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As urban planning becomes more sophisticated, the accurate detection and counting of pedestrians and cyclists become more
important. Accurate counts can be used to determine the need for additional pedestrian walkways and intersection reorganization,
among other planning initiatives. In this project, a camera-based approach is implemented to create a real-time pedestrian and
cyclist counting system which is regularly accurate to 85% and often achieves higher accuracy. The approach retasks a state-of-the-
art traffic camera, the Autoscope Solo Terra, for pedestrian and bicyclist counting. Object detection regions are sized to identify
multiple pedestriansmoving in either direction on an urban sidewalk and bicyclists in an adjacent bicycle lane. Collected results are
processed in real time, eliminating the need for video storage and postprocessing. In this paper, results are presented for a pedestrian
walkway for pedestrian flow up to 108 persons/min and the limitations of the implemented system are enumerated. Both pedestrian
and cyclist counting accuracy of over 90% is achieved.

1. Introduction

1.1. Introduction to a Severe Highway Safety Problem. Every
year around 1.2 million people are killed in road accidents all
over the world, and another 50million get injured [1]. Among
these tragedies, many are caused by aggressive driving in
severe conditions that require extra carefulness, like bad
weather, road sections near work zone or crash site, and
so forth. Usually people have their consistent driving styles,
which can be described by a traffic flow model, and under a
special situation it is not guaranteed a driver adjusts his/her
style properly in correspondence to the change of situations
which happened on road. For example, a proportion of
drivers failed to drive more carefully near work zones, and
this is a remarkable source of accidents [2]. And during
conditions of light precipitation, friction between tyres and
pavement deteriorates significantly, but drivers not experi-
enced enough might be not sure how careful they should be.
Under such a circumstance an unexperienced driver has a
high probability to drive in an overly aggressive style. As a
result, an investigation conducted by FHWA [3] suggests that
an average annual rate for weather-related crashes from 1995

to 2008 is approximately 1.5 million; this number accounts
for 24% of all vehicle crashes annually. And during the same
period more than 7 thousand people were killed on road
every year, which accounts for 17% of all crash fatalities.These
statistics can be found in Table 1.

1.2. Existing Solutions. Currently there are several methods
deployed by the highway administration to improve traffic
safety under severe weather conditions:

(1) reshaping dangerous sections of road network to
improve on-road safety condition. By analysing crash
history, administration departments can identify road
sections with relatively higher accident/fatality rates,
and it is helpful to redesign and reconstruct such
sections;

(2) deploying more roadside information board, includ-
ing LEDdisplay board, so the highway administration
can edit information displayed;

(3) delivering postcrash care including temporary infor-
mation board and guidance by police cars.
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Table 1: Weather-related crash statistics (annual averages 1995–2008) [3].

Road weather conditions
Weather-related crash statistics

Annual rates
(approximately) Percentages

Wet pavement
1,128,000 crashes 18% of vehicle crashes 75% of weather-related crashes

507,900 persons injured 17% of crash injuries 81% of weather-related crash injuries
5,500 persons killed 13% of crash fatalities 77% of weather-related crash fatalities

Rain
707,000 crashes 11% of vehicle crashes 47% of weather-related crashes

330,200 persons injured 11% of crash injuries 52% of weather-related crash injuries
3,300 persons killed 8% of crash fatalities 46% of weather-related crash fatalities

Snow/sleet
225,000 crashes 4% of vehicle crashes 15% of weather-related crashes

70,900 persons injured 2% of crash injuries 11% of weather-related crash injuries
870 persons killed 2% of crash fatalities 12% of weather-related crash fatalities

Icy pavement
190,100 crashes 3% of vehicle crashes 13% of weather-related crashes

62,700 persons injured 2% of crash injuries 10% of weather-related crash injuries
680 persons killed 2% of crash fatalities 10% of weather-related crash fatalities

Snow/slushy pavement
168,300 crashes 3% of vehicle crashes 11% of weather-related crashes

47,700 persons injured 2% of crash injuries 8% of weather-related crash injuries
620 persons killed 1% of crash fatalities 9% of weather-related crash fatalities

Fog
38,000 crashes 1% of vehicle crashes 3% of weather-related crashes

15,600 persons injured 1% of crash injuries 2% of weather-related crash injuries
600 persons killed 1% of crash fatalities 8% of weather-related crash fatalities

Weather-related
1,511,200 crashes 24% of vehicle crashes

629,300 persons injured 21% of crash injuries
7,130 persons killed 17% of crash fatalities

