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The paper presents results concerning the solvability of a nonlinear integral equation of Volterra-Stieltjes type. We show that under
some assumptions that equation has a continuous and bounded solution defined on the interval [0, ∞) and having a finite limit
at infinity. As a special case of the mentioned integral equation we obtain an integral equation of Volterra-Wiener-Hopf type. That
fact enables us to formulate convenient and handy conditions ensuring the solvability of the equation in question in the class of
functions defined and continuous on the interval [0, ∞) and having finite limits at infinity.

1. Introduction

Integral equations play very important and significant role in
the description of numerous events appearing in real world.
Almost all branches of physics, mathematical physics, engi-
neering, astronomy, economics, biology, and so forth utilize
the theory of integral equations, both linear andnonlinear (cf.
[1–5], e.g.).

Integral equations of Wiener-Hopf type create very
important branch of the theory of integral equations [5].
Integral equations of such a type belong to the part of the
theory of integral equations which are often called as integral
equations depending on the difference of arguments [5]. It
is worthwhile mentioning that integral equations of Wiener-
Hopf type find numerous applications. For example, they are
applied to describe some problems of radiative equilibria [6]
and in the theory of diffraction [7]. Moreover, the reflection
of an electromagnetic planewave by an infinite sets of plates is
also investigatedwith help ofWiener-Hopf integral equations
[8]. Other possible applications of the theory ofWiener-Hopf
integral equations are associated with dynamic elasticity [9],

diffraction of plane waves by circular cone [10], and so forth
(cf. also [5]).

Let us recall that the classical Wiener-Hopf integral
equation has the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫
𝑏

𝑎

𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (1)

where 𝑡 ∈ [𝑎, 𝑏] and 𝑘 : R → R is a given function which is
continuous and integrable on the set of real numbers R; that
is, there exists a finite improper integral:

∫
+∞

−∞

𝑘 (𝑢) 𝑑𝑢. (2)

Obviously, instead of (1) we may consider its “unbounded
domain” counterpart having the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫
∞

0

𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (3)

or even more general equations [5].
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In this paper we will investigate the Volterra counterpart
of the Wiener-Hopf integral equations (1) and (3), which has
the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫
𝑡

0

𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (4)

where 𝑡 ∈ R+ or 𝑡 ∈ [0, 𝑇] with 𝑇 > 0.
Let us pay attention to the fact that Volterra-Wiener-Hopf

integral equation (4) appears quite naturally as a special case
of (1) and (3). In fact, if we require that

𝑘 (𝑢) = 0 for 𝑢 ⩽ 0, (5)

then (3) reduces to (4). This observation justifies the interest
in the study of the Volterra-Wiener-Hopf integral equations.

To make our investigations more general and more con-
venient, we will study the so-called Volterra-Stieltjes integral
equation having the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫
𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠𝐾 (𝑡, 𝑠) , (6)

where the involved integral is understood in the Riemann-
Stieltjes sense.

The details explaining such an approach as well as suitable
definitions will be presented in our further considerations.

2. Notation, Definitions, and Auxiliary Facts

In this sectio,n we present notation, definitions, and all
auxiliary facts which will be utilized further on. Similar to
Section 1, we will denote by R the set of real numbers. We
put also R+ = [0,∞).

The investigation of the paper will be conducted in the
Banach function space BC(R+) consisting of all real functions
defined, continuous, and bounded on the interval R+. This
space is endowed by the classical supremum norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ⩾ 0} . (7)

Let us notice that in the space BC(R+) the classical
Ascoli-Arzela criterion for relative compactness fails to work
and we know only a few sufficient conditions guaranteeing
the relative compactness (cf. [11, 12]). Keeping in mind our
further purposes we provide below a sufficient condition of
such a type [12].

Theorem 1. Let 𝑋 be a nonempty and bounded subset of the
space𝐵𝐶(R+). Assume that𝑋 is locally equicontinuous; that is,
for any 𝑇 > 0, the functions from 𝑋 are equicontinuous on the
interval [0, 𝑇]. Moreover assume that the following condition is
satisfied.

For any 𝜀 > 0 there exists a number 𝑇 > 0 such that for
any function 𝑥 ∈ 𝑋 and for all 𝑡, 𝑠 ∈ [𝑇,∞) the inequality
|𝑥(𝑡) − 𝑥(𝑠)| ⩽ 𝜀 is satisfied.

Then the set X is relatively compact in the space 𝐵𝐶(R+).

Remark 2. Let us notice that in the case when a set𝑋 satisfies
conditions imposed in Theorem 1 all functions from 𝑋 tend

to finite limits at infinity uniformly with respect to the set 𝑋
(cf. [11, 12]).

In the sequel we will use the concept of the modulus of
continuity of a function from the space BC(R+). Thus, fix
arbitrarily 𝑇 > 0 and take a function 𝑥 ∈ BC(R+).

