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This paper is concerned with the scattering problem of time-harmonic acoustic plane waves by an impenetrable obstacle buried
in a piecewise homogeneous medium. The so-called generalized impedance boundary condition is imposed on the boundary
of the obstacle. Firstly, the well posedness of the solution to the direct scattering problem is established by using the boundary
integral method. Then a uniqueness result for the inverse scattering problem is proved; that is, both of the obstacle’s shape and
the impedances (𝜇, 𝜆) can be uniquely determined from far field measurements. Furthermore, a mathematical basis is given to
reconstruct the shape of the obstacle by using a modified linear sampling method.

1. Introduction

This work is concerned with the scattering problem of time-
harmonic acoustic plane waves by an impenetrable obstacle
buried in a piecewise homogeneous medium. We set the
generalized impedance boundary condition (GIBC) on the
boundary of the obstacle and the transmission boundary
conditions on the surface of the layeredmedium.TheGIBC is
commonly used to model thin coatings or gratings as well as
more accurate models for imperfectly conducting obstacles.
Addressing this problem is motivated by applications in
nondestructive testing, medical imaging, remote sensing or
radar, and so on; at the same time the background may be
modeled as a layeredmedium. For simplicity, we just consider
that the unknown obstacle is embedded in a two-layered
medium, and the space is 𝑅2.

To be precise, let 𝐷
2

⊂ 𝑅
2 denote the impenetrable

obstacle which is a bounded domainwith a smooth boundary
𝑆
1
(e.g., 𝐶2). Assume that the unknown obstacle𝐷

2
is buried

in a penetrable obstacle 𝐷 with a closed 𝐶
2 surface 𝑆

0
such

that 𝐷
2
⊂ 𝐷. Denote by 𝐷

1
= 𝐷 \ 𝐷

2
a connected bounded

domain filled with homogeneous medium and denote by
𝐷
0
= 𝑅

2
\ 𝐷 the unbounded connected domain occupied

by another homogeneous medium. Let 𝑘
𝑙

= 𝜔
𝑙
/𝑐
𝑙

> 0

be the wave number in terms of the frequency 𝜔
𝑙
and the

sound speed 𝑐
𝑙
in the corresponding region 𝐷

𝑙
(𝑙 = 0, 1) (see

Figure 1).
The scattering of time-harmonic acoustic plane waves by

an obstacle with GIBC in a piecewise homogeneous medium
in 𝑅

2 can be modeled by the Helmholtz equation with
boundary conditions on the boundary 𝑆

1
and interface 𝑆

0
:

Δ𝑢 + 𝑘
2

0
𝑢 = 0, in 𝐷

0
,

ΔV + 𝑘
2

1
V = 0, in 𝐷

1
,

𝑢
+
− V

−
= 0, on 𝑆

0
,

𝜕𝑢
+

𝜕]
− 𝜆

0

𝜕V
−

𝜕]
= 0, on 𝑆

0
,

𝜕V
𝜕]

+ div
𝑆
1

(𝜇∇
𝑆
1

V) + 𝜆V = 0, on 𝑆
1
.

(1)

Here ] is the unit outward normal vector on the boundary
𝑆
0
or 𝑆

1
; 𝑢

+
, (𝜕𝑢

+
/𝜕])(V

−
, 𝜕V

−
/𝜕]) denote the limit of 𝑢,

(𝜕𝑢/𝜕])(V, 𝜕V/𝜕]) on the boundary 𝑆
0
from the exterior

(interior) of𝐷.
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Figure 1: Multilayered scattering problem.

Remark 1. In the following discussion, we use “(⋅)
±
” or “(⋅)±”

to denote the limit approaching the boundary from outside
and inside to the corresponding domain, respectively.

The constant surface impedance on 𝑆
0
is supposed 𝜆

0
> 0

which is given by 𝜆
0
= 𝜌

0
/𝜌

1
in terms of the density 𝜌

𝑙
in the

corresponding region 𝐷
𝑙
(𝑙 = 0, 1). On the boundary 𝑆

1
, the

impedances 𝜇 ∈ 𝐶
1
(𝑆

1
) and 𝜆 ∈ 𝐶(𝑆

1
) are complex-valued

functions satisfying Im(𝜇) ≤ 0 and Im(𝜆) ≥ 0. The surface
divergence div

𝑆
1

and the surface gradient ∇
𝑆
1

are precisely
defined in Chapter 5 of [1]. In the two-dimensional case,
the inhomogeneous Laplace-Beltrami differential operator
becomes div

𝑆
1

(𝜇∇
𝑆
1

V) = (𝑑/𝑑𝑠)𝜇(𝑑V/𝑑𝑠), where 𝑑/𝑑𝑠 is the
tangential derivative and 𝑠 is the arc length.

The total field 𝑢 = 𝑢
𝑠
+ 𝑢

𝑖 is decomposed into the given
incident field 𝑢

𝑖
= 𝑒

𝑖𝑘
0
𝑥⋅𝑑, 𝑑 ∈ S1, (the unit sphere in 𝑅

2) and
the unknown scattered field 𝑢𝑠 which is required to satisfy the
Sommerfeld radiation condition [2]

lim
𝑟→∞

√𝑟(
𝜕𝑢

𝑠

𝜕𝑟
− 𝑖𝑘

0
𝑢
𝑠
) = 0 (2)

uniformly in 𝑥 = 𝑥/|𝑥| with 𝑟 = |𝑥|. Further it is known
that the scattered field 𝑢

𝑠
(𝑥, 𝑑) has the following asymptotic

representation:

𝑢
𝑠
(𝑥, 𝑑) =

𝑒
𝑖𝑘
0
|𝑥|

√|𝑥|
{𝑢

∞
(𝑥, 𝑑) + 𝑂(

1

|𝑥|
)}

as |𝑥| 󳨀→ ∞

(3)

uniformly for all directions 𝑥, where the function 𝑢
∞
(𝑥, 𝑑)

defined on the unit sphere S1 is known as the far field pattern
with 𝑥 and 𝑑 denoting, respectively, the observation direction
and the incident direction.

The direct problem is to seek functions 𝑢 ∈ 𝐻
1

loc(𝐷0
)

and V ∈ 𝐻
1
(𝐷

1
) satisfying (1) and (2). In the next section,

more general direct problem (4) will be considered. If the
impenetrable obstacle𝐷

2
with GIBC is set in a homogeneous

medium, it was shown in [3] that there exists a unique
solution for the case when the data ℎ ∈ 𝐻

−1
(𝑆

1
) by the

variational method; but for the case when ℎ belongs to
𝐻

−3/2
(𝑆

1
), this method is no longer valid and the difficulty

has been resolved in [4] by the integral equation method
with the help of the modified Green function technique in
[5]. More related works can be found in [6, 7]. In this paper

we will employ the integral equation method to solve direct
problem (4) in some Sobolev spaces.Themain challenge is to
derive a suitable boundary integral system and show that the
corresponding boundary integral operators are Fredholm of
index zero.

The inverse problem we consider in this paper is to
determine the shape of the obstacle 𝐷

2
and (𝜇, 𝜆) from the

knowledge of the far field pattern 𝑢
∞
(𝑥, 𝑑) for all 𝑥, 𝑑 ∈ S1

with the given wave number 𝑘
𝑙
(𝑙 = 0, 1) and the positive

constant 𝜆
0
.

As usual in most of the inverse problems, the first issue
is the uniqueness, that is, in what conditions, the shape of the
obstacle𝐷

2
(or the parameters such as (𝜇, 𝜆)) can be uniquely

determined by the far field pattern. Through establishing a
mixed reciprocity relation, we obtain a uniqueness result in
Section 3 (see [6–11] and the references therein).

We solve the above-mentioned inverse problem by using
the linear sampling method which was discussed early in
1996 by Colton and Kirsch [12]. The linear sampling method
has been developed greatly and applied to solve a variety of
inverse problems; we can refer to [13, 14] and the references
therein. Some other methods also can be used to reconstruct
the buried obstacle, for example, the reciprocity gap func-
tional method [15, 16] and the Newton iteration method [17].

The remaining part of the paper is organized as follows.
In the next section, we will use integral equation method to
solve direct scattering problem (4) based on Fredholm theory.
In Section 3, we give a uniqueness result, that is, both of
the obstacle 𝐷

2
and the impedances (𝜇, 𝜆) can be uniquely

determined from far field measurements. In Section 4, a
mathematical basis is given to reconstruct the shape of the
obstacle𝐷

2
by using a modified linear sampling method.

2. The Direct Scattering Problem

In this section, we will establish the well posedness of the
direct scattering problem by employing the integral equation
method. Let us consider a more general direct scattering
problem: Given the transmission boundary conditions 𝑓 ∈

𝐻
1/2

(𝑆
0
), 𝑔 ∈ 𝐻

−1/2
(𝑆

0
) and a general boundary data ℎ ∈

𝐻
−3/2

(𝑆
1
), find 𝑢 ∈ 𝐻

1

loc(𝐷0
) and V ∈ 𝐻

1
(𝐷

1
) such that

Δ𝑢 + 𝑘
2

0
𝑢 = 0, in 𝐷

0
,

ΔV + 𝑘
2

1
V = 0, in 𝐷

1
,

𝑢
+
− V

−
= 𝑓, on 𝑆

0
,

𝜕𝑢
+

𝜕]
− 𝜆

0

𝜕V
−

𝜕]
= 𝑔, on 𝑆

0
,

𝜕V
𝜕]

+ div
𝑆
1

(𝜇∇
𝑆
1

V) + 𝜆V = ℎ, on 𝑆
1
,

lim
𝑟→∞

√𝑟(
𝜕𝑢

𝜕𝑟
− 𝑖𝑘

0
𝑢) = 0, 𝑟 = |𝑥| .

(4)

Remark 2. Direct scattering problem (1) and (2) is a special
case of problem (4) by taking 𝑢 = 𝑢

𝑠, 𝑓 = −𝑢
𝑖, 𝑔 = −𝜕𝑢

𝑖
/𝜕],

and ℎ = 0.
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Lemma 3. Suppose that 𝑘 > 0, 𝜆
0

> 0, Im(𝜇) ≤ 0, and
Im(𝜆) ≥ 0; then problem (4) has at most one solution.

