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A biquartic rational interpolation spline surface over rectangular domain is constructed in this paper, which includes the classical
bicubic Coons surface as a special case. Sufficient conditions for generating shape preserving interpolation splines for positive or
monotonic surface data are deduced. The given numeric experiments show our method can deal with surface construction from

positive or monotonic data effectively.

1. Introduction

In most of computer graphics applications and scientific
visualization, the construction of shape preserving inter-
polation spline for positive or monotonic surface data is
the essential problem. This problem has been considered
by many authors. In [1], the authors gave an algorithm
for determining a C' monotone quadratic spline surface
interpolating monotone data over a rectangular grid. In [2],
Costantini and Fontanella proposed a method for construct-
ing shape preserving surfaces interpolating arbitrary sets of
data on rectangular grids. The surfaces are tensor product
splines of arbitrary continuity class. In [3], based on the
Boolean sum of cubic interpolating operators, Costantini
proposed alocal method for the construction of differentiable
functions which interpolate a set of gridded data and are
monotonicity preserving. In [4], Han and Schumaker derived
sufficient conditions on the Bézier net of a Bernstein-Bézier
polynomial defined on a triangle in the plane to insure that
the corresponding surface is monotone. Then, they applied
these conditions to construct a new algorithm for fitting
a monotone surface to gridded data. In [5], Hussain and
Sarfraz gave simple constraints on the free parameters in the
description of rational bicubic spline to preserve the shape
of positive surface data and to preserve the shape of the data

that lie above a plane. A rational bicubic partially blended
patch (Coons patch) to visualize the monotone data in the
view of monotone surfaces was developed in [6]. The scheme
is economical to compute and visually pleasant. In [7], the
authors developed a scheme for visualizing positive data set
by using a kind of rational cubic trigonometric function.
Recently, in [8], Peng et al. developed a C' nonnegativity
preserving interpolation spline for nonnegative surface data
by using a kind of bivariate rational functions.

The purpose of this paper is to present a kind of quartic
rational shape preserving interpolation spline for positive
and monotone surface data. It has low computation cost and
can generate satisfying shape preserving interpolation spline
surface. The rest of this paper is organized as follows. We will
construct a class of quartic rational interpolation spline and
its error bounds in Section 2. Based on it, Section 3 constructs
a biquartic rational interpolation spline over a rectangular
domain. After that, the sufficient conditions for construct-
ing shape preserving interpolation splines for positive and
monotone surface data are deduced in Sections 4 and 5. The
numeric experiments given in Section 6 demonstrate that
the biquartic rational interpolation splines are effective for
visualizing the positive data and monotone data. Conclusions
are given in Section 7.
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2. Quartic Rational Interpolation Spline and
Its Error Bounds

Let f; € R,i = 0,1,...,n, be data given at the distinct knots
x; € R,i=0,1,...,n, with interval spacing h; = x;,; —x; > 0,
and let d; denote the first derivative values at the knots. The
proposed quartic rational interpolation spline is as follows:

=)

H; (x) =

Ry (15000061 fi + R, (8504 a,ﬂ)(fl

h;
+R (t &; 0‘1+1) (fz+1 Tdﬁl)
i+1

+ R3 (t &; “Hl) f1+1’
@

where x € [x;, x4, t = (x — x;)/h;, &, ;€ [0,+00),

i =1,2,...,n— 1, and the quartic ratlonal basis functions
Ri(t o, exjyy) (j=0,1,2,3) are given by
(1-1)’
to, o )
( 1+1) 1+ oct
—t)°t
R, (t;e;, oc,+1)— ) (2+oci+2¢x,~t),
t) .
toy, ——2+oc» +2a;,, (1-1)],
( z+1) 1+ % (1 _ t) [ i+1 it+1 ( )]
£
Ry (a5 04,,) = ————.
3( i 1+1) 1+(X;‘+1 (1—t)
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The spline given in (1) is a C' Hermite interpolation spline
as it satisfies the following interpolatory properties:

Hi (xi) = fi’ Hi (xi+1) = fi+1>
H; (x;) = d;, H; (x;11) = diy

And it can be easily checked that, for o; = «;,; = 0, the
quartic rational interpolation spline is exactly the classical
cubic Hermite interpolation spline.

