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Copyright © 2015 L. B. Mohammed and A. Kılıçman. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we study and modify the algorithm of Kraikaew and Saejung for the class of total quasi-asymptotically nonexpansive
case so that the strong convergence is guaranteed for the solution of split common fixed-point problems inHilbert space. Moreover,
we justify our result through an example. The results presented in this paper not only extend the result of Kraikaew and Saejung
but also extend, improve, and generalize some existing results in the literature.

1. Introduction

Let ⟨⋅, ⋅⟩ be an inner product space, ‖ ⋅ ‖ the corresponding
norm, 𝐸 a Banach space, 𝐻

1
, 𝐻
2
two Hilbert spaces, 𝐴 :

𝐻
1
→ 𝐻
2
a bounded linear operator, and𝐴∗ : 𝐻

2
→ 𝐻
1
an

adjoint of 𝐴. Let {𝐶
𝑖
}
𝑝

𝑖=1
and {𝑄

𝑗
}
𝑟

𝑗=1
be a nonempty, closed,

convex subsets of𝐻
1
and𝐻

2
, respectively.

A Banach space 𝐸 is said to satisfy Opial’s condition (see
[1]) if, for any sequence {𝑥

𝑛
} in 𝐸, 𝑥

𝑛
⇀ 𝑥 as 𝑛 → ∞ implies

that

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 ,

∀𝑦 ∈ 𝐸, 𝑦 ̸= 𝑥.

(1)

And also, a Banach space𝐸 is said to haveKadec-Klee property
(see [1]), if, for any sequence {𝑥

𝑛
} in 𝐸, 𝑥

𝑛
⇀ 𝑥 and ‖𝑥

𝑛
‖ →

‖𝑥‖ as 𝑛 → ∞ implies that

𝑥
𝑛
󳨀→ 𝑥, as 𝑛 󳨀→ ∞. (2)

Remark 1. It is well known that each Hilbert space satisfied
Opial and Kadec-Klee property.

The mapping 𝑇 : 𝐻 → 𝐻 is said to be demiclosed
at zero, if any sequence {𝑥

𝑛
} in 𝐻 there holds the following

implication:

𝑥
𝑛
⇀ 𝑥, 𝑇𝑥

𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞ 󳨐⇒ 𝑇𝑥 = 0. (3)

𝑇 is said to be 𝛼-strongly quasi-nonexpansive if there exists
𝛼 > 0with the property ‖𝑇𝑥−𝑧‖2 ≤ ‖𝑥−𝑧‖2−𝛼‖𝑥−𝑇𝑥‖2, ∀𝑥 ∈
𝐻 and 𝑧 ∈ Fix(𝑇); this is equivalent to

⟨𝑥 − 𝑧, 𝑇𝑥 − 𝑥⟩ ≤
−1 − 𝛼

2
‖𝑥 − 𝑇𝑥‖

2
,

∀𝑥 ∈ 𝐻, 𝑧 ∈ Fix (𝑇) .
(4)

𝑇 is said to be quasi-nonexpansive, if Fix(𝑇) ̸= 0 such that
‖𝑝 − 𝑇𝑥‖ ≤ ‖𝑝 − 𝑥‖, ∀𝑝 ∈ Fix(𝑇) and 𝑥 ∈ 𝐻, and {𝑘

𝑛
}-

quasi-asymptotically nonexpansive mapping, if Fix(𝑇) ̸= 0

and there exists a sequence {𝑘
𝑛
} ⊆ [1,∞) with 𝑘

𝑛
→ 1 such

that, for each 𝑛 ≥ 1, ‖𝑝 − 𝑇𝑛𝑥‖2 ≤ 𝑘
𝑛
‖𝑝 − 𝑥‖

2, ∀𝑝 ∈ Fix(𝑇)
and 𝑥 ∈ 𝐻, and it is said to be ({V

𝑛
}, {𝜇
𝑛
}, 𝜉)-total quasi-

asymptotically nonexpansive mapping if Fix(𝑇) ̸= 0; and
there exist nonnegative real sequences {V

𝑛
}, {𝜇
𝑛
} in [0,∞)
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with V
𝑛
→ 0 and 𝜇

𝑛
→ 0 and a strictly continuous function

𝜉 : R+ → R+ with 𝜉(0) = 0 such that, for each 𝑛 ≥ 1,

󵄩󵄩󵄩󵄩𝑝 − 𝑇
𝑛
𝑥
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑝 − 𝑥

󵄩󵄩󵄩󵄩
2

+ V
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑝 − 𝑥

󵄩󵄩󵄩󵄩) + 𝜇𝑛,

∀𝑝 ∈ Fix (𝐺) , 𝑥 ∈ 𝐻.
(5)

Remark 2. It is known that, the class of quasi-nonexpansive
mapping contained in the class of {𝑘

𝑛
}-quasi-asymptotically

nonexpansive mapping and the class of {𝑘
𝑛
}-quasi-asymp-

totically nonexpansive mapping is contained in the class of
({V
𝑛
}, {𝜇
𝑛
}, 𝜉)-total quasi-asymptotically nonexpansive map-

ping, see [2].