Obviously methods mentioned above are helping in
improving road safety significantly; however, as we are
discussing safety issues under severe conditions, there ismore
we can do with specially designed technologies for further
help. Among methods mentioned above, solution 1 requires
years of crash record, which might not be available for new
road sections. And usually highway segments are designed
and constructed by considering specific shapes of landscape,
so it is not easy to make significant modifications. What
is more, highway construction requires huge budget and
amount of time, and this makes it even more difficult to
reshape a segment. Regarding solutions 2 and 3, they work
well in hazardous situations, but the problemwe are facing is,
these applications distract travellers’ attention from normal
driving, and this can be a remarkable cause of accidents
like tailgating. When drivers are careful enough for on-going
incidents on road, say, drizzle or slight accidents, distract-
ing methods like LED displays and large-scale police car
manipulation would contribute to troubling consequences.
However, when severe situations like snowstorm or heavy
accidents happen, it is much more possible that drivers’
average aggression is too high to keep traffic safe. So here
we need a supporting system to point out whether drivers
are driving too aggressively to keep them safe on road or a
system tells degree of drivers’ aggression at the moment of
observation. By deploying such a system it is possible to apply
administrating strategies like solutions 2 and 3 accordingly to
help modify drivers’ aggression.

2. An Efficient Methodology

2.1. Drivers’ Aggression. Thus, we raised the idea of devel-
oping an aggression surveillance system; intuitively the fol-
lowing question is how to rate a driver’s aggression. The
most efficient way would be finding a parameter or constant
which denotes drivers’ aggression in a traffic flow model,
and by calibrating this model we get a quantified value
of average aggression. By comparing this value with the
normal aggression value under similar situations, it is helpful
in making decisions of whether to intervene with on-road
traffic.

2.2. Introduction to Traffic Flow Models and
Calibration Methods

2.2.1. Previous Works in Traffic Flow Modelling and Calibrat-
ing. Pursuing of a precise mathematical model to describe
traffic flow behaviours has lasted formore than half a century,
and there are models successfully developed and applied.
Greenshields’ model [4] applies a simple linear relationship
to traffic density and average speed, which is not precise
enough but worked as the very beginning of research on
modelling traffic flow characters. Newell’s model [5, 6] has a
much more precise description of traffic behaviours. General
Motors model [7, 8] was developed as a car-following model
but can be used as a tool for research on macroscopic traffic
flow theories. Similarly Gipps’ model [9] is a successful
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development on drawing how traffic’s flow, density, and
average speed depend on each other. In Kosonen’s Ph.D.
dissertation [10], a rule-based model was applied in simu-
lating traffic behaviours in urban environment, and this was
based on previous research on utilizing fuzzy decision rules
to simulate traffic flow [11]. As the latest achievement on
modelling traffic flows, Daiheng Ni et al. [12–14] utilized field
theory to simulate behaviours of vehicles on road and got the
longitudinal control model (LCM), which we will introduce
in detail.

On the calibration part, there are also previous works
trying to locate sufficient and precise methods for finding
values of parameters in traffic flow models. This field of
research was initiated by Chandler et al. [7], Gazis et al. [8],
and Herman et al. [15] in the late 1950s and early 1960s. GM
model was opted for by Chandler’s team and field data was
studied for obtaining parameter values in the model. With
development of computational technology, simulation tools
are utilized in studying traffic phenomena and calibrating
models, as revealed by Brackstone and McDonald [16]. In
the past decade there are several research projects improving
calibration methods. Using field data obtained on IH-10
in Houston, Texas, Schultz and Rilett [17] evaluated the
parameter values they calculated with microscopic traffic
simulation tools. In 2008, Kesting and Treiber [18] tested
a method that minimized the difference between field data
and model prediction. They resulted with errors lower than
30%. Also some ideas from computer science helped getting a
higher accuracy. S. P.Hoogendoorn andR.Hoogendoorn [19]
implemented genetic algorithm for calculating parameter
values in traffic flow models in 2010.

2.2.2. Traffic Flow Models for Evaluating Drivers’ Aggression.
A suitable model for finding average aggression is longitudi-
nal control model (LCM) [12–14]. In this macroscopic model
we define relationship between traffic density and speed as
follows:

𝑘 =
1

(𝛾V2 + 𝜏V + 𝑙) [1 − ln (1 − (V/V
𝑓
))]

, (1)

where 𝑘 is traffic density, V is space-mean speed, 𝛾 denotes
degree of aggression that characterizes the driving popula-
tion, 𝜏 is average response time that characterizes the driving
population, 𝑙 is average effective vehicle length, and V

𝑓
is free

flow speed. So if we get the value of 𝛾 against field data under
a specific situation, current degree of aggression on road is
found.

