
Research Article
Mathematical Modeling and Optimal Blank Generation in
Glass Manufacturing

Raymond Phillips,1 Matthew Woolway,1 Dario Fanucchi,1 and M. Montaz Ali1,2

1 School of Computational and Applied Mathematics, University of the Witwatersrand, 1 Jan Smuts Avenue,
Private Bag 03, WITS 2050, Johannesburg, South Africa

2 TCSE, Faculty of Engineering and the Build Environment, University of the Witwatersrand, 1 Jan Smuts Avenue,
Private Bag 03, WITS 2050, Johannesburg, South Africa

Correspondence should be addressed to M. Montaz Ali; montaz.ali@wits.ac.za

Received 6 January 2014; Accepted 20 January 2014; Published 27 April 2014

Academic Editor: Aderemi Oluyinka Adewumi

Copyright © 2014 Raymond Phillips et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper discusses the stock size selection problem (Chambers and Dyson, 1976), which is of relevance in the float glass industry.
Given a fixed integer N, generally between 2 and 6 (but potentially larger), we find the N best sizes for intermediate stock from
which to cut a roster of orders. An objective function is formulated with the purpose of minimizing wastage, and the problem is
phrased as a combinatorial optimization problem involving the selection of columns of a cost matrix. Some bounds and heuristics
are developed, and two exact algorithms (depth-first search and branch-and-bound) are applied to the problem, as well as one
approximate algorithm (NOMAD). It is found that wastage reduces dramatically as N increases, but this trend becomes less
pronounced for larger values of N (beyond 6 or 7). For typical values of N, branch-and-bound is able to find the exact solution
within a reasonable amount of time.

1. Introduction

The cutting and packing of stock are important problems
in the metal, paper, wood, and glass industries (amongst
others). Consequently, many researchers have considered
these problems as mathematical optimization problems and
derived good algorithms towards their solutions. In particu-
lar, the Stock-Cutting problem is concernedwith the cutting of
specific rectangles (orders) desired by customers from larger
shapes (blanks) produced during the manufacturing process.
This problem was first treated as a linear programming prob-
lem in [1] for one-dimensional stock-cutting and in [2] for
two-dimensional stock cutting and has since been extensively
studied in various forms. Indeed, Sweeney and Paternoster
[3] reviewedmore than 400 books, articles, dissertations, and
working papers on stock cutting and packing in 1992, and
since then new work has appeared (e.g., [4, 5]). In general,
the stock cutting problem is concernedwith the cutting out of
many smaller rectangles (or other shapes) from a fixed larger
rectangle. A related, but less well-known, problem is the
selection of stock sizes or blanks (the larger rectangle) from

which to cut orders.This problem is of particular importance
in the float glass industry, where “holding good stock sizes
appears to have at least as big an impact on trim loss as cutting
up the stock plates efficiently” [6].

A typical glass manufacturing plant receives hundreds
of different sized orders per year for a single material and
thickness of glass. A single order size will typically need to
be cut hundreds, thousands, or tens of thousands of times to
satisfy customer demand. In the production of float glass, a
continuous ribbon of flat glass is produced in themanufactur-
ing plant. This ribbon is cut on-line into large sizes (blanks)
that are stored and cut as needed into specific order sizes.This
two-stage cutting process is carried out for various practical
reasons: it is costly and sometimes impossible to cut themany
different order sizes directly on the float-line, and it is also
sometimes infeasible to store themany different order sizes in
advance. Given expected order sizes and numbers, the stock
size selection problem is the problem of deciding which large
sizes (blanks) to cut on the float line in order to minimize
wastage after all the orders have been cut from these blanks.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 959453, 12 pages
http://dx.doi.org/10.1155/2014/959453

http://dx.doi.org/10.1155/2014/959453

2 Journal of Applied Mathematics

In this paper, we study the stock size selection problem as
it applies to a local South African float glass manufacturing
plant. Given a list of orders and a small positive integer,
𝑁, as well as cutting limitations on the float line, we show
how to find the 𝑁 blank sizes to cut on the float-line that
minimize the wastage when the orders are later cut from
these sizes. Our treatment of the problem differs from that
of [6] because we restrict our attention to the case (relevant
to the industry) where only one type of order is cut from a
blank at a time. We reduce the optimization problem to a
column selection problem, which we then solve directly with
depth-first search (DFS) and branch-and-bound methods
and heuristically using NOMAD.

Section 2 provides a formal description of the problem
which is mathematically modeled in Section 3. Section 4
introduces various algorithms for solving the problem as
formulated, with results following in Section 5. Finally, some
concluding remarks and insights are mentioned in Section 6.

2. Problem Description

2.1. The Meta Problem. A float glass factory receives a roster
of orders from numerous clients.These orders come in a wide
variety of magnitudes, shapes, and sizes. For example, motor
corporations may have large orders for windscreens, while
there may be some clients that require a unique, single order.

Blanks are large pieces of glass that are cut directly on the
production line at the glass factory. It is from these blanks that
individual orders are later cut. It is desirable to cut a small,
fixed number 𝑁 of different blank types on the production
line (with each blank type being cut for an arbitrarily large
number of times). Each order is then assigned to be cut from
one of these blank types, and some glass is lost as wastage in
this process. Given a value for 𝑁 (typically between 2 and 6)
and a list of orders, the stock size selection problem asks for the
dimensions (widths and lengths) of the 𝑁 blank types to be
cut on-line so as tominimize the wastage when the orders are
cut from these blanks.The dimensions are constrained by the
float-line parameters and cutting machinery and thus must
lie in a range between a known fixed minimum width (𝑊min)
and length (𝐿min) and a known fixedmaximumwidth (𝑊max)
and length (𝐿max).

2.2. Blank Cutting and Problem Assumptions. Wemake three
key assumptions about the process of cutting orders from
blanks in this paper.

(1) Each individual blank is only ever cut out into
copies of a single order, as illustrated in Figure 2
(as opposed to a complex stock-cutting problem like
those considered in [2]).

(2) Each order will be cut out fromonly one type of blank.
That is, each blank type can be a cutting medium for
many orders, but each order can only be assigned
to one blank type for cutting. Figure 1 portrays an
example of this mapping relationship.

(3) The blank cannot be rotated before cutting the order.

Order
dimensions Blanks

Order
quantity

500

250

450

100

25

150

300

20

15

...
...

Figure 1: The mapping relationship of many orders to one blank.