Themapping 𝑇 is said to be uniformly 𝐿-Lipschitzian if ∃
a constant𝐿 > 0 such that, for each 𝑛 ≥ 1, ‖𝑇𝑛𝑥−𝑇𝑛𝑦‖ ≤ 𝐿‖𝑥−
𝑦‖, ∀𝑥, 𝑦 ∈ 𝐻, and it is said to be semicompact, if, for any
bounded sequence𝑥

𝑛
⊂ 𝐻with lim

𝑛→∞
‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ = 0, there

exists subsequence {𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
} such that {𝑥

𝑛𝑖
} converges

strongly to some point 𝑥∗ ∈ 𝐻.
The convex feasibility problems (CFP) are finding a vector

𝑥
∗
∈ 𝐻
1
satisfying

𝑥
∗
∈

𝑝

⋂
𝑖=1

𝐶
𝑖
. (6)

The problem of solving (6) has been intensively studied
by numerous authors due to its various application in
several physical problems such as approximation theorem,
image recovery, signal processing, control theory, biomedical
engineering, communication and geophysics (see [3–5]) and
reference therein.

In 2005, Censor et al. (see [6]) introduced and studied
the problem ofmultiple set split feasibility problems (MSSFP)
which is formulated as finding a vector 𝑥∗ ∈ 𝐻

1
with the

property

𝑥
∗
∈

𝑝

⋂
𝑖=1

𝐶
𝑖
,

𝐴𝑥
∗
∈

𝑟

⋂
𝑗=1

𝑄
𝑗
.

(7)

If, in (7), we take 𝑝 = 𝑟 = 1, we get

𝑥
∗
∈ 𝐶,

𝐴𝑥
∗
∈ 𝑄.

(8)

Equation (8) is known as the split feasibility problems (SFP)
(see [7]), where 𝐶 and 𝑄 are nonempty, closed, and convex
subsets of𝐻

1
and𝐻

2
, respectively. Since every closed convex

subset of Hilbert space is the fixed-point set of its associating
projection, then (6) and (7) become

𝑥
∗
∈

𝑝

⋂
𝑖=1

Fix (𝑈
𝑖
) , (9)

𝑥
∗
∈

𝑝

⋂
𝑖=1

Fix (𝑈
𝑖
) ,

𝐴𝑥
∗
∈

𝑟

⋂
𝑗=1

Fix (𝑇
𝑗
) .

(10)

Equations (9) and (10) are called the common fixed-point
problems (CFPP) and split common fixed-point problems
(SCFPP), respectively, where 𝑈

𝑖
: 𝐻
1

→ 𝐻
1
(𝑖 =

1, 2, 3, . . . , 𝑝) and 𝑇
𝑗
: 𝐻
2
→ 𝐻
2
(𝑗 = 1, 2, 3, . . . , 𝑟) are some

nonlinear operators.
If we take 𝑝 = 𝑟 = 1, problem (10) is reduced to find a

point 𝑥∗ ∈ 𝐻
1
with property

𝑥
∗
∈ Fix (𝑈) ,

𝐴𝑥
∗
∈ Fix (𝑇) .

(11)

Equation (11) is known as the two-set SCFPP.
In 2009, Censor and Segal [8] introduced the concept of

SCFPP (10) in finite dimensional Hilbert space, who invented
an algorithm for solving (11) which generate a sequence {𝑥

𝑛
}

according to the following iterative procedure:

𝑥
𝑛+1

:= 𝑈 (𝑥
𝑛
+ 𝛾𝐴
∗
(𝑇 − 𝐼)𝐴𝑥

𝑛
) , ∀𝑛 ≥ 0, (12)

where the initial guess 𝑥
0
∈ 𝐻 is choosing arbitrarily and

0 < 𝛾 < 2/‖𝐴‖
2.

In 2011, Moudafi [9] studied the convergence properties
of relaxed algorithm for solving (10) for the class of quasi-
nonexpansive operators 𝑇 such that (𝐼 − 𝑇) is demiclosed at
zero and he obtained the weak convergence results. Note that,
in finite dimensional Hilbert space, weak and strong con-
vergence are equivalent. Differently, in infinite dimensional
cases, they are not the same. Moudafi’s results guarantee only
weak convergence results. In 2013, Mohammed [10, 11] uti-
lized the strongly quasi-nonexpansive operators and quasi-
nonexpansive operators to solve Moudafi’s algorithm and he
obtained weak and strong convergence results, respectively.

In 2014, Kraikaew and Saejung [12] also modified
Moudafi’s algorithm [9] and they obtained the strong conver-
gent results as shown below.