Now let us assume that the data (x;, f;), i = 0,1,...,n,
being interpolated are generated from a function f(x) €
C?[x,,x,]. Since the developed interpolation (1) is local,
without loss of generality, we only consider the error of
approximation in the subinterval [x;, x;,;]. The absolute
interpolation error in the subinterval can be expressed in
terms of Peano-Kernel [9] as follows:

(3)

If () - Hmk—WWWJ Je-02]dn @
where R [(x — T)i] is known as Peano-Kernel and (x — 1')%r is
the truncated power function. We have R, [(x — T)i] =r(1, x)
for x; < T < xand R [(x - 1)}] = s(r,x) for x < T < x;,
Therefore, the integral involved in (4) can be expressed as

J‘ i+l
Xi

|s (z, x)| dr.
(5)

R, [(x-7)2]|dr = r Ir (r, x)| dr + r

X
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For the proposed quartic rational interpolation spline (1),
we have

r (1, x)

=(x-1)°

—{mxn+RﬂwMaﬂ—rf—

2h;R, (t) (x;4, — T)
2+ Xit1 '
(6)

s(1,x)

- ‘I[Rz () + Ry ()] (341 — T)z -

2R, (1) (xi+1 - T)
2+ X1 ’

7)

where R,(t) and R;(t) denote the quartic rational basis
functions R, (t; «;, ;) and Ry (t; o, ;1) given in (2), respec-
tively.

In order to compute the integral of absolute values in (5),
the roots of 7(t, x) and s(t, x) are calculated. It is observed
that, for all t € [0, 1], r(x, x;) = 0. Substituting 7 = x in (6)
and after some simplification, we have

r(xx) = -k (1-1) {[Rz &)+ Ry ()] (1 1) - 21:2 *) }

i+1

(8)
Therefore, the roots of r(x, x) in [0, 1] are t = 0, ¢ = 1, and

2 2
\/(4 +af ) +8a;,, (2 + o)
40‘1’+1 (2 + (Xi+1) '

(4+oclJrl

)

Similarly, we have s(x, x;,;) = 0. And it is obvious that
the roots of s(x,x) in [0,1] are alsot = 0,t = 1, and t*.
To compute the roots of (7, x), we rewrite it as the following
form:

r(1,x) = [1 =R, (t) = Ry (t)] (x — 7)°
+2h,.{ Ry (0 —[Rz(t)+R3(t)](1—t)]>(x—‘r)
i+1
2R
+hl.2{Tazm(l—t)—[Rz(t)+R3(t)](1—t)2}.
(10)
Thus, we can get the roots of r(t, x) as follows:
Tf:x+hi(¥>, Tz*:x+hi<B+D), (11)
where
A=1-R,()- R (1),
R, (t)
Sy [R, (1) + Ry (O] (1 -1),
D= [ Ry (R, +R;) (1 t]z
= 2+0‘i+1_ ,+R;)(1-1) (12)
- (1-R,—Rs)
1/2
2R
X[2+0621+1 (R2+R3)(1—t)D .
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Moreover, we can easily obtain the following roots of
s(t, x):

2hR, ()
2+ ) [Ry () + Ry (0)]

The above discussion provides the different values of the
absolute error as follows.

*
T = Xit1> T =X~ (13)

Case 1. For 0 <t < t”, the absolute error (4) in [x;, x;,,] is

f @ -H,@] <5 |F2 O e (@an), 08

where

x Xir1
w, (o, 0,1,8) = J I (7, x)| dt + J
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3 3
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«(50)

Case 2. Fort* <t < 1, the absolute error (4) in [x;, x;,,] is

(15)

f @ -H @] <5 |f2 O oy (@008), 06

3
where
@ (@t) = [ Irwaldes [ Cls@olds
= JIT(T,x)dT—er(T,X)dT
+J s(r,x)dT+Ji+ls(‘r,x)d‘r
=<1_R2_R3>t3
3
[ R, 2
+.2+“i+1 (R, +Ry) (1 t)]t
+ [3R, — (2 + ;) (Ry + Ry) (1 - ¢)
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(222)
X
A
2R, (1-1) ) 2]
+[ 2o (R, +Ry)(1-1)
(%)
X
A
_2(1—R2—R3)<B+D>3
3 A
+2[ Ry - (R +R)(1—t)]
2+0‘1+1 : ’
(B+D)2
X
A
2R, (1) ‘ﬂ
[zﬂxm (R, + R;) (1 1)
<B+D>
X .
A
(17)

Summarizing the above discussion, we conclude the
following theorem.

