 𝑉
1

× 𝑉
2

,
and 𝛼, 𝛽 ∈ 𝐹. Consider

(i) 𝜇 (𝛼𝑥 ∗ 𝛽𝑦)

= (𝜇
1

× 𝜇
2

) (𝛼𝑥
1

∗ 𝛽𝑦
1

, 𝛼𝑥
2

∗ 𝛽𝑦
2

)

= min
𝑗=1,2

𝜇
𝑗

(𝛼𝑥
𝑗

∗ 𝛽𝑦
𝑗

)

≥ min
𝑗=1,2

{min [𝜇
𝑗

(𝑥
𝑗

) , 𝜇
𝑗

(𝑦
𝑗

)]}

= min{[min
𝑗=1,2

𝜇
𝑗

(𝑥
𝑗

)] , [min
𝑗=1,2

𝜇
𝑗

(𝑦
𝑗

)]}

= min {𝜇 (𝑥) , 𝜇 (𝑦)} .

(16)

Let 𝜂 = 𝜂
1

× 𝜂
2

. Then

(ii) 𝜂 (𝛼𝑥 ∗ 𝛽𝑦)

= (𝜂
1

× 𝜂
2

) (𝛼𝑥
1

∗ 𝛽𝑦
1

, 𝛼𝑥
2

∗ 𝛽𝑦
2

)

= max
𝑗=1,2

𝜂
𝑗

(𝛼𝑥
𝑗

∗ 𝛼𝑦
𝑗

)

≤ max
𝑗=1,2

{max [𝜂
𝑗

(𝛼𝑥
𝑗

) , 𝜂
𝑗

(𝛽𝑦
𝑗

)]}

= max{[max
𝑗=1,2

𝜂
𝑗

(𝑥
𝑗

)] , [max
𝑗=1,2

𝜂
𝑗

(𝑦
𝑗

)]}

= max {𝜂 (𝑥) , 𝜂 (𝑦)} .

(17)

Therefore (𝜇
1

× 𝜇
2

, 𝜂
1

× 𝜂
2

) is a cubic linear space of 𝑉
1

× 𝑉
2

over 𝐹.
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4. Internal and External Cubic Linear Spaces

In this section, we introduce the notion of internal and exter-
nal cubic linear spaces and establish some of their properties.

Definition 21. Let 𝑉 be a linear space over a field 𝐹. A cubic
set A = ⟨𝜇, 𝜂⟩ in 𝑉 is called an internal cubic linear space
(briefly, ICLS) if (𝜇)−(𝛼𝑥∗𝛽𝑦) ≤ 𝜂(𝛼𝑥∗𝛽𝑦) ≤ (𝜇)

+

(𝛼𝑥∗𝛽𝑦)

for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹. It is denoted by

A
𝐼

= ⟨𝜇, 𝜂⟩ . (18)

Example 22. Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in
Example 14.

Define an interval-valued fuzzy set 𝜇 in 𝑉 by

𝜇 (𝑒) = [0.55, 0.9] ,

𝜇 (𝑥) = [0.4, 0.76] = 𝜇 (𝑦) ,

𝜇 (𝑧) = [0.5, 0.8] .

(19)

Then 𝜇 is an interval-valued fuzzy linear space.
Define a fuzzy set 𝜂 in 𝑉 by

𝜂 (𝑥) =

{

{

{

0.6, if 𝑥 = 𝑒

0.7, otherwise.
(20)

It is easy to verify that 𝜂 is a fuzzy linear space of 𝑉.
When 𝛼 = 𝛽 = 1, we have (𝜇)

−

(𝛼𝑥 ∗ 𝛽𝑦) ≤ 𝜂(𝛼𝑥 ∗ 𝛽𝑦) ≤

(𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦) for all 𝑥, 𝑦 ∈ 𝑉. So,A = ⟨𝜇, 𝜂⟩ is an ICLS.