Theorem 3 (see [12]). let 𝑈 : 𝐻
1
→ 𝐻

1
be a strongly quasi-

nonexpansive operator and let 𝑇 : 𝐻
2
→ 𝐻

2
be a quasi-

nonexpansive operator such that both (𝐼 − 𝑈) and (𝐼 − 𝑇) are
demiclosed at zero. Let 𝐴 : 𝐻

1
→ 𝐻

2
be a bounded linear

operator with 𝐿 = ‖𝐴𝐴
∗
‖. Suppose that Γ ̸= 0. Let {𝑥

𝑛
} ⊂ 𝐻

1

be a sequence generated by

𝑥
0
∈ 𝐻,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) 𝑈 (𝑥

𝑛
+ 𝛾𝐴
∗
(𝑇 − 𝐼)𝐴𝑥

𝑛
) ,

(13)

where the parameters 𝛾 and {𝛼
𝑛
} satisfy the following condi-

tions:

(a) 𝛾 ∈ (0, 1/𝐿);
(b) {𝛼

𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝛼
𝑛
= 0 and ∑𝛼

𝑛
= ∞. Then

𝑥
𝑛
→ 𝑃
Γ
𝑥
0
.
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Motivated by these results, in this paper, we studied and
modified the algorithm of Kraikaew and Saejung [12] for the
class of total quasi-asymptotically nonexpansive mappings
to solve the split common fixed-point problems (10) in the
frame work of infinite dimensional Hilbert space. The results
presented in this paper not only improve and extend some
recent results of Kraikaew and Saejung [12], but also improve
and extend some recent results of Censor and Segal [8],
Moudafi [9], and Mohammed [10, 11] and many existing
results.

Throughout this paper, we adopt the following notations.

(i) 𝐼 is the identity operator.
(ii) Fix(𝑇) is the fixed-point set of𝑇; that is, Fix(𝑇) = {𝑥 ∈

𝐻 : 𝑇𝑥 = 𝑥}.
(iii) “→ ” and “⇀” denote the strong and weak conver-

gence, respectively.
(iv) 𝜔

𝜔
(𝑥
𝑛
) denote the set of the cluster point of {𝑥

𝑛
} in the

weak topology, that is, {∃{𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that𝑥

𝑛𝑗
⇀

𝑥}.
(v) Γ is the solution set of split common fixed-point

problems (10); that is,

Γ

=
{

{

{

𝑥
∗
∈ 𝐶 =

𝑝

⋂
𝑖=1

Fix (𝑈
𝑖
) , 𝐴𝑥

∗
∈ 𝑄 =

𝑟

⋂
𝑗=1

Fix (𝑇
𝑗
)
}

}

}

.
(14)

2. Preliminaries

In the sequel, we will make use of the following lemmas in
proving our main results.

Lemma 4 (see [2]). Let 𝐺 : 𝐻 → 𝐻 be a ({V
𝑛
}, {𝜇
𝑛
}, 𝜉)-total

quasi-asymptotically nonexpansivemapping.Then for each 𝑞 ∈
Fix(𝐺) and 𝑥 ∈ 𝐻, the following inequalities are equivalent: for
each 𝑛 ≥ 1

󵄩󵄩󵄩󵄩𝑞 − 𝐺
𝑛
𝑥
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑞 − 𝑥

󵄩󵄩󵄩󵄩
2

+ V
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑞 − 𝑥

󵄩󵄩󵄩󵄩) + 𝜇𝑛;

2 ⟨𝑥 − 𝐺
𝑛
𝑥, 𝑥 − 𝑞⟩ ≥

󵄩󵄩󵄩󵄩𝑥 − 𝐺
𝑛
𝑥
󵄩󵄩󵄩󵄩
2

− V
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑞 − 𝑥

󵄩󵄩󵄩󵄩)

− 𝜇
𝑛
;

2 ⟨𝑥 − 𝐺
𝑛
𝑥, 𝑞 − 𝐺

𝑛
⟩ ≤

󵄩󵄩󵄩󵄩𝑥 − 𝐺
𝑛
𝑥
󵄩󵄩󵄩󵄩
2

+ V
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑞 − 𝑥

󵄩󵄩󵄩󵄩)

+ 𝜇
𝑛
.

(15)

Lemma 5 (see [2]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
} be a sequences of

nonnegative real numbers satisfying

𝑎
𝑛+1

≤ (1 + 𝑐
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
. (16)

If ∑𝑐
𝑛
< ∞ and ∑𝑏

𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists.

Lemma 6. Let 𝐻 be a Hilbert space, 𝐶 a nonempty closed
convex subset of 𝐻, and 𝑃

𝐶
a metric projection of 𝐻 onto 𝐶

satisfying ⟨𝑥
𝑛
− 𝑥
∗
, 𝑥
𝑛
− 𝑃
𝐶
𝑥
𝑛
⟩ ≤ 0, and then ‖𝑃

𝐶
𝑥
𝑛
− 𝑥
𝑛
‖ ≤

‖𝑃
𝐶
𝑥
𝑛
− 𝑥
∗
‖, ∀𝑛 ≥ 1.