Theorem 1. For f(x) € C’[xy,x,], let H,(x) be the quartic
rational interpolating function of f(t) in [x;,x;,,] defined
by (1). For the nonnegative parameter «;, the error of the
interpolating function H;(x) satisfies

|f (x) - Hmk—w ®)|| He

(18)
G = pax e (@ &t).
with
*
w ((Xi’(xi+1’ t) — w; ((xi’ X1 t) > O*S t<t, (19)
w, (0, 0,1,t), t"<t<1



3. Biquartic Rational Interpolation Spline

Let{(x;, y; F;}),i = 0,1,2,...,m; j=0,1,2,...,n} be a given
set of data points defined over the rectangular domain D =
[a,b] x [¢,d], wherea = x; < x; < x, < -+ < x,, = band
€=y <y <Y <- <y, = d. The biquartic rational
interpolation spline R(x, y) is defined over each rectangular

patch I;; = [x, x4 X [yj ] (6= 0,1,2,....m - 1; j =
0,1,2,...,n—1) as
R(x,y)=R;;(x,y)=1I,;F(i,j) I (), (20)
where
X —X; Y=
u= N V= —" h = x; 1~ X
hl h] 1 i+ 1
hi =y =yp
- y y -
Fi,j Fi,j+1 Ij,z] Fz]+1
Fi+1,j Fi+1,j+1 F1+1,] 1+1 ,j+1
. (21)
F(l’J) - le] Ffjﬂ sz]y Fi?ﬂ ’
Xy X
inl] Fzﬁ-l]ﬂ Fi+1j Fi+y1j+1
Ii,j (u) = [Iio (u) Iy (u) I (“; z) ( /311)]
L) =[l;» 1;0) L;(na;) L;(vB))]
with
Ly(uw)=1- 3P + 20,
I (u) = 3u° - 207,
h(1 - u)u (2 +og i+ Zociju)
Ii2 (Li Ocz]) >
(2+¢x )(1+(x,1u)
—h (L—wu® [2+ B+ 2P, (1 - )]
Ii (”; ﬁi,j) =
(2+B;)[1+B,;,(1-w)] .
fo]' v)y=1- 307 + 207,
le (v) = 3v* =207,
hi(1=v)v(2+a;;+ 28 v)
L; (V’ J) ’

(2+oc )(1+oc v)

S o - 24 B+ 2B (- )]
L (V’ﬁi’j)_ (2+[)’,])[1+,8i)j(1—v)] ’

Here, F, ; are known as the given data, Efj, Fly ; are the first
derlvatlves, and F;; * are the mixed derivatives. Obviously, for
all o = ;=B ,81 = 0, the new proposed patch
R; j(x, y) is exactly the cla331cal bicubic Coons patch.
In most applications, the derivative parameters Fl’ i Ff’ I
and le Jy are not given and hence must be determined either
from given data or by some other means. These methods are
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the approximation based on various mathematical theories.
We use a common choice as follows:

h
FFo=A. . +(A,.—A, ) —0
0, 0, 0, 1 >
j j ( j J) (hy + hy)

h
Ffo=A, 4+ (A, -, ) —
m,j m—1,j ( m—1,j m 2,]) (hm71 +hm72)
A+ A
Ey=—l M is1035, m-1; j=0,1,2,...,n,
2
S h
Y _ 0
Fi,O_A10+(Ai,O Azl) (E0+El),
B = By (R~ Byp) i
in im—1 im—1 i,n—2 ~ -~ >
" (hnfl + hnfz)
A +A;
Fo= = M o0, 1,2, m j=1,2,3,..,n—1,
\j 2
Yy Yy
ny l F1]+1 Efj—l F1+1] Fi—l,]
Y2 Ry +hy hiy+h |’
i=1,23,....m-1; j=1,2,3,...,n-1,
(23)

whereA; ; = (Fy ;= F; ;)/h; andAlJ = (F, j1—F; j)/h;. These
arithmetic mean methods are computationally economical
and suitable for visualization of shaped data.

