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Circulant, block circulant-type matrices and operator norms have become effective tools in solving networked systems. In this
paper, the block imaginary circulant operator matrices are discussed. By utilizing the special structure of such matrices, several
norm equalities and inequalities are presented. The norm 𝜏 in consideration is the weakly unitarily invariant norm, which satisfies
𝜏(A) = 𝜏(𝑈A𝑉). The usual operator norm and Schatten 𝑝-norm are included. Furthermore, some special cases and examples are
given.

1. Introduction

Circulant-type matrices have significant applications in net-
work systems. For example, Noual et al. [1] presented some
results on the dynamical behaviours of some specific non-
monotone Boolean automata networks called XOR circulant
networks. In [2], the authors proposed a special class of the
feedback delay networks using circulant matrices. Based on
the circulant adjacency matrices of the networks induced
by these interior symmetries, Aguiar and Ruan [3] analyzed
the impact of interior symmetries on the multiplicity of the
eigenvalues of the Jacobian matrix at a fully synchronous
equilibrium for the coupled cell systems associated with
homogeneous networks. Jing and Jafarkhani [4] proposed
distributed differential space-time codes that work for net-
works with any number of relays using circulant matrices.
In [5], the authors showed a structure for the decoupling of
circulant symmetric arrays of more than four elements.

The well-known circulant, block circulant-type matrices
and operator norms have set up the strong basis with thework
in [6–19].

In this paper, let 𝑊(𝐻) denote the imaginary circu-
lant algebra of all bounded linear operators on a complex
separable Hilbert space 𝐻. The direct sum of 𝑛 copies of

𝐻 is denoted by 𝐻
(𝑛)

= ⊕𝑛 copies 𝐻. If 𝐴𝑗𝑘, 𝑗, 𝑘 = 1, 2,

. . . , 𝑛, are operators in 𝑊(𝐻), then the operator matrix
(or the partitioned operator) A = [𝐴𝑗𝑘] can be con-
sidered as an operator in 𝑊(𝐻

(𝑛)
), which is defined by

A𝑥 = (∑
𝑛

𝑘=1 𝐴1𝑘𝑥𝑘, . . . , ∑
𝑛

𝑘=1 𝐴𝑛𝑘𝑥𝑘)
𝑇 for every vector 𝑥 =

(𝑥1, . . . , 𝑥𝑛)
𝑇

∈ 𝐻
(𝑛).

Recall that a norm 𝜏 on 𝑊(𝐻) is called weakly unitarily
invariant if 𝜏(A) = 𝜏(𝑈A𝑈

∗
) for all A ∈ 𝑊(𝐻) and for all

unitary operators 𝑈 ∈ 𝑊(𝐻).
The Schatten 𝑝-norms ‖ ⋅ ‖𝑝, 1 ≤ 𝑝 < ∞, are important

examples of unitarily invariant norms, which are defined on
the Schatten 𝑝-classes.

If𝑉1, 𝑉2, . . . , 𝑉𝑛 are operators in𝑊(𝐻), wewrite the direct
sum ⊕

𝑛
𝑗=1𝑉𝑗 for the 𝑛 × 𝑛 block-diagonal operator matrix

(

𝑉
1
0

d
0 𝑉

𝑛

), regarded as an operator on𝐻
(𝑛).Thus, ‖⊕𝑛𝑗=1𝑉𝑗‖ =

max{‖𝑉𝑗‖ : 𝑗 = 1, 2, . . . , 𝑛} and ‖⊕
𝑛
𝑗=1𝑉𝑗‖𝑝 = (∑

𝑛

𝑗=1 ‖𝑉𝑗‖
𝑝
𝑝)
1/𝑝

for 1 ≤ 𝑝 < ∞. In particular, ‖⊕
𝑛
𝑗=1𝑉‖ = 𝑛

1/𝑝
‖𝑉‖𝑝 for

1 ≤ 𝑝 < ∞.
The pinching inequality asserts that ifA = [𝐴𝑗𝑘], then

𝜏 (⊕
𝑛

𝑗=1𝐴𝑗𝑗) ≤ 𝜏 (𝐴) . (1)
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For the operator norm and the Schatten 𝑝-norms, the
inequality (1) states that

max {

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴𝑗𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
: 𝑗 = 1, 2, . . . , 𝑛} ≤ ‖A‖ , (2)

(

𝑛

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴𝑗𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝
)

1/𝑝

≤ ‖A‖𝑝
(3)

for 1 ≤ 𝑝 < ∞. It is known [18] that for 1 < 𝑝 < ∞, equality
in (3) holds if and only if A is block-diagonal, that is, if and
only if 𝐴𝑗𝑘 = 0, for 𝑗 ̸= 𝑘.