Definition 23. Let 𝑉 be a linear space over a field 𝐹. A cubic
set A = ⟨𝜇, 𝜂⟩ in 𝑉 is called an external cubic linear space
(briefly, ECLS) if 𝜂(𝛼𝑥∗𝛽𝑦) ∉ ((𝜇)

−

(𝛼𝑥∗𝛽𝑦), (𝜇)
+

(𝛼𝑥∗𝛽𝑦))

for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹. It is denoted byA𝐸 = ⟨𝜇, 𝜂⟩.

Example 24. Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in
Example 14.

Define an interval-valued fuzzy set 𝜇 in 𝑉 by

𝜇 (𝑒) = [0.7, 0.85] ,

𝜇 (𝑥) = [0.4, 0.5] = 𝜇 (𝑦) ,

𝜇 (𝑧) = [0.6, 0.8] .

(21)

Then 𝜇 is an interval-valued fuzzy linear space.
Define a fuzzy set 𝜂 in 𝑉 by

𝜂 (𝑥) =

{

{

{

0.9, if 𝑥 = 𝑒

0.95, otherwise.
(22)

Observe that 𝜂 is a fuzzy linear space of 𝑉.
So,A = ⟨𝜇, 𝜂⟩ is a cubic linear space of 𝑉.
For all 𝛼 > 0 and 𝛽 > 0, we have 𝜂(𝛼𝑥 ∗ 𝛽𝑦) ∉ ((𝜇)

−

(𝛼𝑥 ∗

𝛽𝑦), (𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦)).
Thus,A = ⟨𝜇, 𝜂⟩ is an ECLS.

Theorem25. LetA = ⟨𝜇, 𝜂⟩ be a cubic linear space of𝑉which
is not an ECLS.Then there exist𝑥, 𝑦 ∈ 𝑉 such that 𝜂(𝛼𝑥∗𝛽𝑦) ∈

((𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦), (𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦)).

Proof. The proof is straightforward.

Theorem 26. LetA = ⟨𝜇, 𝜂⟩ be a cubic linear space of𝑉. IfA
is both an ICLS and an ECLS, then (∀𝑥, 𝑦 ∈ 𝑉) (𝜂(𝛼𝑥 ∗ 𝛽𝑦) ∈

𝑈(𝜇(𝛼𝑥∗𝛽𝑦))∪𝐿(𝜇(𝛼𝑥∗𝛽𝑦))), where𝑈(𝐴) = {(𝜇)
+

(𝛼𝑥∗𝛽𝑦) |

𝑥, 𝑦 ∈ 𝑉} and 𝐿(𝐴) = {(𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦) | 𝑥, 𝑦 ∈ 𝑉}.

Proof. Assume that A is both an ICLS and an ECLS. Using
Definitions 21 and 23, we have (𝜇)−(𝛼𝑥 ∗ 𝛽𝑦) ≤ 𝜂(𝛼𝑥 ∗ 𝛽𝑦) ≤

(𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦) and 𝜂(𝛼𝑥 ∗ 𝛽𝑦) ∉ ((𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦), (𝜇)
+

(𝛼𝑥 ∗

𝛽𝑦)) for all 𝑥, 𝑦 ∈ 𝑉. Thus 𝜂(𝛼𝑥 ∗ 𝛽𝑦) = (𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦) or
𝜂(𝛼𝑥 ∗ 𝛽𝑦) = (𝜇)

+

(𝛼𝑥 ∗ 𝛽𝑦), and so 𝜂(𝛼𝑥 ∗ 𝛽𝑦) ∈ 𝑈(𝜇(𝛼𝑥 ∗

𝛽𝑦)) ∪ 𝐿(𝜇(𝛼𝑥 ∗ 𝛽𝑦)).

Theorem 27. Let A
1

𝐼

= (𝜇
1

, 𝜂
1

) and A
2

𝐼

= (𝜇
2

, 𝜂
2

) be two
ICLSs.Then their𝑅-intersection (A

1

∩A
2

)
𝐼

𝑅

= (𝜇
1

∩𝜇
2

, 𝜂
1

∪𝜂
2

)

is again an ICLS.