Proof. Clearly, it is sufficient to show that 𝑢 = 0 in 𝐷
0
and

V = 0 in𝐷
1
if 𝑓 = 𝑔 = 0 on 𝑆

0
and ℎ = 0 on 𝑆

1
. Denote by 𝐵

𝑅

a circle large enough with radius 𝑅 such that 𝐷 is contained
in its interior. From Green’s theorem, we obtain

∫
𝜕𝐵
𝑅

𝑢
𝜕𝑢

𝜕]
𝑑𝑠 = ∫

𝐵
𝑅
\𝐷

[|∇𝑢|
2
− 𝑘

2
|𝑢|

2
] 𝑑𝑥 + ∫

𝑆
0

𝑢
𝜕𝑢

𝜕]
𝑑𝑠 (5)

in the domain 𝐵
𝑅
\ 𝐷 and

∫
𝑆
0

V
𝜕V
𝜕]

𝑑𝑠 = ∫
𝐷
1

[|∇V|2 − 𝑘
2
|V|2] 𝑑𝑥 + ∫

𝑆
1

V
𝜕V
𝜕]

𝑑𝑠 (6)

in the domain 𝐷
1
. By the boundary conditions of (4), we

conclude from the above two equations that

∫
𝜕𝐵
𝑅

𝑢
𝜕𝑢

𝜕]
𝑑𝑠 = ∫

𝐵
𝑅
\𝐷

[|∇𝑢|
2
− 𝑘

2
|𝑢|

2
] 𝑑𝑥

+ 𝜆
0
∫
𝐷
1

[|∇V|2 − 𝑘
2
|V|2] 𝑑𝑥

+ 𝜆
0
∫
𝑆
1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑V
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 − 𝜆
0
∫
𝑆
1

𝜆 |V|2 𝑑𝑠.

(7)

Since 𝑘 > 0, 𝜆
0
> 0, Im(𝜇) ≤ 0, and Im(𝜆) ≥ 0, it follows that

Im(∫
𝜕𝐵
𝑅

𝑢
𝜕𝑢

𝜕]
𝑑𝑠) = 𝜆

0
Im(∫

𝑆
1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑢

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠)

− 𝜆
0
Im(∫

𝑆
1

𝜆 |𝑢|
2
𝑑𝑠) ≥ 0.

(8)

Rellich’s lemma [2] shows that 𝑢 = 0 in 𝑅
2
\ 𝐵

𝑅
and it

follows by the unique continuation principle [2] that 𝑢 = 0 in
𝐷
0
. The transmission boundary conditions and Holmgren’s

uniqueness theorem [18] imply that V = 0 in 𝐷
1
. Then we

complete the proof of this lemma.

In order to establish the existence of the solution to
problem (4), we construct a solution to problem (4) in the
form of combined single- and double-layer potentials as
follows:

𝑢 (𝑥) = 𝜆
0
∫
𝑆
0

Φ
0
(𝑥, 𝑦) 𝜑 (𝑦) 𝑑𝑠 (𝑦)

+ ∫
𝑆
0

𝜕Φ
0
(𝑥, 𝑦)

𝜕] (𝑦)
𝜓 (𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝐷

0
,

V (𝑥) = ∫
𝑆
1

Φ
1
(𝑥, 𝑦) 𝜂 (𝑦) 𝑑𝑠 (𝑦)

− ∫
𝑆
0

Φ
1
(𝑥, 𝑦) 𝜑 (𝑦) 𝑑𝑠 (𝑦)

− ∫
𝑆
0

𝜕Φ
1
(𝑥, 𝑦)

𝜕] (𝑦)
𝜓 (𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝐷

1
,

(9)

where 𝜑 ∈ 𝐻
−1/2

(𝑆
0
),𝜓 ∈ 𝐻

1/2
(𝑆

0
), and 𝜂 ∈ 𝐻

−1/2
(𝑆

1
) are the

unknown densities and

Φ
𝑙
:=

𝑖

4
𝐻

(1)

0
(𝑘

𝑙

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨) , 𝑥 ̸= 𝑦, (10)

𝑙 = 0, 1, is the fundamental solution of the Helmholtz
equation in 𝑅

2.

Remark 4. Based on the method proposed in [19] for the
transmission problem and in [4] for the obstacle scattering
with GIBC, we choose the solution as the form of (9). As the
authors in [4] point out that the obtained integral equation
fails to be uniquely solvable if the irregular frequencies occur.
In order to exclude the irregular frequencies, we make the
following assumption.

Assumption A. 𝑘2
1
is not a Dirichlet eigenvalue of −Δ operator

in the domain 𝐷
2
which can guarantee the well posedness of

the direct problem.

For further consideration, we define the single- and
double-layer operators 𝑆

𝑖𝑗.𝑙
and𝐾

𝑖𝑗.𝑙
, respectively, by

(𝑆
𝑖𝑗.𝑙
𝜑) (𝑥) := ∫

𝑆
𝑖

𝜑 (𝑦)Φ
𝑙
(𝑥, 𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝑆

𝑗
,

(𝐾
𝑖𝑗.𝑙
𝜑) (𝑥) := ∫

𝑆
𝑖

𝜑 (𝑦)
Φ
𝑙
(𝑥, 𝑦)

𝜕] (𝑦)
𝑑𝑠 (𝑦) , 𝑥 ∈ 𝑆

𝑗

(11)

and the normal derivative operators𝐾󸀠

𝑖𝑗.𝑙
and 𝑇

𝑖𝑗.𝑙
by

(𝐾
󸀠

𝑖𝑗.𝑙
𝜑) (𝑥) := ∫

𝑆
𝑖

𝜑 (𝑦)
𝜕Φ

𝑙
(𝑥, 𝑦)

𝜕] (𝑥)
𝑑𝑠 (𝑦) , 𝑥 ∈ 𝑆

𝑗
,

(𝑇
𝑖𝑗.𝑙
𝜑) (𝑥) :=

𝜕

𝜕] (𝑥)
∫
𝑆
𝑖

𝜑 (𝑦)
𝜕Φ

𝑙
(𝑥, 𝑦)

𝜕] (𝑦)
𝑑𝑠 (𝑦) ,

𝑥 ∈ 𝑆
𝑗
,

(12)

with 𝑖, 𝑗, 𝑙 = 0, 1. Referring to [20], we have mapping
properties

𝑆
𝑖𝑗.𝑙

: 𝐻
−1/2+𝑠

(𝑆
𝑖
) 󳨀→ 𝐻

1/2+𝑠
(𝑆

𝑗
) ,

𝐾
𝑖𝑗.𝑙

: 𝐻
1/2+𝑠

(𝑆
𝑖
) 󳨀→ 𝐻

1/2+𝑠
(𝑆

𝑗
) ,

𝐾
󸀠

𝑖𝑗.𝑙
: 𝐻

−1/2+𝑠
(𝑆

𝑖
) 󳨀→ 𝐻

−1/2+𝑠
(𝑆

𝑗
) ,

𝑇
𝑖𝑗.𝑙

: 𝐻
1/2+𝑠

(𝑆
𝑖
) 󳨀→ 𝐻

−1/2+𝑠
(𝑆

𝑗
) ,

(13)

for 𝑖, 𝑗, 𝑙 = 0, 1 and −1 ≤ 𝑠 ≤ 1.
Now we try to establish an integral system by employing

the boundary integral equation approach. According to the
presentation of the solution in the form of (9) and by making
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use of the known jump relations of single- and double-layer
potentials [19], we have that on the interface 𝑆

0

(𝑢
+
− V

−
)
󵄨󵄨󵄨󵄨𝑆
0

= (𝜆
0
𝑆
00.0

+ 𝑆
00.1

) 𝜑

+ (𝐾
00.0

+ 𝐾
00.1

) 𝜓 − 𝑆
10.1

𝜂,

(
𝜕𝑢

+

𝜕]
− 𝜆

0

𝜕V
−

𝜕]
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
0

= 𝜆
0
(𝐾

󸀠

00.0
+ 𝐾

󸀠

00.1
) 𝜑

+ (𝑇
00.0

+ 𝜆
0
𝑇
00.1

) 𝜓

− 𝜆
0
𝐾
󸀠

10.1
𝜂.

(14)

On the boundary 𝑆
1
, we obtain that

(
𝜕V
𝜕]

+ div
𝑆
1

(𝜇∇
𝑆
1

V) + 𝜆V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
1

=
𝑑

𝑑𝑠
𝜇
𝑑

𝑑𝑠
𝑆
11.1

𝜂 −
1

2
𝜂 + 𝐾

󸀠

11.1
𝜂 + 𝜆𝑆

11.1
𝜂

−
𝑑

𝑑𝑠
𝜇
𝑑

𝑑𝑠
𝑆
01.1

𝜑 − 𝐾
󸀠

01.1
𝜑 − 𝜆𝑆

01.1
𝜑

−
𝑑

𝑑𝑠
𝜇
𝑑

𝑑𝑠
𝐾
01.1

𝜓 − 𝑇
01.1

𝜓 − 𝜆𝐾
01.1

𝜓.

(15)

Define bounded linear operators 𝐴
11
, 𝐵

11
: 𝐻

−1/2
(𝑆

1
) →

𝐻
−3/2

(𝑆
1
) by

𝐴
11.1

𝜂 := 𝜇
𝑑
2

𝑑𝑠2
𝑆
11.1

𝜂 + 𝜇∫
𝑆
1

𝑆
11.1

𝜂 𝑑𝑠,

𝐵
11
𝜂 :=

𝑑𝜇

𝑑𝑠

𝑑

𝑑𝑠
𝑆
11.1

𝜂 −
1

2
𝜂 + 𝐾

󸀠

11.1
𝜂 + 𝜆𝑆

11.1
𝜂

− 𝜇∫
𝑆
1

𝑆
11.1

𝜂 𝑑𝑠.

(16)

Let

𝑀 =
𝑑

𝑑𝑠
𝜇
𝑑

𝑑𝑠
𝑆
01.1

𝜑 + 𝐾
󸀠

01.1
𝜑 + 𝜆𝑆

01.1
𝜑,

𝑁 =
𝑑

𝑑𝑠
𝜇
𝑑

𝑑𝑠
𝐾
01.1

𝜓 + 𝑇
01.1

𝜓 + 𝜆𝐾
01.1

𝜓,

𝜔 = (

𝜑

𝜓

𝜂

) ,

𝑅 = (

𝑓

−
𝑔

𝜆
0

ℎ

) ,

𝐴

= (

𝜆
0
𝑆
00.0

+ 𝑆
00.1

𝐾
00.0

+ 𝐾
00.1

−𝑆
10.1

−𝐾
󸀠

00.0
− 𝐾

󸀠

00.1
−

1

𝜆
0

𝑇
00.0

− 𝑇
00.1

𝐾
󸀠

10.1

−𝑀 −𝑁 𝐴
11

+ 𝐵
11

).

(17)

Then the potential functions defined by (9) solve problem
(4) provided the unknown densities 𝜑, 𝜓, and 𝜂 solve the
following boundary integral system:

𝐴𝜔 = 𝑅. (18)

Defining the Sobolev spaces

𝐻 = 𝐻
−1/2

(𝑆
0
) × 𝐻

1/2
(𝑆

0
) × 𝐻

−1/2
(𝑆

1
) ,

𝑊 = 𝐻
1/2

(𝑆
0
) × 𝐻

−1/2
(𝑆

0
) × 𝐻

−3/2
(𝑆

1
) ,

(19)

it is easy to see that the matrix operator 𝐴 maps 𝐻 continu-
ously into𝑊.