2. Equalities for the Norm of Imaginary
Circulant Operator Matrices

In this section, we present block imaginary circulant operator
matrix. By combining the special properties of block imagi-
nary circulant operator matrix with unitarily invariant norm,
we prove an equality in the following theorem.

If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are imaginary circulant operators in
𝑊(𝐻), the block imaginary circulant operator matrix 𝐴 =

circ𝑖(𝐴1, 𝐴2, . . . , 𝐴𝑛) is the 𝑛 × 𝑛 matrix whose first row has
entries 𝐴1, 𝐴2, . . . , 𝐴𝑛 and the other rows are obtained by
successive cyclic permutations of these entries; that is,

circ𝑖 (A1, 𝐴2, . . . , 𝐴𝑛)

= (

𝐴1 𝐴2 𝐴3 ⋅ ⋅ ⋅ 𝐴𝑛

𝑖𝐴𝑛 𝐴1 𝐴2 ⋅ ⋅ ⋅ 𝐴𝑛−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑖𝐴3 𝑖𝐴4 𝑖𝐴5 ⋅ ⋅ ⋅ 𝐴2

𝑖𝐴2 𝑖𝐴3 𝑖𝐴4 ⋅ ⋅ ⋅ 𝐴1

),

(4)

where 𝑖 = √−1.
It is known that circ𝑖(𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝑇circ(𝐴1, 𝜅𝐴2,

. . . , 𝜅
𝑛−1

𝐴𝑛)𝑇
∗, where

𝑇 = (

𝐼 0

𝜅𝐼

d
0 𝜅

𝑛−1
𝐼

) , with 𝜅 = 𝑒
𝜋𝑖/2𝑛

. (5)

Thus, every imaginary circulant operator matrix is unitarily
equivalent to a circulant operator matrix.

Theorem 1. Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be any operators in 𝑊(𝐻).
Then, for every weakly unitarily invariant norm, one has

𝜏 (circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛)) = 𝜏(⊕
𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝐴𝑗) , (6)

where 𝑖 = √−1, 𝜅 = 𝑒
𝜋𝑖/2𝑛, and 𝜔 = 𝑒

2𝜋𝑖/𝑛.

Proof. The 𝑛 roots of 𝑧𝑛 = 𝑖 are 𝜅, 𝜅𝜔, 𝜅𝜔
2
, . . . , 𝜅𝜔

𝑛−1.

Now, let 𝑈 = 𝑈𝑛 ⊗ 𝐼, where

𝑈𝑛 =
1

√𝑛

× (

(

1 1 1 ⋅ ⋅ ⋅ 1

𝜅 𝜅𝜔 𝜅𝜔
2

⋅ ⋅ ⋅ 𝜅𝜔
𝑛−1

𝜅
2

(𝜅𝜔)
2

(𝜅𝜔
2
)

2
⋅ ⋅ ⋅ (𝜅𝜔

𝑛−1
)

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜅
𝑛−1

(𝜅𝜔)
𝑛−1

(𝜅𝜔
2
)

𝑛−1
⋅ ⋅ ⋅ (𝜅𝜔

𝑛−1
)

𝑛−1

)

)𝑛×𝑛

.

(7)

Then it is easy to prove that 𝑈 is a unitary operator in
𝑊(𝐻) and

𝑈
∗circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛) 𝑈 = (⊕

𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝐴𝑗) . (8)

By the invariance property of weakly unitarily invariant
norms, we obtain

𝜏 (circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛)) = 𝜏(⊕
𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝐴𝑗) .

(9)

Synthesizing the norm equality inTheorem 1 to the usual
operator norm and to the Schatten 𝑝-norms, we obtain the
corollary and remark as follows.