Proof. Since A
1

𝐼 is an ICLS in 𝑉, we have (𝜇
1

)
−

(𝛼𝑥 ∗ 𝛽𝑦) ≤

𝜂
1

(𝛼𝑥 ∗ 𝛽𝑦) ≤ (𝜇
1

)
+

(𝛼𝑥 ∗ 𝛽𝑦) for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹.
Since A

2

𝐼 is an ICLS in 𝑉, we have (𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦) ≤

𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦) ≤ (𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦) for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹.
This implies that

(𝜇
1

∩ 𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦) ≤ (𝜂
1

∪ 𝜂
2

) (𝛼𝑥 ∗ 𝛽𝑦)

≤ (𝜇
1

∩ 𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦) .

(23)

Hence (A
1

∩A
2

)
𝐼

𝑅

= (𝜇
1

∩ 𝜇
2

, 𝜂
1

∪ 𝜂
2

) is an ICLS.

Theorem 28. Let A
1

𝐸

= (𝜇
1

, 𝜂
1

) and A
2

𝐼

= (𝜇
2

, 𝜂
2

) be two
ECLSs.Then their 𝑅-intersection (A

1

∩A
2

)
𝐸

𝑅

= (𝜇
1

∩𝜇
2

, 𝜂
1

∪

𝜂
2

) is again an ECLS.

Proof. Since A
1

𝐸 is an ECLS in 𝑉, we have 𝜂
1

(𝛼𝑥 ∗ 𝛽𝑦) ∉

((𝜇
1

)
−

(𝛼𝑥∗𝛽𝑦), (𝜇
1

)
+

(𝛼𝑥∗𝛽𝑦)) for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹.
Since A

2

𝐸 is an ECLS in 𝑉, we have 𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦) ∉

((𝜇
2

)
−

(𝛼𝑥∗𝛽𝑦), (𝜇
2

)
+

(𝛼𝑥∗𝛽𝑦)) for all 𝑥, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝐹.
This implies that

(𝜂
1

∪ 𝜂
2

)

∉ ((𝜇
1

∩ 𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦) , (𝜇
1

∩ 𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦)) .

(24)

Hence (A
1

∩A
2

)
𝐸

𝑅

= (𝜇
1

∩ 𝜇
2

, 𝜂
1

∪ 𝜂
2

) is an ECLS.

Remark 29. (i) LetA
1

𝐼

= (𝜇
1

, 𝜂
1

) andA
2

𝐼

= (𝜇
2

, 𝜂
2

) be two
ICLSs.Then their𝑃-intersection (A

1

∩A
2

)
𝐼

𝑃

=(𝜇
1

∩𝜇
2

, 𝜂
1

∩𝜂
2

)

need not be an ICLS.
(ii) LetA

1

𝐸

= (𝜇
1

, 𝜂
1

) andA
2

𝐸

= (𝜇
2

, 𝜂
2

) be two ECLSs.
Then their 𝑃-intersection (A

1

∩ A
2

)
𝐸

𝑃

= (𝜇
1

∩ 𝜇
2

, 𝜂
1

∩ 𝜂
2

)

need not be an ECLS.
(iii) Let A

1

𝐼

= (𝜇
1

, 𝜂
1

) and A
2

𝐼

= (𝜇
2

, 𝜂
2

) be two ICLSs.
Then their 𝑃-union (A

1

∪A
2

)
𝐼

𝑃

= (𝜇
1

∪𝜇
2

, 𝜂
1

∪𝜂
2

) need not
be an ICLS.