Consider the quantity

𝜔
𝑇
(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ⩽ 𝜀} (8)

defined for 𝜀 > 0. This quantity is called the modulus of
continuity of a function 𝑥 on the interval [0, 𝑇]. Obviously
lim𝜀→0𝜔

𝑇
(𝑥, 𝜀) = 0 in view of the uniform continuity of 𝑥 on

the interval [0, 𝑇].
Now, we provide needed facts concerning functions of

bounded variation [13].
At the beginning assume that 𝑥 is a real function defined

on a fixed interval [𝑎, 𝑏].Then the symbol⋁𝑏
𝑎
𝑥will denote the

variation of the function 𝑥 on the interval [𝑎, 𝑏]. In the case
when ⋁𝑏

𝑎
𝑥 is finite we say that 𝑥 is of bounded variation on

[𝑎, 𝑏]. If we have a function 𝑢(𝑡, 𝑠) = 𝑢 : [𝑎, 𝑏] × [𝑐, 𝑑] → R,
then we denote by ⋁𝑞

𝑡=𝑝
𝑢(𝑡, 𝑠) the variation of the function

𝑡 → 𝑢(𝑡, 𝑠) on the interval [𝑝, 𝑞] ⊂ [𝑎, 𝑏], where 𝑠 is a fixed
number in the interval [𝑐, 𝑑]. Similarly we define the quantity
⋁
𝑞

𝑠=𝑝
𝑢(𝑡, 𝑠).
For the properties of functions of bounded variation we

refer to [13].
If 𝑥 and 𝜑 are two real functions defined on the interval

[𝑎, 𝑏] then under some additional conditions [13] we can
define the Stieltjes integral (in the Riemann-Stieltjes sense)

∫
𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡) (9)

of the function 𝑥with respect to the function𝜑. In such a case
we say that 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to 𝜑.

Let us mention that several conditions are known which
guarantee the Stieltjes integrability [3, 13, 14]. One of themost
frequently used conditions requires that 𝑥 is continuous and
𝜑 is of bounded variation on [𝑎, 𝑏].

In what follows we will utilize a few properties of the
Stieltjes integral contained in the following given lemmas
[13].

Lemma 3. If 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to a function 𝜑 of bounded variation, then


∫
𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡)


⩽ ∫
𝑏

𝑎

|𝑥 (𝑡)| 𝑑 (

𝑡

⋁
𝑎

𝜑) . (10)

Lemma4. Let𝑥1 and𝑥2 be Stieltjes integrable functions on the
interval [𝑎, 𝑏] with respect to a nondecreasing function 𝜑 such
that 𝑥1(𝑡) ⩽ 𝑥2(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. Then

∫
𝑏

𝑎

𝑥1 (𝑡) 𝑑𝜑 (𝑡) ⩽ ∫
𝑏

𝑎

𝑥2 (𝑡) 𝑑𝜑 (𝑡) . (11)

Further on, we will also consider Stieltjes integrals having
the form

∫
𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠𝑔 (𝑡, 𝑠) , (12)
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where 𝑔 : [𝑎, 𝑏] × [𝑎, 𝑏] → R and the symbol 𝑑𝑠 indicates
the integration with respect to 𝑠. The details concerning the
integral of this type will be given later. Let us only mention
that integral (12) allows us to represent the Volterra-Wiener-
Hopf integral equation (4) as a particular case of the Volterra-
Stieltjes integral equation (6).

3. Main Results

The investigations of this sectionwill be located in the Banach
function space BC(R+) described previously in Section 2.
Firstly, wewill consider the solvability of theVolterra-Stieltjes
integral equation having form (6). This equation will be
studied under the following formulated assumptions.

(i) The function 𝑎 = 𝑎(𝑡) belongs to the space BC(R+)
and is such that there exists the limit lim𝑡→∞𝑎(𝑡)
(obviously, this limit is finite).

(ii) 𝑓 : R+ × R → R is continuous and there exists
a function 𝜙 : R+ → R+ which is nondecreasing,
𝜙(0) = 0, lim𝑡→0𝜙(𝑡) = 0, and such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ⩽ 𝜙 (

𝑥 − 𝑦
) (13)

for all 𝑡 ∈ R+ and 𝑥, 𝑦 ∈ R.
(iii) The function 𝑡 → 𝑓(𝑡, 0) is a member of BC(R+).
(iv) 𝐾(𝑡, 𝑠) = 𝐾 : Δ → R is a uniformly continuous func-

tion on the triangle

Δ = {(𝑡, 𝑠) : 0 ⩽ 𝑠 ⩽ 𝑡} . (14)

(v) The function 𝑠 → 𝐾(𝑡, 𝑠) is of bounded variation on
the interval [0, 𝑡] for each fixed 𝑡 ∈ R+.

(vi) For any 𝜀 > 0 there exists 𝛿 > 0 such that for all 𝑡1, 𝑡2 ∈
R+ with 𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝛿, the following inequality
holds:

𝑡
1

⋁
𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)] ⩽ 𝜀. (15)

(vii) 𝐾(𝑡, 0) = 0 for all 𝑡 ⩾ 0.
(viii) The function 𝑡 → ⋁

𝑡

𝑠=0
𝐾(𝑡, 𝑠) is bounded on R+.

Before formulating the last assumption let us denote by
𝐹1 and𝐾 the following constants:

𝐹1 = sup {𝑓 (𝑡, 0)
 : 𝑡 ∈ R+} ,

𝐾 = sup{
𝑡

⋁
𝑠=0

𝐾 (𝑡, 𝑠) : 𝑡 ∈ R+} .
(16)

Obviously 𝐹1 < ∞ in view of assumption (iii), while the
inequality𝐾 < ∞ is a consequence of assumption (viii).

Now, we can formulate our last assumption.

(ix) There exists a positive solution 𝑟0 of the inequality

‖𝑎‖ + (𝜙 (𝑟) + 𝐹1)𝐾 ⩽ 𝑟. (17)

Now, we are prepared to present our first main result.

Theorem 5. Under assumptions (i)–(ix), (6) has at least one
solution 𝑥 = 𝑥(𝑡) in the space 𝐵𝐶(R+) which belongs to the
ball 𝐵𝑟

0

= {𝑥 ∈ 𝐵𝐶(R+) : ‖𝑥‖ ⩽ 𝑟0} and has a finite limit at
infinity.