For convenience, by using the quartic rational basis
functions (2), we rewrite the quartic rational interpolation
spline R(x, y) given in (20) as follows:

R(x,y) =R, (”$ & j> ﬁi,j) ¢i,j +R, (“; “i,pﬁi,j) Pi,j

(24)
+R, (”; &ij> ﬁi,j) fi,j + R (”5 “i,jrﬁi,j) Ci,j»
where
ZRk (V’ & ﬁz]) AO k> (25)
k=0
with
Ao = Fijs
h.
Ay, =F;+——F,
l,] 2+ l)] l]
R (26)
h
Aoy =Fijn = Fzy )
B > ,jt+1
2 :Bi,j
Aoz = Fij
ZRk (V; &i,]’ ﬁl]) Lk> (27)
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with

Ay =F

h; x il]' y h; xy
Avr = (Fi’j Yova i)t ag & ; Bitova D)

i,] ij
h
Az (F”“ 2+:x.. lx1+1>
i
LI
2+ﬁ:)j AL 2+ 0y Ljtl |
Ay =Fjn+ ——F,,
> Lyt 2+“i,j i,j+1
(28)
3 o~
;= DR (%3 B) Aseo (29)
k=0
with
h.
Asg=Fyj— ———F5
’ Ly o +ﬁi,j i+1,j
h.
A21:<F41.——1F'x )
» Ly o +ﬁi,j i+1,j
h; h,
+———(E. .- F?
2+0a; T2+ 5 i o
(30)
A22 = (F Lisl — )
> Lyt 2+ ﬁz] z+11+1
— J (F}’ i ny )
n l+1,]+1 i+1,j+1 |2
2+ ﬁi)j 2+ ﬁi,].
h;
Ayz = Fi+1,j+1 2 +ﬁ i1;+1’
3 —~
i~ ZRk (V3 & j3 ﬁi,j) Az (31)
k=0
with
Ao = Fiipp
h
_ J y
Az = Fyyj+ T%FMJ,
7 (32)
Asy = Fippjo - —=F,
3,2 i+1,j+1 24 E . i+1,j+1°
ij
Asz = Fiipj

4. Positivity Preserving Interpolation

Let {(x; y Fij)i = 0,1,2,...,m;j = 0,1,2,...,n} be
positive data defined over the rectangular domain D =
[x0> X,,] X [¥> ¥,,] such that

F,;>0, Vij. (33)

The quartic rational interpolation spline (24) preserves the
shape of positive data if

R(x,y)>0, V(x,y)eD. (34)

For any «, 8 € [0, +00), since the quartic rational basis
functions given in (2) have the property of nonnegativity,
from (24) we can see that a sufficient condition for R(x, y) > 0
is

Ay >0, Lk=0,1,2,3. (35)

For Ay > 0,k =0,1,2,3, asufficient condition is

F.
& ;> max 10,2 - S N
Fi,j
- (36)
A h,F.
ﬁ,-,j > max 40,-2+ SERLY i
i,j+1
For A, > 0,k =0,1,2,3, asufficient condition is
h;E”, hE;
;> max{O,—Z— L ’f“},
Fij Fz ,j+1
h; [(2+¢x )Fy +thliy]
oc]> max §0,-2 - (37)
(2+0;) Fyj + WiF
~ y
) hj[(2+“i) z]+1+th]+1
ﬁ,-,j > max 40,2+
(2+oc,~, ) i1 + h,F* hivl
For A,; > 0,k =0,1,2,3, a sufficient condition is
h;F; h,E:
ﬁi,j > max {0’_2+ i z+1]’_2+ it i+l j+1 } i
Fi+1,j Fi+1 ,j+l
~ y
. 0 hj [(2+/5i]) i+1,j thz+1]
ij > max i — hWEF* ’ (38)
(2+ﬂ1]) i+1,j 1F1+1]
7 y xy
hj [(2 + /31 J) Fz+1 ,j+1 thHl ,jt+l
ij > max 40,
(2 + ﬁz]) i+1,j+1 thz+1 S+l
For A;; >0, k=0,1,2, 3, a sufficient condition is
h.F
&;; > max 10,-2 - LA O
Fiaj
- (39)
_ h.E .
ﬁi] > max 40,-2+ 7 ibjrl
Fi+1,j+1

Summarizing the above discussion, we can conclude the
following theorem.