Corollary 2. Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be any operators in 𝑊(𝐻).
Then one has

󵄩
󵄩
󵄩
󵄩
circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛)

󵄩
󵄩
󵄩
󵄩

= max
{

{

{

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝐴𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

: 𝑘 = 0, 1, . . . , 𝑛 − 1

}

}

}

,

󵄩
󵄩
󵄩
󵄩
circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛)

󵄩
󵄩
󵄩
󵄩𝑝

= (

𝑛−1

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝐴𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝

)

1/𝑝

(10)

for 1 ≤ 𝑝 < ∞.
In particular, let 𝑛 = 2; one has

󵄩
󵄩
󵄩
󵄩
circ𝑖 (𝐴1, 𝐴2)

󵄩
󵄩
󵄩
󵄩
= max (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴1 + 𝑒

𝜋𝑖/4
𝐴2

󵄩
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴1 − 𝑒

𝜋𝑖/4
𝐴2

󵄩
󵄩
󵄩
󵄩
󵄩
) ,

󵄩
󵄩
󵄩
󵄩
circ𝑖 (𝐴1, 𝐴2)

󵄩
󵄩
󵄩
󵄩𝑝

= (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴1 + e𝜋𝑖/4𝐴2

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴1 − 𝑒

𝜋𝑖/4
𝐴2

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝
)

1/𝑝

(11)

for 1 ≤ 𝑝 < ∞.

Remark 3. Here we give some special cases of Corollary 2.
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(i) If 𝐴 ∈ 𝑊(𝐻), then

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

A A A ⋅ ⋅ ⋅ A
𝑖A A A ⋅ ⋅ ⋅ A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ A
𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ A

)

𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

1 − 𝑖

1 − 𝜅

‖A‖ ,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

A A A ⋅ ⋅ ⋅ A
𝑖A A A ⋅ ⋅ ⋅ A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ A
𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ A

)

𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑝

= [

𝑛−1

∑

𝑘=0

(

1 − 𝑖

1 − 𝜅𝜔
𝑘
)

𝑝

]

1/𝑝

‖A‖𝑝

(12)

for 1 ≤ 𝑝 < ∞.
(ii) IfA ∈ 𝑊(𝐻), then

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

0 A A ⋅ ⋅ ⋅ A
𝑖A 0 A ⋅ ⋅ ⋅ A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ A
𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜅 − 𝑖

1 − 𝜅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

‖A‖ ,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

0 A A ⋅ ⋅ ⋅ A
𝑖A 0 A ⋅ ⋅ ⋅ A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ A
𝑖A 𝑖A 𝑖A ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= [

𝑛−1

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜅𝜔
𝑘
− 𝑖

1 − 𝜅𝜔
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

]

1/𝑝

‖A‖𝑝

(13)

for 1 ≤ 𝑝 < ∞.

3. Pinching-Type Inequalities for Imaginary
Circulant Operator Matrices

In this section, for imaginary circulant operator matrices, we
obtain pinching-type inequalities by the triangle inequality
and the invariance property of unitarily invariant norms.

Theorem 4. Let A = [𝐴𝑗𝑘] be an operator matrices in
𝑊(𝐻
(𝑛)

). Then, for every weakly unitarily invariant norm, one
has

1

𝑛

𝜏(⊕
𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝑉𝑗) ≤ 𝜏 (A) , (14)

where

𝑉1 =

𝑛

∑

𝑗=1

𝐴𝑗𝑗, 𝑉2 =

𝑛

∑

𝑗=2

𝐴𝑗−1,𝑗 + 𝑒
−𝑖(𝜋/2)

𝐴𝑛1,

𝑉3 =

𝑛−2

∑

𝑗=1

𝐴𝑗,𝑗+2 + 𝑒
−𝑖(𝜋/2)

𝑛

∑

𝑗=𝑛−1

𝐴𝑗,𝑗−(𝑛−2), . . . ,

𝑉𝑛−1 = 𝐴1,𝑛−1 + 𝐴2𝑛 + 𝑒
−𝑖(𝜋/2)

𝑛

∑

𝑗=2

𝐴𝑗−1,𝑗,

𝑉𝑛 = 𝐴1𝑛 + 𝑒
−𝑖(𝜋/2)

𝑛

∑

𝑗=2

𝐴𝑗,𝑗−1.

(15)

Proof. Let 𝐿𝑘,𝑛−𝑘 = [𝑙𝑟𝑠] be the 𝑛 × 𝑛 operator with

𝑙𝑟𝑠 =

{
{

{
{

{

𝐼, if 𝑠 − 𝑟 = 𝑘;

𝑒
𝑖(𝜋/2)

𝐼, if 𝑟 − 𝑠 = 𝑛 − 𝑘;

0, otherwise.
(16)

We can prove easily that 𝐿𝑘,𝑛−𝑘 = [𝑙𝑟𝑠] is a unitary operator
for all 𝑘 = 1, 2, 3, . . . , 𝑛 and