In the proof of the above theorem we will need a few
auxiliary facts contained in the following given lemmas.

Lemma 6. The function

𝑝 →

𝑝

⋁
𝑠=0

𝐾 (𝑡, 𝑠) (18)

is continuous on the interval [0, 𝑡] for any fixed 𝑡 ∈ R+.

This lemma is an easy consequence of assumptions (iv)
and (v) and the properties of the variation of functions (cf.
[13], p. 60).

Lemma 7. Let assumptions (iv)–(vi) be satisfied. Then, for
arbitrarily fixed number 𝑡2 > 0 and for any 𝜀 > 0, there exists
𝛿 > 0 such that if 𝑡1 < 𝑡2 and 𝑡2 − 𝑡1 ⩽ 𝛿 then

𝑡
2

⋁
𝑠=𝑡
1

𝐾(𝑡2, 𝑠) ⩽ 𝜀. (19)

Proof. Fix 𝑡2 ∈ (0,∞) and 𝜀 > 0. Next, consider the function
𝐻 defined on the interval [0, 𝑡2] by the formula

𝐻(𝑝) =

𝑝

⋁
𝑠=0

𝐾(𝑡2, 𝑠) . (20)

Then, in view of Lemma 6, the function𝐻 is continuous
at the point 𝑡2. Hence we infer that there exists 𝛿 > 0 such that
for 𝑡1 ⩾ 0, 𝑡1 < 𝑡2, and 𝑡2−𝑡1 ⩽ 𝛿wehave that |𝐻(𝑡2)−𝐻(𝑡1)| ⩽
𝜀. On the other hand, we get

𝐻 (𝑡2) − 𝐻 (𝑡1)
 =



𝑡
2

⋁
𝑠=0

𝐾(𝑡2, 𝑠) −

𝑡
1

⋁
𝑠=0

𝐾(𝑡2, 𝑠)



=



𝑡
1

⋁
𝑠=0

𝐾(𝑡2, 𝑠) +

𝑡
2

⋁
𝑠=𝑡
1

𝐾(𝑡2, 𝑠) −

𝑡
1

⋁
𝑠=0

𝐾(𝑡2, 𝑠)



=

𝑡
2

⋁
𝑠=𝑡
1

𝐾(𝑡2, 𝑠) ⩽ 𝜀.

(21)

The proof is complete.

Proof of Theorem 5. Let us consider the operator𝐹 defined on
the space BC(R+) in the following way:

(𝐹𝑥) (𝑡) = 𝑎 (𝑡) + ∫
𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠𝐾 (𝑡, 𝑠) , (22)

for 𝑥 ∈ BC(R+) and for arbitrarily fixed 𝑡 ∈ R+. Then,
keeping in mind the imposed assumptions, we deduce that
the function 𝐹𝑥 is well defined.
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Further, fix arbitrarily 𝑇 > 0 and take 𝑠, 𝑡 ∈ [0, 𝑇].
Without loss of generality we may assume that 𝑠 < 𝑡. Then,
in view of Lemmas 3 and 4, we obtain

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)|

⩽ |𝑎 (𝑡) − 𝑎 (𝑠)|

+

∫
𝑡

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)

−∫
𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑠, 𝜏)


⩽ 𝜔
𝑇
(𝑎, 𝜀) +


∫
𝑡

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)

−∫
𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)


+

∫
𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)

−∫
𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑠, 𝜏)


⩽ 𝜔
𝑇
(𝑎, 𝜀) +


∫
𝑡

𝑠

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)


+

∫
𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏 [𝐾 (𝑡, 𝜏)−𝐾 (𝑠, 𝜏)]


⩽ 𝜔
𝑇
(𝑎, 𝜀)

+ ∫
𝑡

𝑠

𝑓 (𝜏, 𝑥 (𝜏))
 𝑑𝜏(

𝜏

⋁
𝑝=0

𝐾(𝑡, 𝑝))

+ ∫
𝑠

0

𝑓 (𝜏, 𝑥 (𝜏))
 𝑑𝜏

× (

𝜏

⋁
𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀)

+ ∫
𝑡

𝑠

[
𝑓 (𝜏, 𝑥 (𝜏)) . − 𝑓 (𝜏, 0)



+
𝑓 (𝜏, 0)

] 𝑑𝜏(

𝜏

⋁
𝑝=0

𝐾(𝑡, 𝑝))

+ ∫
𝑠

0

[
𝑓 (𝜏, 𝑥 (𝜏)) . − 𝑓 (𝜏, 0)



+
𝑓 (𝜏, 0)

] 𝑑𝜏(

𝜏

⋁
𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀) + ∫

𝑡

𝑠

{𝜙 (|𝑥 (𝜏)|) + 𝐹1} 𝑑𝜏

× (

𝜏

⋁
𝑝=0

𝐾(𝑡, 𝑝))

+ ∫
𝑠

0

{𝜙 (|𝑥 (𝜏)|) + 𝐹1} 𝑑𝜏

× (

𝜏

⋁
𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀) + {𝜙 (‖𝑥‖) + 𝐹1}

× ∫
𝑡

𝑠

𝑑𝜏(

𝜏

⋁
𝑝=0

𝐾(𝑡, 𝑝))

+ {𝜙 (‖𝑥‖) + 𝐹1}

× ∫
𝑠

0

𝑑𝜏(

𝜏

⋁
𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀) + {𝜙 (‖𝑥‖) + 𝐹1}

𝑡

⋁
𝑝=𝑠

𝐾(𝑡, 𝑝)

+ {𝜙 (‖𝑥‖)+𝐹1}

𝑠

⋁
𝑞=0

[𝐾 (𝑡, 𝑞)−𝐾 (𝑠, 𝑞)] .

