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The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous
fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform
technique. Graphical results to see the effects of Prandtl number Pr, time 𝑡, and slip parameter 𝜂 on velocity and skin friction
for the case of ramped and constant temperature of the plate are provided and discussed.

1. Introduction

Free convection flow occurs due to a buoyancy-induced
motion resulting from the body forces acting on density
gradients and is particularly important in atmospheric and
oceanic circulation, in the problems of heat rejection and
removal in many devices, in the design of spaceships and
filtration process. Siegel [1], in his pioneering work studied
the unsteady free convection flow past a semi-infinite vertical
plate with uniform temperature. However, many practical
problems usually require wall conditions which are nonuni-
form or arbitrary. In order to understand such problems it is
important to investigate problems subject to a step change in
the wall temperature. An early attempt was made by Schetz
[2] by developing an approximate analytical model. Later
Hayday et al. [3] used a numerical approach. Of these works,
Malhotra et al. [4] mentioned that in the fabrication of thin-
film photovoltaic devices ramped wall temperatures can be
employed to control the temperature uniformity of the sys-
tem. Periodic temperature step changes are also important in
building heat transfer applications, for example, in air condi-
tioning, where the conventional assumption of periodic out-
door conditions may lead to considerable errors in the case

of a significant temporary deviation of the temperature from
periodicity, as discussed by Antonopoulos and Democritou
[5]. Due to the aforementioned significance of step change
in the wall temperature Chandran et al. [6] presented an
analytical solution to the unsteady natural convection flow
of an incompressible viscous flow near a vertical plate with
ramped wall temperature. Seth et al. [7] elaborated the
unsteady hydromagnetic natural convection flow of a viscous
incompressible electrically conducting fluid with radiative
heat transfer near an impulsively moving vertical flat plate
embedded in a porous medium with ramped wall tempera-
ture. Narahari et al. [8] investigated mass transfer effects on
free convection flow past an infinite vertical plate subject to
discontinuous or nonuniform wall temperature conditions.

The above achievements aremade with the assumption of
no-slip condition between the wall and the fluid. The effects
of fluid slippage at the wall appear in many applications such
as in microchannels or nanochannels and in applications
where a thin film of light oil is attached to the moving plates
or when the surface is coated with special coatings such as
thickmonolayer of hydrophobic octadecyltrichlorosilane [9].
The fluid problem in the slip flow regime is very important
in the era of modern science, technology, and vast ranging
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industrialization. In view of such applications, Makinde and
Osausi [10] studied the combined effect of magnetic field
and permeable wall slip velocity on the steady flow of an
electrically conducting fluid in a channel of uniform width.
Makinde and Mhone [11] investigated the combined effect
of a transverse magnetic field and radiative heat transfer to
unsteady flow of a conducting optically thin fluid through
a channel filled with saturated porous medium and nonuni-
form walls temperature. Mehmood and Ali [12] extended the
work ofMakinde andMhone [11] by considering the fluid slip
at the lower wall. Few other attempts taking into account the
slip boundary condition are [13–16]. However, the literature
lacks studies that take into consideration the combined effect
of slippage and ramped temperature at the wall on the
unsteady free convection flow of a viscous incompressible
fluid near a vertical flat plate. This is the source of motivation
to study the influence of slip condition on the unsteady
free convection transient flow near a vertical flat plate with
ramped wall temperature.

2. Formulation of the Problem and Solution

Let us consider the flow of an incompressible viscous fluid
near an infinite vertical plate. The 𝑥-axis is taken along the
wall in the upward direction and 𝑦-axis is taken perpendic-
ular to it into the fluid. At the initial moment 𝑡 = 0, both
the plate and the fluid are at rest at a constant temperature
𝑇


∞
. At time 𝑡 = 0

+, the temperature of the plate is raised
or lowered to 𝑇

∞
+ (𝑇
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)(𝑡
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0
), and then, for 𝑡 > 𝑡

0
,

the temperature is maintained at the constant temperature
𝑇


𝑤
. In view of the above assumptions, as well as of the usual

Boussinesq’s approximation, the governing equations reduce
to those obtained by Chandran et al. [6, Equations (1) and
(2)]:
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where 𝑢, 𝑇, ], 𝜌, 𝑔, 𝛽, 𝑘, and 𝑐
𝑝
are, respectively, the velocity

in the 𝑥
 direction, temperature of the fluid, kinematic

viscosity, fluid density, acceleration due to gravity, volumetric
coefficient of thermal expansion, thermal conductivity, and
specific heat at constant pressure.
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(2)
Introducing the following dimensionless variables
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and dropping out the prime notation from 𝑢, 𝑦, and 𝑡, the
governing equations (1) take the simplified forms
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where Pr = 𝜌]𝑐
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/𝑘 is the Prandtl number. According to the

above nondimensionalisation process, the characteristic time
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In dimensionless form, the initial and boundary condi-
tions (2) become