Theorem 2. The biquartic rational interpolation spline defined
in (24) visualizes positive data in the view of positive surface
if in each rectangular patch I, ; = [x;, x;1] X [yj, yja] (0 =



0,1,...,m—1; j =0,1,...,n — 1) the shape parameters «;

i,j?
Bi,j» & j» and f3; ; satisfy the followzng conditions:
F*. hF".
o= mJ+maX<]0,—2—l,— 11]“},
Fi,j Fz j+1
h;F%, h,F*
N T+l j+1
ﬂz,] n; +mﬂ{0,—2+f,—2+F+},
i+1,j i+1,j+1
&i’j = r’n\i’j
F).
+ max 40,-2 - &,
ij
_z_h[Q+a j)E + WY
(2+(x )F +hE
xy
[(2+ﬁ1]) i+1,j h1F1+1]]
(2 + ﬁz]) i+1,j thzjil]
y
2 hJFH'l] (40)
F1+1,]
ﬁz,j = ﬁz]
h.F.
+ max 40,-2 + ]—l’JH,
Fl]+1
xy
h] (2+oc ) Ll +h,F1]+1]

|
(2+oc ) ,J+1+hl il

h [(2+ﬂ’]) it+l,j+1 th;j.};]H]
(2 + ﬁl]) i+1,j+1 thl+1 Lj+l

Y
4 h]Ft+1 j+1
F bl

i+1,j+1

>

where my;, ny;, my;, n;; > 0 are left to users for interactively
controlling the shape of the obtained positivity preserving
interpolation spline surface.

5. Monotonicity Preserving Interpolation

Let {(xl-,y,-,Fl-j),i = 0,L2,....mj = 0,1,2,...,n} be a
monotone data defined over the rectangular domain D =
[xg> X,,] X[ V9> ¥,,]. The necessary conditions for monotonicity
of the data are

Foj>Fj A >0, Flfj>0,

i+1,j L]
F i > Fj Au>a F);>0, Vij.

i, j+

(41)

The biquartic rational interpolation spline R(x, y) preserves
the shape of monotone surface data if

OR (x, y) OR (x, y)
T:Rx(x’y)>0’ T:Ry(x’y)>0a
Y (x,y) €D
(42)
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Straightforward computation gives that

(1—u)(2+(x + o u)

R, (x,y) = 12 ij
(2 + ) (1 + o u)
u[2+/31J+,B,J ] - (43)
(2+:81+1) [1+:81](1 u)]
+6(1-u)up, ),
where
3 o~ —_
j= kZRk (W ai,j’ﬁi,j) Coe (44)
=0
with
Cyo = F* C.. =F* 4 By Y
0,0 i 0,1 i,j 2 + (’X\i’j i)j 5
7 (45)
—_ _ ] xy — _
CO)Z - Fl ,j+1 FFI j+1° C0,3 - Fi),Cj-H’
i
T = szk (V; &i,j’ﬁi,j) Cro (46)
=0
with
61,0 = F, B 61,1 = Fiﬁlj + th F i
’ 24 o >
Co,=F " p Cp,=F:
12 7 Vil j+l T W i+1,j+1° L3 = Vit i+l
ij
(47)
3 o~ —_
Pij = ZRk (V§ & > ﬁi,;’) Cyps (48)
k=0
with
6 A Fixj Fz)-ci-lj
20=% "\ 3ra, 2B, )
i, ij
> X
6 =A..— Fi’j + h
2! b 240 2+
i i, ]

1

7 Y Y Xy Xy
hj F1+1] Fi,j Fi,j Fi+1,j
P - + >
2+a; h. 2+ay; 2+ﬁi)j

X X
P~ _ F,]+1 F1+1,]+1
Copa =4~ T o

2+ 2+ﬁd
— hj
2+@j
« [Ft}-:—lj+1 Fi),’j+1 _ ( Fix;;l " F1')-C¢—y1,j+1 )]
h; 240 2+ B ’