Ox

Ox

Ox

Ox

Ox

Ox

Ox

Ox

Ox

Wasted offcut

Order x
dimension
outline

Blank

Figure 2: The partitioning of a blank with dimensions of an order
𝑥.

The last point above is relevant in the industry, because
for certain types of flat glass it is necessary to preserve the
direction of the grain relative to the order dimensions.

Referring to Figure 2, we notice a shaded region as a
result of the cutting of an order 𝑥 from the blank. This
region represents a wasted section of the blank. Blank cutting
invariably results in an off-cut wastage primarily due to the
3 cardinal problem assumptions outlined earlier. More often
than not, the chosen order dimensions will not allow for
“perfect fits.” Indeed, Figure 2 reveals that no more of order 𝑥
can be cut in the blank. However, there are cases where there
is no wastage. For instance, looking at Figure 1, the last order
has no off-cut since it shares the same dimensions as its blank.
The primary aim of this optimization problem is to minimize
the wastage from cutting by finding a set number of optimal
blank types to satisfy the list of orders.

Journal of Applied Mathematics 3

3. Model Formulation

3.1. A Basic Objective Function. Let there be 𝑀 orders, each
specified by a triple (𝑛𝑘, 𝑤𝑘, 𝑙𝑘), where 𝑛𝑘 indicates the quan-
tity of the order to be cut and 𝑤𝑘 and 𝑙𝑘 give the width and
length of the order, respectively. Let the chosen blank types
have widths 𝑊1,𝑊2, . . . ,𝑊𝑁 and lengths 𝐿1, 𝐿2, . . . , 𝐿𝑁. For
each order index 𝑘 running from 1 to 𝑀, assign it to be cut
fromblank 𝑏𝑘 ∈ {1, 2, . . . , 𝑁}, ∀𝑘.Thewastage associatedwith
such a set-up is

𝑓 (𝐿1, . . . , 𝐿𝑁,𝑊1, . . . ,𝑊𝑁, 𝑏1, . . . , 𝑏𝑀)

=

𝑀

∑

𝑘=1

(⌈
𝑛𝑘

𝜆𝑏𝑘𝜔𝑏𝑘

⌉𝑊𝑏𝑘
𝐿𝑏𝑘

− 𝑛𝑘𝑤𝑘𝑙𝑘) ,

(1)

where

𝜆𝑏𝑘 = ⌊

𝐿𝑏𝑘

𝑙𝑘

⌋ , 𝜔𝑏𝑘 = ⌊

𝑊𝑏𝑘

𝑤𝑘

⌋ . (2)

The first term in the sum indicates the quantity of blank 𝑏𝑘

needed to cater for the 𝑘th order multiplied by the area of
this blank. The second term is the total area of the 𝑘th order
that needs to be cut. The difference gives the wastage on the
𝑘th order.

The above function must be minimized over all possible
blank types as well as assignments of orders to blanks for
cutting. The latter values are in fact uniquely determined by
the former. Notice how each term in the sum that makes
up the objective function is independent of the others. The
choice of 𝑏𝑘 will only influence the kth term in the sum, and
therefore we can independently pick each one in such a way
as to minimize this kth term. Since for each value of 𝑘 there
are only𝑁 values of 𝑏𝑘 to choose from and𝑁 is typically very
small, this is not a very challenging subproblem.Theobjective
function thus only depends on the choice of blank sizes, as
depicted as follows:

𝑓 (𝐿1, 𝐿2, . . . , 𝐿𝑁,𝑊1,𝑊2, . . . ,𝑊𝑁)

=

𝑀

∑

𝑘=1

min
𝑏𝑘∈{1,2,...,𝑁}

(⌈
𝑛𝑘

𝜆𝑘,𝑏𝑘
𝜔𝑘,𝑏𝑘

⌉𝑊𝑏𝑘
𝐿𝑏𝑘

−𝑛𝑘𝑤𝑘𝑙𝑘)

(3)

with 𝜆𝑘,𝑏𝑘
and 𝜔𝑘,𝑏𝑘

given by

𝜆𝑘,𝑏𝑘
= ⌊

𝐿𝑏𝑘

𝑙𝑘

⌋ , 𝜔𝑘,𝑏𝑘
= ⌊

𝑊𝑏𝑘

𝑤𝑘

⌋ . (4)

3.2. Transition to Combinatorial Optimization. Before con-
sideringmethods to solve the problem, we give some thought
as to the search space, that is, the space of all possible
dimensions of all the blanks. At first glance, this seems like a
2𝑁-dimensional continuous space, with two variables (width
and length) associated with each blank type. This is a very
bleak prospect as the objective function itself is far from
continuous. It is clear, however, that very small changes in the
dimensions of a blank type, 𝑏𝑘, will often have little qualitative
effect on the solution: the same number of each order will still

Orders Example order
combinations

Resultant possible
blanks

...
...

...
...

...

Figure 3: Using orders to create possible blanks.

fit in the blank, and so 𝜔𝑏𝑘 and 𝜆𝑏𝑘 will be unchanged. Small
decreases in 𝐿𝑏𝑘

and 𝑊𝑏𝑘
of this type are then guaranteed to

decrease the objective function (which is locally bilinear in
these regions where 𝜔𝑏𝑘 and 𝜆𝑏𝑘 are constant). We can thus
continue to decrease 𝐿𝑏𝑘

and 𝑊𝑏𝑘
until 𝐿𝑏𝑘 is a multiple of

some 𝑙𝑘 and 𝑊𝑏𝑘
is a (possibly different) multiple of 𝑤𝑘. It

follows that the dimensions of the blanks can be restricted
to the set of multiples of the dimensions of the orders to be
cut from them:

𝐿𝑏𝑘
∈ L = {𝐶1𝑙𝑘 | 𝑘 = 1, 2, . . . ,𝑀; 𝐶1 ∈ N} ∩ [𝐿min, 𝐿max] ,

𝑊𝑏𝑘
∈ W = {𝐶2𝑤𝑘 | 𝑘 = 1, 2, . . . ,𝑀; 𝐶2 ∈ N}

∩ [𝑊min,𝑊max] ,

(5)

and so the search space is

B = L × W. (6)

This set is discrete and also bounded and can easily be
enumerated.

Figure 3 details two examples on how orders’ dimensions
are utilized to generate the search space of possible blanks.