(23)

Hence, in view of assumption (vi) and Lemma 7, we conclude
that the function𝐹𝑥 is continuous on the interval [0, 𝑇]. Since
𝑇 was chosen arbitrarily this allows us to infer that 𝐹𝑥 is
continuous on R+.

Next, we show that the function 𝐹𝑥 is bounded onR+. To
this end, fix arbitrarily 𝑥 ∈ BC(R+) and 𝑡 ⩾ 0. Then, in virtue
of the imposed assumptions and Lemmas 3 and 4, we get

|(𝐹𝑥) (𝑡)| ⩽ ‖𝑎‖ + ∫
𝑡

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠(

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + ∫
𝑡

0

[
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

 +
𝑓 (𝑠, 0)

] 𝑑𝑠

× (

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + ∫
𝑡

0

[𝜙 (|𝑥 (𝑠)|) + 𝐹1] 𝑑𝑠(

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + {𝜙 (‖𝑥‖) + 𝐹1} ∫
𝑡

0

𝑑𝑠(

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + {𝐹1 + 𝜙 (‖𝑥‖)}

𝑡

⋁
𝑠=0

𝐾 (𝑡, 𝑠) .

(24)

Now, in view of assumption (viii), we conclude that the
following inequality holds:

‖𝐹𝑥‖ ⩽ ‖𝑎‖ + {𝐹1 + 𝜙 (‖𝑥‖)}𝐾. (25)

The above inequality shows that the function 𝐹𝑥 is bounded
on R+. This fact in connection with the continuity of
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the function 𝐹𝑥 established above shows that 𝐹𝑥 ∈ BC(R+).
In other words, the operator 𝐹 is a self-mapping of the space
BC(R+).

Moreover, on the basis of inequality (25) and assumption
(ix), we conclude that there exists a positive number 𝑟0 such
that the operator 𝐹 transforms the ball 𝐵𝑟

0

(see assumption
(ix)) into itself.

Now we show that the operator 𝐹 is continuous on the
ball 𝐵𝑟

0

. To this end, fix 𝜀 > 0. Next, fix arbitrarily 𝑥, 𝑦 ∈ 𝐵𝑟
0

such that ‖𝑥 − 𝑦‖ ⩽ 𝜀. Then, taking into account the imposed
assumptions, for an arbitrary fixed number 𝑡 ∈ R+, we get
(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)



=

∫
𝑡

0

[𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠𝐾 (𝑡, 𝑠)


⩽ ∫
𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) . − 𝑓 (𝑠, 𝑦 (𝑠))
 𝑑𝑠(

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ ∫
𝑡

0

𝜙 (
𝑥 (𝑠) − 𝑦 (𝑠)

) 𝑑𝑠(

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ ∫
𝑡

0

𝜙 (𝜀) 𝑑𝑠(

𝑠

⋁
𝑝=0

𝐾(𝑡, 𝑝))

⩽ 𝜙 (𝜀)

𝑡

⋁
𝑠=0

𝐾 (𝑡, 𝑠) ⩽ 𝐾𝜙 (𝜀) .

(26)

The above obtained estimate (26) shows that the operator 𝐹
is continuous even on the whole space BC(R+).

Now we show that the set 𝐹(𝐵𝑟
0

) is relatively compact
in the space BC(R+). To show this fact we introduce two
auxiliary functions𝑀 = 𝑀(𝜀) and 𝑁 = 𝑁(𝜀) defined in the
following way:

𝑀(𝜀) = sup{
𝑡
1

⋁
𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)] : 𝑡1, 𝑡2 ∈ R+,

𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝜀} ,

𝑁 (𝜀) = sup{
𝑡
2

⋁
𝑠=𝑡
1

𝐾(𝑡2, 𝑠) : 𝑡1, 𝑡2 ∈ R+, 𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝜀} .

(27)

Observe that in view of assumption (iv) and Lemma 7we have
that𝑀(𝜀) → 0 and𝑁(𝜀) → 0 as 𝜀 → 0.

Further, fix arbitrarily 𝜀 > 0 and 𝑇 > 0 and choose a
function 𝑥 ∈ 𝐵𝑟

0

. Next, take 𝑡, 𝑠 ∈ [0, 𝑇] such that |𝑡 − 𝑠| ⩽ 𝜀.
Without loss of generality we may assume that 𝑠 < 𝑡. Then, in
view of estimate (23), we get

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)| ⩽ 𝜔
𝑇
(𝑎, 𝜀) + [𝜙 (𝑟0) + 𝐹1]𝑁 (𝜀)

+ [𝜙 (𝑟0) + 𝐹1]𝑀 (𝜀) .
(28)

This estimate shows that functions from the set 𝐹(𝐵𝑟
0

) are
equicontinuous on the interval [0, 𝑇].

Next, taking arbitrarily 𝑡, 𝑠 ∈ [𝑇,∞) with 𝑠 < 𝑡 and
arguing in the same way as we done in order to obtain
estimate (23), we get

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)| ⩽ |𝑎 (𝑡) − 𝑎 (𝑠)|

+ {𝜙 (𝑟0) + 𝐹1} [𝑀 (𝜀) + 𝑁 (𝜀)] .
(29)

Hence, keeping in mind assumption (i), we can choose 𝑇 > 0
so big that the term |𝑎(𝑡) − 𝑎(𝑠)| is suitably small for 𝑠, 𝑡 > 𝑇.
This assertion in conjunction with the fact that𝑀(𝜀) → 0

and𝑁(𝜀) → 0 as 𝜀 → 0, in view of Theorem 1, allows us to
deduce that the set 𝐹(𝐵𝑟

0

) is relatively compact in the space
BC(R+).