(iv) LetA
1

𝐼

= (𝜇
1

, 𝜂
1

) andA
2

𝐼

= (𝜇
2

, 𝜂
2

) be two ECLSs.
Then their 𝑃-union (A

1

∪A
2

)
𝐸

𝑃

= (𝜇
1

∪𝜇
2

, 𝜂
1

∪𝜂
2

) need not
be an ECLS.
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(v) Let A
1

𝐼

= (𝜇
1

, 𝜂
1

) and A
2

𝐼

= (𝜇
2

, 𝜂
2

) be two ICLSs.
Then their 𝑅-union (A

1

∪A
2

)
𝐼

𝑅

= (𝜇
1

∪𝜇
2

, 𝜂
1

∩𝜂
2

) need not
be an ICLS.

(vi) LetA
1

𝐼

= (𝜇
1

, 𝜂
1

) andA
2

𝐼

= (𝜇
2

, 𝜂
2

) be two ECLSs.
Then their 𝑅-union (A

1

∪A
2

)
𝐼

𝑅

= (𝜇
1

∪𝜇
2

, 𝜂
1

∩𝜂
2

) need not
be an ECLS.

Proof. We will prove the above six statements by means of an
example.

(i) Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in
Example 14.

Define two interval-valued fuzzy sets𝜇
1

and𝜇
2

as follows:

𝜇
1

(𝑒) = [0.6, 0.95] ,

𝜇
1

(𝑥) = [0.4, 0.8] = 𝜇
1

(𝑦) ,

𝜇
1

(𝑧) = [0.5, 0.9] ,

𝜇
2

(𝑒) = [0.63, 1] ,

𝜇
2

(𝑥) = [0.5, 0.9] ,

𝜇
2

(𝑦) = 𝜇
2

(𝑧) = [0.3, 0.8] .

(25)

Observe that 𝜇
1

and 𝜇
2

are interval-valued fuzzy linear space
of 𝑉.

Define (𝜇
1

∩ 𝜇
2

)(𝑥) = min{𝜇
1

(𝑥), 𝜇
2

(𝑥)} for all 𝑥, 𝑦 ∈ 𝑉.
Therefore, (𝜇

1

∩ 𝜇
2

)(𝑒) = [0.6, 0.95], (𝜇
1

∩ 𝜇
2

)(𝑥) =

[0.4, 0.8], and (𝜇
1

∩ 𝜇
2

)(𝑦) = (𝜇
1

∩ 𝜇
2

)(𝑧) = [0.3, 0.8].
By routine calculations it can be seen that 𝜇

1

∩ 𝜇
2

is an
interval-valued fuzzy linear space of 𝑉.

Now define two fuzzy sets 𝜂
1

and 𝜂
2

in 𝑉 by

𝜂
1

(𝑒) = 0.65,

𝜂
1

(𝑥) = 0.76 = 𝜂
1

(𝑦) ,

𝜂
1

(𝑧) = 0.7,

𝜂
2

(𝑒) = 0.68,

𝜂
2

(𝑥) = 0.72,

𝜂
2

(𝑦) = 𝜂
2

(𝑧) = 0.75.

(26)

We observe that 𝜂
1

and 𝜂
2

are fuzzy linear spaces over 𝑉.
Define (𝜂

1

∩ 𝜂
2

)(𝑥) = min{𝜂
1

(𝑥), 𝜂
2

(𝑦)}.
Then (𝜂

1

∩𝜂
2

)(𝑒) = 0.65, (𝜂
1

∩𝜂
2

)(𝑥) = 0.72, (𝜂
1

∩𝜂
2

)(𝑦) =

0.75, and (𝜂
1

∩ 𝜂
2

)(𝑧) = 0.7.
So 𝜂
1

∩ 𝜂
2

is fuzzy set of 𝑉.
Here we note that (𝜇

1

)
−

(𝛼𝑥 ∗ 𝛽𝑦) ≤ 𝜂
1

(𝛼𝑥 ∗ 𝛽𝑦) ≤

(𝜇
1

)
+

(𝛼𝑥 ∗ 𝛽𝑦) for all 𝑥, 𝑦 ∈ 𝑉 and

(𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦)

≤ 𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦) ≤ (𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦) ∀𝑥, 𝑦 ∈ 𝑉,

(𝜂
1

∩ 𝜂
2

) (𝑥 ∗ 𝑧)

≤ max {(𝜂
1

∩ 𝜂
2

) (𝑥) , (𝜂
1

∩ 𝜂
2

) (𝑧)}

󳨐⇒ (𝜂
1

∩ 𝜂
2

) (𝑦) ≤ max {0.72, 0.7} = 0.72.