F*. F

= i,j+1 i+1,j+1
C2,3=Ai,j+1_<2 . +2—])
+o +,Bi,j

(49)
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Similarly, we have

- (2+a,;+a,,v)

i,] i,j
Ry (x’ y) = R N 2 i,j
(2 + oc,-,j) (1 + oci)jv)
v[2+ B, +B,;(1-)] (50)
+ »
— — 2 tiyj
(2+B;)[1+B,;(-v)]
+6(1-v)vp;
where
3
Y= ZRk (”§ oci,j’/gi,j) Coks (51)
k=0
with
Coo = F/ Cor = Fl+ — g
00 = fijp 01 = kit r“ij ij?
L ’ (52)
_ iy _
CO,Z = Fi+1,j - 24 lﬁ . ir1,j> C0)3 = Fi+1,j’
ij
3
T = ZRk (“§ “i,pﬁi,j) Cip (53)
k=0
with
h.
_ _ xy
Cio = Fjip Coi=Fja+ ﬁ i1
i.j
C,= F’ - Lny C, .= F
L2 7 Yitl,j+1 2+ ﬁ i+1,j+1° L3 7 T+l j+1°
ij
(54)
3
pij = ZRk (“5 ‘Xi,jnBi,j) Coro (55)
k=0
with

y y
~ E;; Ein

Coo=4y;- — + —— ],
2+ %5 2+

Y Y
C, . =A,. - Fij +h
2,1 i,j 24+ &i,j 2 +ﬁi]-

Y Y
-~ Fz+1] Fi+1,j+1
Cya = A Tt a +
L] 2+ ﬁz]
2 +/3i)j
X X Xy Xy

y [Fi+1,j+1 _Fi+1,j ( Fi+1,j n Fi+1,j+1 >:|
= - — —~ 5
h; 24 24P

y y
-~ Fi+1,j Fi+1,j+1
Cos = ADipyj— ——t
> > 2+“i,j 2+ﬁi,j

(56)

From (43) and (50), we can see that a sufficient condition
for R, (x, y) > 0 and R, (x, y) > 0 is as follows:

Cu>0, Cyp>0, 1=0,1,2 k=0,1,23. (57

For Cy; > 0,k =0,1,2,3, a sufficient condition is

WE,]
«; ;> max §0,-2 - Fy’ ,

i,j

hF?, .
Y
Bi,; > max {0,—2+ 5 .

i+1,j

(58)

For C,; > 0,k =0,1,2,3, a sufficient condition is

hF?
«; i > max {0,—2— ;ﬁl} )

J y
Fi,j+1

WF?
,jt+1
Bi,; > max {O,—Z t—— .

i+1,j+1

(59)

In order to give a simple sufficient condition for C, ; > 0,
= 0,1,2,3, we rewrite the expressions of C,; > 0,k =
1,2, 3, as the following forms:

n y X y
C.. = Ai,j Pi,j >+<Ai,j Fi,j+1
2,0 — - T L = - - = >
2 2+oc,-,j 2 2+ﬁi)j

y X y
C. = <Ai,j Fi,j >+<Ai,j Fi,j+1 >
21= |\ ™~ P YV 5 5
4 2+oci,j 4 2+ﬁi)j

k
0,

N i " hiA(Fi),cjﬂ - cmj)

i 4 h; (2+ocl’])

(A, hE] ]
+ —

8 (2+oci)j) (2+ocl])

-31] thl.’f]}.’H ]
.

[ 8 (2+a;)(2+By)

+ [ 8i+1,j B hi (Fi)j—l,jﬂ - Fzﬁ-l])
. hi(2+Biy)
oo, ]
L 8 (2+8,)(2+ay)
N —Eiﬂ,j . hiFi?l,jH ]
8 (BB ]

Y A Y
_ Fi+l,j n Ai+1,j _ Fi+l,j+1
2+ &i,j 2 2+ /3;)], ’



Thus, we can easily obtain the following sufficient condi-
tion for C,; > 0,k =0,1,2,3:

4h, (F.,, - F".
®;; > max 0,-2 - M
hidsj
FX
/31‘,]’ > max 40, 2+ ltljil Hl]) )
thi+1,j
o
a; ; > max {0, 24—
Ai+1j (61)
xy 24
2+ 4@F" p Dl } ,
Al] A1+1_;
_ 4F). 4F),
/-;i’j > max {0’ o4 Az ,j+1 , o4 A1+1 ,j+1 ,
i,j A1+1j
Xy Xy
o4 4hin]+1’_2 4h:F1+1]+1 } )
Ai,j Ai+1,j

By comparing the expressions of C\Lk with those of C; ;,, we

can easily obtain sufficient conditions for ’C\l)k > 0 analogous
to those for C;;, > 0. We summarize the above discussion as
the following theorem.