Proof. Let 𝑥∗ ∈ 𝐶; then

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶𝑥𝑛
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗
+ 𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑥
𝑛
− 𝑥
∗
, 𝑥
∗
− 𝑃
𝐶
𝑥
𝑛
⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑥
𝑛
− 𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
+ 𝑥
𝑛
− 𝑃
𝐶
𝑥
𝑛
⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

− 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑥
𝑛
− 𝑥
∗
, 𝑥
𝑛
− 𝑃
𝐶
𝑥
𝑛
⟩

=
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑥
𝑛
− 𝑥
∗
, 𝑥
𝑛
− 𝑃
𝐶
𝑥
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

,

󳨐⇒
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(17)

Lemma 7 (see [5]). If a sequence {𝑥
𝑛
} is Fejer monotone with

respect to nonempty closed convex subset 𝐶, then the following
hold:

(i) 𝑥
𝑛
⇀ 𝑥
∗
∈ 𝐶 if and only if 𝜔

𝜔
⊂ 𝐶;

(ii) the sequence {𝑃
𝐶
𝑥
𝑛
} converges strongly to some point in

𝐶;
(iii) if 𝑥

𝑛
⇀ 𝑥
∗
∈ 𝐶, then 𝑥∗ = lim

𝑛→∞
𝑃
𝐶
𝑥
𝑛
.

3. Main Results

Theorem 8. Let𝐻
1
,𝐻
2
be two Hilbert spaces and 𝐺 : 𝐻

1
→

𝐻
1
, 𝑇 : 𝐻

2
→ 𝐻

2
be ({V

𝑛1
}, {𝜇
𝑛1
}, 𝜉
1
), ({V
𝑛2
}, {𝜇
𝑛2
}, 𝜉
2
)-total

quasi-asymptotically nonexpansive mappings and uniformly
𝐿
1
, 𝐿
2
-Lipschitzian continuous mappings such that (𝐼−𝐺) and

(𝐼 − 𝑇) are both demiclosed at zero. Let 𝐴 : 𝐻
1
→ 𝐻

2
be a

bounded linear operator and let 𝐴∗ : 𝐻
2
→ 𝐻
1
be an adjoint

of𝐴with 𝐿 = ‖𝐴𝐴∗‖. Let𝑀 and𝑀∗ be positive constants such
that 𝜉(𝑘) ≤ 𝜉(𝑀) + 𝑀

∗
𝑘
2, ∀𝑘 ≥ 0. Assume that the solution

set of SCFPP (14) is nonempty, and let 𝑃
Γ
be a metric projection

of 𝐻
1
onto Γ satisfying ⟨𝑥

𝑛
− 𝑥
∗
, 𝑥
𝑛
− 𝑃
Γ
𝑥
𝑛
⟩ ≤ 0. Define the

sequence 𝑥
𝑛
⊂ 𝐻
1
by

𝑥
0
∈ 𝐻
1
,

𝑢
𝑛
= (𝐼 + 𝛾𝐴

∗
(𝑇
𝑛
− 𝐼)𝐴) 𝑥

𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢
𝑛
+ (1 − 𝛼

𝑛
) 𝐺
𝑛
𝑢
𝑛
, ∀𝑛 ≥ 1,

(18)

where the parameter 𝛾, 𝐿, {V
𝑛
}, {𝜇
𝑛
}, {𝜉
𝑛
}, and {𝛼

𝑛
} satisfy the

following conditions:

(a) 0 < 𝛼
𝑛
< 1, 𝛾 ∈ (0, 1/𝐿), where 𝐿 = max{𝐿

1
, 𝐿
2
};
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(b) V
𝑛
= max{V

𝑛1
, V
𝑛2
}, 𝜇
𝑛
= max{𝜇

𝑛1
, 𝜇
𝑛2
}, and 𝜉 =

max{𝜉
1
, 𝜉
2
}.

Then, the sequence {𝑥
𝑛
} defined by (18) converges strongly to

𝑥
∗
∈ Γ.

Proof. To show that 𝑥
𝑛
→ 𝑥
∗ as 𝑛 → ∞, it suffices to show

𝑥
𝑛
⇀ 𝑥
∗ and ‖𝑥

𝑛
‖ → ‖𝑥

∗
‖ as 𝑛 → ∞.

The proof is divided into five steps as follows.