Now, taking into account the continuity of the operator
𝐹 and applying the classical Schauder fixed point principle,
we conclude that there exists at least one fixed point 𝑥 of
the operator 𝐹 which belongs to the ball 𝐵𝑟

0

. Obviously, the
function𝑥 = 𝑥(𝑡) is a solution of theVolterra-Stieltjes integral
equation (6). Moreover, let us notice that any fixed point
𝑥 = 𝑥(𝑡) of the operator𝐹 from the ball𝐵𝑟

0

must belong to the
set 𝐹(𝐵𝑟

0

) being relatively compact in the sense ofTheorem 1.
In the light of Remark 2 this fact allows us to infer that the
function 𝑥 = 𝑥(𝑡) being a solution of (6) has a finite limit at
infinity.

The proof is complete.

Now, we pay our attention to assumption (vi) playing a
key role in our investigations. It turns out that we can formu-
late a condition being handy in applications and ensuring that
the function𝐾 = 𝐾(𝑡, 𝑠) satisfies assumption (vi).

To formulate that condition assume, as previously, that
𝐾(𝑡, 𝑠) = 𝐾 : Δ → R, where Δ = {(𝑡, 𝑠) : 0 ⩽ 𝑠 ⩽ 𝑡}. Then,
the announced condition may be formulated as follows.

(vi) For arbitrary 𝑡1, 𝑡2 ∈ R+ such that 𝑡1 < 𝑡2 the
function 𝑠 → 𝐾(𝑡2, 𝑠) − 𝐾(𝑡1, 𝑠) is nonincreasing on
the interval [0, 𝑡1].

Remark 8. The above condition and its consequences were
discussed in [15] (cf. also [16]) under the assumption that𝐾 :

Δ 1 → R, where Δ 1 = {(𝑡, 𝑠) : 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1}. Moreover,
instead of 𝑡1, 𝑡2 ∈ R+ it was assumed that 𝑡1, 𝑡2 ∈ [0, 1].

Further, we prove a few consequences of condition (vi).

Lemma 9. Under assumptions (vi) and (vii), for arbitrarily
fixed 𝑠 ∈ R+, the function 𝑡 → 𝐾(𝑡, 𝑠) is nonincreasing on the
interval [𝑠,∞).

Proof. Fix a number 𝑠 ∈ R+ and take arbitrarily 𝑡1, 𝑡2 ∈ [𝑠,∞)

with 𝑡1 < 𝑡2. Then, in virtue of (vi), we obtain

𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) ⩽ 𝐾 (𝑡2, 0) − 𝐾 (𝑡1, 0) . (30)

Hence, in view of assumption (vii), we have

𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) ⩽ 0 (31)

and the proof is complete.



6 Abstract and Applied Analysis

The next result indicates the utility of assumption (vi).

Theorem 10. Suppose that the function 𝐾 = 𝐾(𝑡, 𝑠) satisfies
assumptions (iv), (vi), and (vii). Then 𝐾 satisfies assumption
(vi).

Proof. Fix an arbitrary number 𝜀 > 0. In view of assumption
(iv) we deduce that there exists 𝛿 > 0 such that if 𝑡1, 𝑡2 ∈ R+,
𝑡1 < 𝑡2 and 𝑡2 − 𝑡1 < 𝛿 then

𝐾 (𝑡2, 𝑡1) − 𝐾 (𝑡1, 𝑡1)
 ⩽ 𝜀. (32)

In the light of Lemma 9 the above inequality can be written
equivalently in the form

0 ⩽ 𝐾 (𝑡1, 𝑡1) − 𝐾 (𝑡2, 𝑡1) ⩽ 𝜀. (33)

Further, assume that 𝑡1, 𝑡2 are fixed. Take a partition 0 = 𝑠0 <
𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑛 = 𝑡1 of the interval [0, 𝑡1]. Then, in view of
assumptions (vi) and (vii) and Lemma 9, we obtain

𝑛

∑
𝑖=1

[𝐾 (𝑡2, 𝑠𝑖) − 𝐾 (𝑡1, 𝑠𝑖)] − [𝐾 (𝑡2, 𝑠𝑖−1) − 𝐾 (𝑡1, 𝑠𝑖−1)]


=

𝑛

∑
𝑖=1

{[𝐾 (𝑡2, 𝑠𝑖−1) − 𝐾 (𝑡1, 𝑠𝑖−1)] − [𝐾 (𝑡2, 𝑠𝑖) − 𝐾 (𝑡1, 𝑠𝑖)]}

= 𝐾 (𝑡1, 𝑡1) − 𝐾 (𝑡2, 𝑡1) .

(34)

Hence we deduce that

𝑡
1

⋁
𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)] = 𝐾 (𝑡1, 𝑡1) − 𝐾 (𝑡2, 𝑡1) . (35)

Finally, combining the above equality with (33), we complete
the proof.