Based on the following two lemmas, we show the solvabil-
ity of (18) by using the Fredholm theory.

Lemma5. Theoperator𝐴 given by (18) is Fredholmwith index
zero.

Proof. From [20], the operators 𝑆
00.0

, 𝑆
00.1

, −𝑇
00.0

, and −𝑇
00.1

are positive and bounded up to a compact perturbation,
respectively; we denote by 𝐿

0
, 𝐿

1
, 𝐽

0
, and 𝐽

1
the compact

operators

𝐿
𝑙
: 𝐻

−1/2
(𝑆

0
) 󳨀→ 𝐻

1/2
(𝑆

0
) ;

𝐽
𝑙
: 𝐻

1/2
(𝑆

0
) 󳨀→ 𝐻

−1/2
(𝑆

0
) ,

𝑙 = 0, 1

(20)

such that

Re (⟨(𝑆
00.𝑙

+ 𝐿
𝑙
) 𝜑, 𝜑⟩) ≥ 𝐶

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

𝐻
−1/2

(𝑆
0
)
,

for 𝜑 ∈ 𝐻
−1/2

(𝑆
0
) ,

Re (⟨− (𝑇
00.𝑙

+ 𝐽
𝑙
) 𝜓, 𝜓⟩) ≥ 𝐶

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

𝐻
1/2
(𝑆
0
)
,

for 𝜓 ∈ 𝐻
1/2

(𝑆
0
) ,

(21)

where ⟨ , ⟩ denotes the duality between 𝐻
−1/2

(𝑆
0
) and

𝐻
1/2

(𝑆
0
).

Let 𝐾 and 𝐾
󸀠 be the operators defined as 𝐾

00.0
and 𝐾

󸀠

00.0
,

respectively, with kernel Φ
0
(𝑥, 𝑦) replaced by Φ(𝑥, 𝑦) =

−(1/2𝜋) ln |𝑥 − 𝑦|. Then 𝐾
𝑙𝑐

= 𝐾
00.𝑙

− 𝐾 and 𝐾
󸀠

𝑙𝑐
= 𝐾

󸀠

00.𝑙
−

𝐾
󸀠
(𝑙 = 0, 1) are compact since they have continuous kernels.

It is easy to show that𝐾 and𝐾
󸀠 are adjoint since their kernels

are real; that is,

(𝐾𝜓, 𝜙) = (𝜓,𝐾
󸀠
𝜙)

for 𝜓 ∈ 𝐻
1/2

(𝑆
0
) , 𝜙 ∈ 𝐻

−1/2
(𝑆

0
) .

(22)
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Now, we decompose 𝐴 into two parts; that is,

𝐴 = (

𝜆
0
𝑆
0
+ 𝑆

1
2𝐾 0

−2𝐾
󸀠

−
1

𝜆
0

𝑇
0
− 𝑇

1
0

0 0 𝐴
11

)

+(

−𝜆
0
𝐿
0
− 𝐿

1
𝐾
0𝑐
+ 𝐾

1𝑐
−𝑆

10.1

−𝐾
󸀠

0𝑐
− 𝐾

󸀠

1𝑐

1

𝜆
0

𝐽
0
+ 𝐽

1
𝐾
󸀠

10.1

−𝑀 −𝑁 𝐵
11

)

:= 𝐴
0
+ 𝐴

𝑐
,

(23)

where 𝑆𝑙 = 𝑆
00.𝑙

+𝐿
𝑙
, 𝑇𝑙

= 𝑇
00.𝑙

+ 𝐽
𝑙
for (𝑙 = 0, 1). Consider the

following sesquilinear form for (𝜑, 𝜓)⊤ ∈ 𝑈 := 𝐻
−1/2

(𝑆
0
) ×

𝐻
1/2

(𝑆
0
):

⟨(

𝜆
0
𝑆
0
+ 𝑆

1
2𝐾

−2𝐾
󸀠

−
1

𝜆
0

𝑇
0
− 𝑇

1
)(

𝜑

𝜓
) ,(

𝜑

𝜓
)⟩

𝑈
∗
,𝑈

= 𝜆
0
(𝑆

0
𝜑, 𝜑) + (𝑆

1
𝜑, 𝜑) +

1

𝜆
0

(−𝑇
0
𝜓, 𝜓)

+ (−𝑇
1
𝜓, 𝜓) + 2 (𝐾𝜓, 𝜑) − 2 (𝐾

󸀠
𝜑, 𝜓) ,

(24)

where 𝑈∗ is the dual space of 𝑈 and (⋅, ⋅) denotes the scalar
product on 𝐿

2
(𝑆

0
). Due to the coercivity of 𝑆

𝑙 and −𝑇
𝑙,

the adjoint between 𝐾 and 𝐾
󸀠, we obtain that the above

sesquilinear form is coercive; that is,

Re⟨(

𝜆
0
𝑆
0
+ 𝑆

1
2𝐾

−2𝐾
󸀠

−
1

𝜆
0

𝑇
0
− 𝑇

1
)(

𝜑

𝜓
) ,

(
𝜑

𝜓
)⟩

𝑈
∗
,𝑈

≥ 𝐶 (
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩H−1/2(𝑆
0
)
+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻1/2(𝑆
0
)
) .

(25)

Whence the operator

(

𝜆
0
𝑆
0
+ 𝑆

1
2𝐾

−2𝐾
󸀠

−
1

𝜆
0

𝑇
0
− 𝑇

1
) : 𝑈 󳨀→ 𝑈

∗ (26)

is invertible. On the other hand, by our Assumption A, it can
be seen that 𝐴

11
: 𝐻

−1/2
(𝑆

1
) → 𝐻

−3/2
(𝑆

1
) is invertible (see

Lemma 2.1 in [21]). So the operator 𝐴
0
is invertible.

The entries 𝑆
10.1

, 𝐾󸀠

10.1
, 𝑀, and 𝑁 have continuous ker-

nels, which means that they are compact operators. Due to
the compact embedding theorem and themapping properties
of 𝑆

11.1
and 𝐾

󸀠

11.1
, the entry 𝐵

11
is compact. As stated above,

the other entries are also compact. We conclude that 𝐴
𝑐
is

compact. So we complete the proof of this lemma.

Lemma 6. The operator 𝐴 given by (18) has a trivial kernel.

Proof. Let 𝜉 = (𝛼, 𝛽, 𝛿)
⊤
∈ 𝐻 satisfying 𝐴𝜉 = 0. Define two

potentials

𝑞 (𝑥) = 𝜆
0
∫
𝑆
0

Φ
0
(𝑥, 𝑦) 𝛼 (𝑦) 𝑑𝑠 (𝑦)

+ ∫
𝑆
0

𝜕Φ
0
(𝑥, 𝑦)

𝜕] (𝑦)
𝛽 (𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝐷,

(27)

𝑞 (𝑥) = ∫
𝑆
1

Φ
1
(𝑥, 𝑦) 𝛿 (𝑦) 𝑑𝑠 (𝑦)

− ∫
𝑆
0

Φ
1
(𝑥, 𝑦) 𝛼 (𝑦) 𝑑𝑠 (𝑦)

− ∫
𝑆
0

𝜕Φ
1
(𝑥, 𝑦)

𝜕] (𝑦)
𝛽 (𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝐷

0
.

(28)

Using the jump relations of the single- and double-layer
potentials across 𝑆

0
, we have

(𝑞
−
− 𝑞

+
)
󵄨󵄨󵄨󵄨𝑆
0

= (𝜆
0
𝑆
00.0

+ 𝑆
00.1

) 𝛼

+ (𝐾
00.0

+ 𝐾
00.1

) 𝛽 − 𝑆
10.1

𝜂,

(
𝜕𝑞

−

𝜕]
− 𝜆

0

𝜕𝑞
+

𝜕]
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
0

= 𝜆
0
(𝐾

󸀠

00.0
+ 𝐾

󸀠

00.1
) 𝛼

+ (𝑇
00.0

+ 𝜆
0
𝑇
00.1

) 𝛽

− 𝜆
0
𝐾
󸀠

10.1
𝛿.

(29)

Since 𝐴𝜉 = 0, it is easy to check that the potentials defined in
(27) and (28) satisfy

Δ𝑞 + 𝑘
2

1
𝑞 = 0, in 𝐷

0
,

Δ𝑞 + 𝑘
2

0
𝑞 = 0, in 𝐷,

𝑞
+
− 𝑞

−
= 0, on 𝑆

0
,

𝜆
0

𝜕𝑞
+

𝜕]
−
𝜕𝑞

−

𝜕]
= 0, on 𝑆

0
,

lim
𝑟→∞

√𝑟(
𝜕𝑞

𝜕𝑟
− 𝑖𝑘

1
𝑞) = 0, 𝑟 = |𝑥| .

(30)

We can show that problem (30) has only trivial solution (see
[2]).

Using the same (𝛼, 𝛽, 𝛿)⊤, define two new potentials

𝑝 (𝑥) = 𝜆
0
∫
𝑆
0

Φ
0
(𝑥, 𝑦) 𝛼 (𝑦) 𝑑𝑠 (𝑦)

+ ∫
𝑆
0

𝜕Φ
0
(𝑥, 𝑦)

𝜕] (𝑦)
𝛽 (𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝐷

0
,



6 Journal of Applied Mathematics

𝑝 (𝑥) = ∫
𝑆
1

Φ
1
(𝑥, 𝑦) 𝛿 (𝑦) 𝑑𝑠 (𝑦)

− ∫
𝑆
0

Φ
1
(𝑥, 𝑦) 𝛼 (𝑦) 𝑑𝑠 (𝑦)

− ∫
𝑆
0

𝜕Φ
1
(𝑥, 𝑦)

𝜕] (𝑦)
𝛽 (𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ 𝐷

1
.

(31)

Then we can prove that 𝑝 satisfies problem (4) with homo-
geneous boundary conditions. Lemma 3 shows that 𝑝 = 0.
Thus again by the jump relations of the single- and double-
layer potentials across 𝑆

0
we have

𝛽 = (𝑝
+
− 𝑞

−
)
󵄨󵄨󵄨󵄨𝑆
0

= 0,

𝜆
0
𝛼 = (

𝜕𝑞
−

𝜕]
−
𝜕𝑝

+

𝜕]
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
0

= 0.