Step 1. In this step, we show that, for each𝑥∗ ∈ Γ, the following
limit exists:

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 . (19)

Let 𝑥∗ ∈ Γ; this implies that 𝑥∗ ∈ 𝐶 := ⋂
𝑝

𝑖=1
Fix(𝑈

𝑖
) and

𝐴𝑥
∗
∈ 𝑄 = ⋂

𝑟

𝑗=1
Fix(𝑇
𝑗
). From (18) and Lemma 4, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝑢𝑛 + (1 − 𝛼𝑛) 𝐺

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

= 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑢
𝑛
− 𝐺
𝑛
𝑢
𝑛
, 𝐺
𝑛
𝑢
𝑛
− 𝑥
∗
⟩ +

󵄩󵄩󵄩󵄩𝐺
𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

= 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑢
𝑛
− 𝑥
∗
+ 𝑥
∗
− 𝐺
𝑛
𝑢
𝑛
, 𝐺
𝑛
𝑢
𝑛
− 𝑥
∗
⟩

+
󵄩󵄩󵄩󵄩𝐺
𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

= 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑢
𝑛
− 𝑥
∗
, 𝐺
𝑛
𝑢
𝑛
− 𝑥
∗
⟩

+ (1 − 2𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝐺
𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

= 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑢
𝑛
− 𝑥
∗
, 𝐺
𝑛
𝑢
𝑛
− 𝑢
𝑛
+ 𝑢
𝑛
− 𝑥
∗
⟩

+ (1 − 2𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝐺
𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ −𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ V
𝑛
𝛼
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩)

+ 𝜇
𝑛
𝛼
𝑛
+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ (1 − 2𝛼
𝑛
)

⋅ (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ V
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩) + 𝜇𝑛)

= −𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) V
𝑛
𝜉

⋅ (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩) +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝜇
𝑛

= −𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 + (1 − 𝛼
𝑛
) V
𝑛
𝑀
∗
)

⋅
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) .

(20)

On the other hand,

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗
+ 𝛾𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛾
2 󵄩󵄩󵄩󵄩𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑥
∗
, 𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩ ,

(21)

𝛾
2 󵄩󵄩󵄩󵄩𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

= 𝛾
2
⟨𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
, 𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

= 𝛾
2
⟨𝐴𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
, (𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

≤ 𝛾
2
𝐿
󵄩󵄩󵄩󵄩(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

,

(22)

by Lemma 4, it follows that

2𝛾 ⟨𝑥
𝑛
− 𝑥
∗
, 𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 ⟨𝐴𝑥
𝑛
− 𝐴𝑥
∗
, (𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

≤ −𝛾
󵄩󵄩󵄩󵄩(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾V
𝑛
𝑀
∗
𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛾 (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) .

(23)

By substituting (22) and (23) into (21), we obtained

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ (1 + 𝛾V
𝑛
𝑀
∗
𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− 𝛾 (1 − 𝛾𝐿)

⋅
󵄩󵄩󵄩󵄩(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾 (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) .

(24)

Substituting (24) into (20) and then simplifying, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ (1 + (1 − 𝛼
𝑛
) V
𝑛
𝑀
∗
)

⋅ ((1 + 𝛾V
𝑛
𝑀
∗
𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− 𝛾 (1 − 𝛾𝐿)
󵄩󵄩󵄩󵄩(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾 (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
))

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
)

≤ (1 + (1 − 𝛼
𝑛
) V
𝑛
𝑀
∗
) (1 + 𝛾V

𝑛
𝑀
∗
𝐿)

⋅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− 𝛾 (1 − 𝛾𝐿)
󵄩󵄩󵄩󵄩(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 + (1 − 𝛼
𝑛
) V
𝑛
𝑀
∗
) 𝛾 (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
)

+ (1 − 𝛼
𝑛
) (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) ,

(25)
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and from (25), we deduce that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤ (1 + 𝛾V
𝑛
𝑀
∗
𝐿 + (1 − 𝛼

𝑛
) V
𝑛
𝑀
∗
(1 + 𝛾V

𝑛
𝑀
∗
𝐿))

⋅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 + (1 − 𝛼
𝑛
) V
𝑛
𝑀
∗
)

⋅ 𝛾 (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) + (1 − 𝛼

𝑛
) (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) .

(26)

Therefore, from (26), we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤ (1 + 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛
, (27)

where
𝛽
𝑛
= 𝛾V
𝑛
𝑀
∗
𝐿 + (1 − 𝛼

𝑛
) V
𝑛
𝑀
∗
(1 + 𝛾V

𝑛
𝑀
∗
𝐿) ,

𝜂
𝑛
= (1 + (1 − 𝛼

𝑛
) V
𝑛
𝑀
∗
) 𝛾 (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
)

+ (1 − 𝛼
𝑛
) (V
𝑛
𝜉 (𝑀) + 𝜇

𝑛
) .

(28)

Clearly, ∑𝛽
𝑛
< ∞ and ∑𝜂

𝑛
< ∞. Moreover, 𝛽

𝑛
→ 0 and

𝜂
𝑛
→ 0 as 𝑛 → ∞.
By Lemma 5, we conclude that lim

𝑛→∞
‖𝑥
𝑛
− 𝑥
∗
‖ exists.

We now prove that, for each 𝑥∗ ∈ Γ, lim
𝑛→∞

‖𝑢
𝑛
− 𝑥
∗
‖

exists.
From (25), we deduce that

𝛾 (1 − 𝛾𝐿)
󵄩󵄩󵄩󵄩(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛
,

𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛
.