In what follows we show how the result contained in
Theorem 5 can be applied to the Volterra-Wiener-Hopf
integral equation (4). First of all let us recall that (4) is a
special case of the Volterra-Stieltjes integral equation (6) if
we put

𝐾 (𝑡, 𝑠) = ∫
𝑠

0

𝑘 (𝑡 − 𝑧) 𝑑𝑧 (36)

for (𝑡, 𝑠) ∈ Δ. Obviously such a substitution has a sense under
suitable assumptions concerning the function 𝑘 = 𝑘(𝑢),
which will be formulated later.

To adapt the assumptions of Theorem 5 to our situation
let us observe that assumption (vii) is then automatically
satisfied since𝐾(𝑡, 0) = 0.

Let us observe that in order to ensure the well definiteness
of the function 𝐾 = 𝐾(𝑡, 𝑠) we have to assume that the
function 𝑘 = 𝑘(𝑢) is locally integrable over R+ (in Lebesgue

sense). Moreover, to adapt assumption (vi), let us notice that
taking 𝑡1, 𝑡2 ∈ R+, 𝑡1 < 𝑡2, we have

𝑡
1

⋁
𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)]

=

𝑡
1

⋁
𝑠=0

[∫
𝑠

0

𝑘 (𝑡2 − 𝑧) 𝑑𝑧 − ∫
𝑠

0

𝑘 (𝑡1 − 𝑧) 𝑑𝑧]

=

𝑡
1

⋁
𝑠=0

∫
𝑠

0

[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧

= ∫
𝑡
1

0

[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧.

(37)

In view of the above equality we can reformulate assumption
(vi) in the following way.

(vi1) For any 𝜀 > 0 there exists 𝛿 > 0 such that for all 𝑡1, 𝑡2 ∈
R+ with 𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝛿, the following inequality
holds:

∫
𝑡
1

0

[𝑘 (𝑡2 − 𝑠) − 𝑘 (𝑡1 − 𝑠)] 𝑑𝑠 ⩽ 𝜀. (38)

In a similar way, assumption (viii) can be translated to the
following form.

(viii1) The function 𝑡 → ∫
𝑡

0
𝑘(𝑡 − 𝑠)𝑑𝑠 is bounded on R+.

In order to present the last assumption in a more
transparent form, let us substitute 𝑢 = 𝑡 − 𝑠 in the integral
appearing in assumption (viii1). Then we get

∫
𝑡

0

𝑘 (𝑡 − 𝑠) 𝑑𝑠 = ∫
𝑡

0

𝑘 (𝑢) 𝑑𝑢. (39)

Thus, the above condition concerning the local Lebesgue
integrability of the function 𝑘 = 𝑘(𝑢) in conjunction with the
above observation implies that we should put the following
assumption in place of (viii1).

(viii2) The function 𝑘 = 𝑘(𝑢) is Lebesgue integrable overR+.

It is well-known that the Lebesgue integrability of the
function 𝑘 = 𝑘(𝑢) on the intervalR+ implies that the function

𝑡 → ∫
𝑡

0

𝑘 (𝑢) 𝑑𝑢 (40)

(the indefinite integral of 𝑘) is absolutely continuous on R+
(cf. [13, 17, 18]). This immediately implies that the function
defined by (40) is uniformly continuous on R+.

Now, let us observe that the above formulated assump-
tion (vi1) connected with the Volterra-Wiener-Hopf integral
equation (4) has rather inconvenient form and is not easy
to verify in practice. Therefore, in our further investigations,
we will utilize assumption (vi) instead of assumption (vi).
Obviously, assumption (vi) will be adapted to the case of (4).



Abstract and Applied Analysis 7

To this end choose arbitrarily 𝑡1, 𝑡2 ∈ R+ with 𝑡1 < 𝑡2.
According to assumption (vi) the function

𝑠 → 𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) (41)

should be nonincreasing on the interval [0, 𝑡1]. Taking into
account that

𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) = ∫
𝑠

0

𝑘 (𝑡2 − 𝑧) 𝑑𝑧 − ∫
𝑠

0

𝑘 (𝑡1 − 𝑧) 𝑑𝑧

= ∫
𝑠

0

[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧,

(42)

we have to impose the condition requiring that the function

𝑠 → ∫
𝑠

0

[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧 (43)

is nonincreasing on the interval [0, 𝑡1].
Since the function (42) is absolutely continuous on the

interval [0, 𝑡1], by thewell-known facts from the theory of real
functions [18], this requirement can be expressed equivalently
in the following form:

𝑘 (𝑡2 − 𝑠) − 𝑘 (𝑡1 − 𝑠) ⩽ 0 (44)

for 𝑠 ∈ [0, 𝑡1]. Obviously this means that the function 𝑘 =
𝑘(𝑢) is nonincreasing on R+.

On the other hand any monotone function is Riemann
integrable.Thus, assuming additionally that 𝑘 : R+ → R+we
conclude that 𝑘 is nonincreasing and bounded on R+. It is
known [13] that in this case the function

𝑡 → ∫
𝑡

0

𝑘 (𝑢) 𝑑𝑢 (45)

is Lipschitz continuous on R+. In other words, in such a
situation, we have that the function

𝑠 → 𝐾 (𝑡, 𝑠) = ∫
𝑠

0

𝑘 (𝑡 − 𝑧) 𝑑𝑧 (46)

is uniformly continuous on the interval [0, 𝑡].
Keeping in mind the above conducted considerations we

can formulate the following result concerning the Volterra-
Wiener-Hopf integral equation (4).

Theorem 11. Assume that there are satisfied assumptions (i),
(ii), and (iii) of Theorem 5. Moreover, we assume that the
following conditions are satisfied.

(x) The function 𝑘(𝑢) = 𝑘 : R+ → R+ is nonincreasing
and integrable on R+.