Theorem 3. The biquartic rational interpolation spline defined
in (24) is monotone if the shape parameters o j, f; j» &; j, and

Ei,j satisfy the following conditions:

at,] = pi,j
WEY W,
+ max 4 0,-2 7 7>
Fi,j Fi,j+1
X X Xy
IOl A i VLN h,E
Ai,j A Lj+1 Ai,j
Xy
- 4hJF1 j+1 4hl <F1 j+1 sz])
A; i,j+1 h]Ai,j
.Bi,j =4ij
hlEJ-ci—yl »J hlE)-Ci—yl ,j+1
+max 40,-2 + s > s
F1+1 N FH—I ,j+1
_2+4F1}j—1] _2+4F13-Ci—1]+1
Aij ’ A i,j+1 '
Xy Xy
24 4h]F1+1] _ 4h]F1+1 j+1
Ai,j A1,_1+1
o 4h ( i+1,j+1 Fzﬁl,])
thHl,j
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az] = pi,j
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+max 10,-2— sz,],_ sz+1;,
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y y xy
- 2 + 4/\1:;)"') _2 4/\Fl+lj) 4”/1\1Fl] bl
Ai,j Ai+1j Ai,j
Xy y
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(62)

where p; j, q; j» P j» 4;,; > 0 are free parameters for interactively
adjusting the shape of the monotonicity preserving interpola-
tion spline surface.

6. Numeric Experiments

In this section, we will construct a positivity preserving
surface and two monotonicity preserving surfaces from the
corresponding data with the biquartic rational interpolation
spline and show the surfaces generated by the methods in
[5, 6] for comparisons. Our method provides a set of simpler
basis functions to represent the positive or monotonic surface
data than [5, 6]. In particular, it is worth noting that only four
parameters are used in our method, that is, half of those used
in [5, 6].

The positive surface data set in Table 1 is obtained from
[5]. In Figurel, the first three rows show the biquartic
rational interpolation spline with different shape parameters
for the positive surface data set given in Table 1, and the
last row shows the surface constructed by the method in
[5]. The images on the right column present the xz-view of
the left. From the results, it can be seen that the biquartic
interpolation spline describes the positive surface data set as
well as [5].

The monotonic surface data sets in Table 2 are derived
from [6]. In Figure 2, for visualizing the monotonic surface
data set given in Table 2, the first three rows are the biquartic
interpolation spline surfaces with different shape parameters,
and the last row is the spline surface in [6]. The right column
images are the yz-views of the left images. From the figure, it
can be seen that the biquartic interpolation spline visualizes
the monotonic surface data set as well as [6].
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FIGURE 1: Surfaces generated from the given positive surface data set in Table 1. The first three rows are our biquartic rational interpolation
spline surfaces with different shape parameters, and the last row is the surface in [5] with given parameters.
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FIGURE 2: Surfaces created from the given monotonic surface data set in Table 2. The first three rows are our biquartic rational interpolation

spline surfaces with different shape parameters, and the last row is the surface in [6] with given parameters.
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TABLE 1: Positive surface data set.

y/x -3 ) -1 1 2 3
-3 0.0124 0.0238 0.0404 0.0404 0.0238  0.0124
-2 0.0238 0.0635 01667 01667 0.0635  0.0238
-1  0.0404 01667 13333 13333 01667 0.0404
1 0.0404 01667 1333 13333  0.1667 0.0404
0.0238  0.0635 0.1667 01667 0.0635  0.0238
3 0.0124  0.0238  0.0404 0.0404 0.0238  0.0124

TABLE 2: Monotonic surface data set.

y/x 1 100 200 300

1 1.0100 31.9390 53.7148 72.8052

100 3.1939 101.0000 169.8611 230.2302
200 3.7982 120.1099 202.0000 273.7914
300 4.2034 132.9235 223.5497 303.0000

7. Conclusion

As stated above, the biquartic rational spline surface over
rectangular domain includes the classical bicubic Coons
surface as a special case. By using the quartic rational basis
function, it can be rewritten neatly. Moreover, by selecting
suitable parameters on the spline, it can be used to nicely
visualize positive or monotonic surface data. Moreover, in our
future works, we will concentrate on trying to make use of the
modeling technique in practical applications, such as shape
preserving surface reconstruction from 3D scattered data.
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