(32)

At this time, the potential given by (28) becomes

𝑞 (𝑥) = ∫
𝑆
1

Φ
1
(𝑥, 𝑦) 𝛿 (𝑦) 𝑑𝑠 (𝑦) , (33)

and note that 𝑞 = 0 on 𝑆
1
because of the trivial solution of

(30); we conclude that 𝑞 satisfies the Helmholtz equation in
𝐷
2
with homogeneous Dirichlet boundary condition if we let

𝑥 ∈ 𝐷
2
. By ourAssumption A, 𝑘2

1
is not a Dirichlet eigenvalue

in 𝐷
2
, which implies that 𝑞 = 0 in 𝐷

2
. Therefore, the jump

relation across 𝑆
1
shows that

𝛿 = (
𝜕𝑞

−

𝜕]
−
𝜕𝑝

+

𝜕]
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
1

= 0. (34)

Then we complete the proof of this lemma.

By Fredholm theory, the above two lemmas show that the
matrix operator 𝐴 given by (18) has a bounded inverse; as a
consequence, we have the following.

Theorem 7. Under Assumption A, integral system (18) has a
unique solution, and problem (4) has a unique solution given
by (9) which satisfies

‖𝑢‖𝐻1loc(𝐷0)
+ ‖V‖𝐻1(𝐷

1
)

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻1/2(𝑆
0
)
+
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝐻−1/2(𝑆
0
)
+ ‖ℎ‖

𝐻
−3/2

(𝑆
1
)
) .

(35)

3. A Uniqueness Result of the Inverse Problem

As usual in most of the inverse problems, the first question
to ask is the identifiability, that is, whether the scatterer 𝐷

2

and (𝜇, 𝜆) can be identified from a knowledge of the far field
pattern. Mathematically, the identifiability is the uniqueness
issue which is of theoretical interest and is required in order
to proceed to efficient numerical methods of solutions.

Let us go back to scattering problem (1) and (2). The
incident wave has two choices: the incident planewave 𝑢𝑖(⋅, 𝑑)
(i.e., 𝑢𝑖(𝑥, 𝑑) = 𝑒

𝑖𝑘𝑥⋅𝑑) and the incident point source Φ(⋅, 𝑧).

(1) To the incident plane wave 𝑢
𝑖
(⋅, 𝑑), we use 𝑢

𝑠
(⋅, 𝑑)

and 𝑢
∞
(⋅, 𝑑) to denote the scattered field and the

corresponding far field pattern, respectively.
(2) To the incident point source Φ(⋅, 𝑧), we use 𝑢

𝑠
(⋅, 𝑧)

and Φ
∞
(⋅, 𝑧) to denote the scattered field and the

corresponding far field pattern, respectively.

The uniqueness result is based on the following mixed
reciprocity relation.

Lemma 8. For the scattering of plane waves 𝑢𝑖(⋅, 𝑑) with 𝑑 ∈

S1 and point sources Φ
0
(⋅, 𝑧), we have

Φ
∞

0
(𝑥, 𝑧)

=
{

{

{

𝛾𝑢
𝑠
(𝑧, −𝑥) 𝑧 ∈ 𝐷

0
, 𝑥 ∈ S1

,

𝜆
0
𝛾𝑢

𝑠
(𝑧, −𝑥) + (𝜆

0
− 1) 𝛾𝑢

𝑖
(𝑧, −𝑥) 𝑧 ∈ 𝐷

1
, 𝑥 ∈ S1

,

(36)

where 𝛾 = 𝑒
𝑖𝜋/4

/√8𝑘
0
𝜋.

Remark 9. The mixed reciprocity relation has been estab-
lished in the case of obstacle scattering problem [7, 11, 18];
here we extend the result to the scattering problem by an
obstacle with GIBC buried in a piecewise homogeneous
medium.

Proof. We consider the case 𝑧 ∈ 𝐷
0
firstly. By Green’s second

theorem and the Sommerfeld radiation condition we have
that

∫
𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑧)

𝜕𝑢
𝑠

+
(𝑦, 𝑑)

𝜕] (𝑦)

−
𝜕𝑢

𝑠

+
(𝑦, 𝑧)

𝜕] (𝑦)
𝑢
𝑠

+
(𝑦, 𝑑)) 𝑑𝑠 (𝑦) = 0

(37)

for 𝑧 ∈ 𝐷
0
, 𝑑 ∈ S1. By the boundary conditions and Green’s

second theorem, the total fields 𝑢(⋅, 𝑑) = 𝑢
𝑠
(⋅, 𝑑) +𝑢

𝑖
(⋅, 𝑑) and

𝑢(⋅, 𝑧) = 𝑢
𝑠
(⋅, 𝑧) + Φ(⋅, 𝑧) satisfy

∫
𝑆
0

(𝑢
+
(𝑦, 𝑧)

𝜕𝑢
+
(𝑦, 𝑑)

𝜕] (𝑦)

−
𝜕𝑢

+
(𝑦, 𝑧)

𝜕] (𝑦)
𝑢
+
(𝑦, 𝑑)) 𝑑𝑠 (𝑦)

= 𝜆
0
∫
𝑆
0

(V
−
(𝑦, 𝑧)

𝜕V
−
(𝑦, 𝑑)

𝜕] (𝑦)

−
𝜕V

−
(𝑦, 𝑧)

𝜕] (𝑦)
V
−
(𝑦, 𝑑)) 𝑑𝑠 (𝑦)

= 𝜆
0
∫
𝑆
1

(𝜇∇
𝑆
1

V (⋅, 𝑧) ⋅ ∇
𝑆
1

V (⋅, 𝑑)

− 𝜆V (⋅, 𝑧) V (⋅, 𝑑)) 𝑑𝑠 − 𝜆
0
∫
𝑆
1

(𝜇∇
𝑆
1

V (⋅, 𝑑)

⋅ ∇
𝑆
1

V (⋅, 𝑧) + 𝜆V (⋅, 𝑑) V (⋅, 𝑧)) 𝑑𝑠 = 0.

(38)
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Since the incident plane wave 𝑢
𝑖
(⋅, 𝑑) and incident point

source Φ
0
(⋅, 𝑧) solve the Helmholtz equation inside 𝐷, we

obtain that from the above two equalities

∫
𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑧)

𝜕𝑢
𝑖
(𝑦, 𝑑)

𝜕] (𝑦)

−
𝜕𝑢

𝑠

+
(𝑦, 𝑧)

𝜕] (𝑦)
𝑢
𝑖
(𝑦, 𝑑)) 𝑑𝑠 (𝑦)

= ∫
𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑑)

𝜕Φ
0
(𝑦, 𝑧)

𝜕] (𝑦)

−
𝜕𝑢

𝑠

+
(𝑦, 𝑑)

𝜕] (𝑦)
Φ
0
(𝑦, 𝑧)) 𝑑𝑠 (𝑦) .

(39)

Using Green’s representation formula for 𝑢𝑠(⋅, 𝑥), we obtain
the representation

𝑢
𝑠
(𝑧, 𝑥) = ∫

𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑥)

𝜕Φ
0
(𝑦, 𝑧)

𝜕] (𝑦)

−
𝜕𝑢

𝑠

+
(𝑦, 𝑥)

𝜕] (𝑦)
Φ
0
(𝑦, 𝑧)) 𝑑𝑠 (𝑦)

(40)

for 𝑥 ∈ S1. The far field pattern Φ
∞

0
(𝑥, 𝑧) has the following

integral representation:

Φ
∞

0
(−𝑥, 𝑧) = 𝛾∫

𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑧)

𝜕𝑢
𝑖
(𝑦, 𝑥)

𝜕] (𝑦)

−
𝜕𝑢

𝑠

+
(𝑦, 𝑧)

𝜕] (𝑦)
𝑢
𝑖
(𝑦, 𝑥)) 𝑑𝑠 (𝑦) .

(41)

Thus we conclude that Φ∞

0
(−𝑥, 𝑧) = 𝛾𝑢

𝑠
(𝑧, 𝑥) for 𝑧 ∈ 𝐷

0
,

𝑥 ∈ S1 from (39), (40), and (41) with 𝑑 replaced by 𝑥.
Next, we consider the case 𝑧 ∈ 𝐷

1
. From the boundary

condition on 𝑆
1
, we have that for the total fields V(⋅, 𝑑) and

V(⋅, 𝑧)

∫
𝑆
1

(V (𝑦, 𝑧)
𝜕V (𝑦, 𝑑)
𝜕] (𝑦)

−
𝜕V (𝑦, 𝑧)
𝜕] (𝑦)

V (𝑦, 𝑑)) 𝑑𝑠 (𝑦)

= 0.

(42)

For the scattered fields 𝑢
𝑠
(⋅, 𝑑) and 𝑢

𝑠
(⋅, 𝑧) we still have

equality (37), and for the incident plane wave 𝑢
𝑖
(⋅, 𝑑) and

incident point sourceΦ
0
(⋅, 𝑧) we have

∫
𝑆
1

(𝑢
𝑖
(𝑦, 𝑑)

𝜕Φ
0
(𝑦, 𝑧)

𝜕] (𝑦)

−
𝜕𝑢

𝑖
(𝑦, 𝑑)

𝜕] (𝑦)
Φ
0
(𝑦, 𝑧)) 𝑑𝑠 (𝑦) = 0

(43)

by Green’s second theorem.

From (37) and (41) we get

Φ
∞

0
(−𝑥, 𝑧) = 𝛾∫

𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑧)

𝜕𝑢
+
(𝑦, 𝑥)

𝜕] (𝑦)

− 𝑢
+
(𝑦, 𝑥)

𝜕𝑢
𝑠

+
(𝑦, 𝑧)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦) .

(44)

Let 𝑆(𝑧; 𝜖) := {𝑦 ∈ 𝑅
2

: |𝑦 − 𝑧| = 𝜖} be a sphere
contained in 𝐷

1
. Applying Green’s second theorem in the

domain 𝐵(𝑧; 𝜖) := {𝑦 ∈ 𝐷
1
: |𝑦 − 𝑧| > 𝜖} and taking into

account the boundary condition on 𝑆
0
we further have

Φ
∞

0
(−𝑥, 𝑧) = 𝛾𝜆

0
∫
𝑆
1

(𝑢
𝑠
(𝑦, 𝑧)

𝜕V (𝑦, 𝑥)
𝜕] (𝑦)

− V (𝑦, 𝑥)
𝜕𝑢

𝑠
(𝑦, 𝑧)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦)

+ 𝛾𝜆
0
∫
𝑆(𝑧;𝜖)

(𝑢
𝑠
(𝑦, 𝑧)

𝜕V (𝑦, 𝑥)
𝜕] (𝑦)

− V (𝑦, 𝑥)
𝜕𝑢

𝑠
(𝑦, 𝑧)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦)

+ 𝛾𝜆
0
∫
𝐵(𝑧;𝜖)

(𝑘
2

1
− 𝑘

2

0
)Φ

0
(𝑦, 𝑧) V (𝑦, 𝑥) 𝑑𝑦 + (1

− 𝜆
0
) 𝛾∫

𝑆
0

V
−
(𝑦, 𝑥)

𝜕Φ
0
(𝑦, 𝑧)

𝜕] (𝑦)
𝑑𝑠 (𝑦) .