(29)

From (29), we deduce that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝑇
𝑛
𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0.
(30)

From (24), (30), and the fact that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
∗
‖ exists,

then lim
𝑛→∞

‖𝑢
𝑛
−𝑥
∗
‖ exists.Moreover, from (20), we deduce

that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 . (31)

Step 2. In this step, we show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0.

(32)

Proof. It follows from (18) that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝑢𝑛 + (1 − 𝛼𝑛) 𝐺

𝑛
𝑢
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) (𝐺

𝑛
𝑢
𝑛
− 𝑢
𝑛
) + 𝑢
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) (𝐺

𝑛
𝑢
𝑛
− 𝑢
𝑛
) + 𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩 ,

(33)

and in view of (30), we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (34)

Similarly, it follows from (30) and (34) that

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝛾𝐴

∗
(𝑇
𝑛+1

− 𝐼)𝐴) 𝑥
𝑛+1

+ (𝐼 + 𝛾𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴) 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑥
𝑛

+ 𝛾𝐴
∗
(𝑇
𝑛+1

− 𝐼)𝐴𝑥
𝑛+1

− 𝛾𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞

󳨐⇒ lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0.

(35)

Step 3. In this step, we show that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0,
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0,

as 𝑛 󳨀→ ∞.
(36)

Proof. From the fact that ‖𝑢
𝑛
−𝐺
𝑛
𝑢
𝑛
‖ → 0 and ‖𝑢

𝑛+1
−𝑢
𝑛
‖ →

0 and 𝐺 is uniformly 𝐿-Lipschitzian continuous, it follows
that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺𝑢𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 + 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝐺
𝑛−1

𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 + 𝐿
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑛−1

𝑢
𝑛
− 𝐺
𝑛−1

𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝐺
𝑛−1

𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 + 𝐿
2 󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑢
𝑛−1

+ 𝑢
𝑛−1

− 𝐺
𝑛−1

𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 + 𝐿 (𝐿 + 1)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛−1

− 𝐺
𝑛−1

𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0

󳨐⇒
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝐺𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(37)

Similarly, from the fact that ‖𝐴𝑥
𝑛
− 𝑇
𝑛
𝐴𝑥
𝑛
‖ → 0, ‖𝑥

𝑛+1
−

𝑥
𝑛
‖ → 0, and 𝑇 is uniformly 𝐿-Lipschitzian continuous, it

follows that ‖𝐴𝑥
𝑛
− 𝑇𝐴𝑥

𝑛
‖ → 0.

Step 4. In this step, we show that

𝑥
𝑛
⇀ 𝑥
∗
, 𝑢
𝑛
⇀ 𝑥
∗
, as 𝑛 󳨀→ ∞. (38)

Proof. Since {𝑢
𝑛
} is bounded, then there exists a subsequence

𝑢
𝑛𝑖
⊂ 𝑢
𝑛
such that

𝑢
𝑛𝑖
⇀ 𝑥
∗
, as 𝑖 󳨀→ ∞. (39)
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From (39) and (36), we have
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝐺𝑢
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑖 󳨀→ ∞. (40)

From (39) and (40) and the fact that (𝐼 − 𝐺) is demiclosed at
zero, we get that 𝑥∗ ∈ Fix(𝐺).

Moreover, from (18), (39), and the fact ‖𝐴𝑥
𝑛
−𝑇
𝑛
𝐴𝑥
𝑛
‖ →

0, as 𝑛 → ∞, we have

𝑥
𝑛𝑖
= 𝛼
𝑛
𝑢
𝑛𝑖
− 𝛾𝐴
∗
(𝑇
𝑛𝑖 − 𝐼)𝐴𝑥

𝑛𝑖
󳨀→ 𝑥
∗
. (41)

By the definition of 𝐴, we get

𝐴𝑥
𝑛𝑖
⇀ 𝐴𝑥

∗
, as 𝑖 󳨀→ ∞. (42)

In view of (36), we get
󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛𝑖
− 𝑇𝐴𝑥

𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑖 󳨀→ ∞. (43)

From (42) and (43) and the fact that (𝐼 − 𝑇) is demiclosed at
zero, we have 𝐴𝑥∗ ∈ Fix(𝑇), and this implies that 𝑥∗ ∈ Γ.

Now, we show that 𝑥∗ is unique.
Suppose to the contrary that there exists another subse-

quence 𝑢
𝑛𝑗
⊂ 𝑢
𝑛
such that 𝑢

𝑛𝑗
⇀ 𝑦
∗
∈ Γ with 𝑥∗ ̸= 𝑦

∗ by
virtue of (19) and opial property of Hilbert space; we have

lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

< lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑦
∗󵄩󵄩󵄩󵄩󵄩
= lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩

= lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑗
− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑗
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

= lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = lim inf

𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

󳨐⇒ lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑖
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

(44)

which is contradiction.Therefore 𝑢
𝑛
⇀ 𝑥
∗. By using (18) and

(30), we have

𝑥
𝑛
= 𝑢
𝑛
− 𝛾𝐴
∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛
⇀ 𝑥
∗
, as 𝑛 󳨀→ ∞. (45)

Step 5. In this step, we show that
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 , as 𝑛 󳨀→ ∞. (46)

To show (46), it suffices to show that ‖𝑥
𝑛+1

‖ → ‖𝑥
∗
‖ as 𝑛 →

∞.