(27)

But (𝜂
1

∩ 𝜂
2

)(𝑦) = 0.75 ≤ 0.72, which is absurd.

So, the intersection of two ICLSs need not be an ICLS.
That is, the 𝑃-intersection of two ICLSs (A

1

∩ A
2

)
𝐼

𝑃

=

(𝜇
1

∩ 𝜇
2

, 𝜂
1

∩ 𝜂
2

) need not be an ICLS.
(ii) Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in

Example 14.
Define two interval-valued fuzzy sets𝜇

1

and𝜇
2

as follows:

𝜇
1

(𝑒) = [0.9, 1] ,

𝜇
1

(𝑥) = [0.5, 0.6] = 𝜇
1

(𝑦) ,

𝜇
1

(𝑧) = [0.6, 0.7] ,

𝜇
2

(𝑒) = [0.8, 0.9] ,

𝜇
2

(𝑥) = [0.7, 0.8] ,

𝜇
2

(𝑦) = [0.3, 0.5] = 𝜇
2

(𝑧) .

(28)

Observe that 𝜇
1

and 𝜇
2

are interval-valued fuzzy linear space
of 𝑉.

Define (𝜇
1

∩ 𝜇
2

)(𝑥) = min{𝜇
1

(𝑥), 𝜇
2

(𝑥)} for all 𝑥, 𝑦 ∈ 𝑉.
Therefore, (𝜇

1

∩ 𝜇
2

)(𝑒) = [0.8, 0.9], (𝜇
1

∩ 𝜇
2

)(𝑥) =

[0.5, 0.6], and (𝜇
1

∩ 𝜇
2

)(𝑦) = [0.3, 0.5] = (𝜇
1

∩ 𝜇
2

)(𝑧).
By routine calculations it can be seen that the intersection

of two interval-valued fuzzy linear spaces is again an interval-
valued fuzzy linear space.

Now define two fuzzy sets 𝜂
1

and 𝜂
2

in 𝑉 by

𝜂
1

(𝑒) = 0.3,

𝜂
1

(𝑥) = 0.5,

𝜂
1

(𝑦) = 𝜂
1

(𝑧) = 0.9,

𝜂
2

(𝑒) = 0.4,

𝜂
2

(𝑥) = 𝜂
2

(𝑦) = 0.85,

𝜂
2

(𝑧) = 0.6.

(29)

We observe that 𝜂
1

and 𝜂
2

are fuzzy linear spaces over 𝑉.
Here we note that 𝜂

1

(𝛼𝑥 ∗ 𝛽𝑦) ∉ ((𝜇
1

)
−

(𝛼𝑥 ∗ 𝛽𝑦),
(𝜇
1

)
+

(𝛼𝑥 ∗ 𝛽𝑦)) for all 𝑥, 𝑦 ∈ 𝑉 and

𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦) ∉ ((𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦) , (𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦))

∀𝑥, 𝑦 ∈ 𝑉.

(30)

Now define (𝜂
1

∩ 𝜂
2

)(𝑥) = min{𝜂
1

(𝑥), 𝜂
2

(𝑦)}.
Then, (𝜂

1

∩ 𝜂
2

)(𝑒) = 0.3, (𝜂
1

∩ 𝜂
2

)(𝑥) = 0.5, (𝜂
1

∩ 𝜂
2

)(𝑦) =

0.85(𝜂
1

∩ 𝜂
2

)(𝑧) = 0.6.
So (𝜂
1

∩ 𝜂
2

) is fuzzy subset of 𝑉. Consider

(𝜂
1

∩ 𝜂
2

) (𝑥 ∗ 𝑧)

≤ max {(𝜂
1

∩ 𝜂
2

) (𝑥) , (𝜂
1

∩ 𝜂
2

) (𝑧)}

󳨐⇒ (𝜂
1

∩ 𝜂
2

) (𝑦) ≤ max {0.5, 0.6} = 0.6.