𝑛

∑

𝑘=1

𝐿𝑘,𝑛−𝑘A𝐿
∗

𝑘,𝑛−𝑘 = circ𝑖 (𝑉1, 𝑉2, . . . , 𝑉𝑛) = 𝑉, (17)

where

𝑉1 =

𝑛

∑

𝑗=1

𝐴𝑗𝑗, 𝑉2 =

𝑛

∑

𝑗=2

𝐴𝑗−1,𝑗 + 𝑒
−𝑖(𝜋/2)

𝐴𝑛1,

𝑉3 =

𝑛−2

∑

𝑗=1

𝐴𝑗,𝑗+2 + 𝑒
−𝑖(𝜋/2)

𝑛

∑

𝑗=𝑛−1

𝐴𝑗,𝑗−(𝑛−2), . . . ,

𝑉𝑛−1 = 𝐴1,𝑛−1 + 𝐴2𝑛 + 𝑒
−𝑖(𝜋/2)

𝑛

∑

𝑗=2

𝐴𝑗−1,𝑗,

𝑉𝑛 = 𝐴1𝑛 + 𝑒
−𝑖(𝜋/2)

𝑛

∑

𝑗=2

𝐴𝑗,𝑗−1.

(18)

Now let

𝑈 =

1

√𝑛

× (

(

𝐼 𝐼 𝐼 ⋅ ⋅ ⋅ 𝐼

𝜅𝐼 𝜅𝜔𝐼 𝜅𝜔
2
𝐼 ⋅ ⋅ ⋅ 𝜅𝜔

𝑛−1
𝐼

𝜅
2
𝐼 (𝜅𝜔)

2
𝐼 (𝜅𝜔

2
)

2
𝐼 ⋅ ⋅ ⋅ (𝜅𝜔

𝑛−1
)

2
𝐼

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜅
𝑛−1

𝐼 (𝜅𝜔)
𝑛−1

𝐼 (𝜅𝜔
2
)

𝑛−1
𝐼 ⋅ ⋅ ⋅ (𝜅𝜔

𝑛−1
)

𝑛−1
𝐼

)

)𝑛×𝑛

.

(19)

Then, fromTheorem 1, we have

𝑈
∗
𝑉𝑈 = ⊕

𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝑉𝑗. (20)
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Thus, by the invariance property of unitarily invariant
norms and the triangle inequality, we get

1

𝑛

𝜏(⊕
𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝑉𝑗) ≤ 𝜏 (A) . (21)

Substituting the norm inequality (14) to the usual oper-
ator norm and to the Schatten 𝑝-norms, we obtain the
following corollary.

Corollary 5. Let A = [𝐴𝑗𝑘] be an operator matrix in
𝑊(𝐻
(𝑛)

). Then

1

𝑛

max
{

{

{

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝑉𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

: 𝑘 = 0, 1, . . . , 𝑛 − 1

}

}

}

≤ ‖A‖ ,

(

1

𝑛

𝑛−1

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝑉𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝

)

1/𝑝

≤ ‖A‖𝑝

(22)

for 1 ≤ 𝑝 < ∞, where 𝑉𝑗 is given in (15).

As a special case when 𝑛 = 2, Corollary 5 asserts that

1

2

max (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴11 + 𝐴22 + 𝑒

𝜋𝑖/4
(𝐴12 + 𝑒

−(𝜋/2)𝑖
𝐴21)

󵄩
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴11 + 𝐴22 − 𝑒

𝜋𝑖/4
(𝐴12 + 𝑒

−(𝜋/2)𝑖
𝐴21)

󵄩
󵄩
󵄩
󵄩
󵄩
)

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

𝐴11 𝐴12

𝐴21 𝐴22

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

,

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴11 + 𝐴22 + 𝑒

𝜋𝑖/4
(𝐴12 + 𝑒

−(𝜋/2)𝑖
𝐴21)

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴11 + 𝐴22 − 𝑒

𝜋𝑖/4
(𝐴12 + 𝑒

−(𝜋/2)𝑖
𝐴21)

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝑝
)

1/𝑝

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

𝐴11 𝐴12

𝐴21 𝐴22

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑝

(23)

for 1 ≤ 𝑝 < ∞.
It should be mentioned here that the norm inequalities

in Theorems 1 and 4 are sharp. This is demonstrated in the
following proposition.

Proposition 6. Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be some operators in
𝑊(𝐻). If A = circ𝑖(𝐴1, 𝐴2, . . . , 𝐴𝑛), then the inequality in
Theorem 4 becomes an equality.