(45)

By the well posedness of the direct problem and the interior
elliptic regularity [22], V(⋅, 𝑥) ∈ 𝐶

∞
(𝐷

1
) and 𝑢

𝑠
(⋅, 𝑧) ∈ 𝐻

2
(𝑉)

for any compact subset𝑉 of𝐷
1
.Therefore, there is a sequence

𝜖
𝑗
such that 𝜖

𝑗
→ 0 and

∫
𝑆(𝑧;𝜖
𝑗
)

(
󵄨󵄨󵄨󵄨𝑢
𝑠
(𝑦, 𝑧)

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨∇𝑢

𝑠
(𝑦, 𝑧)

󵄨󵄨󵄨󵄨
2

) 𝑑𝑠 (𝑦) 󳨀→ 0 (46)

as 𝑗 → ∞. This together with the Cauchy-Schwarz
inequality implies that the integral on 𝑆(𝑧; 𝜖

𝑗
) tends to 0 as

𝑗 → ∞. By passing to the limit 𝑗 → ∞ in (45) with 𝜖 = 𝜖
𝑗

we have

Φ
∞

0
(−𝑥, 𝑧) = 𝛾𝜆

0
∫
𝑆
1

(𝑢
𝑠
(𝑦, 𝑧)

𝜕V (𝑦, 𝑥)
𝜕] (𝑦)

− V (𝑦, 𝑥)
𝜕𝑢

𝑠
(𝑦, 𝑧)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦) + 𝛾𝜆

0
∫
𝐷
1

(𝑘
2

1

− 𝑘
2

0
)Φ

0
(𝑦, 𝑧) V (𝑦, 𝑥) 𝑑𝑦 + (1 − 𝜆

0
)

⋅ 𝛾 ∫
𝑆
0

V
−
(𝑦, 𝑥)

𝜕Φ
0
(𝑦, 𝑧)

𝜕] (𝑦)
𝑑𝑠 (𝑦) .

(47)

The volume integral exists as an improper integral since its
integrand is weakly singular.
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On the other hand, byGreen’s representation formula and
Green’s second theorem, we have that

𝛾𝜆
0
V (𝑧, 𝑥) = 𝛾𝜆

0
∫
𝑆
0

(Φ
0
(𝑧, 𝑦)

𝜕V
−
(𝑦, 𝑥)

𝜕] (𝑦)

− V
−
(𝑦, 𝑥)

𝜕Φ
0
(𝑧, 𝑦)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦)

− 𝛾𝜆
0
∫
𝑆
1

(Φ
0
(𝑧, 𝑦)

𝜕V (𝑦, 𝑥)
𝜕] (𝑦)

− V (𝑦, 𝑥)
𝜕Φ

0
(𝑧, 𝑦)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦) + 𝛾𝜆

0
∫
𝐷
1

(𝑘
2

1

− 𝑘
2

0
)Φ

0
(𝑧, 𝑦) V (𝑦, 𝑥) 𝑑𝑦.

(48)

It follows from (47) and (48) together with the boundary
conditions on 𝑆

0
and 𝑆

1
and Green’s second theorem that

Φ
∞

0
(−𝑥, 𝑧) − 𝛾𝜆

0
V (𝑧, 𝑥) = (1 − 𝜆

0
) 𝛾 ∫

𝑆
0

V
−
(𝑦, 𝑥)

⋅
𝜕Φ

0
(𝑦, 𝑧)

𝜕] (𝑦)
𝑑𝑠 (𝑦)

− 𝛾𝜆
0
∫
𝑆
0

(Φ
0
(𝑧, 𝑦)

𝜕V
−
(𝑦, 𝑥)

𝜕] (𝑦)

− V
−
(𝑦, 𝑥)

𝜕Φ
0
(𝑧, 𝑦)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦)

= 𝛾∫
𝑆
0

(𝑢
+
(𝑦, 𝑥)

𝜕Φ
0
(𝑧, 𝑦)

𝜕] (𝑦)

− Φ
0
(𝑧, 𝑦)

𝜕𝑢
+
(𝑦, 𝑥)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦)

= 𝛾∫
𝑆
0

(𝑢
𝑖
(𝑦, 𝑥)

𝜕Φ
0
(𝑧, 𝑦)

𝜕] (𝑦)

− Φ
0
(𝑧, 𝑦)

𝜕𝑢
𝑖
(𝑦, 𝑥)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦)

+ 𝛾∫
𝑆
0

(𝑢
𝑠

+
(𝑦, 𝑥)

𝜕Φ
0
(𝑧, 𝑦)

𝜕] (𝑦)

− Φ
0
(𝑧, 𝑦)

𝜕𝑢
𝑠

+
(𝑦, 𝑥)

𝜕] (𝑦)
) 𝑑𝑠 (𝑦) = −𝛾𝑢

𝑖
(𝑧, 𝑥) .

(49)

We conclude from (49) thatΦ∞

0
(−𝑥, 𝑧) = 𝜆

0
𝛾𝑢

𝑠
(𝑧, 𝑥) + (𝜆

0
−

1)𝛾𝑢
𝑖
(𝑧, 𝑥), for 𝑧 ∈ 𝐷

1
, 𝑥 ∈ S1. Therefore the proof of this

lemma is completed.

Lemma 10. For the transmitted wave V of problem (1) and (2)
associated with the incident plane wave 𝑢𝑖 = 𝑒

𝑖𝑘
0
𝑥⋅𝑑, we have

that V = {V(⋅, 𝑑)|
𝑆
1

, 𝑑 ∈ S1
} is complete in𝐻

3/2
(𝑆

1
).

Note that for the incident plane wave 𝑢𝑖, the regularity of
elliptic equations shows that the solution of problem (1) and
(2) belongs to𝐻

2

loc(𝐷0
) ∩ 𝐻

2
(𝐷

1
).

Proof. Assume that 𝜙 is a function in𝐻
−3/2

(𝑆
1
) such that for

every 𝑑 ∈ S1

∫
𝑆
1

V𝜙𝑑𝑠 = 0. (50)

Consider the following problem:

Δ𝜔 + 𝑘
2

0
𝜔 = 0, in 𝐷

0
,

Δ𝜔 + 𝑘
2

1
𝜔 = 0, in 𝐷

1
,

𝜔
+
− 𝜔

−
= 0, on 𝑆

0
,

𝜕𝜔
+

𝜕]
− 𝜆

0

𝜕𝜔
−

𝜕]
= 0, on 𝑆

0
,

𝜕𝜔

𝜕]
+ div

𝑆
1

(𝜇∇
𝑆
1

𝜔) + 𝜆𝜔 = 𝜙, on 𝑆
1
,

lim
𝑟→∞

√𝑟(
𝜕𝜔

𝜕𝑟
− 𝑖𝑘

0
𝜔) = 0, 𝑟 = |𝑥| .

(51)

According to Theorem 7, this problem is well posedness and
we have that the unique solution 𝜔 ∈ 𝐻

1

loc(𝐷0
) ∩ 𝐻

1
(𝐷

1
).

Then we have

0 = ∫
𝑆
1

V𝜙𝑑𝑠 = ∫
𝑆
1

V(
𝜕𝜔

𝜕]
+ div

𝑆
1

(𝜇∇
𝑆
1

𝜔) + 𝜆𝜔)𝑑𝑠

= ∫
𝑆
1

V
𝜕𝜔

𝜕]
𝑑𝑠 + ∫

𝑆
1

𝜔 (div
𝑆
1

(𝜇∇
𝑆
1

V) + 𝜆V) 𝑑𝑠

= ∫
𝑆
1

(V
𝜕𝜔

𝜕]
− 𝜔

𝜕V
𝜕]

)𝑑𝑠.

(52)

Furthermore, from the transmission boundary condition,
Green’s second theorem, and the radiation condition for 𝑢𝑠
and 𝜔 we have

0 =
1

𝜆
0

∫
𝑆
0

(𝑢
+

𝜕𝜔
+

𝜕]
− 𝜔

+

𝜕𝑢
+

𝜕]
)𝑑𝑠

=
1

𝜆
0

∫
𝑆
0

(𝑢
𝑠

+

𝜕𝜔
+

𝜕]
− 𝜔

+

𝜕𝑢
𝑠

+

𝜕]
)𝑑𝑠

+
1

𝜆
0

∫
𝑆
0

(𝑢
𝑖 𝜕𝜔+

𝜕]
− 𝜔

+

𝜕𝑢
𝑖

𝜕]
)𝑑𝑠

= −
1

𝛾𝜆
0

𝜔
∞

(−𝑑) .

(53)

Thus Rellich’s lemma implies that 𝜔 = 0 in 𝐷
0
. Then the

transmission boundary conditions on 𝑆
0
and Holmgren’s

uniqueness theorem show that𝜔 = 0 in𝐷
1
; hence 𝜙 = 0 from

the trace theorem.We complete the proof of this lemma.

We are now in the position to present the uniqueness
result based on the idea in [11].
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Theorem 11. Given the interface 𝑆
0
, the positive constant 𝜆

0
,

and the wave numbers 𝑘
0
and 𝑘

1
, due to incident plane waves

𝑢
𝑖
= 𝑒

𝑖𝑘
0
𝑥⋅𝑑, assume that the two far field patterns 𝑢∞(𝑥, 𝑑) and

𝑢̃
∞
(𝑥, 𝑑) corresponding to the two scattered fields 𝑢𝑠(𝑥, 𝑑) and

𝑢̃
𝑠
(𝑥, 𝑑) which are arisen by two obstacles𝐷

2
with impedances

(𝜇, 𝜆) and 𝐷
2
with impedances (𝜇, 𝜆̃), respectively, coincide at

a fixed frequency for all 𝑥 ∈ S1 and 𝑑 ∈ S1; then𝐷
2
= 𝐷

2
and

(𝜇, 𝜆) = (𝜇, 𝜆̃).

Proof. If the obstacles are not the same, that is,𝐷
2

̸= 𝐷
2
, let𝐺

be the unbounded component of 𝑅2
\ (𝐷

2
∪ 𝐷

2
). By Rellich’s

lemma the scattered fields 𝑢𝑠(⋅, 𝑑) and 𝑢̃
𝑠
(𝑥, 𝑑) corresponding

to the incident plane wave 𝑢𝑖(⋅, 𝑑) coincide in the unbounded
domain 𝐺. Without loss of generality, we may assume that
there exist 𝑧

0
and open set Γ such that 𝑧

0
∈ Γ ⊂ 𝜕𝐷

2
and

Γ ∩ 𝐷
2
= 0. We can choose ℎ > 0 such that the sequence

𝑧
𝑗
= 𝑧

0
+
ℎ

𝑗
] (𝑧

0
) , 𝑗 = 1, 2, . . . (54)

is contained in 𝐺, where ](𝑧
0
) is the normal to 𝜕𝐷

2
at 𝑧

0
.