Also we use Newell’s model as an enhancement for
modelling drivers’ behaviours in this research.

So if we set a live camera at roadside to collect real-time
traffic data and use these data to calibrate LCM model and
Newell’s model, it is possible to get current value of average
aggression or other related parameters. However, calibration
tasks lead to optimization problems, which usually costs huge
amounts of time finding solutions. In order to clear this
challenge, an efficient algorithm developed for calibrating
traffic flow models against empirical data is demonstrated in
the following sections.

2.3. Essential Points of This Methodology. To achieve an
approach for such a system, three requirements are pointed
out:

(1) this approach should be able to precisely reflect
traffic conditions at the specific moment on a chosen
segment of highway;

(2) computation should not be a significant burden so the
system can react to changing situations immediately;

(3) algorithm adopted by this system must have a rigor-
ous mathematical derivation of evaluating criterion.

Item 1 is intuitive since precision is fundamental for a
research on calibration. In item 2, by emphasizing efficiency
of the algorithm this system adopts, it is necessary to get
it to react quickly, and this fact further strengthens to the
system’s ability to reflect real situation on assigned location
and time. Alsowe design the third itembecause such a system
is supposed to work in various environments, regardless of
different traffic flow, density, speed, or such rates affected by
abnormal situations.

To achieve these objectives, the following ideas are raised:

(1) aggregating raw observation data to reduce the algo-
rithm’s running time and applying coefficients on
aggregated observation points to offset loss on accu-
racy because of data aggregation;

(2) using bisection method to reach a solution of opti-
mized parameters rapidly.

3. Principle of Methodology

3.1. Background. Generally speaking, calibration problems
lead to optimization problems. However, under most cir-
cumstances people solve optimization problems by applying
numeration methods, considering that it is not easy to find a
universal method for a kind of problems. So even successful
commercial optimization packages, like IBM ILOG CPLEX
Optimizer, work in an extremely time-consuming way.
Meanwhile, most root-finding problems have corresponding
well-defined solving methods, either analytical or numerical
or both. And among these methods a lot are time efficient,
such as bisection method and Newton’s method for solving
linear equations and Crank-Nicolson method for partial
differential equations.

Based on facts mentioned above, we determine principle
of this research as converting an optimization problem into
a root-finding problem. However, the challenge here is that
an optimization problem requires a solution which achieves
the minimized value of its objective function, whilst what a
root-finding problem needs is a solution to get the value of a
function equal to zero. So regarding this particular calibration
problem, we establish a function (12). And when value of this
function goes towards zero, a traffic flow model gets better
accuracy. In this way we convert an optimization problem
into a root-finding problem, and then it is possible to apply
numerical methods for solutions. Method of establishing this
variable is introduced in Section 4.2.
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3.2. An Introduction to Bisection Method. In engineering
applications, there are usually complex computing tasks that
require high amount of resources on both time and hardware.
This leads to an obvious conflict between efficiency and cost.
As a compromised solution, scientists in appliedmathematics
developed a series of algorithms to approximate solutions
of specified computing problems. In this way an algorithm,
which we call a numerical method, is designed to deliver an
approximated solution to a computing problem with a high
enough and thus adjustable accuracy.

Among the most well-known numerical algorithms,
bisection method, also known as binary search method, is
widely used because of its simplicity and robustness. As most
other numerical algorithms, this method is applied to solve
root-finding problems 𝑓(𝑥) = 0, where the continuous
function 𝑓 is defined on interval [𝑎, 𝑏] as sign of 𝑓(𝑎) is
opposite to 𝑓(𝑏)’s. Thus, such a problem can be described as

𝑓 (𝑥) = 0, 𝑥 ∈ [𝑎, 𝑏] 𝑎 < 𝑏

𝑓 (𝑎) × 𝑓 (𝑏) ≤ 0.