Proof. Let A = circ𝑖(𝐴1, 𝐴2, . . . , 𝐴𝑛). Then it follows from
Theorem 1 that

𝜏 (circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛)) = 𝜏(⊕
𝑛−1

𝑘=0

𝑛

∑

𝑗=1

(𝜅𝜔
𝑘
)

𝑗−1
𝐴𝑗) .

(24)

Since 𝑉1 = 𝑛𝐴1, 𝑉2 = 𝑛𝐴𝑛, . . . , 𝑉𝑛−1 = 𝑛𝐴3, and 𝑉𝑛 = 𝑛𝐴2, it
follows that

1

𝑛

𝜏 (⊕
𝑛−1

𝑘=0𝐷𝑘) = 𝜏 (circ𝑖 (𝐴1, 𝐴2, . . . , 𝐴𝑛)) , (25)

where

𝐷0 =

𝑛

∑

𝑗=1

𝜅
𝑗−1

𝑉𝑗 = 𝑛 [𝐴1 + 𝜅𝐴2 + ⋅ ⋅ ⋅ + 𝜅
𝑛−1

𝐴𝑛] ,

𝐷1 =

𝑛

∑

𝑗=1

(𝜅𝜔)
𝑗−1

𝑉𝑗 = 𝑛 [𝐴1 + (𝜅𝜔)𝐴2 + ⋅ ⋅ ⋅ + (𝜅𝜔)
𝑛−1

𝐴𝑛] ,

.

.

.

𝐷𝑛−1 =

𝑛

∑

𝑗=1

(𝜅𝜔
𝑛−1

)

𝑗−1
𝑉𝑗

= 𝑛 [𝐴1 + (𝜅𝜔
𝑛−1

)𝐴2 + ⋅ ⋅ ⋅ + (𝜅𝜔
𝑛−1

)

𝑛−1
𝐴𝑛] .

(26)

By Proposition 6, it is easy to see that equality holds in the
inequality (14) if and only ifA is imaginary circulant for 0 <

𝑝 < ∞. Furthermore, we obtain the following proposition by
using the general Clarkson inequalities which can be seen in
Proposition 1 of [19].

Proposition 7. Let A = [𝐴𝑗𝑘] be an operator matrix in
𝑊(𝐻
𝑛
), and let 1 < 𝑝 < ∞. Then ‖A‖𝑝 = (1/𝑛)‖⊕

𝑛−1
𝑘=0∑
𝑛

𝑗=1

(𝜅𝜔
𝑘
)
𝑗−1

𝑉𝑗‖𝑝 if and only ifA is imaginary circulant.

Proof. In view of Proposition 1, it if sufficient to prove the
“only if ” part. Let 𝐿𝑘,𝑛−𝑘 be as in the proof of Theorem 1. If
‖A‖𝑝 = (1/𝑛)‖⊕

𝑛−1
𝑘=0∑
𝑛

𝑗=1(𝜅𝜔
𝑘
)
𝑗−1

𝑉𝑗‖𝑝, then it follows from
the proof of Theorem 1 that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿1,𝑛−1A𝐿

∗

1,𝑛−1

󵄩
󵄩
󵄩
󵄩
󵄩𝑝

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿2,𝑛−2A𝐿

∗

2,𝑛−2

󵄩
󵄩
󵄩
󵄩
󵄩𝑝

= ⋅ ⋅ ⋅ =

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿1,𝑛−1A𝐿

∗

1,𝑛−1

󵄩
󵄩
󵄩
󵄩
󵄩𝑝

= ‖A‖𝑝 ,

𝑛−1

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿𝑘,𝑛−𝑘A𝐿

∗

𝑘,𝑛−𝑘

󵄩
󵄩
󵄩
󵄩
󵄩𝑝

= 𝑛 ‖A‖𝑝 .

(27)

Now invokingClarkson inequalities for several operators,
it follows that

𝐿1,𝑛−1A𝐿
∗

1,𝑛−1 = 𝐿2,𝑛−2A𝐿
∗

2,𝑛−2 = ⋅ ⋅ ⋅ = 𝐿1,𝑛−1A𝐿
∗

1,𝑛−1. (28)

Consequently,A is imaginary circulant matrix.

4. Conclusion

By utilizing the special structure of imaginary circulant
matrices, we obtain several norm equalities and inequalities,
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where the norm 𝜏 under consideration is the weakly unitarily
invariant norm. Based on the existing problems in [20–23],
we will exploit solving these problems by circulant matrices
technique.
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