The problem is now fundamentally a combinatorial opti-
mization problem. The objective is to optimally choose a
finite, predefined number (𝑁) of blanks from B and then
optimally assign orders to be cut in these respective choices,
graphically seen in Figure 1, such that wastage is minimised.

4 Journal of Applied Mathematics

3.3. The Cost Matrix Data Structure. It is possible to restruc-
ture the optimization problem introduced above into a very
suggestive form that is very simple to write down and reason
about. To achieve this, a 2-dimensional array, called the cost
matrix, is employed, each row representing an order and
each column a blank from the creation procedure outlined
in the previous section. Each element (𝑘, 𝑏𝑘) in this matrix
represents the waste associated with cutting order 𝑘 from
blank type 𝑏𝑘, where

𝑐𝑘,𝑏𝑘
= (⌈

𝑛𝑘

𝜆𝑘,𝑏𝑘
𝜔𝑘,𝑏𝑘

⌉𝑊𝑏𝑘
𝐿𝑏𝑘

− 𝑛𝑘𝑤𝑘𝑙𝑘) (7)

with 𝜆𝑘,𝑏𝑘
and 𝜔𝑘,𝑏𝑘

as defined in (4).
We canwrite thematrix 𝑐 = (𝑐𝑖𝑗), where 𝑖 ∈ {1, . . . ,𝑀} and

𝑗 ∈ {1, . . . , 𝑁}. For example, if the element in position (2, 3)

of the matrix 𝑐 was 12, it would indicate that cutting order 2
from blank 3 would result in a wastage of 12 units.

A point in the search space corresponds to a selection of a
set 𝑆 of 𝑁 columns of this matrix, and the objective function
can then clearly be rewritten in terms of the matrix as

𝑓 (𝑆) =

𝑀

∑

𝑖=1

min
𝑗∈𝑆

𝑐𝑖𝑗. (8)

3.4. Similarity to the p-Median Problem. Interestingly, this
problem is similar to another combinatorial problem known
as the p-median problem. Briefly, the p-median problem
involves locating facilities to satisfy demandpoints. Assigning
a demand point to be satisfied by a particular facility incurs
some or other costs. An example of this quantified cost may
be a community having to travel a distance 𝐷 kilometres to
reach a designated clinic in rural Western Australia [7].

The objective of the p-median problem is to minimise the
sum of these costs accrued from satisfying demand points.

Like the glass cutting problem, which stores waste values
in its cost matrix, the p-median problem captures these costs
in a 2D array as well. Investigating the p-median problem’s
integer programming formulation gives one a sense of what
the cutting problem’s formulation may look like [8]:

min∑

𝑖

∑

𝑗

𝑑𝑖𝑗𝑥𝑖𝑗 (9)

subject to

∑

𝑖

𝑥𝑖𝑗 = 1, ∀𝑗, (10)

𝑥𝑖𝑗 ≤ 𝑦𝑖, ∀𝑖, 𝑗, (11)

∑

𝑖

𝑦𝑖 = 𝑝, (12)

𝑥𝑖𝑗, 𝑦𝑖 ∈ {0, 1} , ∀𝑖, 𝑗, (13)

𝑥𝑖𝑗 = {
1, if demand point 𝑗 is satisfied by facility at 𝑖,

0, otherwise.

𝑦𝑖 = {
1, if a facility is located at 𝑖,

0, otherwise.
(14)

Notice that 𝑑𝑖𝑗 is the cost or distance associated with
demand point 𝑗 being satisfied by potential facility 𝑖. It is then
𝑑 that is the cost matrix in the above formulation.

Constraint (10) expresses the need that all demand points
must be satisfied. Constraint (11) prevents any user’s demand
from being satisfied from a location with no available facility.
The total number of facilities, designated 𝑝, is set by con-
straint (12).

The glass cutting problem in this paper shares many
concepts with the p-median problem.

Referring to Table 1, there are a number of noteworthy
similarities. Firstly, both are minimization problems. The
objective is tominimise the costs/wastage that will inherently
be accumulated by how we decide to satisfy demands (p-
median problem) or assign orders (glass cutting problem).
These decisions can be captured in a binary decision variable
like𝑥𝑖𝑗 seen in the p-median problem formulation. Recall that
only a finite number of blanks can be chosen.Moreover, recall
that the p-median problem can only locate 𝑝 facilities. These
are analogous constraints that can be similarly formulated.

3.5. An Integer Programming Formulation. Recognizing its
likeness to the p-median problem, the integer programming
formulation for the glass cutting problem can be defined as
follows:

min∑

𝑖

∑

𝑗

𝑐𝑖𝑗𝑥𝑖𝑗 (15)

such that

∑

𝑗

𝑥𝑖𝑗 = 1, ∀𝑖, (16)

∑

𝑗

𝜃(∑

𝑖

𝑥𝑖𝑗) = 𝑁, (17)

𝑥𝑖𝑗 ∈ {0, 1} , ∀𝑖, 𝑗, (18)

𝜃 (𝑥) = {
0, 𝑥 = 0,

1, 𝑥 > 0,
(19)

𝑥𝑖𝑗 = {
1, if blank 𝑗 is used to cut order 𝑖,

0, otherwise.
(20)

Constraint (18) defines the binary decision variable,
explained above. Constraint (16) stipulates that every order
must be cut. Constraint (17) limits one to only selecting 𝑁

blanks to cut the orders. Equation (19) defines 𝜃 as aHeaviside
function, imperative to the operation of constraint (17).

Journal of Applied Mathematics 5

Table 1: Concept Comparison of the 𝑝-median Problem to Glass Cutting Problem.

Concept 𝑝-median Glass Cutting
Objective Minimise cost; see (9) Minimise Wastage
Task Satisfy demand points with located facilities Assign orders to be cut from generated blanks
Finite constraint Can locate 𝑝 facilities, see Constraint 10 Can choose 𝑁 blanks
Hard constraint Every demand must be satisfied, see Constraint 8 Every order must be satisfied

Integrality constraint A demand point 𝑗 is satisfied by one facility 𝑖.
Implication: employ binary decision variable 𝑥𝑖𝑗

An order is cut within one blank and only one blank

Table 2: Graphical representation of cost matrix 𝑐 and selection
process.