(xi) There exists a positive solution 𝑟0 of the inequality

‖𝑎‖ + (𝜙 (𝑟) + 𝐹1) 𝑘 ⩽ 𝑟, (47)

where

𝑘 = ∫
∞

0

|𝑘 (𝑢)| 𝑑𝑢. (48)

Then there exists at least one solution 𝑥 = 𝑥(𝑡) of (4)
in the space 𝐵𝐶(R+) which has a limit at infinity.

Finally, let us mention that the result concerning the
nonlinear integral equation (4) obtained in this section
generalizes several ones which can be encountered in the
literature (cf. [5, 19, 20], e.g.).

4. Further Discussions and Examples

At the beginning of this section we intend to discuss some
assumptions imposed on the terms of the integral equation
of Volterra-Wiener-Hopf type (4) considered in the previous
section.

Let us start with the requirement that the function 𝑘 =
𝑘(𝑢) transforms R+ into itself and is nonincreasing on R+.
Observe that in that case we allow the function 𝑘 to take
negative values; that is, if we would assume that 𝑘(𝑢) ⩽

𝑘(𝑢0) < 0 for 𝑢 > 𝑢0, then we infer that 𝑘 is not integrable
on R+ and we obtain a contradiction with assumption (x).

Further on, let us notice that in our considerations
connected with (6), assumption (vi) can be replaced by the
following one.
(vi) For arbitrary 𝑡1, 𝑡2 ∈ R+ such that 𝑡1 < 𝑡2 the function

𝑠 → 𝐾(𝑡2, 𝑠) − 𝐾(𝑡1, 𝑠) is nondecreasing on the
interval [0, 𝑡1].

Indeed, in such a case, arguing similarly to the proof
of Lemma 9 and Theorem 10, we can prove the following
analogous results.

Lemma 12. Under assumptions (vi) and (vii), for arbitrarily
fixed 𝑠 ∈ R+, the function 𝑡 → 𝐾(𝑡, 𝑠) is nondecreasing on the
interval [𝑠,∞).

Theorem 13. Suppose that the function 𝐾 = 𝐾(𝑡, 𝑠) satisfies
assumptions (iv), (vi), and (vii). Then 𝐾 satisfies assumption
(vi).

Further, performing similar reasonings as at the end of
Section 3, we can easily conclude that, in the case of Volterra-
Wiener-Hopf equation (4), assumption (vi) is equivalent to
the requirement that the function 𝑘 = 𝑘(𝑢) is nondecreasing
on R+. This immediately yields that in order to ensure the
integrability of the function 𝑘 over the interval R+ we are
forced to assume that 𝑘 : R+ → R− = (−∞, 0].

Now, we are prepared to formulate other (nondecreasing)
versions of Theorem 11.

Theorem 14. Assume that there are satisfied assumptions (i),
(ii), and (iii) of Theorem 5 and assumption (xi) of Theorem 11.
Moreover, we assume that the following condition is satisfied.

(x) The function 𝑘(𝑢) = 𝑘 : R+ → R− is nondecreasing
and integrable on R+.

Then there exists at least one solution 𝑥 = 𝑥(𝑡) of (4) in the
space 𝐵𝐶(R+) which has a limit at infinity.

Obviously, the proof of Theorem 14 runs in a similar way
as the proof of Theorem 11.
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In what follows let us pay our attention to the case of
Volterra-Wiener-Hopf integral equation (4) considered on
a bounded interval [0, 𝑇]. This means that we consider the
following integral equation of Volterra-Wiener-Hopf type:

𝑥 (𝑡) = 𝑎 (𝑡) + ∫
𝑡

0

𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (49)

for 𝑡 ∈ [0, 𝑇], where 𝑇 > 0 is a given number.
Observe that in this case we can replace assumption (i) by

the assumption requiring that 𝑎 ∈ 𝐶[0, 𝑇] and we can delete
assumption (iii). Similarly we can modify and adapt suitable
assumptions (iv) and (vii). Summing up, we can formulate the
following result concerning equation (49) for 𝑡 ∈ [0, 𝑇].

Theorem 15. Assume that the following hypotheses are satis-
fied:

(1) 𝑎 ∈ 𝐶[0, 𝑇];
(2) 𝑓 : [0, 𝑇] × R → R is continuous and there exists a

function 𝜙 : R+ → R+ which is nondecreasing, 𝜙(0) =
0, lim𝑡→0𝜙(𝑡) = 0, and such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ⩽ 𝜙 (

𝑥 − 𝑦
) (50)

for all 𝑡 ∈ [0, 𝑇] and 𝑥, 𝑦 ∈ R;
(3) the function 𝑘(𝑢) = 𝑘 : [0, 𝑇] → R is monotone on

[0, 𝑇];
(4) there exists a positive solution 𝑟0 of the inequality

‖𝑎‖𝐶[0,𝑇] + (𝜙 (𝑟) + 𝐹1) 𝑘 ⩽ 𝑟, (51)

where 𝑘 = ∫𝑇
0
|𝑘(𝑢)|𝑑𝑢 and 𝐹1 = max{|𝑓(𝑡, 0)| : 𝑡 ∈

[0, 𝑇]}.
Then there exists at least one solution 𝑥 = 𝑥(𝑡) of (49) in the
space 𝐶[0, 𝑇].

Let us remark that the space 𝐶[0, 𝑇] denotes the classical
Banach space consisting of real functions being continuous
on the interval [0, 𝑇] and endowed by the classical maximum
norm.