Proof. From Lemmas 6, 7, (27), and the fact that 𝛽
𝑛
→ 0 and

𝜂
𝑛
→ 0, we have
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤ (1 + 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃Γ𝑥𝑛 + 𝑃Γ𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛

≤ 4
󵄩󵄩󵄩󵄩𝑃Γ𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛

󳨐⇒
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨
2

≤ 4
󵄩󵄩󵄩󵄩𝑃Γ𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛

󳨐⇒ lim
𝑛→∞

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨
2

≤ 4 lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑃Γ𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ lim
𝑛→∞

𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ lim
𝑛→∞

(𝜂
𝑛
)

󳨐⇒ lim
𝑛→∞

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨
2

= 0.

(47)

From (38) and (46), we conclude that 𝑥
𝑛
→ 𝑥
∗, as 𝑛 →

∞.

Corollary 9. Let 𝐻
1
, 𝐻
2
𝐴, and 𝐴∗, be as in Theorem 8. Let

𝐺 and 𝑇 be {𝑘
𝑛1
}, ({𝑘
𝑛2
}) quasi-asymptotically nonexpansive

and uniformly 𝐿
1
, 𝐿
2
-Lipschitzians continuous mappings such

that (𝐼 − 𝐺) and (𝐼 − 𝑇) are both demiclosed at zero. Let
𝐿 = ‖𝐴𝐴

∗
‖, and let𝑀 and𝑀∗ be constants such that 𝜉(𝑘) ≤

𝜉(𝑀) +𝑀
∗
𝑘
2, ∀𝑘 ≥ 0. Assume that the solution set of SCFPP

(14) is nonempty, and let 𝑃
Γ
be a metric projection of 𝐻

1
onto

Γ satisfying ⟨𝑥
𝑛
− 𝑥
∗
, 𝑥
𝑛
− 𝑃
Γ
𝑥
𝑛
⟩ ≤ 0. Let the sequence {𝑥

𝑛
} be

defined as in Theorem 8 where the parameters 𝛼
𝑛
, 𝛾, {𝑘

𝑛
}, and

𝐿 satisfy the following conditions:

(a) 𝛼
𝑛
⊂ (0, 1), 𝛾 ∈ (0, 1/𝐿), where 𝐿 = max{𝐿

1
, 𝐿
2
};

(b) 𝑘
𝑛
= max{𝑘

𝑛1
, 𝑘
𝑛2
}.

Then the sequence {𝑥
𝑛
} defined as in Theorem 8 converges

strongly to 𝑥∗ ∈ Γ.

Proof. By Remark 2 𝐺 and 𝑇 are ({V
𝑛
}, {𝜇
𝑛
}, 𝜉)-total quasi-

asymptotically nonexpansive mappings with {V
𝑛
} = {𝑘

𝑛
− 1},

𝜇
𝑛
= 0, and 𝜉(𝑘) = 𝑘

2, ∀𝑘 ≥ 0. Therefore, all the conditions
in Theorem 8 are satisfied. The conclusions of this corollary
follow directly fromTheorem 8.

Corollary 10. Let 𝐻
1
, 𝐻
2
𝐴, and 𝐴∗ be as in Theorem 8. Let

𝐺 and 𝑇 be two quasi-nonexpansive and uniformly 𝐿
1
, 𝐿
2
-

Lipschitzian continuous mappings such that (𝐼−𝐺) and (𝐼−𝑇)
are both demiclosed at zero. Let 𝐿 = ‖𝐴𝐴∗‖, and let𝑀 and𝑀∗
be positive constants such that 𝜉(𝑘) ≤ 𝜉(𝑀) + 𝑀

∗
𝑘
2, ∀𝑘 ≥ 0.

Assume that the solution set of SCFPP (14) is nonempty, and
let 𝑃
Γ
be a metric projection of H onto Γ satisfying ⟨𝑥

𝑛
−

𝑥
∗
, 𝑥
𝑛
− 𝑃
Γ
𝑥
𝑛
⟩ ≤ 0. Let the sequence {𝑥

𝑛
} be defined as in

Theorem 8 where the parameters {𝛼
𝑛
}, 𝛾, and 𝐿, satisfy the

following conditions:

(a) {𝛼
𝑛
} ⊂ (0, 1), 𝛾 ∈ (0, 1/𝐿), where 𝐿 = max{𝐿

1
, 𝐿
2
}.

Then, the sequence {𝑥
𝑛
} defined as in (18) converges strongly to

𝑥
∗
∈ Γ.

Proof. By Remark 2 𝐺 and 𝑇 are ({1})-quasi-asymptotically
nonexpansive mappings. Therefore, all the conditions in
Corollary 9 are satisfied. The conclusions of this corollary
follow directly from Corollary 9.