(31)

But (𝜂
1

∩ 𝜂
2

)(𝑦) = 0.85 ≤ 0.6, which is absurd.
So, the intersection of two ECLSs need not be an ECLS.
That is, 𝑃-intersection of two ECLSs (A

1

∩A
2

)
𝐸

𝑃

= (𝜇
1

∩

𝜇
2

, 𝜂
1

∩ 𝜂
2

) need not be an ECLS.
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(iii) Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in
Example 14.

Define two interval-valued fuzzy sets𝜇
1

and𝜇
2

as follows:

𝜇
1

(𝑒) = [0.6, 0.95] ,

𝜇
1

(𝑥) = [0.4, 0.8] = 𝜇
1

(𝑦) ,

𝜇
1

(𝑧) = [0.5, 0.85] ,

𝜇
2

(𝑒) = [0.63, 1] ,

𝜇
2

(𝑥) = [0.5, 0.9] ,

𝜇
2

(𝑦) = 𝜇
2

(𝑧) = [0.3, 0.8] .

(32)

Observe that 𝜇
1

and 𝜇
2

are interval-valued fuzzy linear space
of 𝑉.

Define (𝜇
1

∪ 𝜇
2

)(𝑥) = max{𝜇
1

(𝑥), 𝜇
2

(𝑥)} for all 𝑥, 𝑦 ∈ 𝑉.
Therefore, (𝜇

1

∪𝜇
2

)(𝑒) = [0.63, 1], (𝜇
1

∪𝜇
2

)(𝑥) = [0.5, 0.9],
(𝜇
1

∪ 𝜇
2

)(𝑦) = [0.4, 0.8], and (𝜇
1

∪ 𝜇
2

)(𝑧) = [0.5, 0.85].
Thus 𝜇

1

∪ 𝜇
2

is an i-v fuzzy subset of 𝑉. Consider

(𝜇
1

∪ 𝜇
2

) (𝑥 ∗ 𝑧)

≥ min {(𝜇
1

∪ 𝜇
2

) (𝑥) , (𝜇
1

∪ 𝜇
2

) (𝑧)}

󳨐⇒ (𝜇
1

∪ 𝜇
2

) (𝑦) ≥ min {[0.5, 0.9] , [0.5, 0.85]}

= [0.5, 0.85] .

(33)

But (𝜇
1

∪ 𝜇
2

)(𝑦) = [0.4, 0.8] ≥ [0.5, 0.85], which is absurd.
This shows that the union of two interval-valued fuzzy

linear spaces need not be an interval-valued fuzzy linear
space.

Now define two fuzzy sets 𝜂
1

and 𝜂
2

in 𝑉 by
𝜂
1

(𝑒) = 0.65,

𝜂
1

(𝑥) = 0.76 = 𝜂
1

(𝑦) ,

𝜂
1

(𝑧) = 0.7,

𝜂
2

(𝑒) = 0.68,

𝜂
2

(𝑥) = 0.72,

𝜂
2

(𝑦) = 𝜂
2

(𝑧) = 0.75.

(34)

We observe that 𝜂
1

and 𝜂
2

are fuzzy linear spaces over 𝑉.
Define (𝜂

1

∩ 𝜂
2

)(𝑥) = min{𝜂
1

(𝑥), 𝜂
2

(𝑦)}.
Then (𝜂

1

∩𝜂
2

)(𝑒) = 0.65, (𝜂
1

∩𝜂
2

)(𝑥) = 0.72, (𝜂
1

∩𝜂
2

)(𝑦) =

0.75, and (𝜂
1

∩ 𝜂
2

)(𝑧) = 0.7.
So (𝜂
1

∩ 𝜂
2

) is fuzzy subset of 𝑉.
Here we note that (𝜇

1

)
−

(𝛼𝑥 ∗ 𝛽𝑦) ≤ 𝜂
1

(𝛼𝑥 ∗ 𝛽𝑦) ≤

(𝜇
1

)
+

(𝛼𝑥 ∗ 𝛽𝑦) for all 𝑥, 𝑦 ∈ 𝑉 and

(𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦)