𝑢 (𝑦, 0) = 0, 𝜃 (𝑦, 0) = 0 for 𝑦 ≥ 0,

𝑢 (0, 𝑡) − 𝜂
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(6)

where 𝜂 is the dimensionless slip parameter.
Equations (4) are a coupled linear system of equations,

which can be solved by the Laplace transform technique
subject to the initial and boundary conditions (6). The
solutions of energy and momentum equations are

𝜃 (𝑦, 𝑡) = 𝐹 (𝑦, 𝑡) − 𝐹 (𝑦, 𝑡 − 1)𝐻 (𝑡 − 1) , (7)
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Here, 𝑎 = 1/𝜂 is a constant and 𝐻(𝑡 − 1) is the unit step
function defined as

𝐻(𝑡 − 𝑎) = {
0 for 0 ≤ 𝑡 < 𝑎

1 for 𝑡 ≥ 𝑎.
(10)

It is important to note that (7) and (8), in the absence of
slip effect, reduce to those obtained by Chandran et al. [6,
Equations (1) and (2)].

2.1. Plate with Constant Temperature. In order to show
the effect of the ramped temperature distribution of the
boundary on the flow, it is necessary to compare such a flow
with the one near a plate with constant temperature. The

temperature and velocity variables for the flow near a plate
with constant temperature can be expressed as
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The corresponding Nusselt number and skin friction
which are, respectively, the measures of the rate of heat
transfer and shear stress at the plate can be determined by
considering (7) into
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Here
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3. Results and Discussion

The problem of heat transfer to unsteady flow of a viscous
incompressible fluid with ramped wall temperature and slip
condition at the wall is addressed in this study. Numerical
calculations have been carried out for the dimensionless
temperature 𝜃, velocity 𝑢, skin friction 𝜏, andNusselt number
Nu for the case of ramped and constant temperature of
the plate. The effects of pertinent parameters such as slip
parameter 𝜂, Prandtl number Pr, and time 𝑡 on ramped and
constant profiles of temperature 𝜃, velocity 𝑢, skin friction
𝜏, and Nusselt number Nu are shown graphically. Figure 1
depicts that the velocity in case of ramped temperature
plate decreases with increase of slip parameter for 𝑦 < 1

and increases for 𝑦 > 1. However, in Figure 2 velocity
in case of constant temperature plate is always increasing
due to increase in the values of 𝜂. In order to examine the
effect of ramped temperature against constant temperature
on the fluid velocity, we have plotted Figures 3 and 4. We
observe from Figure 3 that velocity in the case of ramped
temperature is always less than that of velocity in case of
constant temperature. This behaviour is in agreement with
the graphical results from [6, 7]. Furthermore, Figures 3
and 4 also elaborate the influence of Prandtl number Pr
and time 𝑡 on fluid velocity in case of ramped temperature
and constant temperature. It is observed that velocity is a
decreasing function of time. However, it is further noticed
that velocity near the plate is greater and is continuously
decreasing with increasing distance from the plate and finally
approaches to zero for large values of 𝑦. It is also observed
that the velocity of the fluid is greater for air (Pr = 0.71) than
that of water (Pr = 7.0). Figure 5 is prepared for the constant
velocity profile for different values of time 𝑡 when 𝜂 = 0.02

and Pr = 0.71. This figure clearly shows that when time is
zero, the velocity satisfies initial condition given in (6).
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Figure 1: Velocity profiles for different values of 𝜂 corresponding to
ramped temperature of the plate with 𝑡 = 0.9 (Pr = 0.71).
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Figure 2: Velocity profiles for different values of 𝜂 corresponding to
stepped temperature of the plate with 𝑡 = 0.9 (Pr = 0.71).
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Figure 3: Velocity profiles for different values of 𝑡 with 𝜂 = 0.8 and
Pr = 0.71.
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Figure 4: Velocity profiles for different values of 𝑡 with 𝜂 = 0.8 and
Pr = 7.0.
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Figure 5: Velocity profiles for different values of 𝑡.