Consider the solution 𝑢
𝑠
(⋅, 𝑧

𝑗
) to problem (1) and (2) due

to the incident point source Φ
0
(⋅, 𝑧

𝑗
). By Lemma 8, the far

fields Φ
∞

0
(⋅, 𝑧

𝑗
) and Φ̃

∞

0
(⋅, 𝑧

𝑗
) coincide in 𝐺. Then Rellich’s

lemma implies that 𝑢𝑠(𝑥, 𝑧
𝑗
) = 𝑢̃

𝑠
(𝑥, 𝑧

𝑗
) for 𝑥 ∈ 𝐺. From this

we have by denoting 𝑃V = 𝜕V/𝜕] + div
𝑆
1

(𝜇∇
𝑆
1

V) + 𝜆V

𝑃𝑢
𝑠
(⋅, 𝑧

𝑗
) = 𝑃𝑢̃

𝑠
(⋅, 𝑧

𝑗
) on Γ. (55)

Considering 𝑢̃𝑠(𝑥, 𝑧
𝑗
) as the scattered field corresponding

to 𝐷
2
, using the boundary condition on 𝑆

1
for 𝑢𝑠(𝑥, 𝑧

𝑗
), we

see that

𝑃𝑢̃
𝑠
(⋅, 𝑧

𝑗
) = −𝑃Φ (⋅, 𝑧

𝑗
) on Γ. (56)

From the well posedness of problem (1) and (2) and the
regularity of elliptic equations we obtain

lim
𝑗→∞

𝑃𝑢̃
𝑠
(⋅, 𝑧

𝑗
) =

𝜕𝑢̃
𝑠
(⋅, 𝑧

0
)

𝜕]
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑢̃
𝑠
(⋅, 𝑧

0
))

+ 𝜆𝑢̃
𝑠
(⋅, 𝑧

0
)

(57)

in 𝐿
2
(Γ). On the other hand, as the same argument in

Theorem 3.1 of [11], 𝑃Φ(⋅, 𝑧
0
) does not belong to 𝐿

2
(Γ). This

is a contradiction, which implies that𝐷
2
= 𝐷

2
.

Next, we show that (𝜇, 𝜆) = (𝜇, 𝜆̃). The proof is based on
Theorem 3.1 in [11]; for the reader’s convenience, we give its
proof but make some slight modifications.

For this purpose, let𝜇 = 𝜇−𝜇 and 𝜆̂ = 𝜆−𝜆̃, and denote by
V̂ the same total fields V and Ṽ. From the boundary conditions
for the total field, we have that

div
𝑆
1

(𝜇∇
𝑆
1

V̂) + 𝜆̂V̂ = 0 on 𝑆
1
. (58)

This equality should be understood in the weak sense. Thus
for every 𝜃 ∈ 𝐻

3/2
(𝑆

1
) we have

⟨V̂, div
𝑆
1

(𝜇∇
𝑆
1

𝜃) + 𝜆̂𝜃⟩
𝐻
3/2
(𝑆
1
),𝐻
−3/2

(𝑆
1
)
= 0. (59)

With the help of Lemma 10, we obtain

div
𝑆
1

(𝜇∇
𝑆
1

𝜃) + 𝜆̂𝜃 = 0, ∀𝜃 ∈ 𝐻
3/2

(𝑆
1
) . (60)

Choosing 𝜃 = 1 in the above equation leads to 𝜆̂ = 0. The
above equation also implies that

∫
𝑆
1

𝜇
󵄨󵄨󵄨󵄨󵄨
∇
𝑆
1

𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 = 0, ∀𝜃 ∈ 𝐻
3/2

(𝑆
1
) . (61)

Assume that 𝜇(𝑥
0
) ̸= 0 for some 𝑥

0
∈ 𝑆

1
; then, for example,

Re 𝜇(𝑥
0
) > 0 without loss of generality. Since 𝜇 is continuous

there exists 𝜀 > 0 such that Re 𝜇(𝑥) > 0 for all 𝑥 ∈

𝑆
1
∩ 𝐵(𝑥

0
; 𝜀). Let us choose 𝜃 as a smooth and compactly

supported function in 𝑆
1
∩ 𝐵(𝑥

0
; 𝜀); we obtain that

∫
𝑆
1
∩𝐵(𝑥
0
;𝜀)

Re (𝜇) 󵄨󵄨󵄨󵄨󵄨∇𝑆1𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 = 0, (62)

and then ∇
𝑆
1

𝜃 = 0 on 𝑆
1
∩ 𝐵(𝑥

0
; 𝜀); that is, 𝜃 is a constant on

𝑆
1
∩ 𝐵(𝑥

0
; 𝜀), which is a contradiction. We hence have 𝜇 = 0

on 𝑆
1
and the proof is completed.

4. The Modified Linear Sampling Method

In this part, we give a mathematical basis to reconstruct
the shape of the obstacle 𝐷

2
by using the modified linear

sampling method (see [23]).
We do some preparation firstly. Consider the total wave

𝑢
0
= 𝑢

𝑖
+ 𝑢

𝑠

0
(𝑢𝑖(𝑥, 𝑑) = 𝑒

𝑖𝑘
0
𝑥⋅𝑑) such that

Δ𝑢
0
+ 𝑘

2

0
𝑢
0
= 0, in 𝐷

0
,

Δ𝑢
0
+ 𝑘

2

1
𝑢
0
= 0, in 𝐷,

𝑢
0+

− 𝑢
0−

= 0, on 𝑆
0
,

𝜕𝑢
0+

𝜕]
− 𝜆

0

𝜕𝑢
0−

𝜕]
= 0, on 𝑆

0
,

lim
𝑟→∞

√𝑟(
𝜕𝑢

𝑠

0

𝜕𝑟
− 𝑖𝑘

0
𝑢
𝑠

0
) = 0, 𝑟 = |𝑥| .

(63)

Recalling that 𝑢(𝑥, 𝑑) and V(𝑥, 𝑑) are the solution to scattering
problem (1) and (2) for incident plane wave 𝑢𝑖(𝑥, 𝑑) = 𝑒

𝑖𝑘
0
𝑥⋅𝑑

with the direction 𝑑 ∈ S1, it is easy to verify that the fields
𝑤(𝑥) := 𝑢 − 𝑢

0
, 𝑥 ∈ 𝐷

0
and 𝑧(𝑥) := V − 𝑢

0
, 𝑥 ∈ 𝐷

1
solve the

following boundary value problem:

Δ𝑤 + 𝑘
2

0
𝑤 = 0, in 𝐷

0
,

Δ𝑧 + 𝑘
2

1
𝑧 = 0, in 𝐷

1
,

𝑤
+
− 𝑧

−
= 0, on 𝑆

0
,

𝜕𝑤
+

𝜕]
− 𝜆

0

𝜕𝑧
−

𝜕]
= 0, on 𝑆

0
,

𝜕𝑧

𝜕]
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑧) + 𝜆𝑧 = 𝜙, on 𝑆
1
,

lim
𝑟→∞

√𝑟(
𝜕𝑤

𝜕𝑟
− 𝑖𝑘

0
𝑤) = 0, 𝑟 = |𝑥| ,

(64)
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where 𝜙 = −(𝜕𝑢
0
/𝜕]) − div

𝑆
1

(𝜇∇
𝑆
1

𝑢
0
) − 𝜆𝑢

0
. The well posed-

ness of this boundary value problem has been established in
Section 1.

We define four operators in the following.
The data-to-pattern operator𝐺 : 𝐻

−3/2
(𝑆

1
) → 𝐿

2
(S1

) by

𝐺 (𝜙) (𝑥) = 𝑤
∞
, (65)

where 𝑤
∞ is the far field pattern of the wave field 𝑤 of

problem (64).
The auxiliary operator𝐻 : 𝐿

2
(S1

) → 𝐻
−3/2

(𝑆
1
) by

(𝐻𝑔) (𝑥)

= ∫
S1

(
𝜕𝑢

0
(𝑥, 𝑑)

𝜕] (𝑥)
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑢
0
) + 𝑖𝜆𝑢

0
(𝑥, 𝑑))

⋅ 𝑔 (𝑑) 𝑑𝑠 (𝑑) ,

(66)

where 𝑢
0
is the solution of (63) corresponding to the incident

wave 𝑢𝑖(⋅, 𝑑).
The far field operator 𝐹 : 𝐿

2
(S1

) → 𝐿
2
(S1

) by

(𝐹𝑔) (𝑥) = ∫
S1

𝑢
∞

(𝑥, 𝑑) 𝑔 (𝑑) 𝑑𝑠 (𝑑) , (67)

where 𝑢
∞ is the far field pattern of the scattered wave 𝑢

𝑠 of
problem (1) and (2).

The far field operator 𝐹
0
: 𝐿

2
(S1

) → 𝐿
2
(S1

) by

(𝐹
0
𝑔) (𝑥) = ∫

S1
𝑢
∞

0
(𝑥, 𝑑) 𝑔 (𝑑) 𝑑𝑠 (𝑑) , (68)

where 𝑢∞
0

is the far field pattern of the scattered wave 𝑢𝑠
0
of

problem (63).
Note that

[(𝐹 − 𝐹
0
) 𝑔] (𝑥)

= ∫
S1

[𝑢
∞

(𝑥, 𝑑) − 𝑢
∞

0
(𝑥, 𝑑)] 𝑔 (𝑑) 𝑑𝑠 (𝑑)

(69)

is just the far field pattern of the radiating function

∫
S1

{[𝑢 (𝑥, 𝑑) − 𝑢
𝑖
(𝑥, 𝑑)] − [𝑢

0
(𝑥, 𝑑) − 𝑢

𝑖
(𝑥, 𝑑)]}

⋅ 𝑔 (𝑑) 𝑑𝑠 (𝑑) = ∫
S1

[𝑢 (𝑥, 𝑑) − 𝑢
0
(𝑥, 𝑑)]

⋅ 𝑔 (𝑑) 𝑑𝑠 (𝑑) .

(70)

From the boundary conditions on 𝑆
1
for V(𝑥, 𝑑) and

𝑧(𝑥, 𝑑), we can factorize the operator 𝐹 − 𝐹
0
as

𝐹 − 𝐹
0
= −𝐺𝐻. (71)

Let 𝐺
0
(⋅, 𝑚), 𝑚 ∈ 𝑅

2 be the Green function for problem
(63) of scattering by the backgroundmedium.We now define
the modified far field equation

(𝐹 − 𝐹
0
) (𝑔

𝑚
) (𝑥) = 𝐺

∞

0
(𝑥,𝑚)

for 𝑔 ∈ 𝐿
2
(S

1
) , 𝑥 ∈ S

1
,

(72)

where 𝐺∞

0
(𝑥,𝑚) ∈ 𝐿

2
(S1

) is the far field pattern of the Green
function𝐺

0
(𝑥,𝑚).Wewill characterize the obstacle𝐷

2
by the

behavior of an approximate solution 𝑔
𝑚
of far field equation

(72).
To prove the existence of an approximate solution of (72),

we firstly explore the related properties of the operators𝐺 and
𝐻.