≤ 𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦) ≤ (𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦) ∀𝑥, 𝑦 ∈ 𝑉,

(𝜂
1

∩ 𝜂
2

) (𝑥 ∗ 𝑧)

≤ max𝑖 {(𝜂
1

∩ 𝜂
2

) (𝑥) , (𝜂
1

∩ 𝜂
2

) (𝑧)}

󳨐⇒ (𝜂
1

∩ 𝜂
2

) (𝑦) ≤ max {0.72, 0.7} = 0.72.

(35)

But (𝜂
1

∩ 𝜂
𝑦

)(𝑦) = 0.75 ≤ 0.7, which is absurd.

So, the intersection of two ICLSs need not be an ICLS.
That is, the 𝑃 union of two ICLSs, (A

1

∪ A
2

)
𝐼

𝑃

= (𝜇
1

∪

𝜇
2

, 𝜂
1

∪ 𝜂
2

) need not be an ICLS.
(iv) Let 𝑉 = {𝑒, 𝑥, 𝑦, 𝑧} be the Klein 4-group as in

Example 14.
Define two interval-valued fuzzy sets𝜇

1

and𝜇
2

as follows:

𝜇
1

(𝑒) = [0.9, 1] ,

𝜇
1

(𝑥) = [0.5, 0.6] = 𝜇
1

(𝑦) ,

𝜇
1

(𝑧) = [0.6, 0.7] ,

𝜇
2

(𝑒) = [0.8, 0.9] ,

𝜇
2

(𝑥) = [0.7, 0.8] ,

𝜇
2

(𝑦) = [0.3, 0.5] = 𝜇
2

(𝑧) .

(36)

Observe that 𝜇
1

and 𝜇
2

are interval-valued fuzzy linear space
of 𝑉.

Define (𝜇
1

∪ 𝜇
2

)(𝑥) = max{𝜇
1

(𝑥), 𝜇
2

(𝑥)} for all 𝑥, 𝑦 ∈ 𝑉.
Therefore, (𝜇

1

∪𝜇
2

)(𝑒) = [0.9, 1], (𝜇
1

∪𝜇
2

)(𝑥) = [0.7, 0.8],
(𝜇
1

∪ 𝜇
2

)(𝑦) = [0.5, 0.6], (𝜇
1

∪ 𝜇
2

)(𝑧) = [0.6, 0.7].
Thus 𝜇

1

∪ 𝜇
2

is an i-v fuzzy subset of 𝑉

(𝜇
1

∪ 𝜇
2

) (𝑥 ∗ 𝑧)

≥ min {(𝜇
1

∪ 𝜇
2

) (𝑥) , (𝜇
1

∪ 𝜇
2

) (𝑧)}

󳨐⇒ (𝜇
1

∪ 𝜇
2

) (𝑦) ≥ min {[0.7, 0.8] , [0.6, 0.7]}

= [0.6, 0.7] .

(37)

But (𝜇
1

∪ 𝜇
2

)(𝑦) = [0.5, 0.6] ≥ [0.6, 0.7], which is absurd.
Now define two fuzzy sets 𝜂

1

and 𝜂
2

in 𝑉 by

𝜂
1

(𝑒) = 0.3,

𝜂
1

(𝑥) = 0.4,

𝜂
1

(𝑦) = 𝜂
1

(𝑧) = 0.9,

𝜂
2

(𝑒) = 0.4,

𝜂
2

(𝑥) = 𝜂
2

(𝑦) = 0.85,

𝜂
2

(𝑧) = 0.6.