𝐵1 𝐵2
∗

𝐵3 𝐵4
∗

𝐵5
∗

𝐵6 𝐵7 Result
𝑜1 5 10∗∗ 3 14 12 6 13 10∗∗

𝑜2 4 3∗∗ 12 11 8 5 10 3∗∗

𝑜3 2 9∗∗ 7 11 14 6 2 9∗∗

𝑜4 1 12 5 20 11∗∗ 3 7 11∗∗

𝑜5 7 11 10 2∗∗ 6 9 3 2∗∗

∑wastage 35∗∗
∗Refers to the blanks selected and ∗∗theminimumcoefficients in the selected
columns.

4. Methodology

It may be prudent to visualise the forthcoming optimization
procedure of the glass cutting problem. Selection and assign-
ment ensue with the cost matrix. Consider the following cost
matrix. This instance has 5 orders, seen by the number of
rows, and 7 blanks, seen by the number of columns. Consider

𝑐 =

[
[
[
[
[

[

5 10 3 14 12 6 13

4 3 12 11 8 5 10

2 9 7 11 14 6 2

1 12 5 20 11 3 7

7 11 10 2 6 9 3

]
]
]
]
]

]

. (21)

Looking at this matrix, the mathematical problem can be
defined as follows.

Considering a matrix 𝑐, select 𝑁 columns of 𝑐 so that the
sum of the minimum coefficients within the columns of the
selected rows is as small as possible.

Table 2 shows an example array that captures wastage
according to the example cost matrix 𝑐. Take note that only
3 of the 7 blanks can be chosen. In this case, blanks 𝐵2, 𝐵4,
and 𝐵5 have been chosen. In accordance with the definition
above, the minimum coefficients of the rows in these chosen
columns are selected and summed. This sum represents the
total wastage from the proposed solution. It is this value that
needs to be minimised.

Clearly, the choice of the columns (i.e., blanks) deter-
mines the objective function value of the problem. The
assignment component is to some extent automatically per-
formed once the columns have been chosen since the mini-
mum coefficient of each row is chosen within the columns.
The next section will explain the 3 optimization techniques
utilised to effectively choose the columns.

4.1. Depth-First Search. Depth-first search (DFS) is an algo-
rithm that explores a tree or graph data structure. The search
begins at the root node of the tree, usually resembling the
starting state of a problem. Its strategy is to constantly seek
to branch “deeper” from the current node. If the current
node has no unexplored edges, the algorithm “backtracks”
to the current node’s predecessor. The algorithm will attempt
to branch again in the depth-first manner. This process
of backtracking and branching continues until all nodes
reachable from the root node have been explored [9].

It is important to note that DFS will always visit every
state in the search space. It is guaranteed, therefore, to find
the optimal solution, but if the search space is large, it can
take a very long time to do so. With regard to our problem,
the algorithm iterates through every possible combination
of selected columns in the cost matrix. This means that the
algorithm evaluates every possible combination of blanks,
calculating the wastage for each of these solutions.

The root node of the tree is the empty set: no columns
were selected. The children of a node are obtained by
appending to the set a single new column to the right of
all the columns already in the set. The leaf nodes consist
of sets of size 𝑁. Reaching a leaf node in the search tree
is indicative of a feasible proposed solution. The objective
function is evaluated for the solution and the current is best
updated if necessary.The depth-first searchmethodwe utilise
is outlined in Algorithm 1.

4.2. Branch-and-Bound Method. As previously mentioned,
depth-first search needs to visit every point in the search
space in order to find the optimal solution. This quickly
becomes prohibitive as the search space gets large. Branch-
and-boundmethod is amodified version of depth-first search
method that takes advantage of known bounds on the objec-
tive function value in order to prune the search tree down to a
moremanageable size.Themethodwas first described in [10].

The basic idea behind branch-and-bound method is to
keep track of an upper bound,𝑈, on the global optimumvalue
as the search proceeds (usually just the best value found so
far) and at each node to compute a node specific lower-bound
𝐿node on the objective function value that could be obtained
by continuing to expand the children of that node. If for some
node 𝐿node > 𝑈, then that node can be pruned from the
searchwithout any risk ofmissing out on theminimumvalue.
Branch-and-bound method is thus an exact algorithm that
finds the global optimum solution, but with good bounds it
can do so in a fraction of the time it would take to apply DFS.

6 Journal of Applied Mathematics

(1) Initialize cost matrix, 𝐶
(2) Initialize number of blanks to select, 𝑁
(3) function DFS(𝐶,𝑁, 𝑐𝑢𝑟)

(4) Set 𝑏 as the number of columns in 𝐶.
(5) if 𝑐𝑢𝑟 not defined then
(6) 𝑐𝑢𝑟 ← 0

(7) 𝑙𝑎𝑠𝑡 ← 0

(8) else
(9) Set 𝑙𝑎𝑠𝑡 as the last element in the current path, 𝑐𝑢𝑟
(10) end if
(11) if 𝑁 = 0 then
(12) 𝑝𝑎𝑡ℎ ← 𝑐𝑢𝑟

(13) 𝑐𝑜𝑠𝑡 ← 𝑓 (𝑝𝑎𝑡ℎ)

(14) else
(15) // Recursively “bubble” DFS to descendants
(16) 𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑏 − 𝑁 − 𝑙𝑎𝑠𝑡 + 1

(17) Initialize (𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 × 1) array 𝑐𝑝 to store cost
(18) values of descendants
(19) Initialize (𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 × 𝑁 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑢𝑟)) array
(20) 𝑝𝑎𝑡ℎ𝑠 to store the respective paths of descendants
(21) for 𝑖 from 1 to 𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
(22) (𝑐𝑝[𝑖], 𝑝𝑎𝑡ℎ𝑠[𝑖]) ←

(23) DFS(𝐶,𝑁 − 1, 𝑐𝑢𝑟 ∪ {𝑙𝑎𝑠𝑡 + 𝑖})

(24) end for
(25) // Find best path at this junction and return it
(26) 𝑐𝑜𝑠𝑡 ← min(𝑐𝑝)

(27) 𝑝𝑜𝑠 ← 𝑎𝑟𝑔𝑚𝑖𝑛

𝑗

𝑐𝑝

(28) 𝑝𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ𝑠[𝑝𝑜𝑠, :]

(29) return (𝑐𝑜𝑠𝑡, 𝑝𝑎𝑡ℎ)

(30) end if
(31) end function

Algorithm 1: Pseudocode for Recursive Depth-First Search.

We describe belowhowwe constructed our upper bounds
and lower bounds for branch- and-bound method, as well as
some useful preprocessing.