Lemma 12. The data-to-pattern operator 𝐺 : 𝐻
−3/2

(𝑆
1
) →

𝐿
2
(S1

) is injective and compact and has dense range in 𝐿
2
(S1

).

Proof. First, injectivity is a direct consequence of Rellich’s
lemma and analytic continuation of the solution to (64).

To prove compactness, using Green’s representation for-
mula for 𝑧 in𝐷

1
and𝑤 in𝐷

0
, we can decompose the operator

𝐺 as 𝐺 = 𝐺
1
𝐺
2
, where 𝐺

2
: 𝐻

−3/2
(𝑆

1
) → 𝐻

1/2
(𝑆

0
) ×

𝐻
−1/2

(𝑆
0
) is defined by 𝐺

2
(𝜙) = (𝑧

−
|
𝑆
0

, 𝜆
0
(𝜕𝑧

−
/𝜕])|

𝑆
0

) and
𝐺
1
: 𝐻

1/2
(𝑆

0
) × 𝐻

−1/2
(𝑆

0
) → 𝐿

2
(S1

) is defined by

𝐺
1
(𝑤

+
,
𝜕𝑤

+

𝜕]
) (𝑥)

= 𝛾∫
𝑆
0

(𝑤
+
(𝑦)

𝜕𝑒
−𝑖𝑘
0
𝑥⋅𝑦

𝜕] (𝑦)
−
𝜕𝑤

+
(𝑦)

𝜕] (𝑦)
𝑒
−𝑖𝑘
0
𝑥⋅𝑦

)𝑑𝑠 (𝑦) ,

𝑥 ∈ S
1
,

(73)

where 𝛾 = 𝑒
𝑖𝜋/4

/√8𝑘
0
𝜋.The interior regularity of the solution

to problem (64) implies that the operator 𝐺
2
is bounded. So

the operator 𝐺 is compact since the operator 𝐺
1
is compact.

To show denseness of the range of𝐺we just need to prove
that the adjoint operator𝐺∗ is injective. To this end, let𝑈 and
𝑉 be the solution of problem (1) and (2) with incident plane
wave

𝑈
𝑖
= ∫

S1
𝑒
−𝑖𝑘
0
𝑥⋅𝑦

𝑔 (𝑥)𝑑𝑠 (𝑥) , 𝑔 ∈ 𝐿
2
(S

1
) . (74)

We remind the reader that 𝑈 ∈ 𝐻
2

loc(𝐷0
) and 𝑉 ∈ 𝐻

2
(𝐷

1
) by

the regularity of elliptic equations.
For any 𝜙 ∈ 𝐻

−3/2
(𝑆

1
), let 𝑤 and 𝑧 be the solution to

problem (64) with the boundary data 𝜙. Then one can derive
that by Green’s second theorem and the radiation condition
of scattered field

⟨𝜙, 𝐺
∗
𝑔⟩

𝐻
−3/2

(𝑆
1
),𝐻
3/2
(𝑆
1
)
= ⟨𝐺𝜙, 𝑔⟩

𝐿
2
(S1),𝐿2(S1)

= ∫
S1

𝑤
∞

(𝑥) 𝑔 (𝑥)𝑑𝑠 (𝑥)

= 𝛾∫
S1

∫
𝑆
0

(𝑤
+
(𝑦)

𝜕𝑒
−𝑖𝑘
0
𝑥⋅𝑦

𝜕] (𝑦)

−
𝜕𝑤

+
(𝑦)

𝜕] (𝑦)
𝑒
−𝑖𝑘
0
𝑥⋅𝑦

)𝑑𝑠 (𝑦) 𝑔 (𝑥)𝑑𝑠 (𝑥)

= 𝛾∫
𝑆
0

(𝑤
+
(𝑦)

𝜕𝑈
𝑖
(𝑦)

𝜕] (𝑦)
−
𝜕𝑤

+
(𝑦)

𝜕] (𝑦)
𝑈
𝑖
(𝑦)) 𝑑𝑠 (𝑦)

= 𝛾∫
𝑆
0

(𝑤
+
(𝑦)

𝜕𝑈
+
(𝑦)

𝜕] (𝑦)
−
𝜕𝑤

+
(𝑦)

𝜕] (𝑦)
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⋅ 𝑈
+
(𝑦)) 𝑑𝑠 (𝑦) = 𝛾𝜆

0
∫
𝑆
1

(𝑧 (𝑦)
𝜕𝑉 (𝑦)

𝜕] (𝑦)

−
𝜕𝑧 (𝑦)

𝜕] (𝑦)
𝑉 (𝑦))𝑑𝑠 (𝑦) = −𝛾𝜆

0
∫
𝑆
1

(𝑧 (𝑦)

⋅ (div
𝑆
1

(𝜇∇
𝑆
1

𝑉 (𝑦)) + 𝜆𝑉 (𝑦)) +
𝜕𝑧 (𝑦)

𝜕] (𝑦)

⋅ 𝑉 (𝑦))𝑑𝑠 (𝑦) = −𝛾𝜆
0
∫
𝑆
1

(
𝜕𝑧 (𝑦)

𝜕] (𝑦)

+ div
𝑆
1

(𝜇∇
𝑆
1

𝑧 (𝑦)) + 𝜆𝑧 (𝑦))𝑉 (𝑦) 𝑑𝑠 (𝑦)

= −𝛾𝜆
0
∫
𝑆
1

𝜙 (𝑦)𝑉 (𝑦) 𝑑𝑠 (𝑦) .

(75)

Thus we obtain that

𝐺
∗
𝑔 = −𝜆

0
𝛾𝑉

󵄨󵄨󵄨󵄨󵄨𝑆
1

. (76)

Letting 𝐺∗
𝑔 = 0, we have 𝑉|

𝑆
1

= 0 and then (𝜕𝑉/𝜕])|
𝑆
1

=

0 by the GIBC. Holmgren’s uniqueness theorem implies that
𝑉 = 0 in 𝐷

1
and then 𝑈 = 0 in 𝐷

0
; this leads to 𝑈

𝑖
= 0

since𝑈𝑖 does not satisfy the radiation condition; however𝑈𝑠

does. Then we can conclude that 𝑔 = 0 which means that 𝐺∗

is injective. We complete the proof of this theorem.

Lemma 13. Let 𝐺 be defined by (65), for any 𝑚 ∈ 𝑅
2; then

𝐺
∞

0
(𝑥,𝑚) ∈ 𝐿

2
(S1

) belongs to the range of 𝑅(𝐺
0
) if and only if

𝑚 ∈ 𝐷
2
.

Proof. Firstly, let 𝑚 ∈ 𝐷
2
; then 𝐺

0
(𝑥,𝑚) satisfies problem

(64) with

𝜙 = (
𝜕𝐺

0

𝜕]
+ div

𝑆
1

(𝜇∇
𝑆
1

𝐺
0
) + 𝜆𝐺

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
1

. (77)

By the definition of the operator𝐺, we get𝐺𝜙 coinciding with
𝐺
∞

0
.
Now let 𝑚 ∉ 𝐷

2
and assume on the contrary that there

exists 𝜙 ∈ 𝐻
−3/2

(𝑆
1
) such that 𝐺𝜙 = 𝐺

∞

0
. Let 𝑤, 𝑧 be

the solution of problem (64) with boundary data 𝜙; then
𝑤
∞

= 𝐺
∞

0
. By Rellich’s lemma we conclude that 𝑤(𝑥) =

𝐺
0
(𝑥, 𝑧) in 𝐷

0
\ {𝑚} and then as a direct derivation 𝑧 =

𝐺
0
(𝑥, 𝑧) in𝐷

1
\ {𝑚}.

If 𝑚 ∈ 𝐷
1
, this contradicts the fact that 𝑧 is analytic in

𝐷
0
but 𝐺

0
(𝑥,𝑚) is singular at 𝑥 = 𝑚. If 𝑚 ∈ 𝑆

1
, by the well

posedness of the direct problem ‖𝑧‖
𝐻
1/2
(𝑆
1
)
is bounded which

contradicts that ‖𝐺
0
‖
𝐻
1/2
(𝑆
1
)
= ∞. For the case 𝑚 ∈ 𝐷

0
or

𝑚 ∈ 𝑆
0
we also can infer a contradiction, so we complete the

proof of this lemma.

Now, we turn our attention to the operator𝐻. In order to
obtain the required properties of the operator𝐻, we need the
following two results in [23].
Lemma 14 (mixed reciprocity relation). For 𝑥 ∈ S1, we have

𝐺
∞

0
(𝑥,𝑚) =

{

{

{

𝑢
0
(𝑚, −𝑥) , 𝑚 ∈ 𝐷

0
, 𝑥 ∈ S1

,

𝜆
0
𝑢
0
(𝑚, −𝑥) , 𝑚 ∈ 𝐷, 𝑥 ∈ S1

,

(78)

where 𝐺
∞

0
(𝑥,𝑚) is the far field pattern of Green function

𝐺
0
(𝑥,𝑚) and 𝑢

0
(𝑚, −𝑥) is the solution of (63) with incident

plane wave 𝑢𝑖(𝑚, −𝑥).

Lemma 15. For all𝑚 ∈ 𝐷, 𝑥 ∈ S1, we have

𝑢
0
(𝑚, −𝑥) = (S

0
𝑢
0
(𝑚, ⋅)) (𝑥) , (79)

where S
0
= 𝐼 + 2𝑖𝑘

0
|𝛾|

2
𝐹
0
introduced in [23] is the scattering

operator.

Lemma 16. If Im(𝜆) ̸≡ 0 on 𝑆
1
, then the operator 𝐻 defined

by (66) has dense range.

Proof. The adjoint operator of𝐻 is𝐻∗
: 𝐻

3/2
(𝑆

1
) → 𝐿

2
(S1

)

with

𝐻
∗
(𝜉) (𝑥) = ∫

𝑆
1

(
𝜕𝑢

0
(𝑦, 𝑥)

𝜕] (𝑦)
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑢
0
(𝑦, 𝑥))

+ 𝜆𝑢
0
(𝑦, 𝑥)) 𝜉 (𝑦) 𝑑𝑠 (𝑦) .