(2)

A loop is designed to solve the problem described in (2)
where, in every iteration of the loop, we divide the interval
[𝑎, 𝑏] into two halves [𝑎, (𝑎 + 𝑏)/2] and [(𝑎 + 𝑏)/2, 𝑏]. By
computing value of function 𝑓 at midpoint (𝑎 + 𝑏)/2, we can
determine which half of the interval a root of 𝑓(𝑥) = 0 lies
in. If 𝑓((𝑎 + 𝑏)/2) has the same sign as𝑓(𝑎), then it’s certain
that there is a root of 𝑓(𝑥) = 0 in interval [(𝑎 + 𝑏)/2] or
if ((𝑎 + 𝑏)/2) has the same sigh as 𝑓(𝑏), then this root can
be found in [𝑎, (𝑎+ 𝑏)/2]. Also it is theoretically possible, but
very unlikely, that 𝑓((𝑎 + 𝑏)/2) = 0 which leads to an exact
solution (𝑎 + 𝑏)/2. As this loop going interval [𝑎, 𝑏] keeps
shrinking and this method makes sure that there is a root
which lies in this interval. So when length of [𝑎, 𝑏] is smaller
than expected error 𝜖, either 𝑎 or 𝑏 can be final result of this
looping as approximated solution to the problem expressed
in (2). This means we can take 𝑐 = (𝑎 + 𝑏)/2 as final result
when length of [𝑎, 𝑏] is smaller than 2𝜖, since in this way one
less loop is computed to get a better performance on running
time. So determination of the result from this method can be
described in (3), as 𝑠 denotes approximated solution for above
root-finding problem and 𝜖 is the maximum error allowed:

𝑠 =
𝑎 + 𝑏

2
when |𝑎 − 𝑏| < 𝜖. (3)

Though there are many methods providing faster con-
vergence, we still adopt bisection method instead of other
options. And the reason is, our problem is finding root
for a function defined in (12), and this function is not
a definite mathematical function, so simplicity of a root-
finding method is essential to guarantee robustness under
any possible situation of input data provided. For example,
Newton’s method is more advanced compared to bisection
method but requires derivation operations, and in this
case derivation leads to unpredictable results. After testing
repeatedly, we see that bisection method delivers both time
efficiency and robustness we need.

And Figure 1 shows principle of how this method works.

Problem:

D(x) = 0, x ∈ (a, b)

If D(c) = 0

Solution:

Solution:

x = c

x = c
If (a − b)/2 < 𝜖

If D(c)D(a) < 0

a = c

b = c

Yes

Yes

Yes

No

No

No

c = (a + b)/2

Figure 1: Flow chart for bisection method.

4. Structure of Algorithm

Structure of our methodology is a nested two-level looping.
The inner looping is a collection of evaluating results for a
particular set of parameters of a traffic flow model, and the
outer looping is an implementation of bisection method for
search of a set of optimized parameters. And before the nested
looping we aggregated data first.

4.1. Data Aggregation. To reduce running time of this algo-
rithm, aggregation of empirical data should be the first step.
We aggregate raw field observation data by averaging 3D data
values along an axis. For example, a set of speed-density-
flow data are aggregated by averaging speed, density, and flow
values of all observations which fall into a section 𝑘(𝑖) < 𝑘 <
𝑘
(𝑖+1), where 𝑘(𝑖) and 𝑘(𝑖+1) are lower and upper bounds of 𝑖th

density section. And this procession can be expressed as

V
𝑖
=
1

𝑛

𝑛𝑖

∑

𝑗=1

(V
𝑖𝑗
) ,

𝑘
𝑖
=
1

𝑛

𝑛𝑖

∑

𝑗=1

(𝑘
𝑖𝑗
) ,

𝑞
𝑖
=
1

𝑛

𝑛𝑖
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𝑗=1

(𝑞
𝑖𝑗
) ,

(4)

where footnote 𝑖means this calculation is for 𝑖th density slice,
𝑛
𝑖
is number of raw observations in this slice, V

𝑖
, 𝑘
𝑖
, and 𝑞

𝑖
are

averaged values of V, 𝑘, and 𝑞 for 𝑖th slice, respectively, and V
𝑖𝑗
,

𝑘
𝑖𝑗
, and 𝑞

𝑖𝑗
are coordinates for 𝑗th raw observation in 𝑖th slice

of V-𝑘-𝑞 coordinate system.
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4.2. Inner Looping: Evaluation of Parameters

4.2.1. Derivation of Objective Function. A calibration crite-
rion has been raised by Rakha and Arafeh [20] and is formu-
lated as

Min 𝐸 = ∑

𝑖

{(
V
𝑖
− V̂
𝑖

Ṽ
)

2

+ (
𝑞
𝑖
− 𝑞
𝑖

𝑞
)

2

+ (
𝑘
𝑖
− �̂�
𝑖

�̃�
)

2

} ,

(5)

where 𝑞
𝑖
, 𝑘
𝑖
, and V

𝑖
are flow, density, and average speed data

from field tests, respectively. 𝑞, �̂�, and V̂ are flow, density,
and average speed derived from a model, as 𝑞, �̃�, and Ṽ are
maximum value of flow, density, and speed observed in filed.
This is a very good estimation for models simulating traffic
flows; however, two concerns are still worth more research
for solutions:

(1) there is still room for improvement on time and
resource efficiency. It is acceptable to compromise on
accuracy of an algorithm in order to get it faster;

(2) all aggregated data dots receive the same treatment,
while in fact some of the dots are aggregated from
more raw field observations than others, as there are
many more vehicles travelling around 60mph than
those opt 30mph on the same section of highway.