4.2.1. Upper Bounds. Any feasible point provides an upper
bound on the minimization problem. To begin with, we
made use of two heuristics to generate “good” feasible points
that could be used as initial upper bounds for the branch-
and-bound algorithm. The first heuristic begins with all the
columns included in 𝑆. It then successively removes columns
greedily in such a way as to increase the cost function
as little as possible on each step until there are only 𝑁

columns remaining. It returns these columns as its solution.
The second heuristic starts with 𝑆 = 0 and successively
adds columns greedily in such a way as to decrease the cost
function as much as possible on each step until there are
𝑁 columns in 𝑆. It returns these columns as its solution.
Empirically this tends to be a rather good guess.

As the algorithm progresses and finds new solutions, it
keeps a constant record of the best solution found so far.This
best solution acts as the upper bound when deciding whether
to prune a node.

Before proceeding we point out a mathematical conve-
nience that we will use when discussing the lower bounds.

When at a specific node in the DFS tree we have already
selected a set 𝑆0 with 𝑁0 columns and we will select the
remaining columns (call them 𝑆1, with |𝑆1| = 𝑁 − 𝑁0) from
the part of the matrix to the right of all the columns in 𝑆0 as
we proceed with our search, we create the vector V as follows:

V𝑖 = min
𝑗∈𝑆0

𝑐𝑖𝑗, 𝑖 = 1, 2, . . . ,𝑀. (22)

The objective function for the remaining columns can be
written as

𝑓 (𝑆1) =

𝑀

∑

𝑘=1

min(V𝑘,min
𝑗∈𝑆1

𝑐𝑘𝑗) . (23)

This was a useful technique in the code itself because only
the vector V needed to be passed down the tree in order to
be able to reconstruct the full function evaluation at all of the
children. It was also useful in reasoning about lower bounds,
as illustrated below.

4.2.2. First Lower Bound. Let us assume that the algorithm is
at a node in the tree with 𝑆0 defined as above, and let the last

Journal of Applied Mathematics 7

column in 𝑆0 be column 𝑟 of the matrix. Then, for any choice
of 𝑆1,

𝑓 (𝑆1) =

𝑀

∑

𝑘=1

min(V𝑘,min
𝑗∈𝑆1

𝑐𝑘𝑗)

≥

𝑀

∑

𝑘=1

min(V𝑘,min
𝑗>𝑟

𝑐𝑘𝑗) ,

(24)

where the inequality follows from the fact that 𝑆1 is a subset
of the set of columns with 𝑗 > 𝑟.

This is the first lower bound: the cost at any node is
bounded below by the cost of including all remaining columns
from here onwards.

4.2.3. Second Lower Bound. Next, we ask what the reduction
in cost would be due to the addition of some column, 𝑎 > 𝑟,
into the set. We define

𝑅 (𝑎) =

𝑀

∑

𝑘=1

(V𝑘 − min (V𝑘, 𝑐𝑘𝑎)) . (25)

We also define the reduction in cost due to the addition of a
set of columns, 𝑇:

𝑅 (𝑇) =

𝑀

∑

𝑘=1

(V𝑘 − min(V𝑘,min
𝑗∈𝑇

𝑐𝑘𝑗)) . (26)

Now, for two columns,

𝑅 (𝑎) + 𝑅 (𝑏) =

𝑀

∑

𝑘=1

{(V𝑘 − min (V𝑘, 𝑐𝑘𝑎))

+ (V𝑘 − min (V𝑘, 𝑐𝑘𝑏))}

≥

𝑀

∑

𝑘=1

(V𝑘 − min (V𝑘, 𝑐𝑘𝑎, 𝑐𝑘𝑏)) ,

(27)

where the inequality follows from the fact that one of the two
terms in the first sum is precisely equal to the term in the
second sum, and the other is positive or zero.

This could be generalized to the result

∑

𝑖∈𝑇

𝑅 (𝑖) ≥ 𝑅 (𝑇) . (28)

Now, let 𝑄 be the set with |𝑄| = 𝑁 − 𝑁0 that maximizes
𝑅(𝑄); then, clearly 𝑄 is also the set that minimizes the
objective function and so its function value is the theoretical
lower bound at the current vertex. Now sort the remaining
columns by their𝑅-values, pick the𝑁−𝑁0 largest such values,
and put the corresponding columns together into a set,𝑇. We
have

𝑅 (𝑄) ≤ ∑

𝑖∈𝑄

𝑅 (𝑖) ≤ ∑

𝑖∈𝑇

𝑅 (𝑖) . (29)

Thus this last sum is an upper bound on the maximum
reduction possible. This yields the lower bound on the
objective function:

𝑓 (𝑆0) ≥

𝑀

∑

𝑘=1

V𝑘 − ∑

𝑖∈𝑇

𝑅 (𝑖) . (30)

This is the second lower bound. It can only be applied
when there are no infinite values in V (when the reductions
become infinite some of the inequalities above break down).
Extending this bound to the case where there are infinities in
V would be of great use in this problem and is suggested for
future work.

4.2.4. Presorting of Columns. Because of thewaywe set up the
branch-and-bound algorithm mentioned herein, a column
towards the right of the cost matrix will never appear as the
parent of a column is towards the left. This means that if we
wish to prune a large number of nodes, we should ensure
that the most important columns are towards the left of the
matrix and the less important columns are towards the right.
We presorted the columns of the cost matrix as follows.

(1) Rank the entries in each rowof thematrix from lowest
cost to highest cost. Place 1 for lowest cost, 2 for
second lowest, and so forth.

(2) Find the column with the most first places (break ties
with 2 s and then 3 s, etc.) and move it to the front of
the matrix.

(3) Repeat steps (1) and (2) with the rest of the columns
in the matrix.

This guarantees that, of any the two columns, the one to the
left has won one of these minicontests against the other and
in some sense is of lower cost and hence is more important.
The result of this can be seen in Figure 4.

4.3. NOMAD. Nonlinear optimization by mesh adaptive
direct search (NOMAD) is a software optimization package
designed for numerous optimization problems. NOMAD
provides a C++ implementation of the Mesh adaptive direct
search (MADS) algorithm found in [11–15]. More specifically,
NOMAD solves optimization problems of the form

min
𝑥∈Ω

𝑓 (𝑥) , (31)

where Ω = {𝑥 ∈ 𝑋 : 𝑐𝑗 ≤ 0, 𝑗 ∈ 𝐽} ⊂ R𝑛, 𝑓, 𝑐𝑗 : 𝑋 →

R ∪ {∞} for all 𝑗 ∈ 𝐽 = {1, 2, . . . , 𝑚} and 𝑋 is a subset of
R𝑛 [14]. As already mentioned, NOMAD makes use of the
MADS algorithm. Nomad is essentially an iterative method
that utilises blackbox functions which evaluates trial points
on a mesh [16].