Abstract and Applied Analysis 7

Now we give an example of our theorem.

Example 11. Let 𝐵 be a unit ball in a real Hilbert space 𝑙
2
, and

let 𝑇 : 𝐵 → 𝐵 be a mapping define by

𝑇 : (𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) 󳨀→ (0, 𝑥

2

1
, 𝑎
2
𝑥
2
, 𝑎
3
𝑥
3
, . . .) ,

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) ∈ 𝐵,

(48)

where {𝑎
𝑖
} is a sequence in (0, 1) such that∏∞

𝑖=2
(𝑎
𝑖
) = 1/2.

It is proved in Goebel and Kirk [13] that

(a) ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 2‖𝑥 − 𝑦‖,
(b) ‖𝑇𝑛𝑥−𝑇𝑛𝑦‖ ≤ 2∏𝑛

𝑖=2
(𝑎
𝑖
)‖𝑥−𝑦‖ ∀𝑥, 𝑦 ∈ 𝐵 and 𝑛 ≥ 2.

Let 𝑘1/2
1

= 2 such that 𝑘1/2
𝑛

= 2∏
𝑛

𝑖=2
(𝑎
𝑖
), for 𝑛 ≥ 2; then

lim
𝑛→∞

𝑘
𝑛
= lim
𝑛→∞

(2

𝑛

∏
𝑖=2

𝑎
𝑖
) = 1. (49)

Let V
𝑛
= 𝑘
𝑛
− 1, ∀𝑛 ≥ 1, let 𝜉(𝑡) = 𝑡

2, ∀𝑡 ≥ 0, let and {𝜇
𝑛
} be

a nonnegative real sequence such that 𝜇
𝑛
→ ∞ as 𝑛 → ∞.

From (a), (b) and ∀𝑥, 𝑦 ∈ 𝐵 and 𝑛 ≥ 1, we have

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

+ V
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

+ 𝜇
𝑛
. (50)

Again, since 0 ∈ 𝐵 and 0 ∈ Fix(𝑇), this implies that Fix(𝑇) ̸=

0. From the above equation, we have

󵄩󵄩󵄩󵄩𝑝 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑝 − 𝑦

󵄩󵄩󵄩󵄩
2

+ V
𝑛
𝜉 (
󵄩󵄩󵄩󵄩𝑝 − 𝑦

󵄩󵄩󵄩󵄩) + 𝜇𝑛. (51)

This show that 𝑇 is total quasi-asymptotically nonexpansive
mapping.

Example 12. Let 𝐻
1
= 𝐻
2
= 𝑙
2
be a real Hilbert spaces, 𝐶,𝑄

two unit balls in 𝑙
2
, and 𝑇 : 𝐶 → 𝐶, 𝐺 : 𝑄 → 𝑄 two

mappings defined by

𝑇 : (𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) 󳨀→ (0, 𝑥

2

1
, 𝑎
2
𝑥
2
, 𝑎
3
𝑥
3
, . . .) ,

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) ∈ 𝐶,

𝐺 : (𝑦
1
, 𝑦
2
, 𝑦
3
, . . .) 󳨀→ (0, 𝑦

2

1
, 𝑏
2
𝑦
2
, 𝑏
3
𝑦
3
, . . .) ,

(𝑦
1
, 𝑦
2
, 𝑦
3
, . . .) ∈ 𝑄,

(52)

such that (𝐼 − 𝑇) and (𝐼 − 𝐺) are both demiclosed at zero,
where {𝑎

𝑖
} and {𝑏

𝑖
} are sequences in (0, 1) such that∏∞

𝑖=2
(𝑎
𝑖
) =

∏
∞

𝑖=2
(𝑏
𝑖
) = 1/2. Let 𝐴, 𝐴∗, 𝑀, 𝑀∗𝜉(𝑘), and 𝑃

Γ
be as in

Theorem 8.And assume that conditions (a)–(b) inTheorem 8
are satisfied. Then, the sequence {𝑥

𝑛
} defined in Theorem 8

converges strongly to 𝑥∗ ∈ Γ.

Proof. By Example 11, it follows that 𝐺 and 𝑇 are both
({V
𝑛
}, {𝜇
𝑛
}, 𝜉)-total quasi-asymptotically nonexpansive map-

pings; moreover from Example 11 (b) we have that 𝐺 and 𝑇
are both uniformly 𝐿

1
, 𝐿
2
-Lipschitzian with 𝐿

1
= 2∏

𝑛

𝑖=2
(𝑎
𝑖
)

and 𝐿
2
= 2∏

𝑛

𝑖=2
(𝑏
𝑖
); also by our hypothesis (𝐼−𝐺) and (𝐼−𝑇)

are both demiclosed at zero. Therefore, all the conditions
in Theorem 8 are satisfied. Hence, the conclusions of this
corollary follow directly fromTheorem 8.
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