Regarding issue 1, since 𝑞
𝑖
= 𝑘
𝑖
× V
𝑖
, also approximately

𝑞
𝑖
≈ �̂�
𝑖
× V̂
𝑖
and 𝑞

𝑖
≈ �̃�
𝑖
× Ṽ
𝑖
, thus we consider flow 𝑞 in this

evaluation criterion redundant, which means we can get the
same result by switching to criterion 6 instead of 5:

Min 𝐸 = ∑

𝑖

{(
V
𝑖
− V̂
𝑖

Ṽ
)

2

+ (
𝑘
𝑖
− �̂�
𝑖

�̃�
)

2

} . (6)

As shown in Section 4.1, we make narrow slices on 𝑘-
V coordinate system to get groups of data for aggregation,
and here we presume it is 𝑘-axis we slice to group data, so
each observation which falls into 𝑖th group satisfies 𝑘(𝑖) <
𝑘 ≤ 𝑘

(𝑖+1), where 𝑘(𝑖) and 𝑘(𝑖+1) are lower and upper bounds
of 𝑖th density section. According to (4), we get aggregated
dot’s coordinate on 𝑘-axis by averaging all raw observations’
corresponding coordinates; thus, if we opt for middle point
between 𝑘

(𝑖+1) and 𝑘
(𝑖), instead of 𝑘

𝑖
, to approach 𝑘

𝑖
the

corresponding error would be

err ≤ 𝜖
2
,

𝜖 = 𝑘
(𝑖+1)

− 𝑘
(𝑖)

when 𝑘
𝑖
=
𝑘
(𝑖+1)

+ 𝑘
(𝑖)

2
,

(7)

where err is error derived from approximation for 𝑘
𝑖
by

middling 𝑖th slice and 𝜖 is width of 𝑖th slice. So obviously if
we set 𝜖 to be a small enough number it is possible to opt for
(7) as approximation for 𝑘

𝑖
without losing toomuch accuracy.

In our simulation we choose 𝜖 = 0.5 vehicle/km. In this way

we avoid calculating average value of a set of observations as
shown in (4).

By narrowing slices on 𝑘-axis, another obvious strategy is
intuitive that, in calculation for (6), we can ignore the second
termwhich is square of relative difference for density 𝑘.This is
because in a slice relative difference between densities of a raw
observation and the aggregated dot is very small, especially
compared to that between speeds of the same dots. This can
be proved by computing curve of the following function (8),
which is the relationship between two terms in (6):

𝑓 =
∑
𝑖
((V
𝑖
− V̂
𝑖
) /Ṽ)2

∑
𝑖
((𝑘
𝑖
− �̂�
𝑖
) /�̃�)
2
. (8)

This curve is shown in Figure 2. Also this figure perfectly
explains drivers’ different behaviour patterns corresponding
to different density rates. When density is very low (lower
than 7 vehicles per km), drivers opt for different speeds freely
according to their own preferences, so speeds under such
situations are distributed widely because of big variance on
people’s personal preferences. When there are some more
vehicles on road but still not too many (8 to 24 vehicles per
km), traffic flows travel fast, so under such circumstances
drivers who prefer driving slowly are encouraged to drive
faster to follow the flow. And as density grows higher
to around 40 vehicles per km, average speed decreases
remarkably. Actually average speed at this stage is so low
that a significant proportion of drivers opt for fast lanes
for higher speed and overtaking, and this causes a peak at
40 vehicles per km. As density goes up, there is less room
for drivers’ maneuvers including lane changing, accelerating,
and braking; thus, there are less people driving aggressively,
and this makes the curve go down gradually at density higher
than 40 vehicles per km.

Thus, we can delete second term in criterion 6 without
losing too much on precision of a model. In this way we
improve it

Min 𝐸 = ∑

𝑖

(
V
𝑖
− V̂
𝑖

Ṽ
)

2

. (9)

Actually here we do not need the denominator Ṽ, as for
an optimization problem, dividing its objective function by a
constant does not make any difference to the result. Similarly,
replacing square operation by calculating absolute value will
not affect optimization result since minimizing an equation’s
square leads to the same point of that by minimizing its
absolute value. Thus, (10) reflects exactly the same criterion
as (9):

Min 𝐸 = ∑

𝑖

V𝑖 − V̂
𝑖

 . (10)

Here V
𝑖
is speed value for an aggregated field observation

and V̂
𝑖
is the estimated speed which corresponds to density

value of the same aggregated observation. This estimation of
speed is done by applyingmacroscopic traffic flow simulation
models.