Each MADS iteration pertains to three steps, the poll,
the search, and finally the update. The search allows for trial
points to be created anywhere on themesh, while the poll step
is strictly more defined due to the reliance of the convergence
on it. Ideally, the algorithm converges globally to a point 𝑥

which satisfies the local optimality conditions based upon the
functions defining the problem.

A loose description of this technique can be thought of
as an arbitrary point selected and a local minimum found.
Iteratively repeated this process leads to numerous local
minimums. Providing enough iterations are conducted, a
fairly accurate global minimum can be selected from this set.
Now considering the problem at hand, a glass manufacturer

8 Journal of Applied Mathematics

1 50 100 150

1 50 100 150

1

10

20

33

1

10

20

33

Figure 4:The cost matrix for our data. Dark is high and low is light.

may be dissatisfied with the time taken to find an exact
solution using the DFS and branch-and-bound algorithms.
NOMAD, however, offers the alternative of speed, albeit at the
potential of an inexact solution. The results highlight such a
comparison.

5. Results and Analysis

All algorithms and methods were implemented on a i7-
3930k:12 cores @3.9Ghz, 64 gigabytes of 1600Mhz ram, 2×
GTX 690 PC utilising MATLAB 2013a. We implemented
the algorithms on an industrial dataset with 33 orders that
produced 151 possible blank sizes from which to choose.

5.1. Complexity Analysis

5.1.1. BlankChoices and the Solution Space. Aswasmentioned
previously, the number of blanks that can be used to satisfy
the orders is established a priori. It would be appropriate
to investigate how this decision might affect the size of the
solution space and hence the performance of the algorithms.

Being a combinatorial optimization problem, each solu-
tion is made up of a number of different choices. The fact
that more blanks are available to choose from, as well as the
number that we allow to be selected, invariably increases the
problem’s size as there is an increasing number of possible
combinations.

Using our blank generation procedure and a hypothetical
data set of orders, imagine that a total of 151 blanks are
produced. Referring to Table 3, by altering the number of
selections from these 151 blanks we can see how the solution
space grows. Immediately, one will notice that the solution
space grows exponentially, to the extent so that graphing this
increase without employing a log scale would not allow for
effective viewing. Figure 5 is a log-scaled bar graph that allows
us to visualise how the solution space grows when increasing
the number of blanks that can be chosen.

5.1.2. A Theoretical Upper Bound on the Number of Blanks
Generated Given the Order Lists. As we can see from the
above analysis the number of blanks that can be chosen
will dramatically increase the number of possible solutions.
Obviously, a higher number of possible blanks to start with
will also increase the size of the search space. Recall that the
entity that will determine how many blanks are generated
is the order list since it is from these orders that possible
blanks are derived. We now attempt to find a theoretical

0

10

20

30

Figure 5: A log scale of solution size against choices of blanks.

Table 3: Problem size as a function of blanks.

Blanks to choose 𝑁 Number of choices

2 (
151

2
) = 11325

3 (
151

3
) = 562475

4 (
151

4
) ≈ 2.08 × 10

7

5 (
151

5
) ≈ 6.12 × 10

8

6 (
151

6
) ≈ 1.49 × 10

10

7 (
151

7
) ≈ 3.08 × 10

11

8 (
151

8
) ≈ 5.55 × 10

12

upper bound in an effort to get some idea of the order lists’
influence on the problem size.

First, let us assume that there are 𝑀 orders. An order 𝑖,
for the purposes of this analysis, is represented by (𝑥𝑖, 𝑦𝑖),
where𝑥𝑖 is thewidth and𝑦𝑖 is the length of order 𝑖. Each blank
is constructed with multiples of some order 𝑖. Therefore, the
blank’s dimensions of width,𝑋, and length, 𝑌, can be written
as follows:

(𝑋, 𝑌) = (𝑐𝑖𝑥𝑖, 𝑘𝑖𝑦𝑖) , 𝑐𝑖, 𝑘𝑖 ∈ N
+
, 𝑖 ∈ {1, 2, . . . ,𝑀} . (32)

There are a minimum width, 𝑋min, and a minimum
length,𝑌min, that a blank can have, determined by the smallest
order that needs to be cut. Similarly, a blank also has a
maximum width and length (𝑋max and 𝑌max, resp.,) which
will be determined by equipment and other factors. Taking
this into account we can say that

(𝑋min, 𝑌min) ≤ (𝑐𝑖𝑥𝑖, 𝑘𝑖𝑦𝑖) ≤ (𝑋max, 𝑌max) . (33)

Journal of Applied Mathematics 9

Only considering the width component of (33)

𝑋min ≤ 𝑐𝑖𝑥𝑖 ≤ 𝑋max

𝑋min
𝑥𝑖

≤ 𝑐𝑖 ≤
𝑋max
𝑥𝑖

⌈
𝑋min
𝑥𝑖

⌉ ≤ 𝑐𝑖 ≤ ⌊
𝑋max
𝑥𝑖

⌋ ,

(34)

we are able to obtain an interval for 𝑐𝑖, 𝑐𝑖’s defined as the
multiples of widths of order 𝑖 used to construct a blank. Recall
that 𝑐𝑖 ∈ N+ and so we must utilize ceil and floor functions
to ensure that 𝑐𝑖 is a feasible value. Similarly, we can obtain a
range for 𝑘𝑖:

⌈
𝑌min
𝑦𝑖

⌉ ≤ 𝑘𝑖 ≤ ⌊
𝑌max
𝑦𝑖

⌋ . (35)

In order to obtain an upper bound for the number of
blanks generated for an order list we now need to sum, for all
orders, the product of the number of elements in the intervals
for 𝑐𝑖 and 𝑘𝑖:

Blanks =

𝑀

∑

𝑖=1

(⌊
𝑋max
𝑥𝑖

⌋ − ⌈
𝑋min
𝑥𝑖

⌉ + 1)

× (⌊
𝑌max
𝑦𝑖

⌋ − ⌈
𝑌min
𝑦𝑖

⌉ + 1) .