Figures 6 and 7 illustrate the variations of temperature
profiles for different values of Pr and 𝑡. Two different values
of Pr such as Pr = 0.71 and 7.0 are chosen. It is depicted from
Figure 6 that temperature profiles decrease with increasing
values of Pr, both in the case of ramped and constant temper-
ature at the plate. It is observed that the thermal boundary
layer thickness is maximum near the plate and decreases
with increasing distance from the leading edge and finally
approaches zero. Furthermore, ramped temperature profiles
are found smaller than constant profiles of the temperature.
It is observed from Figure 7 that temperature increases with
an increase in time in the case of ramped as well as constant
temperature at the plate. From these graphs, it is clearly seen
that, for ramped wall temperature case, the temperature takes
the values of time at the plate boundary whereas its values is
one for all 𝑡 > 1. Hence these graphs show that temperature
profiles satisfy the imposed boundary conditions in (6).

The skin friction variations along time 𝑡 are shown in
Figures 8 and 9 for different values of slip parameter 𝜂.
Figure 8 shows that skin friction is decreasingwith increasing
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Figure 6: Temperature profiles for two different values of Pr.
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Figure 7: Temperature profiles for different values of 𝑡.
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Figure 8: Variations of skin friction 𝜏 along 𝑡 for different values of
𝜂 corresponding to ramped temperature of the plate with Pr = 0.71.
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𝜂 corresponding to stepped temperature of the plate with Pr = 0.71.

0 0.5 1 1.5 2
t

0

0.5

1

1.5

2

𝜏

𝜂 = 0.1

𝜂 = 0.2

𝜂 = 0.3

𝜂 = 0.4

Figure 10: Variations of skin friction 𝜏 along 𝑡 for different values of
𝜂 corresponding to ramped temperature of the plate with Pr = 7.0.

values of 𝜂 in case of ramped temperature of the plate, while,
in Figure 9, we observe that skin friction is increasing due
to increase in 𝜂 in case of constant temperature of the plate.
From the comparison of Figures 8 and 10 we deduce that
skin friction decreases due to the increase in Prandtl number
Pr in case of ramped temperature of the plate. Again from
the comparison of Figures 9 and 11, we conclude that skin
friction is decreasing due to the increasing values of Prandtl
number Pr in case of constant temperature of the plate. The
variation of Nusselt number is shown in Figures 12 and 13 for
different values of Pr. Figures 12 and 13 depict that Nusselt
number increases with increasing Pr, both in case of ramped
and constant temperatures of the plate. It is further noted
that Nusselt number for water (Pr = 7.0) is greater than
electrolytic solution (Pr = 1.0), air (Pr = 0.71), and mercury
(Pr = 0.015). Physically, it is justified due to the fact that
large values of Prandtl are responsible to decrease the thermal
conductivity and therefore heat diffusesmore slowly from the
plate than for smaller values of Pr. Hence the rate of heat
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Figure 11: Variations of skin friction 𝜏 along 𝑡 for different values of
𝜂 corresponding to stepped temperature of the plate with Pr = 7.0.
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Figure 12: Variations of Nusselt number Nu along 𝑡 for different
values of Pr corresponding to ramped temperature of the plate.

transfer is increased. This behavior is in a proper agreement
with the observations made in [6, Figure 6].

4. Conclusions

The influence of slip condition on free convection flow of
an incompressible viscous fluid past a vertical plate with
ramped wall temperature is investigated. Laplace transform
procedure is used for finding the exact solutions of the
problem. The expressions for velocity and temperature are
obtained in terms of the exponential and complementary
error functions. It is found that they satisfy all the imposed
initial and boundary conditions and as a special case can
be reduced to the similar solution existing in the literature.
The effects of different physical parameters such as slip
parameter 𝜂, Prandtl number Pr, and time 𝑡 on ramped and
constant profiles of temperature, velocity, skin friction, and
Nusselt number are studied graphically. It is observed that the
velocity increases with increasing slip parameter 𝜂, whereas



Abstract and Applied Analysis 7

0.5 1 1.5 2
t

0

1

2

3

4

5

6

N
u

Pr = 7.0
Pr = 1.0

Pr = 0.71
Pr = 0.015

Figure 13: Variations of Nusselt number Nu along 𝑡 for different
values of Pr corresponding to stepped temperature of the plate.

it decreases with increasing time. Temperature in case of air
is greater than water and decreases with increasing Pr and
𝑡. Skin friction increases when the temperature is constant
while it decreases for the ramped nature of temperature.
Nusselt number increases in both cases of constant and
ramped temperatures.
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