(38)

We observe that 𝜂
1

and 𝜂
2

are fuzzy linear spaces over 𝑉.
Here we note that 𝜂

1

(𝛼𝑥 ∗ 𝛽𝑦) ∉ ((𝜇
1

)
−

(𝛼𝑥 ∗

𝛽𝑦), (𝜇
1

)
+

(𝛼𝑥 ∗ 𝛽𝑦)) for all 𝑥, 𝑦 ∈ 𝑉 and

𝜂
2

(𝛼𝑥 ∗ 𝛽𝑦) ∉ ((𝜇
2

)
−

(𝛼𝑥 ∗ 𝛽𝑦) , (𝜇
2

)
+

(𝛼𝑥 ∗ 𝛽𝑦))

∀𝑥, 𝑦 ∈ 𝑉.

(39)

Now define (𝜂
1

∪ 𝜂
2

)(𝑥) = max{𝜂
1

(𝑥), 𝜂
2

(𝑦)}

Then, (𝜂
1

∪𝜂
2

)(𝑒) = 0.4, (𝜂
1

∪𝜂
2

)(𝑥) = 0.85, (𝜂
1

∩𝜂
2

)(𝑦) =

(𝜂
1

∪ 𝜂
2

)(𝑧) = 0.9.
So (𝜂
1

∪ 𝜂
2

) is fuzzy subset of 𝑉

(𝜂
1

∪ 𝜂
2

) (𝑥 ∗ 𝑦)

≤ max {(𝜂
1

∪ 𝜂
2

) (𝑥) , (𝜂
1

∪ 𝜂
2

) (𝑦)} .

(40)
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By routine calculations it can be seen that the union of two
fuzzy linear spaces is also a fuzzy linear space.

That is,𝑃-union of twoECLSs (A
1

∪A
2

)
𝐸

𝑃

= (𝜇
1

∪𝜇
2

, 𝜂
1

∪

𝜂
2

) need not be an ECLS.
(v) From (i) and (ii),𝑅-union of two ICLSs (A

1

∪A
2

)
𝐼

𝑅

=

(𝜇
1

∪ 𝜇
2

, 𝜂
1

∩ 𝜂
2

) need not be an ICLS.
(vi) From (ii) and (iv), 𝑅-union of two ECLSs (A

1

∪

A
2

)
𝐸

𝑅

= (𝜇
1

∪ 𝜇
2

, 𝜂
1

∩ 𝜂
2

) need not be an ECLS.

Theorem 30. LetA = (𝜇, 𝜂) be a cubic linear space of 𝑉. IfA
is an ICLS (resp., ECLS), thenA𝑐 is an ICLS (resp., ECLS).

Proof. SinceA = (𝜇, 𝜂) is an ICLS (resp., ECLS) in𝑉, we have
(𝜇)
−

(𝛼𝑥∗𝛽𝑦) ≤ 𝜂(𝛼𝑥∗𝛽𝑦) ≤ (𝜇)
+

(𝛼𝑥∗𝛽𝑦) (resp.𝜂(𝛼𝑥∗𝛽𝑦) ∉

((𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦), (𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦))) for all 𝑥, 𝑦 ∈ 𝑉. This implies
that

1 − (𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦) ≤ 1 − 𝜂 (𝛼𝑥 ∗ 𝛽𝑦) ≤ 1 − (𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦)

resp., 1 − 𝜂 (𝛼𝑥 ∗ 𝛽𝑦) ∉ (1 − (𝜇)
−

(𝛼𝑥 ∗ 𝛽𝑦) , 1 − (𝜇)
+

(𝛼𝑥 ∗ 𝛽𝑦)) .

(41)

Hence A𝑐 = {⟨(𝜇)
𝑐

(𝛼𝑥 ∗ 𝛽𝑦), 1 − 𝜂(𝛼𝑥 ∗ 𝛽𝑦)⟩ | 𝑥, 𝑦 ∈ 𝑉} is
an ICLS (resp., ECLS) in 𝑉.
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