(36)

However, we can simplify (36) by noting that ⌈𝑋min/𝑥𝑖⌉ =

1 and ⌈𝑌min/𝑦𝑖⌉ = 1 because 𝑋min/𝑥𝑖 ≤ 1 and 𝑌min/𝑦𝑖 ≤ 1.
We then continue and find an upper bound:

Blanks =

𝑀

∑

𝑖=1

(⌊
𝑋max
𝑥𝑖

⌋)(⌊
𝑌max
𝑦𝑖

⌋) (37)

≤

𝑀

∑

𝑖=1

(⌊
𝑋max
𝑋min

⌋)(⌊
𝑌max
𝑌min

⌋) (38)

= 𝑀⌊
𝑋max
𝑋min

⌋ ⌊
𝑌max
𝑌min

⌋ ∈ 𝑂 (𝑀) . (39)

The progression to (39) reveals that the number of
generated blanks is bounded linearly by the number of orders
that need to be cut.

5.2. Algorithm Performance

5.2.1. Execution Times. Table 4 is the execution times for the
branch-and-bound, depth-first search, and NOMAD algo-
rithms. As we would expect, the exact solution procedures,
DFS and branch-and-bound, are heavily affected by the
increase in problem size that comes with increasing the
number of selectable blanks. Indeed, DFS and branch-and-
bound method were only tested up to 5 and 6 selectable
blanks, respectively. DFS took over 2 hours to complete with
5 selectable blanks and branch-and-bound was in excess of
3 hours for the 6 selectable blanks case. The results for all 3
algorithms can be seen in Figure 6.

Table 4: Algorithm execution times (seconds).

Selectable blanks DFS Branch-and-bound NOMAD
2 0.1448 0.3362 0.5622
3 6.9312 3.4673 0.9184
4 272.97 64.0814 9.7329
5 8343.2 978.5097 1.7527
6 — 12813.420 2.8240
7 — — 5.7266
8 — — 1.9721
9 — — 5.3426
10 — — 8.2825

2 4 6 8 10

0

2

4

6

8

10

12

14

C
om

pu
ta

tio
n

tim
e (

s)

Branch and bound
NOMAD

DFS

×10
3

Figure 6: Scatter plot of execution times for algorithms.

We note that branch and bound, an algorithm that is an
improvement on the brute force enumeration that comeswith
DFS, keeps a relatively low computation time up to about 4
selectable blanks. Looking at the area of interest, Figure 7,
both exact solution methods were competitive with the
NOMAD heuristic in terms of speed up until 3 blanks were
made selectable. Thereafter, the exact solution procedures,
most notably DFS, suffer as a result of the increasing problem
size.

NOMAD is consistently fast in its execution, having less
than 10 seconds computation time for all cases; however, a
heuristic often sacrifices solution quality for speed as we will
see later.

5.2.2. Branch and Bound Details. The execution time results
indicate that the branch-and-bound algorithm is significantly
better than the DFS algorithm for this problem; it does more
work at each node. This indicates that a significant portion

10 Journal of Applied Mathematics

Branch and bound
NOMAD

DFS

2 3 4

300

250

200

150

100

50

0

C
om

pu
ta

tio
n

tim
e (

s)

Figure 7: Scatter plot of execution times for algorithms higher
resolution over smaller range (2–4 blanks).

0.0

0.2

0.4

0.6

N = 2

N = 3

N = 4

N = 5
N = 6

Figure 8: Fraction of search space visited by branch and bound for
𝑁 = 2, 3, 4, 5, 6.

of the search space is being pruned. Figure 8 illustrates the
fraction of the search space (leaf nodes) actually visited by the
branch-and-boundmethod for different values of𝑁. Observe
how this fraction decreases rapidly for different values of 𝑁.
It is conceivable that with better bounds it may even get close
to the scale of the rapid expansion in search space size.

In the code for branch-and-bound we first implemented
lower bound 1 and then for nodes that did not get pruned we
tried lower bound 2. It was not at all clear that this second
step would successfully prune any nodes after the first step
failed. Figure 9 indicates, however, that a significant portion
of nodes were pruned by the second lower bound. A third
lower bound that was a slight generalization of the first one
was also attempted, but did not prune many extra nodes
after the first lower bound was applied, and also significantly
slowed down the algorithm and so it was removed.

N = 6

N = 5

N = 4

N = 3

N = 2

0.010 0.008 0.006 0.004 0.002 0 0.0100.0080.0060.0040.0020

Figure 9: Fraction of nodes pruned due to lower bound 1 (left) and
lower bound 2 (right).

Table 5: NOMAD solution quality.

Selectable
blanks

Minimum
wastage NOMAD NOMAD

optimality error
2 114693.440 165075.128 43.927%
3 70775.004 70811.179 0.051%
4 52261.038 54371.510 4.038%
5 36800.455 60078.314 63.254%
6 29048 36451.511 25.486%
7 — 29177.763 —
8 — 19118.633 —
9 — 15719.224 —
10 — 10721.666 —

5.2.3. Solution Quality of NOMAD. Table 5 shows the
wastage values obtained for DFS, branch-and-bound, and
NOMAD. DFS and branch and bound are exact solution
procedures and so will have the same wastage at completion,
the optimal minimal wastage. These values can be found in
the column of minimum wastage. NOMAD, however, is a
heuristic and does not guarantee an optimal value. In fact,
NOMAD performs rather erratically in solution quality, as
can be seen in Figure 10. In several cases we notice significant
error percentages. It would most certainly be unsuitable to
obtain a solution that has an optimality of 60%. NOMAD’s
inconsistency makes it an unreliable tool if minimising
wastage is the primary objective.

5.2.4. A Simplicity versus Optimality Consideration. A trend
that we notice with the results of all algorithms is the
decreasing wastage with the increasing selectable blanks.This
is not surprising since if we allow more blanks to be selected
we enhance our capability to cater for all the orders, reducing
wastage. This can be seen in Figure 11. There is a case where
NOMAD had more wastage although there had been more
selectable blanks, but this can be explained by the underlying
uncertainty that NOMAD has exhibited during testing.

Journal of Applied Mathematics 11

70

60

50

40

30

20

10

0
2 3 4 5 6

Selectable blanks

Er
ro

r (
%

)

Figure 10: Percentage error from optimal values for NOMAD.

2 4 6 8 10

0

0.5

1

1.5

×10
5

B&B and DFS
NOMAD

G
la

ss
 w

as
ta

ge
 (m

2
)

Figure 11: Glass wastage versus number of blanks used.