By opting for (10) as objective function, it is convenient to
calculate its value without any other looping, whilst Rakda’s
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Figure 2: Curve computed from function (8).

method with objective function (5) requires another level of
optimization to find a point (𝑞

𝑖
, 𝑘


𝑖
, V
𝑖
) which is the nearest

one on a curve to an aggregated observation (𝑞
𝑖
, 𝑘
𝑖
, V
𝑖
).

Usually this kind of optimization uses a looping to try a series
of points on the curve; after calculating distance from every
one of this series of points to the observation (𝑞

𝑖
, 𝑘
𝑖
, V
𝑖
), the

point with the least distance is considered as the nearest point
from the curve to (𝑞

𝑖
, 𝑘
𝑖
, V
𝑖
). In our algorithm this level of

optimization can be avoided; thus, a considerable amount of
time is saved from this step.

4.2.2. Conversion to a Root-Finding Problem. In order to
implement bisection method in later Section 4.3, it’s nec-
essary to convert this optimization problem into a root-
finding problem. Key to this conversion is finding a function
which has a root in a domain of its parameters, and such
a root should be very near, if not the same, to solution
of the optimization problem solved with objective function
(10). Thus, we assign positive and negative signs to results of
inner looping. In the case discussed above, if an aggregated
observation point locates at left side of corresponding speed-
density curve we multiply the result of its objective function
by −1, and if it sits at right side then we keep it as positive.
Actually this strategy can be applied simply by removing
absolute value calculation in objective function (10). So the
root-finding problem is as follows:

𝐹 = ∑

𝑖

V
𝑖
− V̂
𝑖
. (11)

In this function every aggregated observation is consid-
ered equally important; however, in reality we do not agree
with this assumption, since during most time vehicles travel
in traffic with density less than 50 vehicles per km. Our
observation data reveals that more than 60% traffic happens
with density lower than 50 vehicles per km, and this can be
found in following Figure 3.

So it is appropriate to multiply every aggregated obser-
vation with a term of weight which is number of raw
observations it is aggregated from. So we have the final
version of the root-finding problem as

𝐹 = ∑

𝑖

𝑛
𝑖
(V
𝑖
− V̂
𝑖
) , (12)

where 𝑛
𝑖
is the number of raw observations which fall into

𝑖th slice of 𝑘-V plane, and these raw observations are used to
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Figure 3: Number of raw observations which happened at different
density levels.

produce 𝑖th aggregated observation by applying (4). Here we
name result of this function degree of satisfaction for a set of
parameters, and purpose of inner looping is to find degree
of satisfaction for a specific set of parameters, whilst outer
looping explained in Section 4.3 is to find a set of parameters
which has its degree of satisfaction the nearest one to zero.

4.3. Outer Looping: BisectionMethod. Aswe get degree of sat-
isfaction of every set of parameters in inner looping, different
parameter sets get evaluated by running outer looping. Goal
of this evaluation is to find a set of model parameters which
let right side of (12) equal 0. So the problem here is to find
a root for this function, and intuitively numerical analysis
methods can help because it is not a simple linear function.
Here we adopt bisectionmethod because of its simplicity and
robustness. Using LCMmodel as an example to calibrate,

𝑘 =
1

(𝛾V2 + 𝜏V + 𝑙) [1 − ln (1 − (V/V
𝑓
))]

, (13)

where 𝑘 is traffic density, V is space-mean speed, 𝛾 denotes
aggressiveness that characterizes the driving population, 𝜏 is
average response time that characterizes the driving popula-
tion, 𝑙 is average effective vehicle length, and V

𝑓
is free flow

speed. So in this model we need to allocate four parameters
𝛾, 𝜏, 𝑙, and V𝑓. As an example, steps of this bisection algorithm
to optimize 𝛾 include the following.

(i) Step 1: if any of 𝜏, 𝑙, and V
𝑓
has already been optimized

before 𝛾, set these parameters as their calibrated
values. And for those that have not been calibrated,
set default parameter values. Default values are best
guesses based on common sense and earlier experi-
ence. For 𝛾 we set lower bound 𝛾

𝑙
and upper bound

𝛾
𝑢
. Set acceptable largest error of gamma 𝜖.