In the remainder of this section we provide a few
examples associated with the Volterra-Wiener-Hopf integral
equation (4) considered on the real half-axis R+. At the
beginning we present examples of functions 𝑘 = 𝑘(𝑢)

satisfying requirement of Theorems 11 and 14.

Example 1. Let us take the function 𝑘 having the form

𝑘 (𝑢) =
1

𝑢2 + 1
. (52)

Obviously 𝑘 : R+ → R+ and the function 𝑘 is nonincreasing
on the intervalR+.Moreover, the function 𝑘 is integrable over
R+ and

∫
𝑡

0

𝑘 (𝑢) 𝑑𝑢 = arctan 𝑡. (53)

Thus

𝑘 = ∫
∞

0

𝑘 (𝑢) 𝑑𝑢 =
𝜋

2
. (54)

Example 2. Consider the function 𝑘(𝑢) = 𝑒−𝑢. Observe that
this function satisfies assumption (x) since it is decreasing and
integrable on R+. Moreover, we have that

𝑘 = ∫
∞

0

𝑘 (𝑢) 𝑑𝑢 = ∫
∞

0

𝑒
−𝑢
𝑑𝑢 = 1, (55)

where 𝑘 is the constant defined by (48).

Example 3. Now, consider the function 𝑘 = 𝑘(𝑢) of the form

𝑘 (𝑢) = (𝑢 + 1) 𝑒
−𝑢
. (56)

It is easy to check that 𝑘 is decreasing and integrable on the
interval R+. Moreover, we have that

𝑘 = ∫
∞

0

(𝑢 + 1) 𝑒
−𝑢
𝑑𝑢 = 2. (57)

Example 4. Let us take into account the function 𝑘 defined by
the formula

𝑘 (𝑢) =
−1

1 + 𝑒𝑢
. (58)

Obviously, we can easily verify that 𝑘 : R+ → R− and 𝑘 is
increasing on R+. Moreover, we have

𝑘 = ∫
∞

0

1

1 + 𝑒𝑢
𝑑𝑢 = ln 2. (59)

In what follows we provide an example illustrating
Theorem 11.

Example 5. Let us consider the Volterra-Wiener-Hopf inte-
gral equation having the form

𝑥 (𝑡) =
𝑡
2
+ 1

𝑡2 + 2
+ ∫
𝑡

0

1

(𝑡 − 𝑠)
2
+ 1

3√𝑥2 (𝑠) + arctan( 𝑠

𝑠2 + 4
)𝑑𝑠.

(60)

Observe that (60) is a special case of (4) if we put

𝑎 (𝑡) =
𝑡
2
+ 1

𝑡2 + 2
, (61)

𝑘 (𝑢) =
1

𝑢2 + 1
, (62)

𝑓 (𝑡, 𝑥) =
3√𝑥2 + arctan( 𝑡

𝑡2 + 4
). (63)

Let us verify that the terms involved in (60) satisfy the
assumption of Theorem 11.

Indeed, the function 𝑎 = 𝑎(𝑢) satisfies assumption (i) and
we have that ‖𝑎‖ = 1. Obviously, the function 𝑓 = 𝑓(𝑡, 𝑥)

defined by (63) is continuous on the set R+ × R. To prove
the second part of assumption (ii) we will use the following
inequality:



3√𝑥2 + 𝑎 −
3√𝑦2 + 𝑎


⩽
3√(𝑥 − 𝑦)

2
, (64)
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(cf. [21]). Thus, in view of (64), we get
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)



⩽



3√𝑥2 + arctan( 𝑡

𝑡2 + 4
) −

3√𝑦2 + arctan( 𝑡

𝑡2 + 4
)



⩽
3√(𝑥 − 𝑦)

2
.

(65)

Hence we infer that the function 𝑓 = 𝑓(𝑡, 𝑥) satisfies
assumption (ii) with the function 𝜙(𝑟) = 𝑟

2/3. Obviously
𝜙(0) = 0, 𝜙 is nondecreasing, and lim𝑟→0𝜙(𝑟) = 0.

In order to check that the function 𝑓 = 𝑓(𝑡, 𝑥) satisfies
assumption (iii) observe that

𝑓 (𝑡, 0) =
3√arctan( 𝑡

𝑡2 + 4
). (66)

Applying the standard methods of differential calculus,
we obtain

𝐹1 = sup {𝑓 (𝑡, 0)
 : 𝑡 ⩾ 0} =

3√arctan(1
4
)

=
3√0.2449 . . . = 0.62564 . . . .

(67)

Next, in view of Example 1, we derive that the function 𝑘
given by (52) satisfies assumption (x) and 𝑘 = 𝜋/2.

Finally, let us consider inequality (47) which now has the
following form:

1 + (𝑟
2/3
+ 0.62564 . . .)

𝜋

2
⩽ 𝑟. (68)

Using the standard methods of mathematical analysis
we can show that there exists a number 𝑟 belonging to the
interval (8, 9) which satisfies the equation

1 + (𝑟
2/3
+ 0.62564 . . .)

𝜋

2
= 𝑟. (69)

Thus, this allows us to deduce that for any number 𝑟0 ⩾ 𝑟

there is satisfied inequality (68). For example, we can accept
that 𝑟0 = 9.

Now, invoking Theorem 11, we infer that there exists at
least one solution 𝑥 = 𝑥(𝑡) of (60) in the space BC(R+)
which belongs to the ball 𝐵9 and has a finite limit at infinity.
Obviously the limit lim𝑡→∞𝑥(𝑡) belongs to the interval
[−9, 9].
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