This trend of decreasing wastage is not so extraordinary.
Practitioners in the glassmanufacturing industry are aware of
the prospect of further reducing wastage in this manner. It is
rather a question of simplicity versus optimality since operat-
ing the machinery at the factory becomes more complicated
as one increases the number of blanks involved in satisfying
the orders.

6. Conclusions

The selection of blanks to satisfy orders holds great signif-
icance in the glass manufacturing industry. Random and
heuristic methods for guessing the best blank sizes tend
to result in relatively high wastage. Minimising this loss
translates to a meaningful benefit for a glass manufacturing
enterprise. Furthermore, it is possible that these ideas will

find application in the metal, paper, and wood industries
(amongst others).

Making the transition to a discrete combinatorial prob-
lem proved worthwhile. Presented with any order list we are
able to generate a set of feasible blanks. It provided us with
the flexibility to apply tried and tested algorithms in the field
of combinatorial optimization, such as branch and bound,
to optimally select these blanks. Identifying a similarity with
the p-median problem effectively allowed us to formulate
the problem, making it a matter of selecting columns. Some
future work may involve developing a more elaborate model.
For example, it would be beneficial to formulate a robust
model that accommodates for different cuttingmachines and
the option to rotate when cutting. We may also wish to
include other factors into the objective function apart from
wastage. In particular, it may be of interest to model the risk
of an order being cancelled or changed into the stock size
selection process.

It was shown that the number of blanks in the search space
is bounded linearly by the number of orders,𝑀. Nevertheless,
the actual computation time is not linear in this number,
becauseweneed to choose a subset of size𝑁 from these𝑂(𝑀)

blank sizes. We expect the computational time to look like
(
𝑂(𝑀)

𝑁
) and so it is polynomial in 𝑀 and exponential in 𝑁.

The branch and bound implementation performed well
with larger problem sizes, whilst still providing an optimal
solution. The upper and lower bound estimates and presort-
ing of columns were effective at trimming the solution space,
so that for 𝑁 = 6 only 2% of the search space had to be
explored to find the optimal solution. An interesting potential
improvement involves adapting the second lower bound
estimate to handle cases, where there are infinities in the
cost matrix, and investigating other bounding and pruning
strategies. As it stands, branch-and-bound takes around 3
hours to compute the 𝑁 = 6 case for our data and less than
an hour for 𝑁 = 5. These are feasible times for industry.
NOMAD had a somewhat erratic performance when it came
to solution quality, on one occasion having a 60% difference
from the optimal solution. Its strength lies in fast execution
times, being less than 10 seconds in all tested cases. Onemight
be able to runNOMADseveral times to try and get a sense if it
is near the global minimum in the solution space and not in a
grossly suboptimal local minimum. It may also be possible to
fine-tune NOMAD towards solving this particular problem.
Our results, however, are not entirely positive. Further work
may include developing a heuristic that combines relatively
fast execution times with good, consistent solution quality.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors wish to thank Riaan Von Wielligh from PFG
Building Glass for his assistance in the problem description
as well as the members of the 2013 MISG South Africa study
group.

12 Journal of Applied Mathematics

References

[1] P. C. Gilmore and R. E. Gomory, “A linear programming
approach to the cutting-stock problem,” Operations Research,
vol. 9, no. 6, pp. 849–859, 1961.

[2] P. C. Gilmore and R. E. Gomory, “Multistage cutting stock
problems of two and more dimensions,” Operations Research,
vol. 13, no. 1, pp. 94–120, 1965.

[3] P. Sweeney and E. Paternoster, “Cutting and packing problems:
a categorized, application-orientated research bibliography,”
Journal of the Operational Research Society, vol. 43, no. 7, pp.
691–706, 1992.

[4] M. Hifi, “An improvement of Viswanathan and Bagchi’s exact
algorithm for constrained two-dimensional cutting stock,”
Computers & Operations Research, vol. 24, no. 8, pp. 727–736,
1997.

[5] E. K. Burke, G. Kendall, and G. Whitwell, “A new placement
heuristic for the orthogonal stock-cutting problem,”Operations
Research, vol. 52, no. 4, pp. 655–671, 2004.

[6] M. L. Chambers and R. G. Dyson, “The cutting stock problem
in the flat glass industry-selection of stock sizes,” Operational
Research Quarterly, vol. 27, no. 4, pp. 949–957, 1976.

[7] J. Reese, “Solution methods for the 𝑝-median problem: an
annotated bibliography,” Networks, vol. 48, no. 3, pp. 125–142,
2006.

[8] N.Mladenović, J. Brimberg, P. Hansen, and J. A.Moreno-Pérez,
“The𝑝-median problem: a survey ofmetaheuristic approaches,”
European Journal of Operational Research, vol. 179, no. 3, pp.
927–939, 2007.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, McGraw-Hill, 2nd edition, 2001.

[10] A. H. Land and A. G. Doig, “An automatic method of solving
discrete programming problems,” Econometrica: Journal of the
Econometric Society, vol. 28, pp. 497–520, 1960.

[11] M. A. Abramson, C. Audet, J. E. Dennis, Jr., and S. Le Digabel,
“OrthoMADS: a deterministicMADS instance with orthogonal
directions,” SIAM Journal on Optimization, vol. 20, no. 2, pp.
948–966, 2009.

[12] C. Audet and J. E. Dennis, Jr., “Mesh adaptive direct search
algorithms for constrained optimization,” SIAM Journal on
Optimization, vol. 17, no. 1, pp. 188–217, 2006.

[13] C. Audet and J. E. Dennis, Jr., “A progressive barrier for
derivative-free nonlinear programming,” SIAM Journal onOpti-
mization, vol. 20, no. 1, pp. 445–472, 2009.

[14] C. Audet, S. Le Digabel, and C. Tribes, “NOMAD user guide,”
Tech. Rep. G-2009-37, Les cahiers du GERAD, 2009, http://
www.gerad.ca/NOMAD/Downloads/user guide.pdf.

[15] S. Le Digabel, “Algorithm 909: NOMAD: nonlinear opti-
mization with the MADS algorithm,” ACM Transactions on
Mathematical Software, vol. 37, no. 4, pp. 1–15, 2011.

[16] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis Jr., S.
Le Digabel, and C. Tribes, “The NOMAD project,” http://www
.gerad.ca/nomad.