(ii) Step 2: if 𝛾
𝑢
−𝛾
𝑙
< 𝜖, then return 𝛾 = (𝛾

𝑙
+𝛾
𝑢
)/2 as result

of this algorithm and quit algorithm. Otherwise, run
inner loopingwith 𝛾 = (𝛾

𝑙
+𝛾
𝑢
)/2 and other parameter

values as set in step 1 for LCM model; get degree
of satisfaction for this set of parameters with new 𝛾

value.
(iii) Step 3: if degree of satisfaction value got in step 2 is

greater than 0, it means we underestimated drivers’
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Figure 4: Raw and aggregated observation points.
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aggression at this particular time and location; thus,
reset lower bound of aggressiveness as 𝛾

𝑙
= (𝛾
𝑙
+

𝛾
𝑢
)/2, keep other parameters unchanged, and go to

step 2. Otherwise, it means we overestimated drivers’
aggressiveness so reset upper bound as 𝛾

𝑢
= (𝛾
𝑙
+𝛾
𝑢
)/2

and go to step 2.

With this bisection algorithm we will finally get a cal-
ibrated 𝛾 value when sum of signed distances is very near
to 0, which means our calibration criterion is approximately
satisfied. And repeat this for every model parameter.

5. Verification and Analysis

To verify and analyse the approach introduced in Sections 3
and 4, we pick eight sample sets of 5-minute traffic data
to verify and analyse our algorithm. These samples are
cut from a set of traffic flow data logs for route 400 in
Georgia in July 2003, containing information collected by
two roadside cameras. Four of the 5-minute samples derived
from logs were collected by camera 1106 near North Old
Milton Parkway, Alpharetta, GA (location A), and the other

four are related to logs of camera 1134 near South Hammond
Drive, Sandy Springs, GA (location B). These traffic data logs
contain raw observations of flow, density, and speedwith time
stamps. Every raw observation was for a 20-second period,
so information contained by an observation is average rate
of flow, density, and speed of traffic which went through a
camera’s shooting area during a specific 20-second period.
Thus, this data set is capable of simulating traffic situation
in real time except one fact that, size of data log in reality
would be much bigger than our data set since we assume
real-time data stream is observations for individual vehicles,
not averaged traffic during periods. To solve this problem we
aggregate data from logs of different days in July into one
sample. For example, in order to get a sample for traffic during
9:00–9:05 am at camera 1106, we aggregate all traffic data for
this site and this time of day on all days in July into one single
file as a simulation of real-time observation of individual
vehicles. Since traffic flow characters should be consistent for
the same site under the same illumination, it is reasonable to
simulate by aggregating.

In order to get samples without any preference, for each
site we pick four 5-minute segments of the logs with a 3-
hour step; that is, these four samples are log segments of
traffic data at 9:00–9:05 am, 12:00–12:05 pm, 3:00–3:05 pm,
and 6:00–6:05 pm, respectively.

5.1. Data Aggregation and Weighting. As the first step, data
aggregation contributes remarkably to saving running time.
150 slices on 𝑘-axis are made on interval 𝑘 ∈ [0, 300]; how-
ever, consider that there are slices where no raw observations
fall in; actual number of aggregated observation points is less
than 150. As shown in Figure 4, there are 15–70 aggregated
points that depend on span of raw data’s density value. Also
from this figure we see obvious patterns of traffic flow in
different time of a day. In the morning majority of traffic
travelled at density 𝑘 < 30 vehicles per km; higher density
happened sometimes and was not ignorable, especially for
camera 1134 at location B.This is just the normal situation on
highway; sequences of vehicles come with considerable high
internal density but there are long distances between different
sequences. And sometimes slow leading vehicles of sequences
make traffic slow down. During noon time traffic was more
concentrated to density under 30, sparse points exist at
higher density and lower speed, so it is still normal situation
with minor differences. Traffic situation in afternoon was
significantly different. For sample data at 3 pm, there are, but
not many, observations with densities higher than 30 vehicles
per km, so we consider that most vehicles were travelling in
smooth and confident maneuvers. However, traffic at 6 pm
at location A was a contrast, with a large proportion of
observations distributed with high density and low speed, so
this is a rush hour situation.