(80)

We just need to show that the operator 𝐻∗ is injective.
Using Lemmas 14 and 15, we have for every 𝜉 ∈ 𝐻

3/2
(𝑆

1
)

(𝜆
0
S
0
𝐻

∗
(𝜉)) (𝑥) = 𝜆

0
{S

0
(∫

𝑆
1

(
𝜕𝑢

0
(𝑦, ⋅)

𝜕] (𝑦)
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑢
0
(𝑦, ⋅)) + 𝜆𝑢

0
(𝑦, ⋅)) 𝜉 (𝑦) 𝑑𝑠 (𝑦))}

= 𝜆
0
{∫

𝑆
1

(
𝜕𝑢

0
(𝑦, −𝑥)

𝜕] (𝑦)
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑢
0
(𝑦, −𝑥)) + 𝜆𝑢

0
(𝑦, −𝑥)) 𝜉 (𝑦) 𝑑𝑠 (𝑦)}

= ∫
𝑆
1

(
𝜕𝐺

∞

0
(𝑥, 𝑦)

𝜕] (𝑦)
+ div

𝑆
1

(𝜇∇
𝑆
1

𝐺
∞

0
(𝑥, 𝑦)) + 𝜆𝐺

∞

0
(𝑥, 𝑦)) 𝜉 (𝑦) 𝑑𝑠 (𝑦) .

(81)



12 Journal of Applied Mathematics

Therefore, we conclude that 𝜆
0
S
0
𝐻

∗
(𝜉) is just the far field

pattern of the potential

𝑊(𝑥) = ∫
𝑆
1

(
𝜕𝐺

0
(𝑥, 𝑦)

𝜕] (𝑦)
+ div

𝑆
1

(𝜇∇
𝑆
1

𝐺
0
(𝑥, 𝑦))

+ 𝜆𝐺
0
(𝑥, 𝑦)) 𝜉 (𝑦) 𝑑𝑠 (𝑦)

= ∫
𝑆
1

𝜕𝐺
0
(𝑥, 𝑦)

𝜕] (𝑦)
𝜉 (𝑦) + 𝐺

0
(𝑥, 𝑦) (𝜆𝜉 (𝑦)

+ div
𝑆
1

(𝜇∇
𝑆
1

𝜉 (𝑦))) 𝑑𝑠 (𝑦)

(82)

for 𝑥 ∈ 𝑅
2
\ 𝑆

1
.

Due to the fact that S
0
is unitary (see [24]), we just need

to show that 𝜉 = 0 under the assumption 𝑊
∞
(𝑥) = 0. Next

we will prove this assertion.
In fact, if 𝑊∞

(𝑥) = 0, then Rellich’s lemma implies that
𝑊(𝑥) = 0 for 𝑥 ∈ 𝑅

2
\ 𝐷

2
. Then by using the jump relations

of single- and double-potentials, we get

𝑊
−

󵄨󵄨󵄨󵄨𝑆
1

= 𝑊
−

󵄨󵄨󵄨󵄨𝑆
1

− 𝑊
+

󵄨󵄨󵄨󵄨𝑆
1

= −𝜉,

𝜕𝑊
−

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
1

=
𝜕𝑊

−

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
1

−
𝜕𝑊

+

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆
1

= 𝜆𝜉 + div
𝑆
1

(𝜇∇
𝑆
1

𝜉) .

(83)

Thus𝑊 satisfies the Helmholtz equation in𝐷
2
with GIBC:

Δ𝑊 + 𝑘
2

1
𝑊 = 0, in 𝐷

2
,

𝜕𝑊

𝜕]
+ div

𝑆
1

(𝜇∇
𝑆
1

𝑊) + 𝜆𝑊 = 0, on 𝑆
1
.

(84)

By the assumption on 𝜆, there exists 𝑥
0

∈ 𝑆
1
such that

Im(𝜆(𝑥)) ̸= 0 in a small neighborhood Λ(𝑥
0
) ⊂ 𝑆

0
. Green’s

theorem in𝐷
2
and the divergence theorem on 𝑆

1
imply

0 = ∫
𝐷
2

(Δ𝑊 + 𝑘
2

1
𝑊)𝑊𝑑𝑥

= −∫
𝐷
2

(|∇𝑊|
2
− 𝑘

2

1
|𝑊|

2
) 𝑑𝑥 + ∫

𝑆
1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑊

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

− ∫
𝑆
1

𝜆 |𝑊|
2
𝑑𝑠.

(85)

By taking the imaginary part of the above equation we can
obtain that 𝑊 = 0 on Λ(𝑥

0
); then the boundary condition

shows that 𝜕𝑊/𝜕] = 0 onΛ(𝑥
0
).ThusHolmgren’s uniqueness

theorem implies that𝑊 = 0 in𝐷
2
; we then obtain 𝜉 = 0 from

the jump relations. This lemma is then proved.

Finally, we give the main result in this paper, that is,
recovering the obstacles 𝐷

2
by a modified linear sampling

method.

Theorem17. UnderAssumption A, thenwe have the following
results:

(1) If 𝑚 ∈ 𝐷
2
, then for every 𝜖 > 0 there exists a solution

𝑔
𝜖

𝑚
∈ 𝐿

2
(S1

) to the far field equation (72) such that
󵄩󵄩󵄩󵄩(𝐹 − 𝐹

0
) 𝑔

𝜖

𝑚
+ 𝐺

∞

0

󵄩󵄩󵄩󵄩𝐿2(S1) < 𝜖. (86)

(2) If𝑚 ∉ 𝐷
2
, then for every 𝜖 > 0 and 𝛿 > 0 there exists a

function 𝑔
𝜖,𝛿

𝑚
∈ 𝐿

2
(S1

) such that
󵄩󵄩󵄩󵄩󵄩
(𝐹 − 𝐹

0
) 𝑔

𝜖,𝛿

𝑚
+ 𝐺

∞

0

󵄩󵄩󵄩󵄩󵄩𝐿2(S1)
< 𝜖 + 𝛿,

lim
𝛿→0

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜖,𝛿

𝑚

󵄩󵄩󵄩󵄩󵄩𝐿2(S1)
= ∞.

(87)

Proof. If 𝑚 ∈ 𝐷
2
, by using Lemma 13 there exists 𝜙 ∈

𝐻
−3/2

(𝑆
1
) such that 𝐺𝜙 = 𝐺

∞

0
. From Lemma 16, for every

𝜖
0
> 0 there exists a function 𝑔

𝜖
0

𝑚
∈ 𝐿

2
(S1

) such that
󵄩󵄩󵄩󵄩𝐻𝑔

𝜖
0

𝑚
− 𝜙

󵄩󵄩󵄩󵄩𝐻−1/2(𝑆
1
)
< 𝜖

0
. (88)

The operator 𝐺 is bounded from Lemma 12; then we have
󵄩󵄩󵄩󵄩𝐺𝐻𝑔

𝜖
0

𝑚
− 𝐺𝜙

󵄩󵄩󵄩󵄩𝐿2(S1) < 𝑐
1
𝜖
0
, (89)

where 𝑐
1
is a constant; that is,

󵄩󵄩󵄩󵄩(𝐹 − 𝐹
0
) 𝑔

𝜖

𝑚
+ 𝐺

∞

0

󵄩󵄩󵄩󵄩𝐿2(S1) < 𝜖, (90)

where 𝜖 = 𝑐
1
𝜖
0
.

Next, we assume that 𝑚 ∉ 𝐷
2
. In this case, by

Lemma 13 𝐺
∞

0
is not in the range of 𝐺. But from Lemma 12

we know that the operator 𝐺 is compact and injective with
dense range in𝐿2(S1

). Hence for every 𝛿 > 0we can construct
a unique Tikhonov regularized solution 𝜙

𝜌
∈ 𝐻

−3/2
(𝑆

1
) of

equation 𝐺𝜙
𝜌
= 𝐺

∞

0
, such that
󵄩󵄩󵄩󵄩𝐺𝜙

𝜌
− 𝐺

∞

0

󵄩󵄩󵄩󵄩𝐿2(S1) < 𝛿, (91)

where 𝜌 is the regularization parameter (chosen by a regular
regularization strategy, e.g., the Morozov discrepancy princi-
ple [25]). Then we have ‖𝜙

𝜌
‖
𝐻
−3/2

(𝑆
1
)

→ ∞ as 𝜌 → 0. By
Lemma 16 𝐻 has dense range; hence for 𝜖 > 0 sufficiently
small there exists 𝑔𝜖,𝜌

𝑚
such that

󵄩󵄩󵄩󵄩𝐻𝑔
𝜖,𝜌

𝑚
− 𝜙

𝜌󵄩󵄩󵄩󵄩𝐻−3/2(𝑆
1
)
<

𝜖

𝑐
1

. (92)

Combining (91) and (92) we obtain that for every 𝜖 > 0 and
𝛿 > 0 there exists 𝑔𝜖,𝜌

𝑚
∈ 𝐿

2
(S1

) such that
󵄩󵄩󵄩󵄩(𝐹 − 𝐹

0
) 𝑔

𝜖,𝜌

𝑚
+ 𝐺

∞

0

󵄩󵄩󵄩󵄩𝐿2(S1) =
󵄩󵄩󵄩󵄩𝐺𝐻𝑔

𝜖,𝜌

𝑚
− 𝐺

∞

0

󵄩󵄩󵄩󵄩𝐿2(S1)

≤
󵄩󵄩󵄩󵄩𝐺𝐻𝑔

𝜖,𝜌

𝑚
− 𝐺𝜙

𝜌󵄩󵄩󵄩󵄩𝐿2(S1) +
󵄩󵄩󵄩󵄩𝐺𝜙

𝜌
− 𝐺

∞

0

󵄩󵄩󵄩󵄩𝐿2(S1)

< 𝜖 + 𝛿.

(93)

Since lim
𝛿→0

𝜌(𝛿) = 0 we have that lim
𝛿→0

‖𝜙
𝜌
‖
𝐻
−3/2

(𝑆
1
)
→

∞. From (92) we have that lim
𝛿→0

‖𝐻𝑔
𝜖,𝛿

𝑚
‖
𝐻
−3/2

(𝑆
1
)
→ ∞. By

the definition of the operator𝐻 given by (66) we obtain that
lim

𝛿→0
‖𝑔

𝜖,𝛿

𝑚
‖
𝐿
2
(S1) → ∞.Thenwe complete the proof of this

theorem.
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Remark 18. (1) From Theorem 17, we have to obtain the far
field pattern of Green function 𝐺

0
(𝑥,𝑚) which is defined

in the layered background medium. Typically, this is a quite
difficult task; however, with the help of Lemma 14 we only
need to solve transmission problem (63) to get 𝑢

0
instead of

𝐺
0
.
(2) In this paper, we just consider the case of two-layered

background medium; in fact, our result can be extended to
the case of multilayered piecewise homogeneous medium.
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