Patterns for location A and location B are not exactly
the same, and this might be because a camera is only for
surveillance of one side of highway, as well as the fact that
camera 1106 is at the side of location A which is more
congested during afternoon rush hour, and camera 1134
occupies the side of location B that accommodates morning
crowds.
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Sample 2: 12:00−12:05p.m. at location A

Sample 3: 03:00−03:05p.m. at location A

Sample 4: 06:00−06:05p.m. at location A

Sample 5: 09:00−09:05 a.m. at location B

Sample 6: 12:00−12:05p.m. at location B

Sample 7: 03:00−03:05p.m. at location B

Sample 8: 06:00−06:05p.m. at location B

Raw data
Aggregated data
LCM model

Raw data
Aggregated data
LCM model

Figure 6: Calibration results for sample data sets by bisection based algorithm.
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Figure 7: LCM and Newell’s model calibrated by bisection algorithm.

Also from above Figure 4 we see importance of applying
weights to aggregated observation points. Take noon sample
at location B as an example; the red point with density at 39
vehicles per km is aggregated from only 1 raw observation,
while another red point at 16 vehicles per km is aggregated
from 33 raw observations, so intuitively these two points
should have different effects on shape of a flow model. In
order to generate a weight for an aggregated point, we use the
number of rawobservations fromwhich this aggregated point
is calculated. By adapting this definition of weights for points,
inputs from different situations are reasonable.

5.2. Convergence Speed for Bisection Method. Though bisec-
tions are not themost advanced numerical analyticalmethod,
consider its time complexity as 𝑂(log

2
𝑛); it meets our

requirement of performing in real time for transportation
engineering and administration purpose. As shown in Fig-
ure 5, to calibrate against location B 9 am sample data,
every parameter of LCM model converges in at most 12
iterations, so its guaranteed running time is less than a
second. Compared to other nonnumerical methods, it is a
very fast algorithm for calibrating traffic flow models, and
practically this calculating system reacts in real time.

5.3. Calibration Result. In Table 2, we get quantified patterns
for sample data sets by calibrating LCM model. As we
assumed, parameters of LCM model appear to be consistent
for a specific location, and for these two cases, as there
are both near-straight sections without any obvious curve,
there is no significant difference between values of their
parameters.Driving patterns at locationA are especiallymore
consistent compared to that of location B, considering that
location B is near conjunction of route 285 and route 400,
so there is more interference coming from the complicated
structure of this conjunction.

Thus, calibration result of our algorithm meets common
sense, and Figure 6 demonstrates how speed-density curve of
LCMmodel fits field data after calibration.This figure further
proves role of weighting aggregated points as discussed in
Section 5.1, especially in sample 1 for location A at 9 am; six
red points between density 40 and 75 vehicles per km are
considered less important so curve of final result does not go
through these points perfectly; however, this makes overall
precision of the model optimized.

Amore comprehensive visualized result for this bisection
based algorithm is shown in a following pate in Figure 7.
Sample 2 for locationB at 9 am is opted for this demonstration
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Table 2: Calibration results for sample data sets by bisection based algorithm.

Parameters
Samples Free flow Vehicle P-R time Aggression

speed (km/h) length (m) (sec) (s2/m)

Location A

9:00–9:05 a.m. 96.1628 4.5088 1.2438 −0.0305
12:00–12:05 p.m. 95.6600 4.5088 1.3331 −0.0311
3:00–3:05 p.m. 96.4143 4.5029 1.2892 −0.0301
6:00–6:05 p.m. 96.6655 4.5029 1.1903 −0.0300

Location B

9:00–9:05 a.m. 95.4087 4.4971 1.1544 −0.0310
12:00–12:05 p.m. 98.1741 4.4912 1.2240 −0.0286
3:00–3:05 p.m. 95.9115 4.4971 1.2592 −0.0305
6:00–6:05 p.m. 97.6712 4.5029 1.1720 −0.0290

because its data points are better spread; thus, it is easier
to read how calibration results fit field and aggregated data.
Also Newell’s model is calibrated to prove versatility of our
algorithm.

6. Conclusion

Consider its time complexity as𝑂(log
2
𝑛); this bisection based

algorithm has a theoretical high performance. In practice,
we run this algorithm on a personal laptop with a T7300
CPU and 2GB ram; calibration for LCM model against
every sample completes in 0.5 seconds, and calibration for
Newell’s model runs for less than 1 second. Also because of
aggregation procedure, this algorithm is not sensitive to size
of sample, as it calibrates both models against a 24-hour data
set with 56,000 observations in less than 2 seconds. Also by
verifying and analysing the algorithm’s procedures and results
in Section 5, we see it has good accuracy in both calculating
parameters of a model and drawing statistical relationships
between traffic flow, density, and speed.Thus, it is reasonable
to use this calibration algorithm on real-time surveillance of
drivers’ behaviours.
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